mr.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973
  1. /*
  2. * Copyright(c) 2016 Intel Corporation.
  3. *
  4. * This file is provided under a dual BSD/GPLv2 license. When using or
  5. * redistributing this file, you may do so under either license.
  6. *
  7. * GPL LICENSE SUMMARY
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of version 2 of the GNU General Public License as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * BSD LICENSE
  19. *
  20. * Redistribution and use in source and binary forms, with or without
  21. * modification, are permitted provided that the following conditions
  22. * are met:
  23. *
  24. * - Redistributions of source code must retain the above copyright
  25. * notice, this list of conditions and the following disclaimer.
  26. * - Redistributions in binary form must reproduce the above copyright
  27. * notice, this list of conditions and the following disclaimer in
  28. * the documentation and/or other materials provided with the
  29. * distribution.
  30. * - Neither the name of Intel Corporation nor the names of its
  31. * contributors may be used to endorse or promote products derived
  32. * from this software without specific prior written permission.
  33. *
  34. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45. *
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/vmalloc.h>
  49. #include <rdma/ib_umem.h>
  50. #include <rdma/rdma_vt.h>
  51. #include "vt.h"
  52. #include "mr.h"
  53. #include "trace.h"
  54. /**
  55. * rvt_driver_mr_init - Init MR resources per driver
  56. * @rdi: rvt dev struct
  57. *
  58. * Do any intilization needed when a driver registers with rdmavt.
  59. *
  60. * Return: 0 on success or errno on failure
  61. */
  62. int rvt_driver_mr_init(struct rvt_dev_info *rdi)
  63. {
  64. unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
  65. unsigned lk_tab_size;
  66. int i;
  67. /*
  68. * The top hfi1_lkey_table_size bits are used to index the
  69. * table. The lower 8 bits can be owned by the user (copied from
  70. * the LKEY). The remaining bits act as a generation number or tag.
  71. */
  72. if (!lkey_table_size)
  73. return -EINVAL;
  74. spin_lock_init(&rdi->lkey_table.lock);
  75. /* ensure generation is at least 4 bits */
  76. if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
  77. rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
  78. lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
  79. rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
  80. lkey_table_size = rdi->dparms.lkey_table_size;
  81. }
  82. rdi->lkey_table.max = 1 << lkey_table_size;
  83. rdi->lkey_table.shift = 32 - lkey_table_size;
  84. lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
  85. rdi->lkey_table.table = (struct rvt_mregion __rcu **)
  86. vmalloc_node(lk_tab_size, rdi->dparms.node);
  87. if (!rdi->lkey_table.table)
  88. return -ENOMEM;
  89. RCU_INIT_POINTER(rdi->dma_mr, NULL);
  90. for (i = 0; i < rdi->lkey_table.max; i++)
  91. RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
  92. return 0;
  93. }
  94. /**
  95. *rvt_mr_exit: clean up MR
  96. *@rdi: rvt dev structure
  97. *
  98. * called when drivers have unregistered or perhaps failed to register with us
  99. */
  100. void rvt_mr_exit(struct rvt_dev_info *rdi)
  101. {
  102. if (rdi->dma_mr)
  103. rvt_pr_err(rdi, "DMA MR not null!\n");
  104. vfree(rdi->lkey_table.table);
  105. }
  106. static void rvt_deinit_mregion(struct rvt_mregion *mr)
  107. {
  108. int i = mr->mapsz;
  109. mr->mapsz = 0;
  110. while (i)
  111. kfree(mr->map[--i]);
  112. percpu_ref_exit(&mr->refcount);
  113. }
  114. static void __rvt_mregion_complete(struct percpu_ref *ref)
  115. {
  116. struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
  117. refcount);
  118. complete(&mr->comp);
  119. }
  120. static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
  121. int count, unsigned int percpu_flags)
  122. {
  123. int m, i = 0;
  124. struct rvt_dev_info *dev = ib_to_rvt(pd->device);
  125. mr->mapsz = 0;
  126. m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
  127. for (; i < m; i++) {
  128. mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
  129. dev->dparms.node);
  130. if (!mr->map[i])
  131. goto bail;
  132. mr->mapsz++;
  133. }
  134. init_completion(&mr->comp);
  135. /* count returning the ptr to user */
  136. if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
  137. percpu_flags, GFP_KERNEL))
  138. goto bail;
  139. atomic_set(&mr->lkey_invalid, 0);
  140. mr->pd = pd;
  141. mr->max_segs = count;
  142. return 0;
  143. bail:
  144. rvt_deinit_mregion(mr);
  145. return -ENOMEM;
  146. }
  147. /**
  148. * rvt_alloc_lkey - allocate an lkey
  149. * @mr: memory region that this lkey protects
  150. * @dma_region: 0->normal key, 1->restricted DMA key
  151. *
  152. * Returns 0 if successful, otherwise returns -errno.
  153. *
  154. * Increments mr reference count as required.
  155. *
  156. * Sets the lkey field mr for non-dma regions.
  157. *
  158. */
  159. static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
  160. {
  161. unsigned long flags;
  162. u32 r;
  163. u32 n;
  164. int ret = 0;
  165. struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
  166. struct rvt_lkey_table *rkt = &dev->lkey_table;
  167. rvt_get_mr(mr);
  168. spin_lock_irqsave(&rkt->lock, flags);
  169. /* special case for dma_mr lkey == 0 */
  170. if (dma_region) {
  171. struct rvt_mregion *tmr;
  172. tmr = rcu_access_pointer(dev->dma_mr);
  173. if (!tmr) {
  174. rcu_assign_pointer(dev->dma_mr, mr);
  175. mr->lkey_published = 1;
  176. rvt_get_mr(mr);
  177. }
  178. goto success;
  179. }
  180. /* Find the next available LKEY */
  181. r = rkt->next;
  182. n = r;
  183. for (;;) {
  184. if (!rcu_access_pointer(rkt->table[r]))
  185. break;
  186. r = (r + 1) & (rkt->max - 1);
  187. if (r == n)
  188. goto bail;
  189. }
  190. rkt->next = (r + 1) & (rkt->max - 1);
  191. /*
  192. * Make sure lkey is never zero which is reserved to indicate an
  193. * unrestricted LKEY.
  194. */
  195. rkt->gen++;
  196. /*
  197. * bits are capped to ensure enough bits for generation number
  198. */
  199. mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
  200. ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
  201. << 8);
  202. if (mr->lkey == 0) {
  203. mr->lkey |= 1 << 8;
  204. rkt->gen++;
  205. }
  206. rcu_assign_pointer(rkt->table[r], mr);
  207. mr->lkey_published = 1;
  208. success:
  209. spin_unlock_irqrestore(&rkt->lock, flags);
  210. out:
  211. return ret;
  212. bail:
  213. rvt_put_mr(mr);
  214. spin_unlock_irqrestore(&rkt->lock, flags);
  215. ret = -ENOMEM;
  216. goto out;
  217. }
  218. /**
  219. * rvt_free_lkey - free an lkey
  220. * @mr: mr to free from tables
  221. */
  222. static void rvt_free_lkey(struct rvt_mregion *mr)
  223. {
  224. unsigned long flags;
  225. u32 lkey = mr->lkey;
  226. u32 r;
  227. struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
  228. struct rvt_lkey_table *rkt = &dev->lkey_table;
  229. int freed = 0;
  230. spin_lock_irqsave(&rkt->lock, flags);
  231. if (!lkey) {
  232. if (mr->lkey_published) {
  233. RCU_INIT_POINTER(dev->dma_mr, NULL);
  234. rvt_put_mr(mr);
  235. }
  236. } else {
  237. if (!mr->lkey_published)
  238. goto out;
  239. r = lkey >> (32 - dev->dparms.lkey_table_size);
  240. RCU_INIT_POINTER(rkt->table[r], NULL);
  241. }
  242. mr->lkey_published = 0;
  243. freed++;
  244. out:
  245. spin_unlock_irqrestore(&rkt->lock, flags);
  246. if (freed) {
  247. synchronize_rcu();
  248. percpu_ref_kill(&mr->refcount);
  249. }
  250. }
  251. static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
  252. {
  253. struct rvt_mr *mr;
  254. int rval = -ENOMEM;
  255. int m;
  256. /* Allocate struct plus pointers to first level page tables. */
  257. m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
  258. mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL);
  259. if (!mr)
  260. goto bail;
  261. rval = rvt_init_mregion(&mr->mr, pd, count, 0);
  262. if (rval)
  263. goto bail;
  264. /*
  265. * ib_reg_phys_mr() will initialize mr->ibmr except for
  266. * lkey and rkey.
  267. */
  268. rval = rvt_alloc_lkey(&mr->mr, 0);
  269. if (rval)
  270. goto bail_mregion;
  271. mr->ibmr.lkey = mr->mr.lkey;
  272. mr->ibmr.rkey = mr->mr.lkey;
  273. done:
  274. return mr;
  275. bail_mregion:
  276. rvt_deinit_mregion(&mr->mr);
  277. bail:
  278. kfree(mr);
  279. mr = ERR_PTR(rval);
  280. goto done;
  281. }
  282. static void __rvt_free_mr(struct rvt_mr *mr)
  283. {
  284. rvt_free_lkey(&mr->mr);
  285. rvt_deinit_mregion(&mr->mr);
  286. kfree(mr);
  287. }
  288. /**
  289. * rvt_get_dma_mr - get a DMA memory region
  290. * @pd: protection domain for this memory region
  291. * @acc: access flags
  292. *
  293. * Return: the memory region on success, otherwise returns an errno.
  294. * Note that all DMA addresses should be created via the functions in
  295. * struct dma_virt_ops.
  296. */
  297. struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
  298. {
  299. struct rvt_mr *mr;
  300. struct ib_mr *ret;
  301. int rval;
  302. if (ibpd_to_rvtpd(pd)->user)
  303. return ERR_PTR(-EPERM);
  304. mr = kzalloc(sizeof(*mr), GFP_KERNEL);
  305. if (!mr) {
  306. ret = ERR_PTR(-ENOMEM);
  307. goto bail;
  308. }
  309. rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
  310. if (rval) {
  311. ret = ERR_PTR(rval);
  312. goto bail;
  313. }
  314. rval = rvt_alloc_lkey(&mr->mr, 1);
  315. if (rval) {
  316. ret = ERR_PTR(rval);
  317. goto bail_mregion;
  318. }
  319. mr->mr.access_flags = acc;
  320. ret = &mr->ibmr;
  321. done:
  322. return ret;
  323. bail_mregion:
  324. rvt_deinit_mregion(&mr->mr);
  325. bail:
  326. kfree(mr);
  327. goto done;
  328. }
  329. /**
  330. * rvt_reg_user_mr - register a userspace memory region
  331. * @pd: protection domain for this memory region
  332. * @start: starting userspace address
  333. * @length: length of region to register
  334. * @mr_access_flags: access flags for this memory region
  335. * @udata: unused by the driver
  336. *
  337. * Return: the memory region on success, otherwise returns an errno.
  338. */
  339. struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
  340. u64 virt_addr, int mr_access_flags,
  341. struct ib_udata *udata)
  342. {
  343. struct rvt_mr *mr;
  344. struct ib_umem *umem;
  345. struct scatterlist *sg;
  346. int n, m, entry;
  347. struct ib_mr *ret;
  348. if (length == 0)
  349. return ERR_PTR(-EINVAL);
  350. umem = ib_umem_get(pd->uobject->context, start, length,
  351. mr_access_flags, 0);
  352. if (IS_ERR(umem))
  353. return (void *)umem;
  354. n = umem->nmap;
  355. mr = __rvt_alloc_mr(n, pd);
  356. if (IS_ERR(mr)) {
  357. ret = (struct ib_mr *)mr;
  358. goto bail_umem;
  359. }
  360. mr->mr.user_base = start;
  361. mr->mr.iova = virt_addr;
  362. mr->mr.length = length;
  363. mr->mr.offset = ib_umem_offset(umem);
  364. mr->mr.access_flags = mr_access_flags;
  365. mr->umem = umem;
  366. if (is_power_of_2(umem->page_size))
  367. mr->mr.page_shift = ilog2(umem->page_size);
  368. m = 0;
  369. n = 0;
  370. for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
  371. void *vaddr;
  372. vaddr = page_address(sg_page(sg));
  373. if (!vaddr) {
  374. ret = ERR_PTR(-EINVAL);
  375. goto bail_inval;
  376. }
  377. mr->mr.map[m]->segs[n].vaddr = vaddr;
  378. mr->mr.map[m]->segs[n].length = umem->page_size;
  379. trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, umem->page_size);
  380. n++;
  381. if (n == RVT_SEGSZ) {
  382. m++;
  383. n = 0;
  384. }
  385. }
  386. return &mr->ibmr;
  387. bail_inval:
  388. __rvt_free_mr(mr);
  389. bail_umem:
  390. ib_umem_release(umem);
  391. return ret;
  392. }
  393. /**
  394. * rvt_dereg_mr - unregister and free a memory region
  395. * @ibmr: the memory region to free
  396. *
  397. *
  398. * Note that this is called to free MRs created by rvt_get_dma_mr()
  399. * or rvt_reg_user_mr().
  400. *
  401. * Returns 0 on success.
  402. */
  403. int rvt_dereg_mr(struct ib_mr *ibmr)
  404. {
  405. struct rvt_mr *mr = to_imr(ibmr);
  406. struct rvt_dev_info *rdi = ib_to_rvt(ibmr->pd->device);
  407. int ret = 0;
  408. unsigned long timeout;
  409. rvt_free_lkey(&mr->mr);
  410. rvt_put_mr(&mr->mr); /* will set completion if last */
  411. timeout = wait_for_completion_timeout(&mr->mr.comp, 5 * HZ);
  412. if (!timeout) {
  413. rvt_pr_err(rdi,
  414. "rvt_dereg_mr timeout mr %p pd %p\n",
  415. mr, mr->mr.pd);
  416. rvt_get_mr(&mr->mr);
  417. ret = -EBUSY;
  418. goto out;
  419. }
  420. rvt_deinit_mregion(&mr->mr);
  421. if (mr->umem)
  422. ib_umem_release(mr->umem);
  423. kfree(mr);
  424. out:
  425. return ret;
  426. }
  427. /**
  428. * rvt_alloc_mr - Allocate a memory region usable with the
  429. * @pd: protection domain for this memory region
  430. * @mr_type: mem region type
  431. * @max_num_sg: Max number of segments allowed
  432. *
  433. * Return: the memory region on success, otherwise return an errno.
  434. */
  435. struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
  436. enum ib_mr_type mr_type,
  437. u32 max_num_sg)
  438. {
  439. struct rvt_mr *mr;
  440. if (mr_type != IB_MR_TYPE_MEM_REG)
  441. return ERR_PTR(-EINVAL);
  442. mr = __rvt_alloc_mr(max_num_sg, pd);
  443. if (IS_ERR(mr))
  444. return (struct ib_mr *)mr;
  445. return &mr->ibmr;
  446. }
  447. /**
  448. * rvt_set_page - page assignment function called by ib_sg_to_pages
  449. * @ibmr: memory region
  450. * @addr: dma address of mapped page
  451. *
  452. * Return: 0 on success
  453. */
  454. static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
  455. {
  456. struct rvt_mr *mr = to_imr(ibmr);
  457. u32 ps = 1 << mr->mr.page_shift;
  458. u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
  459. int m, n;
  460. if (unlikely(mapped_segs == mr->mr.max_segs))
  461. return -ENOMEM;
  462. if (mr->mr.length == 0) {
  463. mr->mr.user_base = addr;
  464. mr->mr.iova = addr;
  465. }
  466. m = mapped_segs / RVT_SEGSZ;
  467. n = mapped_segs % RVT_SEGSZ;
  468. mr->mr.map[m]->segs[n].vaddr = (void *)addr;
  469. mr->mr.map[m]->segs[n].length = ps;
  470. trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
  471. mr->mr.length += ps;
  472. return 0;
  473. }
  474. /**
  475. * rvt_map_mr_sg - map sg list and set it the memory region
  476. * @ibmr: memory region
  477. * @sg: dma mapped scatterlist
  478. * @sg_nents: number of entries in sg
  479. * @sg_offset: offset in bytes into sg
  480. *
  481. * Return: number of sg elements mapped to the memory region
  482. */
  483. int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
  484. int sg_nents, unsigned int *sg_offset)
  485. {
  486. struct rvt_mr *mr = to_imr(ibmr);
  487. mr->mr.length = 0;
  488. mr->mr.page_shift = PAGE_SHIFT;
  489. return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
  490. rvt_set_page);
  491. }
  492. /**
  493. * rvt_fast_reg_mr - fast register physical MR
  494. * @qp: the queue pair where the work request comes from
  495. * @ibmr: the memory region to be registered
  496. * @key: updated key for this memory region
  497. * @access: access flags for this memory region
  498. *
  499. * Returns 0 on success.
  500. */
  501. int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
  502. int access)
  503. {
  504. struct rvt_mr *mr = to_imr(ibmr);
  505. if (qp->ibqp.pd != mr->mr.pd)
  506. return -EACCES;
  507. /* not applicable to dma MR or user MR */
  508. if (!mr->mr.lkey || mr->umem)
  509. return -EINVAL;
  510. if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
  511. return -EINVAL;
  512. ibmr->lkey = key;
  513. ibmr->rkey = key;
  514. mr->mr.lkey = key;
  515. mr->mr.access_flags = access;
  516. atomic_set(&mr->mr.lkey_invalid, 0);
  517. return 0;
  518. }
  519. EXPORT_SYMBOL(rvt_fast_reg_mr);
  520. /**
  521. * rvt_invalidate_rkey - invalidate an MR rkey
  522. * @qp: queue pair associated with the invalidate op
  523. * @rkey: rkey to invalidate
  524. *
  525. * Returns 0 on success.
  526. */
  527. int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
  528. {
  529. struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
  530. struct rvt_lkey_table *rkt = &dev->lkey_table;
  531. struct rvt_mregion *mr;
  532. if (rkey == 0)
  533. return -EINVAL;
  534. rcu_read_lock();
  535. mr = rcu_dereference(
  536. rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
  537. if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
  538. goto bail;
  539. atomic_set(&mr->lkey_invalid, 1);
  540. rcu_read_unlock();
  541. return 0;
  542. bail:
  543. rcu_read_unlock();
  544. return -EINVAL;
  545. }
  546. EXPORT_SYMBOL(rvt_invalidate_rkey);
  547. /**
  548. * rvt_alloc_fmr - allocate a fast memory region
  549. * @pd: the protection domain for this memory region
  550. * @mr_access_flags: access flags for this memory region
  551. * @fmr_attr: fast memory region attributes
  552. *
  553. * Return: the memory region on success, otherwise returns an errno.
  554. */
  555. struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
  556. struct ib_fmr_attr *fmr_attr)
  557. {
  558. struct rvt_fmr *fmr;
  559. int m;
  560. struct ib_fmr *ret;
  561. int rval = -ENOMEM;
  562. /* Allocate struct plus pointers to first level page tables. */
  563. m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
  564. fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL);
  565. if (!fmr)
  566. goto bail;
  567. rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
  568. PERCPU_REF_INIT_ATOMIC);
  569. if (rval)
  570. goto bail;
  571. /*
  572. * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
  573. * rkey.
  574. */
  575. rval = rvt_alloc_lkey(&fmr->mr, 0);
  576. if (rval)
  577. goto bail_mregion;
  578. fmr->ibfmr.rkey = fmr->mr.lkey;
  579. fmr->ibfmr.lkey = fmr->mr.lkey;
  580. /*
  581. * Resources are allocated but no valid mapping (RKEY can't be
  582. * used).
  583. */
  584. fmr->mr.access_flags = mr_access_flags;
  585. fmr->mr.max_segs = fmr_attr->max_pages;
  586. fmr->mr.page_shift = fmr_attr->page_shift;
  587. ret = &fmr->ibfmr;
  588. done:
  589. return ret;
  590. bail_mregion:
  591. rvt_deinit_mregion(&fmr->mr);
  592. bail:
  593. kfree(fmr);
  594. ret = ERR_PTR(rval);
  595. goto done;
  596. }
  597. /**
  598. * rvt_map_phys_fmr - set up a fast memory region
  599. * @ibmfr: the fast memory region to set up
  600. * @page_list: the list of pages to associate with the fast memory region
  601. * @list_len: the number of pages to associate with the fast memory region
  602. * @iova: the virtual address of the start of the fast memory region
  603. *
  604. * This may be called from interrupt context.
  605. *
  606. * Return: 0 on success
  607. */
  608. int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
  609. int list_len, u64 iova)
  610. {
  611. struct rvt_fmr *fmr = to_ifmr(ibfmr);
  612. struct rvt_lkey_table *rkt;
  613. unsigned long flags;
  614. int m, n;
  615. unsigned long i;
  616. u32 ps;
  617. struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
  618. i = atomic_long_read(&fmr->mr.refcount.count);
  619. if (i > 2)
  620. return -EBUSY;
  621. if (list_len > fmr->mr.max_segs)
  622. return -EINVAL;
  623. rkt = &rdi->lkey_table;
  624. spin_lock_irqsave(&rkt->lock, flags);
  625. fmr->mr.user_base = iova;
  626. fmr->mr.iova = iova;
  627. ps = 1 << fmr->mr.page_shift;
  628. fmr->mr.length = list_len * ps;
  629. m = 0;
  630. n = 0;
  631. for (i = 0; i < list_len; i++) {
  632. fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
  633. fmr->mr.map[m]->segs[n].length = ps;
  634. trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
  635. if (++n == RVT_SEGSZ) {
  636. m++;
  637. n = 0;
  638. }
  639. }
  640. spin_unlock_irqrestore(&rkt->lock, flags);
  641. return 0;
  642. }
  643. /**
  644. * rvt_unmap_fmr - unmap fast memory regions
  645. * @fmr_list: the list of fast memory regions to unmap
  646. *
  647. * Return: 0 on success.
  648. */
  649. int rvt_unmap_fmr(struct list_head *fmr_list)
  650. {
  651. struct rvt_fmr *fmr;
  652. struct rvt_lkey_table *rkt;
  653. unsigned long flags;
  654. struct rvt_dev_info *rdi;
  655. list_for_each_entry(fmr, fmr_list, ibfmr.list) {
  656. rdi = ib_to_rvt(fmr->ibfmr.device);
  657. rkt = &rdi->lkey_table;
  658. spin_lock_irqsave(&rkt->lock, flags);
  659. fmr->mr.user_base = 0;
  660. fmr->mr.iova = 0;
  661. fmr->mr.length = 0;
  662. spin_unlock_irqrestore(&rkt->lock, flags);
  663. }
  664. return 0;
  665. }
  666. /**
  667. * rvt_dealloc_fmr - deallocate a fast memory region
  668. * @ibfmr: the fast memory region to deallocate
  669. *
  670. * Return: 0 on success.
  671. */
  672. int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
  673. {
  674. struct rvt_fmr *fmr = to_ifmr(ibfmr);
  675. int ret = 0;
  676. unsigned long timeout;
  677. rvt_free_lkey(&fmr->mr);
  678. rvt_put_mr(&fmr->mr); /* will set completion if last */
  679. timeout = wait_for_completion_timeout(&fmr->mr.comp, 5 * HZ);
  680. if (!timeout) {
  681. rvt_get_mr(&fmr->mr);
  682. ret = -EBUSY;
  683. goto out;
  684. }
  685. rvt_deinit_mregion(&fmr->mr);
  686. kfree(fmr);
  687. out:
  688. return ret;
  689. }
  690. /**
  691. * rvt_lkey_ok - check IB SGE for validity and initialize
  692. * @rkt: table containing lkey to check SGE against
  693. * @pd: protection domain
  694. * @isge: outgoing internal SGE
  695. * @sge: SGE to check
  696. * @acc: access flags
  697. *
  698. * Check the IB SGE for validity and initialize our internal version
  699. * of it.
  700. *
  701. * Return: 1 if valid and successful, otherwise returns 0.
  702. *
  703. * increments the reference count upon success
  704. *
  705. */
  706. int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
  707. struct rvt_sge *isge, struct ib_sge *sge, int acc)
  708. {
  709. struct rvt_mregion *mr;
  710. unsigned n, m;
  711. size_t off;
  712. /*
  713. * We use LKEY == zero for kernel virtual addresses
  714. * (see rvt_get_dma_mr() and dma_virt_ops).
  715. */
  716. rcu_read_lock();
  717. if (sge->lkey == 0) {
  718. struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
  719. if (pd->user)
  720. goto bail;
  721. mr = rcu_dereference(dev->dma_mr);
  722. if (!mr)
  723. goto bail;
  724. rvt_get_mr(mr);
  725. rcu_read_unlock();
  726. isge->mr = mr;
  727. isge->vaddr = (void *)sge->addr;
  728. isge->length = sge->length;
  729. isge->sge_length = sge->length;
  730. isge->m = 0;
  731. isge->n = 0;
  732. goto ok;
  733. }
  734. mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
  735. if (unlikely(!mr || atomic_read(&mr->lkey_invalid) ||
  736. mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
  737. goto bail;
  738. off = sge->addr - mr->user_base;
  739. if (unlikely(sge->addr < mr->user_base ||
  740. off + sge->length > mr->length ||
  741. (mr->access_flags & acc) != acc))
  742. goto bail;
  743. rvt_get_mr(mr);
  744. rcu_read_unlock();
  745. off += mr->offset;
  746. if (mr->page_shift) {
  747. /*
  748. * page sizes are uniform power of 2 so no loop is necessary
  749. * entries_spanned_by_off is the number of times the loop below
  750. * would have executed.
  751. */
  752. size_t entries_spanned_by_off;
  753. entries_spanned_by_off = off >> mr->page_shift;
  754. off -= (entries_spanned_by_off << mr->page_shift);
  755. m = entries_spanned_by_off / RVT_SEGSZ;
  756. n = entries_spanned_by_off % RVT_SEGSZ;
  757. } else {
  758. m = 0;
  759. n = 0;
  760. while (off >= mr->map[m]->segs[n].length) {
  761. off -= mr->map[m]->segs[n].length;
  762. n++;
  763. if (n >= RVT_SEGSZ) {
  764. m++;
  765. n = 0;
  766. }
  767. }
  768. }
  769. isge->mr = mr;
  770. isge->vaddr = mr->map[m]->segs[n].vaddr + off;
  771. isge->length = mr->map[m]->segs[n].length - off;
  772. isge->sge_length = sge->length;
  773. isge->m = m;
  774. isge->n = n;
  775. ok:
  776. return 1;
  777. bail:
  778. rcu_read_unlock();
  779. return 0;
  780. }
  781. EXPORT_SYMBOL(rvt_lkey_ok);
  782. /**
  783. * rvt_rkey_ok - check the IB virtual address, length, and RKEY
  784. * @qp: qp for validation
  785. * @sge: SGE state
  786. * @len: length of data
  787. * @vaddr: virtual address to place data
  788. * @rkey: rkey to check
  789. * @acc: access flags
  790. *
  791. * Return: 1 if successful, otherwise 0.
  792. *
  793. * increments the reference count upon success
  794. */
  795. int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
  796. u32 len, u64 vaddr, u32 rkey, int acc)
  797. {
  798. struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
  799. struct rvt_lkey_table *rkt = &dev->lkey_table;
  800. struct rvt_mregion *mr;
  801. unsigned n, m;
  802. size_t off;
  803. /*
  804. * We use RKEY == zero for kernel virtual addresses
  805. * (see rvt_get_dma_mr() and dma_virt_ops).
  806. */
  807. rcu_read_lock();
  808. if (rkey == 0) {
  809. struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
  810. struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
  811. if (pd->user)
  812. goto bail;
  813. mr = rcu_dereference(rdi->dma_mr);
  814. if (!mr)
  815. goto bail;
  816. rvt_get_mr(mr);
  817. rcu_read_unlock();
  818. sge->mr = mr;
  819. sge->vaddr = (void *)vaddr;
  820. sge->length = len;
  821. sge->sge_length = len;
  822. sge->m = 0;
  823. sge->n = 0;
  824. goto ok;
  825. }
  826. mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
  827. if (unlikely(!mr || atomic_read(&mr->lkey_invalid) ||
  828. mr->lkey != rkey || qp->ibqp.pd != mr->pd))
  829. goto bail;
  830. off = vaddr - mr->iova;
  831. if (unlikely(vaddr < mr->iova || off + len > mr->length ||
  832. (mr->access_flags & acc) == 0))
  833. goto bail;
  834. rvt_get_mr(mr);
  835. rcu_read_unlock();
  836. off += mr->offset;
  837. if (mr->page_shift) {
  838. /*
  839. * page sizes are uniform power of 2 so no loop is necessary
  840. * entries_spanned_by_off is the number of times the loop below
  841. * would have executed.
  842. */
  843. size_t entries_spanned_by_off;
  844. entries_spanned_by_off = off >> mr->page_shift;
  845. off -= (entries_spanned_by_off << mr->page_shift);
  846. m = entries_spanned_by_off / RVT_SEGSZ;
  847. n = entries_spanned_by_off % RVT_SEGSZ;
  848. } else {
  849. m = 0;
  850. n = 0;
  851. while (off >= mr->map[m]->segs[n].length) {
  852. off -= mr->map[m]->segs[n].length;
  853. n++;
  854. if (n >= RVT_SEGSZ) {
  855. m++;
  856. n = 0;
  857. }
  858. }
  859. }
  860. sge->mr = mr;
  861. sge->vaddr = mr->map[m]->segs[n].vaddr + off;
  862. sge->length = mr->map[m]->segs[n].length - off;
  863. sge->sge_length = len;
  864. sge->m = m;
  865. sge->n = n;
  866. ok:
  867. return 1;
  868. bail:
  869. rcu_read_unlock();
  870. return 0;
  871. }
  872. EXPORT_SYMBOL(rvt_rkey_ok);