odp.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167
  1. /*
  2. * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <rdma/ib_umem.h>
  33. #include <rdma/ib_umem_odp.h>
  34. #include "mlx5_ib.h"
  35. #include "cmd.h"
  36. #define MAX_PREFETCH_LEN (4*1024*1024U)
  37. /* Timeout in ms to wait for an active mmu notifier to complete when handling
  38. * a pagefault. */
  39. #define MMU_NOTIFIER_TIMEOUT 1000
  40. #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
  41. #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
  42. #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
  43. #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
  44. #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
  45. #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
  46. static u64 mlx5_imr_ksm_entries;
  47. static int check_parent(struct ib_umem_odp *odp,
  48. struct mlx5_ib_mr *parent)
  49. {
  50. struct mlx5_ib_mr *mr = odp->private;
  51. return mr && mr->parent == parent;
  52. }
  53. static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
  54. {
  55. struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
  56. struct ib_ucontext *ctx = odp->umem->context;
  57. struct rb_node *rb;
  58. down_read(&ctx->umem_rwsem);
  59. while (1) {
  60. rb = rb_next(&odp->interval_tree.rb);
  61. if (!rb)
  62. goto not_found;
  63. odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
  64. if (check_parent(odp, parent))
  65. goto end;
  66. }
  67. not_found:
  68. odp = NULL;
  69. end:
  70. up_read(&ctx->umem_rwsem);
  71. return odp;
  72. }
  73. static struct ib_umem_odp *odp_lookup(struct ib_ucontext *ctx,
  74. u64 start, u64 length,
  75. struct mlx5_ib_mr *parent)
  76. {
  77. struct ib_umem_odp *odp;
  78. struct rb_node *rb;
  79. down_read(&ctx->umem_rwsem);
  80. odp = rbt_ib_umem_lookup(&ctx->umem_tree, start, length);
  81. if (!odp)
  82. goto end;
  83. while (1) {
  84. if (check_parent(odp, parent))
  85. goto end;
  86. rb = rb_next(&odp->interval_tree.rb);
  87. if (!rb)
  88. goto not_found;
  89. odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
  90. if (ib_umem_start(odp->umem) > start + length)
  91. goto not_found;
  92. }
  93. not_found:
  94. odp = NULL;
  95. end:
  96. up_read(&ctx->umem_rwsem);
  97. return odp;
  98. }
  99. void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
  100. size_t nentries, struct mlx5_ib_mr *mr, int flags)
  101. {
  102. struct ib_pd *pd = mr->ibmr.pd;
  103. struct ib_ucontext *ctx = pd->uobject->context;
  104. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  105. struct ib_umem_odp *odp;
  106. unsigned long va;
  107. int i;
  108. if (flags & MLX5_IB_UPD_XLT_ZAP) {
  109. for (i = 0; i < nentries; i++, pklm++) {
  110. pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
  111. pklm->key = cpu_to_be32(dev->null_mkey);
  112. pklm->va = 0;
  113. }
  114. return;
  115. }
  116. odp = odp_lookup(ctx, offset * MLX5_IMR_MTT_SIZE,
  117. nentries * MLX5_IMR_MTT_SIZE, mr);
  118. for (i = 0; i < nentries; i++, pklm++) {
  119. pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
  120. va = (offset + i) * MLX5_IMR_MTT_SIZE;
  121. if (odp && odp->umem->address == va) {
  122. struct mlx5_ib_mr *mtt = odp->private;
  123. pklm->key = cpu_to_be32(mtt->ibmr.lkey);
  124. odp = odp_next(odp);
  125. } else {
  126. pklm->key = cpu_to_be32(dev->null_mkey);
  127. }
  128. mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
  129. i, va, be32_to_cpu(pklm->key));
  130. }
  131. }
  132. static void mr_leaf_free_action(struct work_struct *work)
  133. {
  134. struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
  135. int idx = ib_umem_start(odp->umem) >> MLX5_IMR_MTT_SHIFT;
  136. struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
  137. mr->parent = NULL;
  138. synchronize_srcu(&mr->dev->mr_srcu);
  139. if (!READ_ONCE(odp->dying)) {
  140. mr->parent = imr;
  141. if (atomic_dec_and_test(&imr->num_leaf_free))
  142. wake_up(&imr->q_leaf_free);
  143. return;
  144. }
  145. ib_umem_release(odp->umem);
  146. if (imr->live)
  147. mlx5_ib_update_xlt(imr, idx, 1, 0,
  148. MLX5_IB_UPD_XLT_INDIRECT |
  149. MLX5_IB_UPD_XLT_ATOMIC);
  150. mlx5_mr_cache_free(mr->dev, mr);
  151. if (atomic_dec_and_test(&imr->num_leaf_free))
  152. wake_up(&imr->q_leaf_free);
  153. }
  154. void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
  155. unsigned long end)
  156. {
  157. struct mlx5_ib_mr *mr;
  158. const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
  159. sizeof(struct mlx5_mtt)) - 1;
  160. u64 idx = 0, blk_start_idx = 0;
  161. int in_block = 0;
  162. u64 addr;
  163. if (!umem || !umem->odp_data) {
  164. pr_err("invalidation called on NULL umem or non-ODP umem\n");
  165. return;
  166. }
  167. mr = umem->odp_data->private;
  168. if (!mr || !mr->ibmr.pd)
  169. return;
  170. start = max_t(u64, ib_umem_start(umem), start);
  171. end = min_t(u64, ib_umem_end(umem), end);
  172. /*
  173. * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
  174. * while we are doing the invalidation, no page fault will attempt to
  175. * overwrite the same MTTs. Concurent invalidations might race us,
  176. * but they will write 0s as well, so no difference in the end result.
  177. */
  178. for (addr = start; addr < end; addr += (u64)umem->page_size) {
  179. idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
  180. /*
  181. * Strive to write the MTTs in chunks, but avoid overwriting
  182. * non-existing MTTs. The huristic here can be improved to
  183. * estimate the cost of another UMR vs. the cost of bigger
  184. * UMR.
  185. */
  186. if (umem->odp_data->dma_list[idx] &
  187. (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
  188. if (!in_block) {
  189. blk_start_idx = idx;
  190. in_block = 1;
  191. }
  192. } else {
  193. u64 umr_offset = idx & umr_block_mask;
  194. if (in_block && umr_offset == 0) {
  195. mlx5_ib_update_xlt(mr, blk_start_idx,
  196. idx - blk_start_idx,
  197. PAGE_SHIFT,
  198. MLX5_IB_UPD_XLT_ZAP |
  199. MLX5_IB_UPD_XLT_ATOMIC);
  200. in_block = 0;
  201. }
  202. }
  203. }
  204. if (in_block)
  205. mlx5_ib_update_xlt(mr, blk_start_idx,
  206. idx - blk_start_idx + 1,
  207. PAGE_SHIFT,
  208. MLX5_IB_UPD_XLT_ZAP |
  209. MLX5_IB_UPD_XLT_ATOMIC);
  210. /*
  211. * We are now sure that the device will not access the
  212. * memory. We can safely unmap it, and mark it as dirty if
  213. * needed.
  214. */
  215. ib_umem_odp_unmap_dma_pages(umem, start, end);
  216. if (unlikely(!umem->npages && mr->parent &&
  217. !umem->odp_data->dying)) {
  218. WRITE_ONCE(umem->odp_data->dying, 1);
  219. atomic_inc(&mr->parent->num_leaf_free);
  220. schedule_work(&umem->odp_data->work);
  221. }
  222. }
  223. void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
  224. {
  225. struct ib_odp_caps *caps = &dev->odp_caps;
  226. memset(caps, 0, sizeof(*caps));
  227. if (!MLX5_CAP_GEN(dev->mdev, pg))
  228. return;
  229. caps->general_caps = IB_ODP_SUPPORT;
  230. if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
  231. dev->odp_max_size = U64_MAX;
  232. else
  233. dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
  234. if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
  235. caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
  236. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
  237. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
  238. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
  239. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
  240. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
  241. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
  242. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
  243. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
  244. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
  245. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
  246. if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
  247. MLX5_CAP_GEN(dev->mdev, null_mkey) &&
  248. MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
  249. caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
  250. return;
  251. }
  252. static struct mlx5_ib_mr *mlx5_ib_odp_find_mr_lkey(struct mlx5_ib_dev *dev,
  253. u32 key)
  254. {
  255. u32 base_key = mlx5_base_mkey(key);
  256. struct mlx5_core_mkey *mmkey = __mlx5_mr_lookup(dev->mdev, base_key);
  257. struct mlx5_ib_mr *mr;
  258. if (!mmkey || mmkey->key != key || mmkey->type != MLX5_MKEY_MR)
  259. return NULL;
  260. mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
  261. if (!mr->live)
  262. return NULL;
  263. return container_of(mmkey, struct mlx5_ib_mr, mmkey);
  264. }
  265. static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
  266. struct mlx5_pagefault *pfault,
  267. int error)
  268. {
  269. int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
  270. pfault->wqe.wq_num : pfault->token;
  271. int ret = mlx5_core_page_fault_resume(dev->mdev,
  272. pfault->token,
  273. wq_num,
  274. pfault->type,
  275. error);
  276. if (ret)
  277. mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
  278. wq_num);
  279. }
  280. static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
  281. struct ib_umem *umem,
  282. bool ksm, int access_flags)
  283. {
  284. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  285. struct mlx5_ib_mr *mr;
  286. int err;
  287. mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
  288. MLX5_IMR_MTT_CACHE_ENTRY);
  289. if (IS_ERR(mr))
  290. return mr;
  291. mr->ibmr.pd = pd;
  292. mr->dev = dev;
  293. mr->access_flags = access_flags;
  294. mr->mmkey.iova = 0;
  295. mr->umem = umem;
  296. if (ksm) {
  297. err = mlx5_ib_update_xlt(mr, 0,
  298. mlx5_imr_ksm_entries,
  299. MLX5_KSM_PAGE_SHIFT,
  300. MLX5_IB_UPD_XLT_INDIRECT |
  301. MLX5_IB_UPD_XLT_ZAP |
  302. MLX5_IB_UPD_XLT_ENABLE);
  303. } else {
  304. err = mlx5_ib_update_xlt(mr, 0,
  305. MLX5_IMR_MTT_ENTRIES,
  306. PAGE_SHIFT,
  307. MLX5_IB_UPD_XLT_ZAP |
  308. MLX5_IB_UPD_XLT_ENABLE |
  309. MLX5_IB_UPD_XLT_ATOMIC);
  310. }
  311. if (err)
  312. goto fail;
  313. mr->ibmr.lkey = mr->mmkey.key;
  314. mr->ibmr.rkey = mr->mmkey.key;
  315. mr->live = 1;
  316. mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
  317. mr->mmkey.key, dev->mdev, mr);
  318. return mr;
  319. fail:
  320. mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
  321. mlx5_mr_cache_free(dev, mr);
  322. return ERR_PTR(err);
  323. }
  324. static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
  325. u64 io_virt, size_t bcnt)
  326. {
  327. struct ib_ucontext *ctx = mr->ibmr.pd->uobject->context;
  328. struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
  329. struct ib_umem_odp *odp, *result = NULL;
  330. u64 addr = io_virt & MLX5_IMR_MTT_MASK;
  331. int nentries = 0, start_idx = 0, ret;
  332. struct mlx5_ib_mr *mtt;
  333. struct ib_umem *umem;
  334. mutex_lock(&mr->umem->odp_data->umem_mutex);
  335. odp = odp_lookup(ctx, addr, 1, mr);
  336. mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
  337. io_virt, bcnt, addr, odp);
  338. next_mr:
  339. if (likely(odp)) {
  340. if (nentries)
  341. nentries++;
  342. } else {
  343. umem = ib_alloc_odp_umem(ctx, addr, MLX5_IMR_MTT_SIZE);
  344. if (IS_ERR(umem)) {
  345. mutex_unlock(&mr->umem->odp_data->umem_mutex);
  346. return ERR_CAST(umem);
  347. }
  348. mtt = implicit_mr_alloc(mr->ibmr.pd, umem, 0, mr->access_flags);
  349. if (IS_ERR(mtt)) {
  350. mutex_unlock(&mr->umem->odp_data->umem_mutex);
  351. ib_umem_release(umem);
  352. return ERR_CAST(mtt);
  353. }
  354. odp = umem->odp_data;
  355. odp->private = mtt;
  356. mtt->umem = umem;
  357. mtt->mmkey.iova = addr;
  358. mtt->parent = mr;
  359. INIT_WORK(&odp->work, mr_leaf_free_action);
  360. if (!nentries)
  361. start_idx = addr >> MLX5_IMR_MTT_SHIFT;
  362. nentries++;
  363. }
  364. odp->dying = 0;
  365. /* Return first odp if region not covered by single one */
  366. if (likely(!result))
  367. result = odp;
  368. addr += MLX5_IMR_MTT_SIZE;
  369. if (unlikely(addr < io_virt + bcnt)) {
  370. odp = odp_next(odp);
  371. if (odp && odp->umem->address != addr)
  372. odp = NULL;
  373. goto next_mr;
  374. }
  375. if (unlikely(nentries)) {
  376. ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
  377. MLX5_IB_UPD_XLT_INDIRECT |
  378. MLX5_IB_UPD_XLT_ATOMIC);
  379. if (ret) {
  380. mlx5_ib_err(dev, "Failed to update PAS\n");
  381. result = ERR_PTR(ret);
  382. }
  383. }
  384. mutex_unlock(&mr->umem->odp_data->umem_mutex);
  385. return result;
  386. }
  387. struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
  388. int access_flags)
  389. {
  390. struct ib_ucontext *ctx = pd->ibpd.uobject->context;
  391. struct mlx5_ib_mr *imr;
  392. struct ib_umem *umem;
  393. umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
  394. if (IS_ERR(umem))
  395. return ERR_CAST(umem);
  396. imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
  397. if (IS_ERR(imr)) {
  398. ib_umem_release(umem);
  399. return ERR_CAST(imr);
  400. }
  401. imr->umem = umem;
  402. init_waitqueue_head(&imr->q_leaf_free);
  403. atomic_set(&imr->num_leaf_free, 0);
  404. return imr;
  405. }
  406. static int mr_leaf_free(struct ib_umem *umem, u64 start,
  407. u64 end, void *cookie)
  408. {
  409. struct mlx5_ib_mr *mr = umem->odp_data->private, *imr = cookie;
  410. if (mr->parent != imr)
  411. return 0;
  412. ib_umem_odp_unmap_dma_pages(umem,
  413. ib_umem_start(umem),
  414. ib_umem_end(umem));
  415. if (umem->odp_data->dying)
  416. return 0;
  417. WRITE_ONCE(umem->odp_data->dying, 1);
  418. atomic_inc(&imr->num_leaf_free);
  419. schedule_work(&umem->odp_data->work);
  420. return 0;
  421. }
  422. void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
  423. {
  424. struct ib_ucontext *ctx = imr->ibmr.pd->uobject->context;
  425. down_read(&ctx->umem_rwsem);
  426. rbt_ib_umem_for_each_in_range(&ctx->umem_tree, 0, ULLONG_MAX,
  427. mr_leaf_free, imr);
  428. up_read(&ctx->umem_rwsem);
  429. wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
  430. }
  431. /*
  432. * Handle a single data segment in a page-fault WQE or RDMA region.
  433. *
  434. * Returns number of pages retrieved on success. The caller may continue to
  435. * the next data segment.
  436. * Can return the following error codes:
  437. * -EAGAIN to designate a temporary error. The caller will abort handling the
  438. * page fault and resolve it.
  439. * -EFAULT when there's an error mapping the requested pages. The caller will
  440. * abort the page fault handling.
  441. */
  442. static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
  443. u32 key, u64 io_virt, size_t bcnt,
  444. u32 *bytes_committed,
  445. u32 *bytes_mapped)
  446. {
  447. int srcu_key;
  448. unsigned int current_seq = 0;
  449. u64 start_idx;
  450. int npages = 0, ret = 0;
  451. struct mlx5_ib_mr *mr;
  452. u64 access_mask = ODP_READ_ALLOWED_BIT;
  453. struct ib_umem_odp *odp;
  454. int implicit = 0;
  455. size_t size;
  456. srcu_key = srcu_read_lock(&dev->mr_srcu);
  457. mr = mlx5_ib_odp_find_mr_lkey(dev, key);
  458. /*
  459. * If we didn't find the MR, it means the MR was closed while we were
  460. * handling the ODP event. In this case we return -EFAULT so that the
  461. * QP will be closed.
  462. */
  463. if (!mr || !mr->ibmr.pd) {
  464. mlx5_ib_dbg(dev, "Failed to find relevant mr for lkey=0x%06x, probably the MR was destroyed\n",
  465. key);
  466. ret = -EFAULT;
  467. goto srcu_unlock;
  468. }
  469. if (!mr->umem->odp_data) {
  470. mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
  471. key);
  472. if (bytes_mapped)
  473. *bytes_mapped +=
  474. (bcnt - *bytes_committed);
  475. goto srcu_unlock;
  476. }
  477. /*
  478. * Avoid branches - this code will perform correctly
  479. * in all iterations (in iteration 2 and above,
  480. * bytes_committed == 0).
  481. */
  482. io_virt += *bytes_committed;
  483. bcnt -= *bytes_committed;
  484. if (!mr->umem->odp_data->page_list) {
  485. odp = implicit_mr_get_data(mr, io_virt, bcnt);
  486. if (IS_ERR(odp)) {
  487. ret = PTR_ERR(odp);
  488. goto srcu_unlock;
  489. }
  490. mr = odp->private;
  491. implicit = 1;
  492. } else {
  493. odp = mr->umem->odp_data;
  494. }
  495. next_mr:
  496. current_seq = READ_ONCE(odp->notifiers_seq);
  497. /*
  498. * Ensure the sequence number is valid for some time before we call
  499. * gup.
  500. */
  501. smp_rmb();
  502. size = min_t(size_t, bcnt, ib_umem_end(odp->umem) - io_virt);
  503. start_idx = (io_virt - (mr->mmkey.iova & PAGE_MASK)) >> PAGE_SHIFT;
  504. if (mr->umem->writable)
  505. access_mask |= ODP_WRITE_ALLOWED_BIT;
  506. ret = ib_umem_odp_map_dma_pages(mr->umem, io_virt, size,
  507. access_mask, current_seq);
  508. if (ret < 0)
  509. goto srcu_unlock;
  510. if (ret > 0) {
  511. int np = ret;
  512. mutex_lock(&odp->umem_mutex);
  513. if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
  514. /*
  515. * No need to check whether the MTTs really belong to
  516. * this MR, since ib_umem_odp_map_dma_pages already
  517. * checks this.
  518. */
  519. ret = mlx5_ib_update_xlt(mr, start_idx, np,
  520. PAGE_SHIFT,
  521. MLX5_IB_UPD_XLT_ATOMIC);
  522. } else {
  523. ret = -EAGAIN;
  524. }
  525. mutex_unlock(&odp->umem_mutex);
  526. if (ret < 0) {
  527. if (ret != -EAGAIN)
  528. mlx5_ib_err(dev, "Failed to update mkey page tables\n");
  529. goto srcu_unlock;
  530. }
  531. if (bytes_mapped) {
  532. u32 new_mappings = np * PAGE_SIZE -
  533. (io_virt - round_down(io_virt, PAGE_SIZE));
  534. *bytes_mapped += min_t(u32, new_mappings, size);
  535. }
  536. npages += np;
  537. }
  538. bcnt -= size;
  539. if (unlikely(bcnt)) {
  540. struct ib_umem_odp *next;
  541. io_virt += size;
  542. next = odp_next(odp);
  543. if (unlikely(!next || next->umem->address != io_virt)) {
  544. mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
  545. io_virt, next);
  546. ret = -EAGAIN;
  547. goto srcu_unlock_no_wait;
  548. }
  549. odp = next;
  550. mr = odp->private;
  551. goto next_mr;
  552. }
  553. srcu_unlock:
  554. if (ret == -EAGAIN) {
  555. if (implicit || !odp->dying) {
  556. unsigned long timeout =
  557. msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
  558. if (!wait_for_completion_timeout(
  559. &odp->notifier_completion,
  560. timeout)) {
  561. mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
  562. current_seq, odp->notifiers_seq);
  563. }
  564. } else {
  565. /* The MR is being killed, kill the QP as well. */
  566. ret = -EFAULT;
  567. }
  568. }
  569. srcu_unlock_no_wait:
  570. srcu_read_unlock(&dev->mr_srcu, srcu_key);
  571. *bytes_committed = 0;
  572. return ret ? ret : npages;
  573. }
  574. /**
  575. * Parse a series of data segments for page fault handling.
  576. *
  577. * @qp the QP on which the fault occurred.
  578. * @pfault contains page fault information.
  579. * @wqe points at the first data segment in the WQE.
  580. * @wqe_end points after the end of the WQE.
  581. * @bytes_mapped receives the number of bytes that the function was able to
  582. * map. This allows the caller to decide intelligently whether
  583. * enough memory was mapped to resolve the page fault
  584. * successfully (e.g. enough for the next MTU, or the entire
  585. * WQE).
  586. * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
  587. * the committed bytes).
  588. *
  589. * Returns the number of pages loaded if positive, zero for an empty WQE, or a
  590. * negative error code.
  591. */
  592. static int pagefault_data_segments(struct mlx5_ib_dev *dev,
  593. struct mlx5_pagefault *pfault,
  594. struct mlx5_ib_qp *qp, void *wqe,
  595. void *wqe_end, u32 *bytes_mapped,
  596. u32 *total_wqe_bytes, int receive_queue)
  597. {
  598. int ret = 0, npages = 0;
  599. u64 io_virt;
  600. u32 key;
  601. u32 byte_count;
  602. size_t bcnt;
  603. int inline_segment;
  604. /* Skip SRQ next-WQE segment. */
  605. if (receive_queue && qp->ibqp.srq)
  606. wqe += sizeof(struct mlx5_wqe_srq_next_seg);
  607. if (bytes_mapped)
  608. *bytes_mapped = 0;
  609. if (total_wqe_bytes)
  610. *total_wqe_bytes = 0;
  611. while (wqe < wqe_end) {
  612. struct mlx5_wqe_data_seg *dseg = wqe;
  613. io_virt = be64_to_cpu(dseg->addr);
  614. key = be32_to_cpu(dseg->lkey);
  615. byte_count = be32_to_cpu(dseg->byte_count);
  616. inline_segment = !!(byte_count & MLX5_INLINE_SEG);
  617. bcnt = byte_count & ~MLX5_INLINE_SEG;
  618. if (inline_segment) {
  619. bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
  620. wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
  621. 16);
  622. } else {
  623. wqe += sizeof(*dseg);
  624. }
  625. /* receive WQE end of sg list. */
  626. if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
  627. io_virt == 0)
  628. break;
  629. if (!inline_segment && total_wqe_bytes) {
  630. *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
  631. pfault->bytes_committed);
  632. }
  633. /* A zero length data segment designates a length of 2GB. */
  634. if (bcnt == 0)
  635. bcnt = 1U << 31;
  636. if (inline_segment || bcnt <= pfault->bytes_committed) {
  637. pfault->bytes_committed -=
  638. min_t(size_t, bcnt,
  639. pfault->bytes_committed);
  640. continue;
  641. }
  642. ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
  643. &pfault->bytes_committed,
  644. bytes_mapped);
  645. if (ret < 0)
  646. break;
  647. npages += ret;
  648. }
  649. return ret < 0 ? ret : npages;
  650. }
  651. static const u32 mlx5_ib_odp_opcode_cap[] = {
  652. [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
  653. [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
  654. [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
  655. [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
  656. [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
  657. [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
  658. [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
  659. [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
  660. };
  661. /*
  662. * Parse initiator WQE. Advances the wqe pointer to point at the
  663. * scatter-gather list, and set wqe_end to the end of the WQE.
  664. */
  665. static int mlx5_ib_mr_initiator_pfault_handler(
  666. struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
  667. struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
  668. {
  669. struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
  670. u16 wqe_index = pfault->wqe.wqe_index;
  671. u32 transport_caps;
  672. struct mlx5_base_av *av;
  673. unsigned ds, opcode;
  674. #if defined(DEBUG)
  675. u32 ctrl_wqe_index, ctrl_qpn;
  676. #endif
  677. u32 qpn = qp->trans_qp.base.mqp.qpn;
  678. ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
  679. if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
  680. mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
  681. ds, wqe_length);
  682. return -EFAULT;
  683. }
  684. if (ds == 0) {
  685. mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
  686. wqe_index, qpn);
  687. return -EFAULT;
  688. }
  689. #if defined(DEBUG)
  690. ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
  691. MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
  692. MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
  693. if (wqe_index != ctrl_wqe_index) {
  694. mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
  695. wqe_index, qpn,
  696. ctrl_wqe_index);
  697. return -EFAULT;
  698. }
  699. ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
  700. MLX5_WQE_CTRL_QPN_SHIFT;
  701. if (qpn != ctrl_qpn) {
  702. mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
  703. wqe_index, qpn,
  704. ctrl_qpn);
  705. return -EFAULT;
  706. }
  707. #endif /* DEBUG */
  708. *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
  709. *wqe += sizeof(*ctrl);
  710. opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
  711. MLX5_WQE_CTRL_OPCODE_MASK;
  712. switch (qp->ibqp.qp_type) {
  713. case IB_QPT_RC:
  714. transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
  715. break;
  716. case IB_QPT_UD:
  717. transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
  718. break;
  719. default:
  720. mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
  721. qp->ibqp.qp_type);
  722. return -EFAULT;
  723. }
  724. if (unlikely(opcode >= sizeof(mlx5_ib_odp_opcode_cap) /
  725. sizeof(mlx5_ib_odp_opcode_cap[0]) ||
  726. !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
  727. mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
  728. opcode);
  729. return -EFAULT;
  730. }
  731. if (qp->ibqp.qp_type != IB_QPT_RC) {
  732. av = *wqe;
  733. if (av->dqp_dct & be32_to_cpu(MLX5_WQE_AV_EXT))
  734. *wqe += sizeof(struct mlx5_av);
  735. else
  736. *wqe += sizeof(struct mlx5_base_av);
  737. }
  738. switch (opcode) {
  739. case MLX5_OPCODE_RDMA_WRITE:
  740. case MLX5_OPCODE_RDMA_WRITE_IMM:
  741. case MLX5_OPCODE_RDMA_READ:
  742. *wqe += sizeof(struct mlx5_wqe_raddr_seg);
  743. break;
  744. case MLX5_OPCODE_ATOMIC_CS:
  745. case MLX5_OPCODE_ATOMIC_FA:
  746. *wqe += sizeof(struct mlx5_wqe_raddr_seg);
  747. *wqe += sizeof(struct mlx5_wqe_atomic_seg);
  748. break;
  749. }
  750. return 0;
  751. }
  752. /*
  753. * Parse responder WQE. Advances the wqe pointer to point at the
  754. * scatter-gather list, and set wqe_end to the end of the WQE.
  755. */
  756. static int mlx5_ib_mr_responder_pfault_handler(
  757. struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
  758. struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
  759. {
  760. struct mlx5_ib_wq *wq = &qp->rq;
  761. int wqe_size = 1 << wq->wqe_shift;
  762. if (qp->ibqp.srq) {
  763. mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
  764. return -EFAULT;
  765. }
  766. if (qp->wq_sig) {
  767. mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
  768. return -EFAULT;
  769. }
  770. if (wqe_size > wqe_length) {
  771. mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
  772. return -EFAULT;
  773. }
  774. switch (qp->ibqp.qp_type) {
  775. case IB_QPT_RC:
  776. if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
  777. IB_ODP_SUPPORT_RECV))
  778. goto invalid_transport_or_opcode;
  779. break;
  780. default:
  781. invalid_transport_or_opcode:
  782. mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
  783. qp->ibqp.qp_type);
  784. return -EFAULT;
  785. }
  786. *wqe_end = *wqe + wqe_size;
  787. return 0;
  788. }
  789. static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
  790. u32 wq_num)
  791. {
  792. struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
  793. if (!mqp) {
  794. mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
  795. return NULL;
  796. }
  797. return to_mibqp(mqp);
  798. }
  799. static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
  800. struct mlx5_pagefault *pfault)
  801. {
  802. int ret;
  803. void *wqe, *wqe_end;
  804. u32 bytes_mapped, total_wqe_bytes;
  805. char *buffer = NULL;
  806. int resume_with_error = 1;
  807. u16 wqe_index = pfault->wqe.wqe_index;
  808. int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
  809. struct mlx5_ib_qp *qp;
  810. buffer = (char *)__get_free_page(GFP_KERNEL);
  811. if (!buffer) {
  812. mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
  813. goto resolve_page_fault;
  814. }
  815. qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
  816. if (!qp)
  817. goto resolve_page_fault;
  818. ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
  819. PAGE_SIZE, &qp->trans_qp.base);
  820. if (ret < 0) {
  821. mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
  822. ret, wqe_index, pfault->token);
  823. goto resolve_page_fault;
  824. }
  825. wqe = buffer;
  826. if (requestor)
  827. ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
  828. &wqe_end, ret);
  829. else
  830. ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
  831. &wqe_end, ret);
  832. if (ret < 0)
  833. goto resolve_page_fault;
  834. if (wqe >= wqe_end) {
  835. mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
  836. goto resolve_page_fault;
  837. }
  838. ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
  839. &bytes_mapped, &total_wqe_bytes,
  840. !requestor);
  841. if (ret == -EAGAIN) {
  842. resume_with_error = 0;
  843. goto resolve_page_fault;
  844. } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
  845. if (ret != -ENOENT)
  846. mlx5_ib_err(dev, "PAGE FAULT error: %d. QP 0x%x. type: 0x%x\n",
  847. ret, pfault->wqe.wq_num, pfault->type);
  848. goto resolve_page_fault;
  849. }
  850. resume_with_error = 0;
  851. resolve_page_fault:
  852. mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
  853. mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
  854. pfault->wqe.wq_num, resume_with_error,
  855. pfault->type);
  856. free_page((unsigned long)buffer);
  857. }
  858. static int pages_in_range(u64 address, u32 length)
  859. {
  860. return (ALIGN(address + length, PAGE_SIZE) -
  861. (address & PAGE_MASK)) >> PAGE_SHIFT;
  862. }
  863. static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
  864. struct mlx5_pagefault *pfault)
  865. {
  866. u64 address;
  867. u32 length;
  868. u32 prefetch_len = pfault->bytes_committed;
  869. int prefetch_activated = 0;
  870. u32 rkey = pfault->rdma.r_key;
  871. int ret;
  872. /* The RDMA responder handler handles the page fault in two parts.
  873. * First it brings the necessary pages for the current packet
  874. * (and uses the pfault context), and then (after resuming the QP)
  875. * prefetches more pages. The second operation cannot use the pfault
  876. * context and therefore uses the dummy_pfault context allocated on
  877. * the stack */
  878. pfault->rdma.rdma_va += pfault->bytes_committed;
  879. pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
  880. pfault->rdma.rdma_op_len);
  881. pfault->bytes_committed = 0;
  882. address = pfault->rdma.rdma_va;
  883. length = pfault->rdma.rdma_op_len;
  884. /* For some operations, the hardware cannot tell the exact message
  885. * length, and in those cases it reports zero. Use prefetch
  886. * logic. */
  887. if (length == 0) {
  888. prefetch_activated = 1;
  889. length = pfault->rdma.packet_size;
  890. prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
  891. }
  892. ret = pagefault_single_data_segment(dev, rkey, address, length,
  893. &pfault->bytes_committed, NULL);
  894. if (ret == -EAGAIN) {
  895. /* We're racing with an invalidation, don't prefetch */
  896. prefetch_activated = 0;
  897. } else if (ret < 0 || pages_in_range(address, length) > ret) {
  898. mlx5_ib_page_fault_resume(dev, pfault, 1);
  899. if (ret != -ENOENT)
  900. mlx5_ib_warn(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
  901. ret, pfault->token, pfault->type);
  902. return;
  903. }
  904. mlx5_ib_page_fault_resume(dev, pfault, 0);
  905. mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
  906. pfault->token, pfault->type,
  907. prefetch_activated);
  908. /* At this point, there might be a new pagefault already arriving in
  909. * the eq, switch to the dummy pagefault for the rest of the
  910. * processing. We're still OK with the objects being alive as the
  911. * work-queue is being fenced. */
  912. if (prefetch_activated) {
  913. u32 bytes_committed = 0;
  914. ret = pagefault_single_data_segment(dev, rkey, address,
  915. prefetch_len,
  916. &bytes_committed, NULL);
  917. if (ret < 0 && ret != -EAGAIN) {
  918. mlx5_ib_warn(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
  919. ret, pfault->token, address, prefetch_len);
  920. }
  921. }
  922. }
  923. void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
  924. struct mlx5_pagefault *pfault)
  925. {
  926. struct mlx5_ib_dev *dev = context;
  927. u8 event_subtype = pfault->event_subtype;
  928. switch (event_subtype) {
  929. case MLX5_PFAULT_SUBTYPE_WQE:
  930. mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
  931. break;
  932. case MLX5_PFAULT_SUBTYPE_RDMA:
  933. mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
  934. break;
  935. default:
  936. mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
  937. event_subtype);
  938. mlx5_ib_page_fault_resume(dev, pfault, 1);
  939. }
  940. }
  941. void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
  942. {
  943. if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
  944. return;
  945. switch (ent->order - 2) {
  946. case MLX5_IMR_MTT_CACHE_ENTRY:
  947. ent->page = PAGE_SHIFT;
  948. ent->xlt = MLX5_IMR_MTT_ENTRIES *
  949. sizeof(struct mlx5_mtt) /
  950. MLX5_IB_UMR_OCTOWORD;
  951. ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
  952. ent->limit = 0;
  953. break;
  954. case MLX5_IMR_KSM_CACHE_ENTRY:
  955. ent->page = MLX5_KSM_PAGE_SHIFT;
  956. ent->xlt = mlx5_imr_ksm_entries *
  957. sizeof(struct mlx5_klm) /
  958. MLX5_IB_UMR_OCTOWORD;
  959. ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
  960. ent->limit = 0;
  961. break;
  962. }
  963. }
  964. int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
  965. {
  966. int ret;
  967. ret = init_srcu_struct(&dev->mr_srcu);
  968. if (ret)
  969. return ret;
  970. if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
  971. ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
  972. if (ret) {
  973. mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
  974. return ret;
  975. }
  976. }
  977. return 0;
  978. }
  979. void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *dev)
  980. {
  981. cleanup_srcu_struct(&dev->mr_srcu);
  982. }
  983. int mlx5_ib_odp_init(void)
  984. {
  985. mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
  986. MLX5_IMR_MTT_BITS);
  987. return 0;
  988. }