chip.c 435 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881
  1. /*
  2. * Copyright(c) 2015, 2016 Intel Corporation.
  3. *
  4. * This file is provided under a dual BSD/GPLv2 license. When using or
  5. * redistributing this file, you may do so under either license.
  6. *
  7. * GPL LICENSE SUMMARY
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of version 2 of the GNU General Public License as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * BSD LICENSE
  19. *
  20. * Redistribution and use in source and binary forms, with or without
  21. * modification, are permitted provided that the following conditions
  22. * are met:
  23. *
  24. * - Redistributions of source code must retain the above copyright
  25. * notice, this list of conditions and the following disclaimer.
  26. * - Redistributions in binary form must reproduce the above copyright
  27. * notice, this list of conditions and the following disclaimer in
  28. * the documentation and/or other materials provided with the
  29. * distribution.
  30. * - Neither the name of Intel Corporation nor the names of its
  31. * contributors may be used to endorse or promote products derived
  32. * from this software without specific prior written permission.
  33. *
  34. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45. *
  46. */
  47. /*
  48. * This file contains all of the code that is specific to the HFI chip
  49. */
  50. #include <linux/pci.h>
  51. #include <linux/delay.h>
  52. #include <linux/interrupt.h>
  53. #include <linux/module.h>
  54. #include "hfi.h"
  55. #include "trace.h"
  56. #include "mad.h"
  57. #include "pio.h"
  58. #include "sdma.h"
  59. #include "eprom.h"
  60. #include "efivar.h"
  61. #include "platform.h"
  62. #include "aspm.h"
  63. #include "affinity.h"
  64. #define NUM_IB_PORTS 1
  65. uint kdeth_qp;
  66. module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
  67. MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
  68. uint num_vls = HFI1_MAX_VLS_SUPPORTED;
  69. module_param(num_vls, uint, S_IRUGO);
  70. MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
  71. /*
  72. * Default time to aggregate two 10K packets from the idle state
  73. * (timer not running). The timer starts at the end of the first packet,
  74. * so only the time for one 10K packet and header plus a bit extra is needed.
  75. * 10 * 1024 + 64 header byte = 10304 byte
  76. * 10304 byte / 12.5 GB/s = 824.32ns
  77. */
  78. uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
  79. module_param(rcv_intr_timeout, uint, S_IRUGO);
  80. MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
  81. uint rcv_intr_count = 16; /* same as qib */
  82. module_param(rcv_intr_count, uint, S_IRUGO);
  83. MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
  84. ushort link_crc_mask = SUPPORTED_CRCS;
  85. module_param(link_crc_mask, ushort, S_IRUGO);
  86. MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
  87. uint loopback;
  88. module_param_named(loopback, loopback, uint, S_IRUGO);
  89. MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
  90. /* Other driver tunables */
  91. uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
  92. static ushort crc_14b_sideband = 1;
  93. static uint use_flr = 1;
  94. uint quick_linkup; /* skip LNI */
  95. struct flag_table {
  96. u64 flag; /* the flag */
  97. char *str; /* description string */
  98. u16 extra; /* extra information */
  99. u16 unused0;
  100. u32 unused1;
  101. };
  102. /* str must be a string constant */
  103. #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
  104. #define FLAG_ENTRY0(str, flag) {flag, str, 0}
  105. /* Send Error Consequences */
  106. #define SEC_WRITE_DROPPED 0x1
  107. #define SEC_PACKET_DROPPED 0x2
  108. #define SEC_SC_HALTED 0x4 /* per-context only */
  109. #define SEC_SPC_FREEZE 0x8 /* per-HFI only */
  110. #define DEFAULT_KRCVQS 2
  111. #define MIN_KERNEL_KCTXTS 2
  112. #define FIRST_KERNEL_KCTXT 1
  113. /* sizes for both the QP and RSM map tables */
  114. #define NUM_MAP_ENTRIES 256
  115. #define NUM_MAP_REGS 32
  116. /* Bit offset into the GUID which carries HFI id information */
  117. #define GUID_HFI_INDEX_SHIFT 39
  118. /* extract the emulation revision */
  119. #define emulator_rev(dd) ((dd)->irev >> 8)
  120. /* parallel and serial emulation versions are 3 and 4 respectively */
  121. #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
  122. #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
  123. /* RSM fields */
  124. /* packet type */
  125. #define IB_PACKET_TYPE 2ull
  126. #define QW_SHIFT 6ull
  127. /* QPN[7..1] */
  128. #define QPN_WIDTH 7ull
  129. /* LRH.BTH: QW 0, OFFSET 48 - for match */
  130. #define LRH_BTH_QW 0ull
  131. #define LRH_BTH_BIT_OFFSET 48ull
  132. #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
  133. #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
  134. #define LRH_BTH_SELECT
  135. #define LRH_BTH_MASK 3ull
  136. #define LRH_BTH_VALUE 2ull
  137. /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
  138. #define LRH_SC_QW 0ull
  139. #define LRH_SC_BIT_OFFSET 56ull
  140. #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
  141. #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
  142. #define LRH_SC_MASK 128ull
  143. #define LRH_SC_VALUE 0ull
  144. /* SC[n..0] QW 0, OFFSET 60 - for select */
  145. #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
  146. /* QPN[m+n:1] QW 1, OFFSET 1 */
  147. #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
  148. /* defines to build power on SC2VL table */
  149. #define SC2VL_VAL( \
  150. num, \
  151. sc0, sc0val, \
  152. sc1, sc1val, \
  153. sc2, sc2val, \
  154. sc3, sc3val, \
  155. sc4, sc4val, \
  156. sc5, sc5val, \
  157. sc6, sc6val, \
  158. sc7, sc7val) \
  159. ( \
  160. ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
  161. ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
  162. ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
  163. ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
  164. ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
  165. ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
  166. ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
  167. ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
  168. )
  169. #define DC_SC_VL_VAL( \
  170. range, \
  171. e0, e0val, \
  172. e1, e1val, \
  173. e2, e2val, \
  174. e3, e3val, \
  175. e4, e4val, \
  176. e5, e5val, \
  177. e6, e6val, \
  178. e7, e7val, \
  179. e8, e8val, \
  180. e9, e9val, \
  181. e10, e10val, \
  182. e11, e11val, \
  183. e12, e12val, \
  184. e13, e13val, \
  185. e14, e14val, \
  186. e15, e15val) \
  187. ( \
  188. ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
  189. ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
  190. ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
  191. ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
  192. ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
  193. ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
  194. ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
  195. ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
  196. ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
  197. ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
  198. ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
  199. ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
  200. ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
  201. ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
  202. ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
  203. ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
  204. )
  205. /* all CceStatus sub-block freeze bits */
  206. #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
  207. | CCE_STATUS_RXE_FROZE_SMASK \
  208. | CCE_STATUS_TXE_FROZE_SMASK \
  209. | CCE_STATUS_TXE_PIO_FROZE_SMASK)
  210. /* all CceStatus sub-block TXE pause bits */
  211. #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
  212. | CCE_STATUS_TXE_PAUSED_SMASK \
  213. | CCE_STATUS_SDMA_PAUSED_SMASK)
  214. /* all CceStatus sub-block RXE pause bits */
  215. #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
  216. #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
  217. #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
  218. /*
  219. * CCE Error flags.
  220. */
  221. static struct flag_table cce_err_status_flags[] = {
  222. /* 0*/ FLAG_ENTRY0("CceCsrParityErr",
  223. CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
  224. /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
  225. CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
  226. /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
  227. CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
  228. /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
  229. CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
  230. /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
  231. CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
  232. /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
  233. CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
  234. /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
  235. CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
  236. /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
  237. CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
  238. /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
  239. CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
  240. /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
  241. CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
  242. /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
  243. CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
  244. /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
  245. CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
  246. /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
  247. CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
  248. /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
  249. CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
  250. /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
  251. CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
  252. /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
  253. CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
  254. /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
  255. CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
  256. /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
  257. CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
  258. /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
  259. CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
  260. /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
  261. CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
  262. /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
  263. CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
  264. /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
  265. CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
  266. /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
  267. CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
  268. /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
  269. CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
  270. /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
  271. CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
  272. /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
  273. CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
  274. /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
  275. CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
  276. /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
  277. CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
  278. /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
  279. CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
  280. /*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
  281. CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
  282. /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
  283. CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
  284. /*31*/ FLAG_ENTRY0("LATriggered",
  285. CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
  286. /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
  287. CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
  288. /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
  289. CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
  290. /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
  291. CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
  292. /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
  293. CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
  294. /*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
  295. CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
  296. /*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
  297. CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
  298. /*38*/ FLAG_ENTRY0("CceIntMapCorErr",
  299. CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
  300. /*39*/ FLAG_ENTRY0("CceIntMapUncErr",
  301. CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
  302. /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
  303. CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
  304. /*41-63 reserved*/
  305. };
  306. /*
  307. * Misc Error flags
  308. */
  309. #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
  310. static struct flag_table misc_err_status_flags[] = {
  311. /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
  312. /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
  313. /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
  314. /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
  315. /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
  316. /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
  317. /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
  318. /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
  319. /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
  320. /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
  321. /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
  322. /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
  323. /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
  324. };
  325. /*
  326. * TXE PIO Error flags and consequences
  327. */
  328. static struct flag_table pio_err_status_flags[] = {
  329. /* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
  330. SEC_WRITE_DROPPED,
  331. SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
  332. /* 1*/ FLAG_ENTRY("PioWriteAddrParity",
  333. SEC_SPC_FREEZE,
  334. SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
  335. /* 2*/ FLAG_ENTRY("PioCsrParity",
  336. SEC_SPC_FREEZE,
  337. SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
  338. /* 3*/ FLAG_ENTRY("PioSbMemFifo0",
  339. SEC_SPC_FREEZE,
  340. SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
  341. /* 4*/ FLAG_ENTRY("PioSbMemFifo1",
  342. SEC_SPC_FREEZE,
  343. SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
  344. /* 5*/ FLAG_ENTRY("PioPccFifoParity",
  345. SEC_SPC_FREEZE,
  346. SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
  347. /* 6*/ FLAG_ENTRY("PioPecFifoParity",
  348. SEC_SPC_FREEZE,
  349. SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
  350. /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
  351. SEC_SPC_FREEZE,
  352. SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
  353. /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
  354. SEC_SPC_FREEZE,
  355. SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
  356. /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
  357. SEC_SPC_FREEZE,
  358. SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
  359. /*10*/ FLAG_ENTRY("PioSmPktResetParity",
  360. SEC_SPC_FREEZE,
  361. SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
  362. /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
  363. SEC_SPC_FREEZE,
  364. SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
  365. /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
  366. SEC_SPC_FREEZE,
  367. SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
  368. /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
  369. 0,
  370. SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
  371. /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
  372. 0,
  373. SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
  374. /*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
  375. SEC_SPC_FREEZE,
  376. SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
  377. /*16*/ FLAG_ENTRY("PioPpmcPblFifo",
  378. SEC_SPC_FREEZE,
  379. SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
  380. /*17*/ FLAG_ENTRY("PioInitSmIn",
  381. 0,
  382. SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
  383. /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
  384. SEC_SPC_FREEZE,
  385. SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
  386. /*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
  387. SEC_SPC_FREEZE,
  388. SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
  389. /*20*/ FLAG_ENTRY("PioHostAddrMemCor",
  390. 0,
  391. SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
  392. /*21*/ FLAG_ENTRY("PioWriteDataParity",
  393. SEC_SPC_FREEZE,
  394. SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
  395. /*22*/ FLAG_ENTRY("PioStateMachine",
  396. SEC_SPC_FREEZE,
  397. SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
  398. /*23*/ FLAG_ENTRY("PioWriteQwValidParity",
  399. SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
  400. SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
  401. /*24*/ FLAG_ENTRY("PioBlockQwCountParity",
  402. SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
  403. SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
  404. /*25*/ FLAG_ENTRY("PioVlfVlLenParity",
  405. SEC_SPC_FREEZE,
  406. SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
  407. /*26*/ FLAG_ENTRY("PioVlfSopParity",
  408. SEC_SPC_FREEZE,
  409. SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
  410. /*27*/ FLAG_ENTRY("PioVlFifoParity",
  411. SEC_SPC_FREEZE,
  412. SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
  413. /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
  414. SEC_SPC_FREEZE,
  415. SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
  416. /*29*/ FLAG_ENTRY("PioPpmcSopLen",
  417. SEC_SPC_FREEZE,
  418. SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
  419. /*30-31 reserved*/
  420. /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
  421. SEC_SPC_FREEZE,
  422. SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
  423. /*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
  424. SEC_SPC_FREEZE,
  425. SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
  426. /*34*/ FLAG_ENTRY("PioPccSopHeadParity",
  427. SEC_SPC_FREEZE,
  428. SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
  429. /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
  430. SEC_SPC_FREEZE,
  431. SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
  432. /*36-63 reserved*/
  433. };
  434. /* TXE PIO errors that cause an SPC freeze */
  435. #define ALL_PIO_FREEZE_ERR \
  436. (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
  437. | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
  438. | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
  439. | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
  440. | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
  441. | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
  442. | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
  443. | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
  444. | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
  445. | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
  446. | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
  447. | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
  448. | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
  449. | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
  450. | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
  451. | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
  452. | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
  453. | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
  454. | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
  455. | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
  456. | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
  457. | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
  458. | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
  459. | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
  460. | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
  461. | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
  462. | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
  463. | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
  464. | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
  465. /*
  466. * TXE SDMA Error flags
  467. */
  468. static struct flag_table sdma_err_status_flags[] = {
  469. /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
  470. SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
  471. /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
  472. SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
  473. /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
  474. SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
  475. /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
  476. SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
  477. /*04-63 reserved*/
  478. };
  479. /* TXE SDMA errors that cause an SPC freeze */
  480. #define ALL_SDMA_FREEZE_ERR \
  481. (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
  482. | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
  483. | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
  484. /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
  485. #define PORT_DISCARD_EGRESS_ERRS \
  486. (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
  487. | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
  488. | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
  489. /*
  490. * TXE Egress Error flags
  491. */
  492. #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
  493. static struct flag_table egress_err_status_flags[] = {
  494. /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
  495. /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
  496. /* 2 reserved */
  497. /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
  498. SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
  499. /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
  500. /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
  501. /* 6 reserved */
  502. /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
  503. SEES(TX_PIO_LAUNCH_INTF_PARITY)),
  504. /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
  505. SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
  506. /* 9-10 reserved */
  507. /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
  508. SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
  509. /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
  510. /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
  511. /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
  512. /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
  513. /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
  514. SEES(TX_SDMA0_DISALLOWED_PACKET)),
  515. /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
  516. SEES(TX_SDMA1_DISALLOWED_PACKET)),
  517. /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
  518. SEES(TX_SDMA2_DISALLOWED_PACKET)),
  519. /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
  520. SEES(TX_SDMA3_DISALLOWED_PACKET)),
  521. /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
  522. SEES(TX_SDMA4_DISALLOWED_PACKET)),
  523. /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
  524. SEES(TX_SDMA5_DISALLOWED_PACKET)),
  525. /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
  526. SEES(TX_SDMA6_DISALLOWED_PACKET)),
  527. /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
  528. SEES(TX_SDMA7_DISALLOWED_PACKET)),
  529. /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
  530. SEES(TX_SDMA8_DISALLOWED_PACKET)),
  531. /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
  532. SEES(TX_SDMA9_DISALLOWED_PACKET)),
  533. /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
  534. SEES(TX_SDMA10_DISALLOWED_PACKET)),
  535. /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
  536. SEES(TX_SDMA11_DISALLOWED_PACKET)),
  537. /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
  538. SEES(TX_SDMA12_DISALLOWED_PACKET)),
  539. /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
  540. SEES(TX_SDMA13_DISALLOWED_PACKET)),
  541. /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
  542. SEES(TX_SDMA14_DISALLOWED_PACKET)),
  543. /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
  544. SEES(TX_SDMA15_DISALLOWED_PACKET)),
  545. /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
  546. SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
  547. /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
  548. SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
  549. /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
  550. SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
  551. /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
  552. SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
  553. /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
  554. SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
  555. /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
  556. SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
  557. /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
  558. SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
  559. /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
  560. SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
  561. /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
  562. SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
  563. /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
  564. /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
  565. /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
  566. /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
  567. /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
  568. /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
  569. /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
  570. /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
  571. /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
  572. /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
  573. /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
  574. /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
  575. /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
  576. /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
  577. /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
  578. /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
  579. /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
  580. /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
  581. /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
  582. /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
  583. /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
  584. /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
  585. SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
  586. /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
  587. SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
  588. };
  589. /*
  590. * TXE Egress Error Info flags
  591. */
  592. #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
  593. static struct flag_table egress_err_info_flags[] = {
  594. /* 0*/ FLAG_ENTRY0("Reserved", 0ull),
  595. /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
  596. /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
  597. /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
  598. /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
  599. /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
  600. /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
  601. /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
  602. /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
  603. /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
  604. /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
  605. /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
  606. /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
  607. /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
  608. /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
  609. /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
  610. /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
  611. /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
  612. /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
  613. /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
  614. /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
  615. /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
  616. };
  617. /* TXE Egress errors that cause an SPC freeze */
  618. #define ALL_TXE_EGRESS_FREEZE_ERR \
  619. (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
  620. | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
  621. | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
  622. | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
  623. | SEES(TX_LAUNCH_CSR_PARITY) \
  624. | SEES(TX_SBRD_CTL_CSR_PARITY) \
  625. | SEES(TX_CONFIG_PARITY) \
  626. | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
  627. | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
  628. | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
  629. | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
  630. | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
  631. | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
  632. | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
  633. | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
  634. | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
  635. | SEES(TX_CREDIT_RETURN_PARITY))
  636. /*
  637. * TXE Send error flags
  638. */
  639. #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
  640. static struct flag_table send_err_status_flags[] = {
  641. /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
  642. /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
  643. /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
  644. };
  645. /*
  646. * TXE Send Context Error flags and consequences
  647. */
  648. static struct flag_table sc_err_status_flags[] = {
  649. /* 0*/ FLAG_ENTRY("InconsistentSop",
  650. SEC_PACKET_DROPPED | SEC_SC_HALTED,
  651. SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
  652. /* 1*/ FLAG_ENTRY("DisallowedPacket",
  653. SEC_PACKET_DROPPED | SEC_SC_HALTED,
  654. SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
  655. /* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
  656. SEC_WRITE_DROPPED | SEC_SC_HALTED,
  657. SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
  658. /* 3*/ FLAG_ENTRY("WriteOverflow",
  659. SEC_WRITE_DROPPED | SEC_SC_HALTED,
  660. SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
  661. /* 4*/ FLAG_ENTRY("WriteOutOfBounds",
  662. SEC_WRITE_DROPPED | SEC_SC_HALTED,
  663. SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
  664. /* 5-63 reserved*/
  665. };
  666. /*
  667. * RXE Receive Error flags
  668. */
  669. #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
  670. static struct flag_table rxe_err_status_flags[] = {
  671. /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
  672. /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
  673. /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
  674. /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
  675. /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
  676. /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
  677. /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
  678. /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
  679. /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
  680. /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
  681. /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
  682. /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
  683. /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
  684. /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
  685. /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
  686. /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
  687. /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
  688. RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
  689. /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
  690. /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
  691. /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
  692. RXES(RBUF_BLOCK_LIST_READ_UNC)),
  693. /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
  694. RXES(RBUF_BLOCK_LIST_READ_COR)),
  695. /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
  696. RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
  697. /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
  698. RXES(RBUF_CSR_QENT_CNT_PARITY)),
  699. /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
  700. RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
  701. /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
  702. RXES(RBUF_CSR_QVLD_BIT_PARITY)),
  703. /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
  704. /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
  705. /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
  706. RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
  707. /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
  708. /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
  709. /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
  710. /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
  711. /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
  712. /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
  713. /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
  714. /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
  715. RXES(RBUF_FL_INITDONE_PARITY)),
  716. /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
  717. RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
  718. /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
  719. /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
  720. /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
  721. /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
  722. RXES(LOOKUP_DES_PART1_UNC_COR)),
  723. /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
  724. RXES(LOOKUP_DES_PART2_PARITY)),
  725. /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
  726. /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
  727. /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
  728. /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
  729. /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
  730. /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
  731. /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
  732. /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
  733. /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
  734. /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
  735. /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
  736. /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
  737. /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
  738. /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
  739. /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
  740. /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
  741. /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
  742. /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
  743. /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
  744. /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
  745. /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
  746. /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
  747. };
  748. /* RXE errors that will trigger an SPC freeze */
  749. #define ALL_RXE_FREEZE_ERR \
  750. (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
  751. | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
  752. | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
  753. | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
  754. | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
  755. | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
  756. | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
  757. | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
  758. | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
  759. | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
  760. | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
  761. | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
  762. | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
  763. | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
  764. | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
  765. | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
  766. | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
  767. | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
  768. | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
  769. | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
  770. | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
  771. | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
  772. | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
  773. | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
  774. | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
  775. | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
  776. | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
  777. | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
  778. | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
  779. | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
  780. | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
  781. | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
  782. | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
  783. | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
  784. | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
  785. | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
  786. | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
  787. | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
  788. | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
  789. | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
  790. | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
  791. | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
  792. | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
  793. | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
  794. #define RXE_FREEZE_ABORT_MASK \
  795. (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
  796. RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
  797. RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
  798. /*
  799. * DCC Error Flags
  800. */
  801. #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
  802. static struct flag_table dcc_err_flags[] = {
  803. FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
  804. FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
  805. FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
  806. FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
  807. FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
  808. FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
  809. FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
  810. FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
  811. FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
  812. FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
  813. FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
  814. FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
  815. FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
  816. FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
  817. FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
  818. FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
  819. FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
  820. FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
  821. FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
  822. FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
  823. FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
  824. FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
  825. FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
  826. FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
  827. FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
  828. FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
  829. FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
  830. FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
  831. FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
  832. FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
  833. FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
  834. FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
  835. FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
  836. FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
  837. FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
  838. FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
  839. FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
  840. FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
  841. FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
  842. FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
  843. FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
  844. FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
  845. FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
  846. FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
  847. FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
  848. FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
  849. };
  850. /*
  851. * LCB error flags
  852. */
  853. #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
  854. static struct flag_table lcb_err_flags[] = {
  855. /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
  856. /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
  857. /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
  858. /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
  859. LCBE(ALL_LNS_FAILED_REINIT_TEST)),
  860. /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
  861. /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
  862. /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
  863. /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
  864. /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
  865. /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
  866. /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
  867. /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
  868. /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
  869. /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
  870. LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
  871. /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
  872. /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
  873. /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
  874. /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
  875. /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
  876. /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
  877. LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
  878. /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
  879. /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
  880. /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
  881. /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
  882. /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
  883. /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
  884. /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
  885. LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
  886. /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
  887. /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
  888. LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
  889. /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
  890. LCBE(REDUNDANT_FLIT_PARITY_ERR))
  891. };
  892. /*
  893. * DC8051 Error Flags
  894. */
  895. #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
  896. static struct flag_table dc8051_err_flags[] = {
  897. FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
  898. FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
  899. FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
  900. FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
  901. FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
  902. FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
  903. FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
  904. FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
  905. FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
  906. D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
  907. FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
  908. };
  909. /*
  910. * DC8051 Information Error flags
  911. *
  912. * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
  913. */
  914. static struct flag_table dc8051_info_err_flags[] = {
  915. FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
  916. FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
  917. FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
  918. FLAG_ENTRY0("Serdes internal loopback failure",
  919. FAILED_SERDES_INTERNAL_LOOPBACK),
  920. FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
  921. FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
  922. FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
  923. FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
  924. FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
  925. FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
  926. FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
  927. FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT),
  928. FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT),
  929. FLAG_ENTRY0("External Device Request Timeout",
  930. EXTERNAL_DEVICE_REQ_TIMEOUT),
  931. };
  932. /*
  933. * DC8051 Information Host Information flags
  934. *
  935. * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
  936. */
  937. static struct flag_table dc8051_info_host_msg_flags[] = {
  938. FLAG_ENTRY0("Host request done", 0x0001),
  939. FLAG_ENTRY0("BC SMA message", 0x0002),
  940. FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
  941. FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
  942. FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
  943. FLAG_ENTRY0("External device config request", 0x0020),
  944. FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
  945. FLAG_ENTRY0("LinkUp achieved", 0x0080),
  946. FLAG_ENTRY0("Link going down", 0x0100),
  947. };
  948. static u32 encoded_size(u32 size);
  949. static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
  950. static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
  951. static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
  952. u8 *continuous);
  953. static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
  954. u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
  955. static void read_vc_remote_link_width(struct hfi1_devdata *dd,
  956. u8 *remote_tx_rate, u16 *link_widths);
  957. static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
  958. u8 *flag_bits, u16 *link_widths);
  959. static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
  960. u8 *device_rev);
  961. static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
  962. static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
  963. static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
  964. u8 *tx_polarity_inversion,
  965. u8 *rx_polarity_inversion, u8 *max_rate);
  966. static void handle_sdma_eng_err(struct hfi1_devdata *dd,
  967. unsigned int context, u64 err_status);
  968. static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
  969. static void handle_dcc_err(struct hfi1_devdata *dd,
  970. unsigned int context, u64 err_status);
  971. static void handle_lcb_err(struct hfi1_devdata *dd,
  972. unsigned int context, u64 err_status);
  973. static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
  974. static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
  975. static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
  976. static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
  977. static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
  978. static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
  979. static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
  980. static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
  981. static void set_partition_keys(struct hfi1_pportdata *);
  982. static const char *link_state_name(u32 state);
  983. static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
  984. u32 state);
  985. static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
  986. u64 *out_data);
  987. static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
  988. static int thermal_init(struct hfi1_devdata *dd);
  989. static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
  990. int msecs);
  991. static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
  992. static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
  993. static void handle_temp_err(struct hfi1_devdata *);
  994. static void dc_shutdown(struct hfi1_devdata *);
  995. static void dc_start(struct hfi1_devdata *);
  996. static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
  997. unsigned int *np);
  998. static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
  999. /*
  1000. * Error interrupt table entry. This is used as input to the interrupt
  1001. * "clear down" routine used for all second tier error interrupt register.
  1002. * Second tier interrupt registers have a single bit representing them
  1003. * in the top-level CceIntStatus.
  1004. */
  1005. struct err_reg_info {
  1006. u32 status; /* status CSR offset */
  1007. u32 clear; /* clear CSR offset */
  1008. u32 mask; /* mask CSR offset */
  1009. void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
  1010. const char *desc;
  1011. };
  1012. #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
  1013. #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
  1014. #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
  1015. /*
  1016. * Helpers for building HFI and DC error interrupt table entries. Different
  1017. * helpers are needed because of inconsistent register names.
  1018. */
  1019. #define EE(reg, handler, desc) \
  1020. { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
  1021. handler, desc }
  1022. #define DC_EE1(reg, handler, desc) \
  1023. { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
  1024. #define DC_EE2(reg, handler, desc) \
  1025. { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
  1026. /*
  1027. * Table of the "misc" grouping of error interrupts. Each entry refers to
  1028. * another register containing more information.
  1029. */
  1030. static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
  1031. /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
  1032. /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
  1033. /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
  1034. /* 3*/ { 0, 0, 0, NULL }, /* reserved */
  1035. /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
  1036. /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
  1037. /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
  1038. /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
  1039. /* the rest are reserved */
  1040. };
  1041. /*
  1042. * Index into the Various section of the interrupt sources
  1043. * corresponding to the Critical Temperature interrupt.
  1044. */
  1045. #define TCRIT_INT_SOURCE 4
  1046. /*
  1047. * SDMA error interrupt entry - refers to another register containing more
  1048. * information.
  1049. */
  1050. static const struct err_reg_info sdma_eng_err =
  1051. EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
  1052. static const struct err_reg_info various_err[NUM_VARIOUS] = {
  1053. /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
  1054. /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
  1055. /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
  1056. /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
  1057. /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
  1058. /* rest are reserved */
  1059. };
  1060. /*
  1061. * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
  1062. * register can not be derived from the MTU value because 10K is not
  1063. * a power of 2. Therefore, we need a constant. Everything else can
  1064. * be calculated.
  1065. */
  1066. #define DCC_CFG_PORT_MTU_CAP_10240 7
  1067. /*
  1068. * Table of the DC grouping of error interrupts. Each entry refers to
  1069. * another register containing more information.
  1070. */
  1071. static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
  1072. /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
  1073. /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
  1074. /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
  1075. /* 3*/ /* dc_lbm_int - special, see is_dc_int() */
  1076. /* the rest are reserved */
  1077. };
  1078. struct cntr_entry {
  1079. /*
  1080. * counter name
  1081. */
  1082. char *name;
  1083. /*
  1084. * csr to read for name (if applicable)
  1085. */
  1086. u64 csr;
  1087. /*
  1088. * offset into dd or ppd to store the counter's value
  1089. */
  1090. int offset;
  1091. /*
  1092. * flags
  1093. */
  1094. u8 flags;
  1095. /*
  1096. * accessor for stat element, context either dd or ppd
  1097. */
  1098. u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
  1099. int mode, u64 data);
  1100. };
  1101. #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
  1102. #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
  1103. #define CNTR_ELEM(name, csr, offset, flags, accessor) \
  1104. { \
  1105. name, \
  1106. csr, \
  1107. offset, \
  1108. flags, \
  1109. accessor \
  1110. }
  1111. /* 32bit RXE */
  1112. #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
  1113. CNTR_ELEM(#name, \
  1114. (counter * 8 + RCV_COUNTER_ARRAY32), \
  1115. 0, flags | CNTR_32BIT, \
  1116. port_access_u32_csr)
  1117. #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
  1118. CNTR_ELEM(#name, \
  1119. (counter * 8 + RCV_COUNTER_ARRAY32), \
  1120. 0, flags | CNTR_32BIT, \
  1121. dev_access_u32_csr)
  1122. /* 64bit RXE */
  1123. #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
  1124. CNTR_ELEM(#name, \
  1125. (counter * 8 + RCV_COUNTER_ARRAY64), \
  1126. 0, flags, \
  1127. port_access_u64_csr)
  1128. #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
  1129. CNTR_ELEM(#name, \
  1130. (counter * 8 + RCV_COUNTER_ARRAY64), \
  1131. 0, flags, \
  1132. dev_access_u64_csr)
  1133. #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
  1134. #define OVR_ELM(ctx) \
  1135. CNTR_ELEM("RcvHdrOvr" #ctx, \
  1136. (RCV_HDR_OVFL_CNT + ctx * 0x100), \
  1137. 0, CNTR_NORMAL, port_access_u64_csr)
  1138. /* 32bit TXE */
  1139. #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
  1140. CNTR_ELEM(#name, \
  1141. (counter * 8 + SEND_COUNTER_ARRAY32), \
  1142. 0, flags | CNTR_32BIT, \
  1143. port_access_u32_csr)
  1144. /* 64bit TXE */
  1145. #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
  1146. CNTR_ELEM(#name, \
  1147. (counter * 8 + SEND_COUNTER_ARRAY64), \
  1148. 0, flags, \
  1149. port_access_u64_csr)
  1150. # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
  1151. CNTR_ELEM(#name,\
  1152. counter * 8 + SEND_COUNTER_ARRAY64, \
  1153. 0, \
  1154. flags, \
  1155. dev_access_u64_csr)
  1156. /* CCE */
  1157. #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
  1158. CNTR_ELEM(#name, \
  1159. (counter * 8 + CCE_COUNTER_ARRAY32), \
  1160. 0, flags | CNTR_32BIT, \
  1161. dev_access_u32_csr)
  1162. #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
  1163. CNTR_ELEM(#name, \
  1164. (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
  1165. 0, flags | CNTR_32BIT, \
  1166. dev_access_u32_csr)
  1167. /* DC */
  1168. #define DC_PERF_CNTR(name, counter, flags) \
  1169. CNTR_ELEM(#name, \
  1170. counter, \
  1171. 0, \
  1172. flags, \
  1173. dev_access_u64_csr)
  1174. #define DC_PERF_CNTR_LCB(name, counter, flags) \
  1175. CNTR_ELEM(#name, \
  1176. counter, \
  1177. 0, \
  1178. flags, \
  1179. dc_access_lcb_cntr)
  1180. /* ibp counters */
  1181. #define SW_IBP_CNTR(name, cntr) \
  1182. CNTR_ELEM(#name, \
  1183. 0, \
  1184. 0, \
  1185. CNTR_SYNTH, \
  1186. access_ibp_##cntr)
  1187. u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
  1188. {
  1189. if (dd->flags & HFI1_PRESENT) {
  1190. return readq((void __iomem *)dd->kregbase + offset);
  1191. }
  1192. return -1;
  1193. }
  1194. void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
  1195. {
  1196. if (dd->flags & HFI1_PRESENT)
  1197. writeq(value, (void __iomem *)dd->kregbase + offset);
  1198. }
  1199. void __iomem *get_csr_addr(
  1200. struct hfi1_devdata *dd,
  1201. u32 offset)
  1202. {
  1203. return (void __iomem *)dd->kregbase + offset;
  1204. }
  1205. static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
  1206. int mode, u64 value)
  1207. {
  1208. u64 ret;
  1209. if (mode == CNTR_MODE_R) {
  1210. ret = read_csr(dd, csr);
  1211. } else if (mode == CNTR_MODE_W) {
  1212. write_csr(dd, csr, value);
  1213. ret = value;
  1214. } else {
  1215. dd_dev_err(dd, "Invalid cntr register access mode");
  1216. return 0;
  1217. }
  1218. hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
  1219. return ret;
  1220. }
  1221. /* Dev Access */
  1222. static u64 dev_access_u32_csr(const struct cntr_entry *entry,
  1223. void *context, int vl, int mode, u64 data)
  1224. {
  1225. struct hfi1_devdata *dd = context;
  1226. u64 csr = entry->csr;
  1227. if (entry->flags & CNTR_SDMA) {
  1228. if (vl == CNTR_INVALID_VL)
  1229. return 0;
  1230. csr += 0x100 * vl;
  1231. } else {
  1232. if (vl != CNTR_INVALID_VL)
  1233. return 0;
  1234. }
  1235. return read_write_csr(dd, csr, mode, data);
  1236. }
  1237. static u64 access_sde_err_cnt(const struct cntr_entry *entry,
  1238. void *context, int idx, int mode, u64 data)
  1239. {
  1240. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1241. if (dd->per_sdma && idx < dd->num_sdma)
  1242. return dd->per_sdma[idx].err_cnt;
  1243. return 0;
  1244. }
  1245. static u64 access_sde_int_cnt(const struct cntr_entry *entry,
  1246. void *context, int idx, int mode, u64 data)
  1247. {
  1248. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1249. if (dd->per_sdma && idx < dd->num_sdma)
  1250. return dd->per_sdma[idx].sdma_int_cnt;
  1251. return 0;
  1252. }
  1253. static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
  1254. void *context, int idx, int mode, u64 data)
  1255. {
  1256. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1257. if (dd->per_sdma && idx < dd->num_sdma)
  1258. return dd->per_sdma[idx].idle_int_cnt;
  1259. return 0;
  1260. }
  1261. static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
  1262. void *context, int idx, int mode,
  1263. u64 data)
  1264. {
  1265. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1266. if (dd->per_sdma && idx < dd->num_sdma)
  1267. return dd->per_sdma[idx].progress_int_cnt;
  1268. return 0;
  1269. }
  1270. static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
  1271. int vl, int mode, u64 data)
  1272. {
  1273. struct hfi1_devdata *dd = context;
  1274. u64 val = 0;
  1275. u64 csr = entry->csr;
  1276. if (entry->flags & CNTR_VL) {
  1277. if (vl == CNTR_INVALID_VL)
  1278. return 0;
  1279. csr += 8 * vl;
  1280. } else {
  1281. if (vl != CNTR_INVALID_VL)
  1282. return 0;
  1283. }
  1284. val = read_write_csr(dd, csr, mode, data);
  1285. return val;
  1286. }
  1287. static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
  1288. int vl, int mode, u64 data)
  1289. {
  1290. struct hfi1_devdata *dd = context;
  1291. u32 csr = entry->csr;
  1292. int ret = 0;
  1293. if (vl != CNTR_INVALID_VL)
  1294. return 0;
  1295. if (mode == CNTR_MODE_R)
  1296. ret = read_lcb_csr(dd, csr, &data);
  1297. else if (mode == CNTR_MODE_W)
  1298. ret = write_lcb_csr(dd, csr, data);
  1299. if (ret) {
  1300. dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
  1301. return 0;
  1302. }
  1303. hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
  1304. return data;
  1305. }
  1306. /* Port Access */
  1307. static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
  1308. int vl, int mode, u64 data)
  1309. {
  1310. struct hfi1_pportdata *ppd = context;
  1311. if (vl != CNTR_INVALID_VL)
  1312. return 0;
  1313. return read_write_csr(ppd->dd, entry->csr, mode, data);
  1314. }
  1315. static u64 port_access_u64_csr(const struct cntr_entry *entry,
  1316. void *context, int vl, int mode, u64 data)
  1317. {
  1318. struct hfi1_pportdata *ppd = context;
  1319. u64 val;
  1320. u64 csr = entry->csr;
  1321. if (entry->flags & CNTR_VL) {
  1322. if (vl == CNTR_INVALID_VL)
  1323. return 0;
  1324. csr += 8 * vl;
  1325. } else {
  1326. if (vl != CNTR_INVALID_VL)
  1327. return 0;
  1328. }
  1329. val = read_write_csr(ppd->dd, csr, mode, data);
  1330. return val;
  1331. }
  1332. /* Software defined */
  1333. static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
  1334. u64 data)
  1335. {
  1336. u64 ret;
  1337. if (mode == CNTR_MODE_R) {
  1338. ret = *cntr;
  1339. } else if (mode == CNTR_MODE_W) {
  1340. *cntr = data;
  1341. ret = data;
  1342. } else {
  1343. dd_dev_err(dd, "Invalid cntr sw access mode");
  1344. return 0;
  1345. }
  1346. hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
  1347. return ret;
  1348. }
  1349. static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
  1350. int vl, int mode, u64 data)
  1351. {
  1352. struct hfi1_pportdata *ppd = context;
  1353. if (vl != CNTR_INVALID_VL)
  1354. return 0;
  1355. return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
  1356. }
  1357. static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
  1358. int vl, int mode, u64 data)
  1359. {
  1360. struct hfi1_pportdata *ppd = context;
  1361. if (vl != CNTR_INVALID_VL)
  1362. return 0;
  1363. return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
  1364. }
  1365. static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
  1366. void *context, int vl, int mode,
  1367. u64 data)
  1368. {
  1369. struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
  1370. if (vl != CNTR_INVALID_VL)
  1371. return 0;
  1372. return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
  1373. }
  1374. static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
  1375. void *context, int vl, int mode, u64 data)
  1376. {
  1377. struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
  1378. u64 zero = 0;
  1379. u64 *counter;
  1380. if (vl == CNTR_INVALID_VL)
  1381. counter = &ppd->port_xmit_discards;
  1382. else if (vl >= 0 && vl < C_VL_COUNT)
  1383. counter = &ppd->port_xmit_discards_vl[vl];
  1384. else
  1385. counter = &zero;
  1386. return read_write_sw(ppd->dd, counter, mode, data);
  1387. }
  1388. static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
  1389. void *context, int vl, int mode,
  1390. u64 data)
  1391. {
  1392. struct hfi1_pportdata *ppd = context;
  1393. if (vl != CNTR_INVALID_VL)
  1394. return 0;
  1395. return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
  1396. mode, data);
  1397. }
  1398. static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
  1399. void *context, int vl, int mode, u64 data)
  1400. {
  1401. struct hfi1_pportdata *ppd = context;
  1402. if (vl != CNTR_INVALID_VL)
  1403. return 0;
  1404. return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
  1405. mode, data);
  1406. }
  1407. u64 get_all_cpu_total(u64 __percpu *cntr)
  1408. {
  1409. int cpu;
  1410. u64 counter = 0;
  1411. for_each_possible_cpu(cpu)
  1412. counter += *per_cpu_ptr(cntr, cpu);
  1413. return counter;
  1414. }
  1415. static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
  1416. u64 __percpu *cntr,
  1417. int vl, int mode, u64 data)
  1418. {
  1419. u64 ret = 0;
  1420. if (vl != CNTR_INVALID_VL)
  1421. return 0;
  1422. if (mode == CNTR_MODE_R) {
  1423. ret = get_all_cpu_total(cntr) - *z_val;
  1424. } else if (mode == CNTR_MODE_W) {
  1425. /* A write can only zero the counter */
  1426. if (data == 0)
  1427. *z_val = get_all_cpu_total(cntr);
  1428. else
  1429. dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
  1430. } else {
  1431. dd_dev_err(dd, "Invalid cntr sw cpu access mode");
  1432. return 0;
  1433. }
  1434. return ret;
  1435. }
  1436. static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
  1437. void *context, int vl, int mode, u64 data)
  1438. {
  1439. struct hfi1_devdata *dd = context;
  1440. return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
  1441. mode, data);
  1442. }
  1443. static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
  1444. void *context, int vl, int mode, u64 data)
  1445. {
  1446. struct hfi1_devdata *dd = context;
  1447. return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
  1448. mode, data);
  1449. }
  1450. static u64 access_sw_pio_wait(const struct cntr_entry *entry,
  1451. void *context, int vl, int mode, u64 data)
  1452. {
  1453. struct hfi1_devdata *dd = context;
  1454. return dd->verbs_dev.n_piowait;
  1455. }
  1456. static u64 access_sw_pio_drain(const struct cntr_entry *entry,
  1457. void *context, int vl, int mode, u64 data)
  1458. {
  1459. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1460. return dd->verbs_dev.n_piodrain;
  1461. }
  1462. static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
  1463. void *context, int vl, int mode, u64 data)
  1464. {
  1465. struct hfi1_devdata *dd = context;
  1466. return dd->verbs_dev.n_txwait;
  1467. }
  1468. static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
  1469. void *context, int vl, int mode, u64 data)
  1470. {
  1471. struct hfi1_devdata *dd = context;
  1472. return dd->verbs_dev.n_kmem_wait;
  1473. }
  1474. static u64 access_sw_send_schedule(const struct cntr_entry *entry,
  1475. void *context, int vl, int mode, u64 data)
  1476. {
  1477. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1478. return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
  1479. mode, data);
  1480. }
  1481. /* Software counters for the error status bits within MISC_ERR_STATUS */
  1482. static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
  1483. void *context, int vl, int mode,
  1484. u64 data)
  1485. {
  1486. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1487. return dd->misc_err_status_cnt[12];
  1488. }
  1489. static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
  1490. void *context, int vl, int mode,
  1491. u64 data)
  1492. {
  1493. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1494. return dd->misc_err_status_cnt[11];
  1495. }
  1496. static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
  1497. void *context, int vl, int mode,
  1498. u64 data)
  1499. {
  1500. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1501. return dd->misc_err_status_cnt[10];
  1502. }
  1503. static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
  1504. void *context, int vl,
  1505. int mode, u64 data)
  1506. {
  1507. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1508. return dd->misc_err_status_cnt[9];
  1509. }
  1510. static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
  1511. void *context, int vl, int mode,
  1512. u64 data)
  1513. {
  1514. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1515. return dd->misc_err_status_cnt[8];
  1516. }
  1517. static u64 access_misc_efuse_read_bad_addr_err_cnt(
  1518. const struct cntr_entry *entry,
  1519. void *context, int vl, int mode, u64 data)
  1520. {
  1521. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1522. return dd->misc_err_status_cnt[7];
  1523. }
  1524. static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
  1525. void *context, int vl,
  1526. int mode, u64 data)
  1527. {
  1528. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1529. return dd->misc_err_status_cnt[6];
  1530. }
  1531. static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
  1532. void *context, int vl, int mode,
  1533. u64 data)
  1534. {
  1535. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1536. return dd->misc_err_status_cnt[5];
  1537. }
  1538. static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
  1539. void *context, int vl, int mode,
  1540. u64 data)
  1541. {
  1542. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1543. return dd->misc_err_status_cnt[4];
  1544. }
  1545. static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
  1546. void *context, int vl,
  1547. int mode, u64 data)
  1548. {
  1549. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1550. return dd->misc_err_status_cnt[3];
  1551. }
  1552. static u64 access_misc_csr_write_bad_addr_err_cnt(
  1553. const struct cntr_entry *entry,
  1554. void *context, int vl, int mode, u64 data)
  1555. {
  1556. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1557. return dd->misc_err_status_cnt[2];
  1558. }
  1559. static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
  1560. void *context, int vl,
  1561. int mode, u64 data)
  1562. {
  1563. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1564. return dd->misc_err_status_cnt[1];
  1565. }
  1566. static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
  1567. void *context, int vl, int mode,
  1568. u64 data)
  1569. {
  1570. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1571. return dd->misc_err_status_cnt[0];
  1572. }
  1573. /*
  1574. * Software counter for the aggregate of
  1575. * individual CceErrStatus counters
  1576. */
  1577. static u64 access_sw_cce_err_status_aggregated_cnt(
  1578. const struct cntr_entry *entry,
  1579. void *context, int vl, int mode, u64 data)
  1580. {
  1581. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1582. return dd->sw_cce_err_status_aggregate;
  1583. }
  1584. /*
  1585. * Software counters corresponding to each of the
  1586. * error status bits within CceErrStatus
  1587. */
  1588. static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
  1589. void *context, int vl, int mode,
  1590. u64 data)
  1591. {
  1592. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1593. return dd->cce_err_status_cnt[40];
  1594. }
  1595. static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
  1596. void *context, int vl, int mode,
  1597. u64 data)
  1598. {
  1599. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1600. return dd->cce_err_status_cnt[39];
  1601. }
  1602. static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
  1603. void *context, int vl, int mode,
  1604. u64 data)
  1605. {
  1606. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1607. return dd->cce_err_status_cnt[38];
  1608. }
  1609. static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
  1610. void *context, int vl, int mode,
  1611. u64 data)
  1612. {
  1613. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1614. return dd->cce_err_status_cnt[37];
  1615. }
  1616. static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
  1617. void *context, int vl, int mode,
  1618. u64 data)
  1619. {
  1620. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1621. return dd->cce_err_status_cnt[36];
  1622. }
  1623. static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
  1624. const struct cntr_entry *entry,
  1625. void *context, int vl, int mode, u64 data)
  1626. {
  1627. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1628. return dd->cce_err_status_cnt[35];
  1629. }
  1630. static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
  1631. const struct cntr_entry *entry,
  1632. void *context, int vl, int mode, u64 data)
  1633. {
  1634. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1635. return dd->cce_err_status_cnt[34];
  1636. }
  1637. static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
  1638. void *context, int vl,
  1639. int mode, u64 data)
  1640. {
  1641. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1642. return dd->cce_err_status_cnt[33];
  1643. }
  1644. static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
  1645. void *context, int vl, int mode,
  1646. u64 data)
  1647. {
  1648. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1649. return dd->cce_err_status_cnt[32];
  1650. }
  1651. static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
  1652. void *context, int vl, int mode, u64 data)
  1653. {
  1654. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1655. return dd->cce_err_status_cnt[31];
  1656. }
  1657. static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
  1658. void *context, int vl, int mode,
  1659. u64 data)
  1660. {
  1661. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1662. return dd->cce_err_status_cnt[30];
  1663. }
  1664. static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
  1665. void *context, int vl, int mode,
  1666. u64 data)
  1667. {
  1668. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1669. return dd->cce_err_status_cnt[29];
  1670. }
  1671. static u64 access_pcic_transmit_back_parity_err_cnt(
  1672. const struct cntr_entry *entry,
  1673. void *context, int vl, int mode, u64 data)
  1674. {
  1675. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1676. return dd->cce_err_status_cnt[28];
  1677. }
  1678. static u64 access_pcic_transmit_front_parity_err_cnt(
  1679. const struct cntr_entry *entry,
  1680. void *context, int vl, int mode, u64 data)
  1681. {
  1682. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1683. return dd->cce_err_status_cnt[27];
  1684. }
  1685. static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
  1686. void *context, int vl, int mode,
  1687. u64 data)
  1688. {
  1689. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1690. return dd->cce_err_status_cnt[26];
  1691. }
  1692. static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
  1693. void *context, int vl, int mode,
  1694. u64 data)
  1695. {
  1696. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1697. return dd->cce_err_status_cnt[25];
  1698. }
  1699. static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
  1700. void *context, int vl, int mode,
  1701. u64 data)
  1702. {
  1703. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1704. return dd->cce_err_status_cnt[24];
  1705. }
  1706. static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
  1707. void *context, int vl, int mode,
  1708. u64 data)
  1709. {
  1710. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1711. return dd->cce_err_status_cnt[23];
  1712. }
  1713. static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
  1714. void *context, int vl,
  1715. int mode, u64 data)
  1716. {
  1717. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1718. return dd->cce_err_status_cnt[22];
  1719. }
  1720. static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
  1721. void *context, int vl, int mode,
  1722. u64 data)
  1723. {
  1724. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1725. return dd->cce_err_status_cnt[21];
  1726. }
  1727. static u64 access_pcic_n_post_dat_q_parity_err_cnt(
  1728. const struct cntr_entry *entry,
  1729. void *context, int vl, int mode, u64 data)
  1730. {
  1731. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1732. return dd->cce_err_status_cnt[20];
  1733. }
  1734. static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
  1735. void *context, int vl,
  1736. int mode, u64 data)
  1737. {
  1738. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1739. return dd->cce_err_status_cnt[19];
  1740. }
  1741. static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
  1742. void *context, int vl, int mode,
  1743. u64 data)
  1744. {
  1745. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1746. return dd->cce_err_status_cnt[18];
  1747. }
  1748. static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
  1749. void *context, int vl, int mode,
  1750. u64 data)
  1751. {
  1752. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1753. return dd->cce_err_status_cnt[17];
  1754. }
  1755. static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
  1756. void *context, int vl, int mode,
  1757. u64 data)
  1758. {
  1759. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1760. return dd->cce_err_status_cnt[16];
  1761. }
  1762. static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
  1763. void *context, int vl, int mode,
  1764. u64 data)
  1765. {
  1766. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1767. return dd->cce_err_status_cnt[15];
  1768. }
  1769. static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
  1770. void *context, int vl,
  1771. int mode, u64 data)
  1772. {
  1773. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1774. return dd->cce_err_status_cnt[14];
  1775. }
  1776. static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
  1777. void *context, int vl, int mode,
  1778. u64 data)
  1779. {
  1780. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1781. return dd->cce_err_status_cnt[13];
  1782. }
  1783. static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
  1784. const struct cntr_entry *entry,
  1785. void *context, int vl, int mode, u64 data)
  1786. {
  1787. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1788. return dd->cce_err_status_cnt[12];
  1789. }
  1790. static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
  1791. const struct cntr_entry *entry,
  1792. void *context, int vl, int mode, u64 data)
  1793. {
  1794. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1795. return dd->cce_err_status_cnt[11];
  1796. }
  1797. static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
  1798. const struct cntr_entry *entry,
  1799. void *context, int vl, int mode, u64 data)
  1800. {
  1801. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1802. return dd->cce_err_status_cnt[10];
  1803. }
  1804. static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
  1805. const struct cntr_entry *entry,
  1806. void *context, int vl, int mode, u64 data)
  1807. {
  1808. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1809. return dd->cce_err_status_cnt[9];
  1810. }
  1811. static u64 access_cce_cli2_async_fifo_parity_err_cnt(
  1812. const struct cntr_entry *entry,
  1813. void *context, int vl, int mode, u64 data)
  1814. {
  1815. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1816. return dd->cce_err_status_cnt[8];
  1817. }
  1818. static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
  1819. void *context, int vl,
  1820. int mode, u64 data)
  1821. {
  1822. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1823. return dd->cce_err_status_cnt[7];
  1824. }
  1825. static u64 access_cce_cli0_async_fifo_parity_err_cnt(
  1826. const struct cntr_entry *entry,
  1827. void *context, int vl, int mode, u64 data)
  1828. {
  1829. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1830. return dd->cce_err_status_cnt[6];
  1831. }
  1832. static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
  1833. void *context, int vl, int mode,
  1834. u64 data)
  1835. {
  1836. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1837. return dd->cce_err_status_cnt[5];
  1838. }
  1839. static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
  1840. void *context, int vl, int mode,
  1841. u64 data)
  1842. {
  1843. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1844. return dd->cce_err_status_cnt[4];
  1845. }
  1846. static u64 access_cce_trgt_async_fifo_parity_err_cnt(
  1847. const struct cntr_entry *entry,
  1848. void *context, int vl, int mode, u64 data)
  1849. {
  1850. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1851. return dd->cce_err_status_cnt[3];
  1852. }
  1853. static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
  1854. void *context, int vl,
  1855. int mode, u64 data)
  1856. {
  1857. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1858. return dd->cce_err_status_cnt[2];
  1859. }
  1860. static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
  1861. void *context, int vl,
  1862. int mode, u64 data)
  1863. {
  1864. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1865. return dd->cce_err_status_cnt[1];
  1866. }
  1867. static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
  1868. void *context, int vl, int mode,
  1869. u64 data)
  1870. {
  1871. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1872. return dd->cce_err_status_cnt[0];
  1873. }
  1874. /*
  1875. * Software counters corresponding to each of the
  1876. * error status bits within RcvErrStatus
  1877. */
  1878. static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
  1879. void *context, int vl, int mode,
  1880. u64 data)
  1881. {
  1882. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1883. return dd->rcv_err_status_cnt[63];
  1884. }
  1885. static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
  1886. void *context, int vl,
  1887. int mode, u64 data)
  1888. {
  1889. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1890. return dd->rcv_err_status_cnt[62];
  1891. }
  1892. static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
  1893. void *context, int vl, int mode,
  1894. u64 data)
  1895. {
  1896. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1897. return dd->rcv_err_status_cnt[61];
  1898. }
  1899. static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
  1900. void *context, int vl, int mode,
  1901. u64 data)
  1902. {
  1903. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1904. return dd->rcv_err_status_cnt[60];
  1905. }
  1906. static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
  1907. void *context, int vl,
  1908. int mode, u64 data)
  1909. {
  1910. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1911. return dd->rcv_err_status_cnt[59];
  1912. }
  1913. static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
  1914. void *context, int vl,
  1915. int mode, u64 data)
  1916. {
  1917. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1918. return dd->rcv_err_status_cnt[58];
  1919. }
  1920. static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
  1921. void *context, int vl, int mode,
  1922. u64 data)
  1923. {
  1924. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1925. return dd->rcv_err_status_cnt[57];
  1926. }
  1927. static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
  1928. void *context, int vl, int mode,
  1929. u64 data)
  1930. {
  1931. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1932. return dd->rcv_err_status_cnt[56];
  1933. }
  1934. static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
  1935. void *context, int vl, int mode,
  1936. u64 data)
  1937. {
  1938. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1939. return dd->rcv_err_status_cnt[55];
  1940. }
  1941. static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
  1942. const struct cntr_entry *entry,
  1943. void *context, int vl, int mode, u64 data)
  1944. {
  1945. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1946. return dd->rcv_err_status_cnt[54];
  1947. }
  1948. static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
  1949. const struct cntr_entry *entry,
  1950. void *context, int vl, int mode, u64 data)
  1951. {
  1952. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1953. return dd->rcv_err_status_cnt[53];
  1954. }
  1955. static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
  1956. void *context, int vl,
  1957. int mode, u64 data)
  1958. {
  1959. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1960. return dd->rcv_err_status_cnt[52];
  1961. }
  1962. static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
  1963. void *context, int vl,
  1964. int mode, u64 data)
  1965. {
  1966. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1967. return dd->rcv_err_status_cnt[51];
  1968. }
  1969. static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
  1970. void *context, int vl,
  1971. int mode, u64 data)
  1972. {
  1973. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1974. return dd->rcv_err_status_cnt[50];
  1975. }
  1976. static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
  1977. void *context, int vl,
  1978. int mode, u64 data)
  1979. {
  1980. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1981. return dd->rcv_err_status_cnt[49];
  1982. }
  1983. static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
  1984. void *context, int vl,
  1985. int mode, u64 data)
  1986. {
  1987. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1988. return dd->rcv_err_status_cnt[48];
  1989. }
  1990. static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
  1991. void *context, int vl,
  1992. int mode, u64 data)
  1993. {
  1994. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  1995. return dd->rcv_err_status_cnt[47];
  1996. }
  1997. static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
  1998. void *context, int vl, int mode,
  1999. u64 data)
  2000. {
  2001. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2002. return dd->rcv_err_status_cnt[46];
  2003. }
  2004. static u64 access_rx_hq_intr_csr_parity_err_cnt(
  2005. const struct cntr_entry *entry,
  2006. void *context, int vl, int mode, u64 data)
  2007. {
  2008. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2009. return dd->rcv_err_status_cnt[45];
  2010. }
  2011. static u64 access_rx_lookup_csr_parity_err_cnt(
  2012. const struct cntr_entry *entry,
  2013. void *context, int vl, int mode, u64 data)
  2014. {
  2015. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2016. return dd->rcv_err_status_cnt[44];
  2017. }
  2018. static u64 access_rx_lookup_rcv_array_cor_err_cnt(
  2019. const struct cntr_entry *entry,
  2020. void *context, int vl, int mode, u64 data)
  2021. {
  2022. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2023. return dd->rcv_err_status_cnt[43];
  2024. }
  2025. static u64 access_rx_lookup_rcv_array_unc_err_cnt(
  2026. const struct cntr_entry *entry,
  2027. void *context, int vl, int mode, u64 data)
  2028. {
  2029. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2030. return dd->rcv_err_status_cnt[42];
  2031. }
  2032. static u64 access_rx_lookup_des_part2_parity_err_cnt(
  2033. const struct cntr_entry *entry,
  2034. void *context, int vl, int mode, u64 data)
  2035. {
  2036. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2037. return dd->rcv_err_status_cnt[41];
  2038. }
  2039. static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
  2040. const struct cntr_entry *entry,
  2041. void *context, int vl, int mode, u64 data)
  2042. {
  2043. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2044. return dd->rcv_err_status_cnt[40];
  2045. }
  2046. static u64 access_rx_lookup_des_part1_unc_err_cnt(
  2047. const struct cntr_entry *entry,
  2048. void *context, int vl, int mode, u64 data)
  2049. {
  2050. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2051. return dd->rcv_err_status_cnt[39];
  2052. }
  2053. static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
  2054. const struct cntr_entry *entry,
  2055. void *context, int vl, int mode, u64 data)
  2056. {
  2057. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2058. return dd->rcv_err_status_cnt[38];
  2059. }
  2060. static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
  2061. const struct cntr_entry *entry,
  2062. void *context, int vl, int mode, u64 data)
  2063. {
  2064. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2065. return dd->rcv_err_status_cnt[37];
  2066. }
  2067. static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
  2068. const struct cntr_entry *entry,
  2069. void *context, int vl, int mode, u64 data)
  2070. {
  2071. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2072. return dd->rcv_err_status_cnt[36];
  2073. }
  2074. static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
  2075. const struct cntr_entry *entry,
  2076. void *context, int vl, int mode, u64 data)
  2077. {
  2078. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2079. return dd->rcv_err_status_cnt[35];
  2080. }
  2081. static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
  2082. const struct cntr_entry *entry,
  2083. void *context, int vl, int mode, u64 data)
  2084. {
  2085. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2086. return dd->rcv_err_status_cnt[34];
  2087. }
  2088. static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
  2089. const struct cntr_entry *entry,
  2090. void *context, int vl, int mode, u64 data)
  2091. {
  2092. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2093. return dd->rcv_err_status_cnt[33];
  2094. }
  2095. static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
  2096. void *context, int vl, int mode,
  2097. u64 data)
  2098. {
  2099. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2100. return dd->rcv_err_status_cnt[32];
  2101. }
  2102. static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
  2103. void *context, int vl, int mode,
  2104. u64 data)
  2105. {
  2106. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2107. return dd->rcv_err_status_cnt[31];
  2108. }
  2109. static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
  2110. void *context, int vl, int mode,
  2111. u64 data)
  2112. {
  2113. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2114. return dd->rcv_err_status_cnt[30];
  2115. }
  2116. static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
  2117. void *context, int vl, int mode,
  2118. u64 data)
  2119. {
  2120. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2121. return dd->rcv_err_status_cnt[29];
  2122. }
  2123. static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
  2124. void *context, int vl,
  2125. int mode, u64 data)
  2126. {
  2127. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2128. return dd->rcv_err_status_cnt[28];
  2129. }
  2130. static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
  2131. const struct cntr_entry *entry,
  2132. void *context, int vl, int mode, u64 data)
  2133. {
  2134. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2135. return dd->rcv_err_status_cnt[27];
  2136. }
  2137. static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
  2138. const struct cntr_entry *entry,
  2139. void *context, int vl, int mode, u64 data)
  2140. {
  2141. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2142. return dd->rcv_err_status_cnt[26];
  2143. }
  2144. static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
  2145. const struct cntr_entry *entry,
  2146. void *context, int vl, int mode, u64 data)
  2147. {
  2148. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2149. return dd->rcv_err_status_cnt[25];
  2150. }
  2151. static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
  2152. const struct cntr_entry *entry,
  2153. void *context, int vl, int mode, u64 data)
  2154. {
  2155. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2156. return dd->rcv_err_status_cnt[24];
  2157. }
  2158. static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
  2159. const struct cntr_entry *entry,
  2160. void *context, int vl, int mode, u64 data)
  2161. {
  2162. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2163. return dd->rcv_err_status_cnt[23];
  2164. }
  2165. static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
  2166. const struct cntr_entry *entry,
  2167. void *context, int vl, int mode, u64 data)
  2168. {
  2169. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2170. return dd->rcv_err_status_cnt[22];
  2171. }
  2172. static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
  2173. const struct cntr_entry *entry,
  2174. void *context, int vl, int mode, u64 data)
  2175. {
  2176. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2177. return dd->rcv_err_status_cnt[21];
  2178. }
  2179. static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
  2180. const struct cntr_entry *entry,
  2181. void *context, int vl, int mode, u64 data)
  2182. {
  2183. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2184. return dd->rcv_err_status_cnt[20];
  2185. }
  2186. static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
  2187. const struct cntr_entry *entry,
  2188. void *context, int vl, int mode, u64 data)
  2189. {
  2190. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2191. return dd->rcv_err_status_cnt[19];
  2192. }
  2193. static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
  2194. void *context, int vl,
  2195. int mode, u64 data)
  2196. {
  2197. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2198. return dd->rcv_err_status_cnt[18];
  2199. }
  2200. static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
  2201. void *context, int vl,
  2202. int mode, u64 data)
  2203. {
  2204. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2205. return dd->rcv_err_status_cnt[17];
  2206. }
  2207. static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
  2208. const struct cntr_entry *entry,
  2209. void *context, int vl, int mode, u64 data)
  2210. {
  2211. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2212. return dd->rcv_err_status_cnt[16];
  2213. }
  2214. static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
  2215. const struct cntr_entry *entry,
  2216. void *context, int vl, int mode, u64 data)
  2217. {
  2218. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2219. return dd->rcv_err_status_cnt[15];
  2220. }
  2221. static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
  2222. void *context, int vl,
  2223. int mode, u64 data)
  2224. {
  2225. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2226. return dd->rcv_err_status_cnt[14];
  2227. }
  2228. static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
  2229. void *context, int vl,
  2230. int mode, u64 data)
  2231. {
  2232. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2233. return dd->rcv_err_status_cnt[13];
  2234. }
  2235. static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
  2236. void *context, int vl, int mode,
  2237. u64 data)
  2238. {
  2239. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2240. return dd->rcv_err_status_cnt[12];
  2241. }
  2242. static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
  2243. void *context, int vl, int mode,
  2244. u64 data)
  2245. {
  2246. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2247. return dd->rcv_err_status_cnt[11];
  2248. }
  2249. static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
  2250. void *context, int vl, int mode,
  2251. u64 data)
  2252. {
  2253. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2254. return dd->rcv_err_status_cnt[10];
  2255. }
  2256. static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
  2257. void *context, int vl, int mode,
  2258. u64 data)
  2259. {
  2260. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2261. return dd->rcv_err_status_cnt[9];
  2262. }
  2263. static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
  2264. void *context, int vl, int mode,
  2265. u64 data)
  2266. {
  2267. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2268. return dd->rcv_err_status_cnt[8];
  2269. }
  2270. static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
  2271. const struct cntr_entry *entry,
  2272. void *context, int vl, int mode, u64 data)
  2273. {
  2274. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2275. return dd->rcv_err_status_cnt[7];
  2276. }
  2277. static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
  2278. const struct cntr_entry *entry,
  2279. void *context, int vl, int mode, u64 data)
  2280. {
  2281. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2282. return dd->rcv_err_status_cnt[6];
  2283. }
  2284. static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
  2285. void *context, int vl, int mode,
  2286. u64 data)
  2287. {
  2288. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2289. return dd->rcv_err_status_cnt[5];
  2290. }
  2291. static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
  2292. void *context, int vl, int mode,
  2293. u64 data)
  2294. {
  2295. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2296. return dd->rcv_err_status_cnt[4];
  2297. }
  2298. static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
  2299. void *context, int vl, int mode,
  2300. u64 data)
  2301. {
  2302. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2303. return dd->rcv_err_status_cnt[3];
  2304. }
  2305. static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
  2306. void *context, int vl, int mode,
  2307. u64 data)
  2308. {
  2309. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2310. return dd->rcv_err_status_cnt[2];
  2311. }
  2312. static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
  2313. void *context, int vl, int mode,
  2314. u64 data)
  2315. {
  2316. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2317. return dd->rcv_err_status_cnt[1];
  2318. }
  2319. static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
  2320. void *context, int vl, int mode,
  2321. u64 data)
  2322. {
  2323. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2324. return dd->rcv_err_status_cnt[0];
  2325. }
  2326. /*
  2327. * Software counters corresponding to each of the
  2328. * error status bits within SendPioErrStatus
  2329. */
  2330. static u64 access_pio_pec_sop_head_parity_err_cnt(
  2331. const struct cntr_entry *entry,
  2332. void *context, int vl, int mode, u64 data)
  2333. {
  2334. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2335. return dd->send_pio_err_status_cnt[35];
  2336. }
  2337. static u64 access_pio_pcc_sop_head_parity_err_cnt(
  2338. const struct cntr_entry *entry,
  2339. void *context, int vl, int mode, u64 data)
  2340. {
  2341. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2342. return dd->send_pio_err_status_cnt[34];
  2343. }
  2344. static u64 access_pio_last_returned_cnt_parity_err_cnt(
  2345. const struct cntr_entry *entry,
  2346. void *context, int vl, int mode, u64 data)
  2347. {
  2348. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2349. return dd->send_pio_err_status_cnt[33];
  2350. }
  2351. static u64 access_pio_current_free_cnt_parity_err_cnt(
  2352. const struct cntr_entry *entry,
  2353. void *context, int vl, int mode, u64 data)
  2354. {
  2355. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2356. return dd->send_pio_err_status_cnt[32];
  2357. }
  2358. static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
  2359. void *context, int vl, int mode,
  2360. u64 data)
  2361. {
  2362. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2363. return dd->send_pio_err_status_cnt[31];
  2364. }
  2365. static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
  2366. void *context, int vl, int mode,
  2367. u64 data)
  2368. {
  2369. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2370. return dd->send_pio_err_status_cnt[30];
  2371. }
  2372. static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
  2373. void *context, int vl, int mode,
  2374. u64 data)
  2375. {
  2376. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2377. return dd->send_pio_err_status_cnt[29];
  2378. }
  2379. static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
  2380. const struct cntr_entry *entry,
  2381. void *context, int vl, int mode, u64 data)
  2382. {
  2383. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2384. return dd->send_pio_err_status_cnt[28];
  2385. }
  2386. static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
  2387. void *context, int vl, int mode,
  2388. u64 data)
  2389. {
  2390. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2391. return dd->send_pio_err_status_cnt[27];
  2392. }
  2393. static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
  2394. void *context, int vl, int mode,
  2395. u64 data)
  2396. {
  2397. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2398. return dd->send_pio_err_status_cnt[26];
  2399. }
  2400. static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
  2401. void *context, int vl,
  2402. int mode, u64 data)
  2403. {
  2404. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2405. return dd->send_pio_err_status_cnt[25];
  2406. }
  2407. static u64 access_pio_block_qw_count_parity_err_cnt(
  2408. const struct cntr_entry *entry,
  2409. void *context, int vl, int mode, u64 data)
  2410. {
  2411. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2412. return dd->send_pio_err_status_cnt[24];
  2413. }
  2414. static u64 access_pio_write_qw_valid_parity_err_cnt(
  2415. const struct cntr_entry *entry,
  2416. void *context, int vl, int mode, u64 data)
  2417. {
  2418. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2419. return dd->send_pio_err_status_cnt[23];
  2420. }
  2421. static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
  2422. void *context, int vl, int mode,
  2423. u64 data)
  2424. {
  2425. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2426. return dd->send_pio_err_status_cnt[22];
  2427. }
  2428. static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
  2429. void *context, int vl,
  2430. int mode, u64 data)
  2431. {
  2432. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2433. return dd->send_pio_err_status_cnt[21];
  2434. }
  2435. static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
  2436. void *context, int vl,
  2437. int mode, u64 data)
  2438. {
  2439. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2440. return dd->send_pio_err_status_cnt[20];
  2441. }
  2442. static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
  2443. void *context, int vl,
  2444. int mode, u64 data)
  2445. {
  2446. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2447. return dd->send_pio_err_status_cnt[19];
  2448. }
  2449. static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
  2450. const struct cntr_entry *entry,
  2451. void *context, int vl, int mode, u64 data)
  2452. {
  2453. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2454. return dd->send_pio_err_status_cnt[18];
  2455. }
  2456. static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
  2457. void *context, int vl, int mode,
  2458. u64 data)
  2459. {
  2460. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2461. return dd->send_pio_err_status_cnt[17];
  2462. }
  2463. static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
  2464. void *context, int vl, int mode,
  2465. u64 data)
  2466. {
  2467. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2468. return dd->send_pio_err_status_cnt[16];
  2469. }
  2470. static u64 access_pio_credit_ret_fifo_parity_err_cnt(
  2471. const struct cntr_entry *entry,
  2472. void *context, int vl, int mode, u64 data)
  2473. {
  2474. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2475. return dd->send_pio_err_status_cnt[15];
  2476. }
  2477. static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
  2478. const struct cntr_entry *entry,
  2479. void *context, int vl, int mode, u64 data)
  2480. {
  2481. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2482. return dd->send_pio_err_status_cnt[14];
  2483. }
  2484. static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
  2485. const struct cntr_entry *entry,
  2486. void *context, int vl, int mode, u64 data)
  2487. {
  2488. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2489. return dd->send_pio_err_status_cnt[13];
  2490. }
  2491. static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
  2492. const struct cntr_entry *entry,
  2493. void *context, int vl, int mode, u64 data)
  2494. {
  2495. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2496. return dd->send_pio_err_status_cnt[12];
  2497. }
  2498. static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
  2499. const struct cntr_entry *entry,
  2500. void *context, int vl, int mode, u64 data)
  2501. {
  2502. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2503. return dd->send_pio_err_status_cnt[11];
  2504. }
  2505. static u64 access_pio_sm_pkt_reset_parity_err_cnt(
  2506. const struct cntr_entry *entry,
  2507. void *context, int vl, int mode, u64 data)
  2508. {
  2509. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2510. return dd->send_pio_err_status_cnt[10];
  2511. }
  2512. static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
  2513. const struct cntr_entry *entry,
  2514. void *context, int vl, int mode, u64 data)
  2515. {
  2516. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2517. return dd->send_pio_err_status_cnt[9];
  2518. }
  2519. static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
  2520. const struct cntr_entry *entry,
  2521. void *context, int vl, int mode, u64 data)
  2522. {
  2523. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2524. return dd->send_pio_err_status_cnt[8];
  2525. }
  2526. static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
  2527. const struct cntr_entry *entry,
  2528. void *context, int vl, int mode, u64 data)
  2529. {
  2530. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2531. return dd->send_pio_err_status_cnt[7];
  2532. }
  2533. static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
  2534. void *context, int vl, int mode,
  2535. u64 data)
  2536. {
  2537. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2538. return dd->send_pio_err_status_cnt[6];
  2539. }
  2540. static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
  2541. void *context, int vl, int mode,
  2542. u64 data)
  2543. {
  2544. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2545. return dd->send_pio_err_status_cnt[5];
  2546. }
  2547. static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
  2548. void *context, int vl, int mode,
  2549. u64 data)
  2550. {
  2551. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2552. return dd->send_pio_err_status_cnt[4];
  2553. }
  2554. static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
  2555. void *context, int vl, int mode,
  2556. u64 data)
  2557. {
  2558. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2559. return dd->send_pio_err_status_cnt[3];
  2560. }
  2561. static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
  2562. void *context, int vl, int mode,
  2563. u64 data)
  2564. {
  2565. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2566. return dd->send_pio_err_status_cnt[2];
  2567. }
  2568. static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
  2569. void *context, int vl,
  2570. int mode, u64 data)
  2571. {
  2572. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2573. return dd->send_pio_err_status_cnt[1];
  2574. }
  2575. static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
  2576. void *context, int vl, int mode,
  2577. u64 data)
  2578. {
  2579. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2580. return dd->send_pio_err_status_cnt[0];
  2581. }
  2582. /*
  2583. * Software counters corresponding to each of the
  2584. * error status bits within SendDmaErrStatus
  2585. */
  2586. static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
  2587. const struct cntr_entry *entry,
  2588. void *context, int vl, int mode, u64 data)
  2589. {
  2590. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2591. return dd->send_dma_err_status_cnt[3];
  2592. }
  2593. static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
  2594. const struct cntr_entry *entry,
  2595. void *context, int vl, int mode, u64 data)
  2596. {
  2597. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2598. return dd->send_dma_err_status_cnt[2];
  2599. }
  2600. static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
  2601. void *context, int vl, int mode,
  2602. u64 data)
  2603. {
  2604. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2605. return dd->send_dma_err_status_cnt[1];
  2606. }
  2607. static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
  2608. void *context, int vl, int mode,
  2609. u64 data)
  2610. {
  2611. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2612. return dd->send_dma_err_status_cnt[0];
  2613. }
  2614. /*
  2615. * Software counters corresponding to each of the
  2616. * error status bits within SendEgressErrStatus
  2617. */
  2618. static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
  2619. const struct cntr_entry *entry,
  2620. void *context, int vl, int mode, u64 data)
  2621. {
  2622. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2623. return dd->send_egress_err_status_cnt[63];
  2624. }
  2625. static u64 access_tx_read_sdma_memory_csr_err_cnt(
  2626. const struct cntr_entry *entry,
  2627. void *context, int vl, int mode, u64 data)
  2628. {
  2629. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2630. return dd->send_egress_err_status_cnt[62];
  2631. }
  2632. static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
  2633. void *context, int vl, int mode,
  2634. u64 data)
  2635. {
  2636. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2637. return dd->send_egress_err_status_cnt[61];
  2638. }
  2639. static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
  2640. void *context, int vl,
  2641. int mode, u64 data)
  2642. {
  2643. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2644. return dd->send_egress_err_status_cnt[60];
  2645. }
  2646. static u64 access_tx_read_sdma_memory_cor_err_cnt(
  2647. const struct cntr_entry *entry,
  2648. void *context, int vl, int mode, u64 data)
  2649. {
  2650. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2651. return dd->send_egress_err_status_cnt[59];
  2652. }
  2653. static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
  2654. void *context, int vl, int mode,
  2655. u64 data)
  2656. {
  2657. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2658. return dd->send_egress_err_status_cnt[58];
  2659. }
  2660. static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
  2661. void *context, int vl, int mode,
  2662. u64 data)
  2663. {
  2664. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2665. return dd->send_egress_err_status_cnt[57];
  2666. }
  2667. static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
  2668. void *context, int vl, int mode,
  2669. u64 data)
  2670. {
  2671. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2672. return dd->send_egress_err_status_cnt[56];
  2673. }
  2674. static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
  2675. void *context, int vl, int mode,
  2676. u64 data)
  2677. {
  2678. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2679. return dd->send_egress_err_status_cnt[55];
  2680. }
  2681. static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
  2682. void *context, int vl, int mode,
  2683. u64 data)
  2684. {
  2685. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2686. return dd->send_egress_err_status_cnt[54];
  2687. }
  2688. static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
  2689. void *context, int vl, int mode,
  2690. u64 data)
  2691. {
  2692. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2693. return dd->send_egress_err_status_cnt[53];
  2694. }
  2695. static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
  2696. void *context, int vl, int mode,
  2697. u64 data)
  2698. {
  2699. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2700. return dd->send_egress_err_status_cnt[52];
  2701. }
  2702. static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
  2703. void *context, int vl, int mode,
  2704. u64 data)
  2705. {
  2706. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2707. return dd->send_egress_err_status_cnt[51];
  2708. }
  2709. static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
  2710. void *context, int vl, int mode,
  2711. u64 data)
  2712. {
  2713. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2714. return dd->send_egress_err_status_cnt[50];
  2715. }
  2716. static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
  2717. void *context, int vl, int mode,
  2718. u64 data)
  2719. {
  2720. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2721. return dd->send_egress_err_status_cnt[49];
  2722. }
  2723. static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
  2724. void *context, int vl, int mode,
  2725. u64 data)
  2726. {
  2727. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2728. return dd->send_egress_err_status_cnt[48];
  2729. }
  2730. static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
  2731. void *context, int vl, int mode,
  2732. u64 data)
  2733. {
  2734. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2735. return dd->send_egress_err_status_cnt[47];
  2736. }
  2737. static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
  2738. void *context, int vl, int mode,
  2739. u64 data)
  2740. {
  2741. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2742. return dd->send_egress_err_status_cnt[46];
  2743. }
  2744. static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
  2745. void *context, int vl, int mode,
  2746. u64 data)
  2747. {
  2748. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2749. return dd->send_egress_err_status_cnt[45];
  2750. }
  2751. static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
  2752. void *context, int vl,
  2753. int mode, u64 data)
  2754. {
  2755. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2756. return dd->send_egress_err_status_cnt[44];
  2757. }
  2758. static u64 access_tx_read_sdma_memory_unc_err_cnt(
  2759. const struct cntr_entry *entry,
  2760. void *context, int vl, int mode, u64 data)
  2761. {
  2762. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2763. return dd->send_egress_err_status_cnt[43];
  2764. }
  2765. static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
  2766. void *context, int vl, int mode,
  2767. u64 data)
  2768. {
  2769. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2770. return dd->send_egress_err_status_cnt[42];
  2771. }
  2772. static u64 access_tx_credit_return_partiy_err_cnt(
  2773. const struct cntr_entry *entry,
  2774. void *context, int vl, int mode, u64 data)
  2775. {
  2776. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2777. return dd->send_egress_err_status_cnt[41];
  2778. }
  2779. static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
  2780. const struct cntr_entry *entry,
  2781. void *context, int vl, int mode, u64 data)
  2782. {
  2783. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2784. return dd->send_egress_err_status_cnt[40];
  2785. }
  2786. static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
  2787. const struct cntr_entry *entry,
  2788. void *context, int vl, int mode, u64 data)
  2789. {
  2790. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2791. return dd->send_egress_err_status_cnt[39];
  2792. }
  2793. static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
  2794. const struct cntr_entry *entry,
  2795. void *context, int vl, int mode, u64 data)
  2796. {
  2797. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2798. return dd->send_egress_err_status_cnt[38];
  2799. }
  2800. static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
  2801. const struct cntr_entry *entry,
  2802. void *context, int vl, int mode, u64 data)
  2803. {
  2804. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2805. return dd->send_egress_err_status_cnt[37];
  2806. }
  2807. static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
  2808. const struct cntr_entry *entry,
  2809. void *context, int vl, int mode, u64 data)
  2810. {
  2811. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2812. return dd->send_egress_err_status_cnt[36];
  2813. }
  2814. static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
  2815. const struct cntr_entry *entry,
  2816. void *context, int vl, int mode, u64 data)
  2817. {
  2818. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2819. return dd->send_egress_err_status_cnt[35];
  2820. }
  2821. static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
  2822. const struct cntr_entry *entry,
  2823. void *context, int vl, int mode, u64 data)
  2824. {
  2825. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2826. return dd->send_egress_err_status_cnt[34];
  2827. }
  2828. static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
  2829. const struct cntr_entry *entry,
  2830. void *context, int vl, int mode, u64 data)
  2831. {
  2832. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2833. return dd->send_egress_err_status_cnt[33];
  2834. }
  2835. static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
  2836. const struct cntr_entry *entry,
  2837. void *context, int vl, int mode, u64 data)
  2838. {
  2839. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2840. return dd->send_egress_err_status_cnt[32];
  2841. }
  2842. static u64 access_tx_sdma15_disallowed_packet_err_cnt(
  2843. const struct cntr_entry *entry,
  2844. void *context, int vl, int mode, u64 data)
  2845. {
  2846. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2847. return dd->send_egress_err_status_cnt[31];
  2848. }
  2849. static u64 access_tx_sdma14_disallowed_packet_err_cnt(
  2850. const struct cntr_entry *entry,
  2851. void *context, int vl, int mode, u64 data)
  2852. {
  2853. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2854. return dd->send_egress_err_status_cnt[30];
  2855. }
  2856. static u64 access_tx_sdma13_disallowed_packet_err_cnt(
  2857. const struct cntr_entry *entry,
  2858. void *context, int vl, int mode, u64 data)
  2859. {
  2860. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2861. return dd->send_egress_err_status_cnt[29];
  2862. }
  2863. static u64 access_tx_sdma12_disallowed_packet_err_cnt(
  2864. const struct cntr_entry *entry,
  2865. void *context, int vl, int mode, u64 data)
  2866. {
  2867. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2868. return dd->send_egress_err_status_cnt[28];
  2869. }
  2870. static u64 access_tx_sdma11_disallowed_packet_err_cnt(
  2871. const struct cntr_entry *entry,
  2872. void *context, int vl, int mode, u64 data)
  2873. {
  2874. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2875. return dd->send_egress_err_status_cnt[27];
  2876. }
  2877. static u64 access_tx_sdma10_disallowed_packet_err_cnt(
  2878. const struct cntr_entry *entry,
  2879. void *context, int vl, int mode, u64 data)
  2880. {
  2881. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2882. return dd->send_egress_err_status_cnt[26];
  2883. }
  2884. static u64 access_tx_sdma9_disallowed_packet_err_cnt(
  2885. const struct cntr_entry *entry,
  2886. void *context, int vl, int mode, u64 data)
  2887. {
  2888. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2889. return dd->send_egress_err_status_cnt[25];
  2890. }
  2891. static u64 access_tx_sdma8_disallowed_packet_err_cnt(
  2892. const struct cntr_entry *entry,
  2893. void *context, int vl, int mode, u64 data)
  2894. {
  2895. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2896. return dd->send_egress_err_status_cnt[24];
  2897. }
  2898. static u64 access_tx_sdma7_disallowed_packet_err_cnt(
  2899. const struct cntr_entry *entry,
  2900. void *context, int vl, int mode, u64 data)
  2901. {
  2902. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2903. return dd->send_egress_err_status_cnt[23];
  2904. }
  2905. static u64 access_tx_sdma6_disallowed_packet_err_cnt(
  2906. const struct cntr_entry *entry,
  2907. void *context, int vl, int mode, u64 data)
  2908. {
  2909. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2910. return dd->send_egress_err_status_cnt[22];
  2911. }
  2912. static u64 access_tx_sdma5_disallowed_packet_err_cnt(
  2913. const struct cntr_entry *entry,
  2914. void *context, int vl, int mode, u64 data)
  2915. {
  2916. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2917. return dd->send_egress_err_status_cnt[21];
  2918. }
  2919. static u64 access_tx_sdma4_disallowed_packet_err_cnt(
  2920. const struct cntr_entry *entry,
  2921. void *context, int vl, int mode, u64 data)
  2922. {
  2923. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2924. return dd->send_egress_err_status_cnt[20];
  2925. }
  2926. static u64 access_tx_sdma3_disallowed_packet_err_cnt(
  2927. const struct cntr_entry *entry,
  2928. void *context, int vl, int mode, u64 data)
  2929. {
  2930. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2931. return dd->send_egress_err_status_cnt[19];
  2932. }
  2933. static u64 access_tx_sdma2_disallowed_packet_err_cnt(
  2934. const struct cntr_entry *entry,
  2935. void *context, int vl, int mode, u64 data)
  2936. {
  2937. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2938. return dd->send_egress_err_status_cnt[18];
  2939. }
  2940. static u64 access_tx_sdma1_disallowed_packet_err_cnt(
  2941. const struct cntr_entry *entry,
  2942. void *context, int vl, int mode, u64 data)
  2943. {
  2944. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2945. return dd->send_egress_err_status_cnt[17];
  2946. }
  2947. static u64 access_tx_sdma0_disallowed_packet_err_cnt(
  2948. const struct cntr_entry *entry,
  2949. void *context, int vl, int mode, u64 data)
  2950. {
  2951. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2952. return dd->send_egress_err_status_cnt[16];
  2953. }
  2954. static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
  2955. void *context, int vl, int mode,
  2956. u64 data)
  2957. {
  2958. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2959. return dd->send_egress_err_status_cnt[15];
  2960. }
  2961. static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
  2962. void *context, int vl,
  2963. int mode, u64 data)
  2964. {
  2965. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2966. return dd->send_egress_err_status_cnt[14];
  2967. }
  2968. static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
  2969. void *context, int vl, int mode,
  2970. u64 data)
  2971. {
  2972. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2973. return dd->send_egress_err_status_cnt[13];
  2974. }
  2975. static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
  2976. void *context, int vl, int mode,
  2977. u64 data)
  2978. {
  2979. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2980. return dd->send_egress_err_status_cnt[12];
  2981. }
  2982. static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
  2983. const struct cntr_entry *entry,
  2984. void *context, int vl, int mode, u64 data)
  2985. {
  2986. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2987. return dd->send_egress_err_status_cnt[11];
  2988. }
  2989. static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
  2990. void *context, int vl, int mode,
  2991. u64 data)
  2992. {
  2993. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  2994. return dd->send_egress_err_status_cnt[10];
  2995. }
  2996. static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
  2997. void *context, int vl, int mode,
  2998. u64 data)
  2999. {
  3000. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3001. return dd->send_egress_err_status_cnt[9];
  3002. }
  3003. static u64 access_tx_sdma_launch_intf_parity_err_cnt(
  3004. const struct cntr_entry *entry,
  3005. void *context, int vl, int mode, u64 data)
  3006. {
  3007. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3008. return dd->send_egress_err_status_cnt[8];
  3009. }
  3010. static u64 access_tx_pio_launch_intf_parity_err_cnt(
  3011. const struct cntr_entry *entry,
  3012. void *context, int vl, int mode, u64 data)
  3013. {
  3014. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3015. return dd->send_egress_err_status_cnt[7];
  3016. }
  3017. static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
  3018. void *context, int vl, int mode,
  3019. u64 data)
  3020. {
  3021. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3022. return dd->send_egress_err_status_cnt[6];
  3023. }
  3024. static u64 access_tx_incorrect_link_state_err_cnt(
  3025. const struct cntr_entry *entry,
  3026. void *context, int vl, int mode, u64 data)
  3027. {
  3028. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3029. return dd->send_egress_err_status_cnt[5];
  3030. }
  3031. static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
  3032. void *context, int vl, int mode,
  3033. u64 data)
  3034. {
  3035. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3036. return dd->send_egress_err_status_cnt[4];
  3037. }
  3038. static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
  3039. const struct cntr_entry *entry,
  3040. void *context, int vl, int mode, u64 data)
  3041. {
  3042. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3043. return dd->send_egress_err_status_cnt[3];
  3044. }
  3045. static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
  3046. void *context, int vl, int mode,
  3047. u64 data)
  3048. {
  3049. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3050. return dd->send_egress_err_status_cnt[2];
  3051. }
  3052. static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
  3053. const struct cntr_entry *entry,
  3054. void *context, int vl, int mode, u64 data)
  3055. {
  3056. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3057. return dd->send_egress_err_status_cnt[1];
  3058. }
  3059. static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
  3060. const struct cntr_entry *entry,
  3061. void *context, int vl, int mode, u64 data)
  3062. {
  3063. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3064. return dd->send_egress_err_status_cnt[0];
  3065. }
  3066. /*
  3067. * Software counters corresponding to each of the
  3068. * error status bits within SendErrStatus
  3069. */
  3070. static u64 access_send_csr_write_bad_addr_err_cnt(
  3071. const struct cntr_entry *entry,
  3072. void *context, int vl, int mode, u64 data)
  3073. {
  3074. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3075. return dd->send_err_status_cnt[2];
  3076. }
  3077. static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
  3078. void *context, int vl,
  3079. int mode, u64 data)
  3080. {
  3081. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3082. return dd->send_err_status_cnt[1];
  3083. }
  3084. static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
  3085. void *context, int vl, int mode,
  3086. u64 data)
  3087. {
  3088. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3089. return dd->send_err_status_cnt[0];
  3090. }
  3091. /*
  3092. * Software counters corresponding to each of the
  3093. * error status bits within SendCtxtErrStatus
  3094. */
  3095. static u64 access_pio_write_out_of_bounds_err_cnt(
  3096. const struct cntr_entry *entry,
  3097. void *context, int vl, int mode, u64 data)
  3098. {
  3099. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3100. return dd->sw_ctxt_err_status_cnt[4];
  3101. }
  3102. static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
  3103. void *context, int vl, int mode,
  3104. u64 data)
  3105. {
  3106. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3107. return dd->sw_ctxt_err_status_cnt[3];
  3108. }
  3109. static u64 access_pio_write_crosses_boundary_err_cnt(
  3110. const struct cntr_entry *entry,
  3111. void *context, int vl, int mode, u64 data)
  3112. {
  3113. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3114. return dd->sw_ctxt_err_status_cnt[2];
  3115. }
  3116. static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
  3117. void *context, int vl,
  3118. int mode, u64 data)
  3119. {
  3120. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3121. return dd->sw_ctxt_err_status_cnt[1];
  3122. }
  3123. static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
  3124. void *context, int vl, int mode,
  3125. u64 data)
  3126. {
  3127. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3128. return dd->sw_ctxt_err_status_cnt[0];
  3129. }
  3130. /*
  3131. * Software counters corresponding to each of the
  3132. * error status bits within SendDmaEngErrStatus
  3133. */
  3134. static u64 access_sdma_header_request_fifo_cor_err_cnt(
  3135. const struct cntr_entry *entry,
  3136. void *context, int vl, int mode, u64 data)
  3137. {
  3138. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3139. return dd->sw_send_dma_eng_err_status_cnt[23];
  3140. }
  3141. static u64 access_sdma_header_storage_cor_err_cnt(
  3142. const struct cntr_entry *entry,
  3143. void *context, int vl, int mode, u64 data)
  3144. {
  3145. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3146. return dd->sw_send_dma_eng_err_status_cnt[22];
  3147. }
  3148. static u64 access_sdma_packet_tracking_cor_err_cnt(
  3149. const struct cntr_entry *entry,
  3150. void *context, int vl, int mode, u64 data)
  3151. {
  3152. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3153. return dd->sw_send_dma_eng_err_status_cnt[21];
  3154. }
  3155. static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
  3156. void *context, int vl, int mode,
  3157. u64 data)
  3158. {
  3159. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3160. return dd->sw_send_dma_eng_err_status_cnt[20];
  3161. }
  3162. static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
  3163. void *context, int vl, int mode,
  3164. u64 data)
  3165. {
  3166. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3167. return dd->sw_send_dma_eng_err_status_cnt[19];
  3168. }
  3169. static u64 access_sdma_header_request_fifo_unc_err_cnt(
  3170. const struct cntr_entry *entry,
  3171. void *context, int vl, int mode, u64 data)
  3172. {
  3173. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3174. return dd->sw_send_dma_eng_err_status_cnt[18];
  3175. }
  3176. static u64 access_sdma_header_storage_unc_err_cnt(
  3177. const struct cntr_entry *entry,
  3178. void *context, int vl, int mode, u64 data)
  3179. {
  3180. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3181. return dd->sw_send_dma_eng_err_status_cnt[17];
  3182. }
  3183. static u64 access_sdma_packet_tracking_unc_err_cnt(
  3184. const struct cntr_entry *entry,
  3185. void *context, int vl, int mode, u64 data)
  3186. {
  3187. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3188. return dd->sw_send_dma_eng_err_status_cnt[16];
  3189. }
  3190. static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
  3191. void *context, int vl, int mode,
  3192. u64 data)
  3193. {
  3194. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3195. return dd->sw_send_dma_eng_err_status_cnt[15];
  3196. }
  3197. static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
  3198. void *context, int vl, int mode,
  3199. u64 data)
  3200. {
  3201. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3202. return dd->sw_send_dma_eng_err_status_cnt[14];
  3203. }
  3204. static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
  3205. void *context, int vl, int mode,
  3206. u64 data)
  3207. {
  3208. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3209. return dd->sw_send_dma_eng_err_status_cnt[13];
  3210. }
  3211. static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
  3212. void *context, int vl, int mode,
  3213. u64 data)
  3214. {
  3215. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3216. return dd->sw_send_dma_eng_err_status_cnt[12];
  3217. }
  3218. static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
  3219. void *context, int vl, int mode,
  3220. u64 data)
  3221. {
  3222. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3223. return dd->sw_send_dma_eng_err_status_cnt[11];
  3224. }
  3225. static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
  3226. void *context, int vl, int mode,
  3227. u64 data)
  3228. {
  3229. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3230. return dd->sw_send_dma_eng_err_status_cnt[10];
  3231. }
  3232. static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
  3233. void *context, int vl, int mode,
  3234. u64 data)
  3235. {
  3236. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3237. return dd->sw_send_dma_eng_err_status_cnt[9];
  3238. }
  3239. static u64 access_sdma_packet_desc_overflow_err_cnt(
  3240. const struct cntr_entry *entry,
  3241. void *context, int vl, int mode, u64 data)
  3242. {
  3243. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3244. return dd->sw_send_dma_eng_err_status_cnt[8];
  3245. }
  3246. static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
  3247. void *context, int vl,
  3248. int mode, u64 data)
  3249. {
  3250. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3251. return dd->sw_send_dma_eng_err_status_cnt[7];
  3252. }
  3253. static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
  3254. void *context, int vl, int mode, u64 data)
  3255. {
  3256. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3257. return dd->sw_send_dma_eng_err_status_cnt[6];
  3258. }
  3259. static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
  3260. void *context, int vl, int mode,
  3261. u64 data)
  3262. {
  3263. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3264. return dd->sw_send_dma_eng_err_status_cnt[5];
  3265. }
  3266. static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
  3267. void *context, int vl, int mode,
  3268. u64 data)
  3269. {
  3270. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3271. return dd->sw_send_dma_eng_err_status_cnt[4];
  3272. }
  3273. static u64 access_sdma_tail_out_of_bounds_err_cnt(
  3274. const struct cntr_entry *entry,
  3275. void *context, int vl, int mode, u64 data)
  3276. {
  3277. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3278. return dd->sw_send_dma_eng_err_status_cnt[3];
  3279. }
  3280. static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
  3281. void *context, int vl, int mode,
  3282. u64 data)
  3283. {
  3284. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3285. return dd->sw_send_dma_eng_err_status_cnt[2];
  3286. }
  3287. static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
  3288. void *context, int vl, int mode,
  3289. u64 data)
  3290. {
  3291. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3292. return dd->sw_send_dma_eng_err_status_cnt[1];
  3293. }
  3294. static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
  3295. void *context, int vl, int mode,
  3296. u64 data)
  3297. {
  3298. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3299. return dd->sw_send_dma_eng_err_status_cnt[0];
  3300. }
  3301. static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
  3302. void *context, int vl, int mode,
  3303. u64 data)
  3304. {
  3305. struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
  3306. u64 val = 0;
  3307. u64 csr = entry->csr;
  3308. val = read_write_csr(dd, csr, mode, data);
  3309. if (mode == CNTR_MODE_R) {
  3310. val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
  3311. CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
  3312. } else if (mode == CNTR_MODE_W) {
  3313. dd->sw_rcv_bypass_packet_errors = 0;
  3314. } else {
  3315. dd_dev_err(dd, "Invalid cntr register access mode");
  3316. return 0;
  3317. }
  3318. return val;
  3319. }
  3320. #define def_access_sw_cpu(cntr) \
  3321. static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
  3322. void *context, int vl, int mode, u64 data) \
  3323. { \
  3324. struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
  3325. return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
  3326. ppd->ibport_data.rvp.cntr, vl, \
  3327. mode, data); \
  3328. }
  3329. def_access_sw_cpu(rc_acks);
  3330. def_access_sw_cpu(rc_qacks);
  3331. def_access_sw_cpu(rc_delayed_comp);
  3332. #define def_access_ibp_counter(cntr) \
  3333. static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
  3334. void *context, int vl, int mode, u64 data) \
  3335. { \
  3336. struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
  3337. \
  3338. if (vl != CNTR_INVALID_VL) \
  3339. return 0; \
  3340. \
  3341. return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
  3342. mode, data); \
  3343. }
  3344. def_access_ibp_counter(loop_pkts);
  3345. def_access_ibp_counter(rc_resends);
  3346. def_access_ibp_counter(rnr_naks);
  3347. def_access_ibp_counter(other_naks);
  3348. def_access_ibp_counter(rc_timeouts);
  3349. def_access_ibp_counter(pkt_drops);
  3350. def_access_ibp_counter(dmawait);
  3351. def_access_ibp_counter(rc_seqnak);
  3352. def_access_ibp_counter(rc_dupreq);
  3353. def_access_ibp_counter(rdma_seq);
  3354. def_access_ibp_counter(unaligned);
  3355. def_access_ibp_counter(seq_naks);
  3356. static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
  3357. [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
  3358. [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
  3359. CNTR_NORMAL),
  3360. [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
  3361. CNTR_NORMAL),
  3362. [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
  3363. RCV_TID_FLOW_GEN_MISMATCH_CNT,
  3364. CNTR_NORMAL),
  3365. [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
  3366. CNTR_NORMAL),
  3367. [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
  3368. RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
  3369. [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
  3370. CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
  3371. [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
  3372. CNTR_NORMAL),
  3373. [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
  3374. CNTR_NORMAL),
  3375. [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
  3376. CNTR_NORMAL),
  3377. [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
  3378. CNTR_NORMAL),
  3379. [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
  3380. CNTR_NORMAL),
  3381. [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
  3382. CNTR_NORMAL),
  3383. [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
  3384. CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
  3385. [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
  3386. CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
  3387. [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
  3388. CNTR_SYNTH),
  3389. [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
  3390. access_dc_rcv_err_cnt),
  3391. [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
  3392. CNTR_SYNTH),
  3393. [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
  3394. CNTR_SYNTH),
  3395. [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
  3396. CNTR_SYNTH),
  3397. [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
  3398. DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
  3399. [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
  3400. DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
  3401. CNTR_SYNTH),
  3402. [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
  3403. DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
  3404. [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
  3405. CNTR_SYNTH),
  3406. [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
  3407. CNTR_SYNTH),
  3408. [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
  3409. CNTR_SYNTH),
  3410. [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
  3411. CNTR_SYNTH),
  3412. [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
  3413. CNTR_SYNTH),
  3414. [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
  3415. CNTR_SYNTH),
  3416. [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
  3417. CNTR_SYNTH),
  3418. [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
  3419. CNTR_SYNTH | CNTR_VL),
  3420. [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
  3421. CNTR_SYNTH | CNTR_VL),
  3422. [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
  3423. [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
  3424. CNTR_SYNTH | CNTR_VL),
  3425. [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
  3426. [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
  3427. CNTR_SYNTH | CNTR_VL),
  3428. [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
  3429. CNTR_SYNTH),
  3430. [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
  3431. CNTR_SYNTH | CNTR_VL),
  3432. [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
  3433. CNTR_SYNTH),
  3434. [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
  3435. CNTR_SYNTH | CNTR_VL),
  3436. [C_DC_TOTAL_CRC] =
  3437. DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
  3438. CNTR_SYNTH),
  3439. [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
  3440. CNTR_SYNTH),
  3441. [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
  3442. CNTR_SYNTH),
  3443. [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
  3444. CNTR_SYNTH),
  3445. [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
  3446. CNTR_SYNTH),
  3447. [C_DC_CRC_MULT_LN] =
  3448. DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
  3449. CNTR_SYNTH),
  3450. [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
  3451. CNTR_SYNTH),
  3452. [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
  3453. CNTR_SYNTH),
  3454. [C_DC_SEQ_CRC_CNT] =
  3455. DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
  3456. CNTR_SYNTH),
  3457. [C_DC_ESC0_ONLY_CNT] =
  3458. DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
  3459. CNTR_SYNTH),
  3460. [C_DC_ESC0_PLUS1_CNT] =
  3461. DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
  3462. CNTR_SYNTH),
  3463. [C_DC_ESC0_PLUS2_CNT] =
  3464. DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
  3465. CNTR_SYNTH),
  3466. [C_DC_REINIT_FROM_PEER_CNT] =
  3467. DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
  3468. CNTR_SYNTH),
  3469. [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
  3470. CNTR_SYNTH),
  3471. [C_DC_MISC_FLG_CNT] =
  3472. DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
  3473. CNTR_SYNTH),
  3474. [C_DC_PRF_GOOD_LTP_CNT] =
  3475. DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
  3476. [C_DC_PRF_ACCEPTED_LTP_CNT] =
  3477. DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
  3478. CNTR_SYNTH),
  3479. [C_DC_PRF_RX_FLIT_CNT] =
  3480. DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
  3481. [C_DC_PRF_TX_FLIT_CNT] =
  3482. DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
  3483. [C_DC_PRF_CLK_CNTR] =
  3484. DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
  3485. [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
  3486. DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
  3487. [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
  3488. DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
  3489. CNTR_SYNTH),
  3490. [C_DC_PG_STS_TX_SBE_CNT] =
  3491. DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
  3492. [C_DC_PG_STS_TX_MBE_CNT] =
  3493. DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
  3494. CNTR_SYNTH),
  3495. [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
  3496. access_sw_cpu_intr),
  3497. [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
  3498. access_sw_cpu_rcv_limit),
  3499. [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
  3500. access_sw_vtx_wait),
  3501. [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
  3502. access_sw_pio_wait),
  3503. [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
  3504. access_sw_pio_drain),
  3505. [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
  3506. access_sw_kmem_wait),
  3507. [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
  3508. access_sw_send_schedule),
  3509. [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
  3510. SEND_DMA_DESC_FETCHED_CNT, 0,
  3511. CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
  3512. dev_access_u32_csr),
  3513. [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
  3514. CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
  3515. access_sde_int_cnt),
  3516. [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
  3517. CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
  3518. access_sde_err_cnt),
  3519. [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
  3520. CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
  3521. access_sde_idle_int_cnt),
  3522. [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
  3523. CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
  3524. access_sde_progress_int_cnt),
  3525. /* MISC_ERR_STATUS */
  3526. [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
  3527. CNTR_NORMAL,
  3528. access_misc_pll_lock_fail_err_cnt),
  3529. [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
  3530. CNTR_NORMAL,
  3531. access_misc_mbist_fail_err_cnt),
  3532. [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
  3533. CNTR_NORMAL,
  3534. access_misc_invalid_eep_cmd_err_cnt),
  3535. [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
  3536. CNTR_NORMAL,
  3537. access_misc_efuse_done_parity_err_cnt),
  3538. [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
  3539. CNTR_NORMAL,
  3540. access_misc_efuse_write_err_cnt),
  3541. [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
  3542. 0, CNTR_NORMAL,
  3543. access_misc_efuse_read_bad_addr_err_cnt),
  3544. [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
  3545. CNTR_NORMAL,
  3546. access_misc_efuse_csr_parity_err_cnt),
  3547. [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
  3548. CNTR_NORMAL,
  3549. access_misc_fw_auth_failed_err_cnt),
  3550. [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
  3551. CNTR_NORMAL,
  3552. access_misc_key_mismatch_err_cnt),
  3553. [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
  3554. CNTR_NORMAL,
  3555. access_misc_sbus_write_failed_err_cnt),
  3556. [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
  3557. CNTR_NORMAL,
  3558. access_misc_csr_write_bad_addr_err_cnt),
  3559. [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
  3560. CNTR_NORMAL,
  3561. access_misc_csr_read_bad_addr_err_cnt),
  3562. [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
  3563. CNTR_NORMAL,
  3564. access_misc_csr_parity_err_cnt),
  3565. /* CceErrStatus */
  3566. [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
  3567. CNTR_NORMAL,
  3568. access_sw_cce_err_status_aggregated_cnt),
  3569. [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
  3570. CNTR_NORMAL,
  3571. access_cce_msix_csr_parity_err_cnt),
  3572. [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
  3573. CNTR_NORMAL,
  3574. access_cce_int_map_unc_err_cnt),
  3575. [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
  3576. CNTR_NORMAL,
  3577. access_cce_int_map_cor_err_cnt),
  3578. [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
  3579. CNTR_NORMAL,
  3580. access_cce_msix_table_unc_err_cnt),
  3581. [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
  3582. CNTR_NORMAL,
  3583. access_cce_msix_table_cor_err_cnt),
  3584. [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
  3585. 0, CNTR_NORMAL,
  3586. access_cce_rxdma_conv_fifo_parity_err_cnt),
  3587. [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
  3588. 0, CNTR_NORMAL,
  3589. access_cce_rcpl_async_fifo_parity_err_cnt),
  3590. [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
  3591. CNTR_NORMAL,
  3592. access_cce_seg_write_bad_addr_err_cnt),
  3593. [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
  3594. CNTR_NORMAL,
  3595. access_cce_seg_read_bad_addr_err_cnt),
  3596. [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
  3597. CNTR_NORMAL,
  3598. access_la_triggered_cnt),
  3599. [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
  3600. CNTR_NORMAL,
  3601. access_cce_trgt_cpl_timeout_err_cnt),
  3602. [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
  3603. CNTR_NORMAL,
  3604. access_pcic_receive_parity_err_cnt),
  3605. [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
  3606. CNTR_NORMAL,
  3607. access_pcic_transmit_back_parity_err_cnt),
  3608. [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
  3609. 0, CNTR_NORMAL,
  3610. access_pcic_transmit_front_parity_err_cnt),
  3611. [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
  3612. CNTR_NORMAL,
  3613. access_pcic_cpl_dat_q_unc_err_cnt),
  3614. [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
  3615. CNTR_NORMAL,
  3616. access_pcic_cpl_hd_q_unc_err_cnt),
  3617. [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
  3618. CNTR_NORMAL,
  3619. access_pcic_post_dat_q_unc_err_cnt),
  3620. [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
  3621. CNTR_NORMAL,
  3622. access_pcic_post_hd_q_unc_err_cnt),
  3623. [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
  3624. CNTR_NORMAL,
  3625. access_pcic_retry_sot_mem_unc_err_cnt),
  3626. [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
  3627. CNTR_NORMAL,
  3628. access_pcic_retry_mem_unc_err),
  3629. [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
  3630. CNTR_NORMAL,
  3631. access_pcic_n_post_dat_q_parity_err_cnt),
  3632. [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
  3633. CNTR_NORMAL,
  3634. access_pcic_n_post_h_q_parity_err_cnt),
  3635. [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
  3636. CNTR_NORMAL,
  3637. access_pcic_cpl_dat_q_cor_err_cnt),
  3638. [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
  3639. CNTR_NORMAL,
  3640. access_pcic_cpl_hd_q_cor_err_cnt),
  3641. [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
  3642. CNTR_NORMAL,
  3643. access_pcic_post_dat_q_cor_err_cnt),
  3644. [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
  3645. CNTR_NORMAL,
  3646. access_pcic_post_hd_q_cor_err_cnt),
  3647. [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
  3648. CNTR_NORMAL,
  3649. access_pcic_retry_sot_mem_cor_err_cnt),
  3650. [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
  3651. CNTR_NORMAL,
  3652. access_pcic_retry_mem_cor_err_cnt),
  3653. [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
  3654. "CceCli1AsyncFifoDbgParityError", 0, 0,
  3655. CNTR_NORMAL,
  3656. access_cce_cli1_async_fifo_dbg_parity_err_cnt),
  3657. [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
  3658. "CceCli1AsyncFifoRxdmaParityError", 0, 0,
  3659. CNTR_NORMAL,
  3660. access_cce_cli1_async_fifo_rxdma_parity_err_cnt
  3661. ),
  3662. [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
  3663. "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
  3664. CNTR_NORMAL,
  3665. access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
  3666. [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
  3667. "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
  3668. CNTR_NORMAL,
  3669. access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
  3670. [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
  3671. 0, CNTR_NORMAL,
  3672. access_cce_cli2_async_fifo_parity_err_cnt),
  3673. [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
  3674. CNTR_NORMAL,
  3675. access_cce_csr_cfg_bus_parity_err_cnt),
  3676. [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
  3677. 0, CNTR_NORMAL,
  3678. access_cce_cli0_async_fifo_parity_err_cnt),
  3679. [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
  3680. CNTR_NORMAL,
  3681. access_cce_rspd_data_parity_err_cnt),
  3682. [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
  3683. CNTR_NORMAL,
  3684. access_cce_trgt_access_err_cnt),
  3685. [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
  3686. 0, CNTR_NORMAL,
  3687. access_cce_trgt_async_fifo_parity_err_cnt),
  3688. [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
  3689. CNTR_NORMAL,
  3690. access_cce_csr_write_bad_addr_err_cnt),
  3691. [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
  3692. CNTR_NORMAL,
  3693. access_cce_csr_read_bad_addr_err_cnt),
  3694. [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
  3695. CNTR_NORMAL,
  3696. access_ccs_csr_parity_err_cnt),
  3697. /* RcvErrStatus */
  3698. [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
  3699. CNTR_NORMAL,
  3700. access_rx_csr_parity_err_cnt),
  3701. [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
  3702. CNTR_NORMAL,
  3703. access_rx_csr_write_bad_addr_err_cnt),
  3704. [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
  3705. CNTR_NORMAL,
  3706. access_rx_csr_read_bad_addr_err_cnt),
  3707. [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
  3708. CNTR_NORMAL,
  3709. access_rx_dma_csr_unc_err_cnt),
  3710. [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
  3711. CNTR_NORMAL,
  3712. access_rx_dma_dq_fsm_encoding_err_cnt),
  3713. [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
  3714. CNTR_NORMAL,
  3715. access_rx_dma_eq_fsm_encoding_err_cnt),
  3716. [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
  3717. CNTR_NORMAL,
  3718. access_rx_dma_csr_parity_err_cnt),
  3719. [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
  3720. CNTR_NORMAL,
  3721. access_rx_rbuf_data_cor_err_cnt),
  3722. [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
  3723. CNTR_NORMAL,
  3724. access_rx_rbuf_data_unc_err_cnt),
  3725. [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
  3726. CNTR_NORMAL,
  3727. access_rx_dma_data_fifo_rd_cor_err_cnt),
  3728. [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
  3729. CNTR_NORMAL,
  3730. access_rx_dma_data_fifo_rd_unc_err_cnt),
  3731. [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
  3732. CNTR_NORMAL,
  3733. access_rx_dma_hdr_fifo_rd_cor_err_cnt),
  3734. [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
  3735. CNTR_NORMAL,
  3736. access_rx_dma_hdr_fifo_rd_unc_err_cnt),
  3737. [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
  3738. CNTR_NORMAL,
  3739. access_rx_rbuf_desc_part2_cor_err_cnt),
  3740. [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
  3741. CNTR_NORMAL,
  3742. access_rx_rbuf_desc_part2_unc_err_cnt),
  3743. [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
  3744. CNTR_NORMAL,
  3745. access_rx_rbuf_desc_part1_cor_err_cnt),
  3746. [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
  3747. CNTR_NORMAL,
  3748. access_rx_rbuf_desc_part1_unc_err_cnt),
  3749. [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
  3750. CNTR_NORMAL,
  3751. access_rx_hq_intr_fsm_err_cnt),
  3752. [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
  3753. CNTR_NORMAL,
  3754. access_rx_hq_intr_csr_parity_err_cnt),
  3755. [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
  3756. CNTR_NORMAL,
  3757. access_rx_lookup_csr_parity_err_cnt),
  3758. [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
  3759. CNTR_NORMAL,
  3760. access_rx_lookup_rcv_array_cor_err_cnt),
  3761. [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
  3762. CNTR_NORMAL,
  3763. access_rx_lookup_rcv_array_unc_err_cnt),
  3764. [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
  3765. 0, CNTR_NORMAL,
  3766. access_rx_lookup_des_part2_parity_err_cnt),
  3767. [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
  3768. 0, CNTR_NORMAL,
  3769. access_rx_lookup_des_part1_unc_cor_err_cnt),
  3770. [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
  3771. CNTR_NORMAL,
  3772. access_rx_lookup_des_part1_unc_err_cnt),
  3773. [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
  3774. CNTR_NORMAL,
  3775. access_rx_rbuf_next_free_buf_cor_err_cnt),
  3776. [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
  3777. CNTR_NORMAL,
  3778. access_rx_rbuf_next_free_buf_unc_err_cnt),
  3779. [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
  3780. "RxRbufFlInitWrAddrParityErr", 0, 0,
  3781. CNTR_NORMAL,
  3782. access_rbuf_fl_init_wr_addr_parity_err_cnt),
  3783. [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
  3784. 0, CNTR_NORMAL,
  3785. access_rx_rbuf_fl_initdone_parity_err_cnt),
  3786. [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
  3787. 0, CNTR_NORMAL,
  3788. access_rx_rbuf_fl_write_addr_parity_err_cnt),
  3789. [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
  3790. CNTR_NORMAL,
  3791. access_rx_rbuf_fl_rd_addr_parity_err_cnt),
  3792. [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
  3793. CNTR_NORMAL,
  3794. access_rx_rbuf_empty_err_cnt),
  3795. [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
  3796. CNTR_NORMAL,
  3797. access_rx_rbuf_full_err_cnt),
  3798. [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
  3799. CNTR_NORMAL,
  3800. access_rbuf_bad_lookup_err_cnt),
  3801. [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
  3802. CNTR_NORMAL,
  3803. access_rbuf_ctx_id_parity_err_cnt),
  3804. [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
  3805. CNTR_NORMAL,
  3806. access_rbuf_csr_qeopdw_parity_err_cnt),
  3807. [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
  3808. "RxRbufCsrQNumOfPktParityErr", 0, 0,
  3809. CNTR_NORMAL,
  3810. access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
  3811. [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
  3812. "RxRbufCsrQTlPtrParityErr", 0, 0,
  3813. CNTR_NORMAL,
  3814. access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
  3815. [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
  3816. 0, CNTR_NORMAL,
  3817. access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
  3818. [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
  3819. 0, CNTR_NORMAL,
  3820. access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
  3821. [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
  3822. 0, 0, CNTR_NORMAL,
  3823. access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
  3824. [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
  3825. 0, CNTR_NORMAL,
  3826. access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
  3827. [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
  3828. "RxRbufCsrQHeadBufNumParityErr", 0, 0,
  3829. CNTR_NORMAL,
  3830. access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
  3831. [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
  3832. 0, CNTR_NORMAL,
  3833. access_rx_rbuf_block_list_read_cor_err_cnt),
  3834. [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
  3835. 0, CNTR_NORMAL,
  3836. access_rx_rbuf_block_list_read_unc_err_cnt),
  3837. [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
  3838. CNTR_NORMAL,
  3839. access_rx_rbuf_lookup_des_cor_err_cnt),
  3840. [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
  3841. CNTR_NORMAL,
  3842. access_rx_rbuf_lookup_des_unc_err_cnt),
  3843. [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
  3844. "RxRbufLookupDesRegUncCorErr", 0, 0,
  3845. CNTR_NORMAL,
  3846. access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
  3847. [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
  3848. CNTR_NORMAL,
  3849. access_rx_rbuf_lookup_des_reg_unc_err_cnt),
  3850. [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
  3851. CNTR_NORMAL,
  3852. access_rx_rbuf_free_list_cor_err_cnt),
  3853. [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
  3854. CNTR_NORMAL,
  3855. access_rx_rbuf_free_list_unc_err_cnt),
  3856. [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
  3857. CNTR_NORMAL,
  3858. access_rx_rcv_fsm_encoding_err_cnt),
  3859. [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
  3860. CNTR_NORMAL,
  3861. access_rx_dma_flag_cor_err_cnt),
  3862. [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
  3863. CNTR_NORMAL,
  3864. access_rx_dma_flag_unc_err_cnt),
  3865. [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
  3866. CNTR_NORMAL,
  3867. access_rx_dc_sop_eop_parity_err_cnt),
  3868. [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
  3869. CNTR_NORMAL,
  3870. access_rx_rcv_csr_parity_err_cnt),
  3871. [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
  3872. CNTR_NORMAL,
  3873. access_rx_rcv_qp_map_table_cor_err_cnt),
  3874. [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
  3875. CNTR_NORMAL,
  3876. access_rx_rcv_qp_map_table_unc_err_cnt),
  3877. [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
  3878. CNTR_NORMAL,
  3879. access_rx_rcv_data_cor_err_cnt),
  3880. [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
  3881. CNTR_NORMAL,
  3882. access_rx_rcv_data_unc_err_cnt),
  3883. [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
  3884. CNTR_NORMAL,
  3885. access_rx_rcv_hdr_cor_err_cnt),
  3886. [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
  3887. CNTR_NORMAL,
  3888. access_rx_rcv_hdr_unc_err_cnt),
  3889. [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
  3890. CNTR_NORMAL,
  3891. access_rx_dc_intf_parity_err_cnt),
  3892. [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
  3893. CNTR_NORMAL,
  3894. access_rx_dma_csr_cor_err_cnt),
  3895. /* SendPioErrStatus */
  3896. [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
  3897. CNTR_NORMAL,
  3898. access_pio_pec_sop_head_parity_err_cnt),
  3899. [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
  3900. CNTR_NORMAL,
  3901. access_pio_pcc_sop_head_parity_err_cnt),
  3902. [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
  3903. 0, 0, CNTR_NORMAL,
  3904. access_pio_last_returned_cnt_parity_err_cnt),
  3905. [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
  3906. 0, CNTR_NORMAL,
  3907. access_pio_current_free_cnt_parity_err_cnt),
  3908. [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
  3909. CNTR_NORMAL,
  3910. access_pio_reserved_31_err_cnt),
  3911. [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
  3912. CNTR_NORMAL,
  3913. access_pio_reserved_30_err_cnt),
  3914. [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
  3915. CNTR_NORMAL,
  3916. access_pio_ppmc_sop_len_err_cnt),
  3917. [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
  3918. CNTR_NORMAL,
  3919. access_pio_ppmc_bqc_mem_parity_err_cnt),
  3920. [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
  3921. CNTR_NORMAL,
  3922. access_pio_vl_fifo_parity_err_cnt),
  3923. [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
  3924. CNTR_NORMAL,
  3925. access_pio_vlf_sop_parity_err_cnt),
  3926. [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
  3927. CNTR_NORMAL,
  3928. access_pio_vlf_v1_len_parity_err_cnt),
  3929. [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
  3930. CNTR_NORMAL,
  3931. access_pio_block_qw_count_parity_err_cnt),
  3932. [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
  3933. CNTR_NORMAL,
  3934. access_pio_write_qw_valid_parity_err_cnt),
  3935. [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
  3936. CNTR_NORMAL,
  3937. access_pio_state_machine_err_cnt),
  3938. [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
  3939. CNTR_NORMAL,
  3940. access_pio_write_data_parity_err_cnt),
  3941. [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
  3942. CNTR_NORMAL,
  3943. access_pio_host_addr_mem_cor_err_cnt),
  3944. [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
  3945. CNTR_NORMAL,
  3946. access_pio_host_addr_mem_unc_err_cnt),
  3947. [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
  3948. CNTR_NORMAL,
  3949. access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
  3950. [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
  3951. CNTR_NORMAL,
  3952. access_pio_init_sm_in_err_cnt),
  3953. [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
  3954. CNTR_NORMAL,
  3955. access_pio_ppmc_pbl_fifo_err_cnt),
  3956. [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
  3957. 0, CNTR_NORMAL,
  3958. access_pio_credit_ret_fifo_parity_err_cnt),
  3959. [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
  3960. CNTR_NORMAL,
  3961. access_pio_v1_len_mem_bank1_cor_err_cnt),
  3962. [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
  3963. CNTR_NORMAL,
  3964. access_pio_v1_len_mem_bank0_cor_err_cnt),
  3965. [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
  3966. CNTR_NORMAL,
  3967. access_pio_v1_len_mem_bank1_unc_err_cnt),
  3968. [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
  3969. CNTR_NORMAL,
  3970. access_pio_v1_len_mem_bank0_unc_err_cnt),
  3971. [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
  3972. CNTR_NORMAL,
  3973. access_pio_sm_pkt_reset_parity_err_cnt),
  3974. [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
  3975. CNTR_NORMAL,
  3976. access_pio_pkt_evict_fifo_parity_err_cnt),
  3977. [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
  3978. "PioSbrdctrlCrrelFifoParityErr", 0, 0,
  3979. CNTR_NORMAL,
  3980. access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
  3981. [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
  3982. CNTR_NORMAL,
  3983. access_pio_sbrdctl_crrel_parity_err_cnt),
  3984. [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
  3985. CNTR_NORMAL,
  3986. access_pio_pec_fifo_parity_err_cnt),
  3987. [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
  3988. CNTR_NORMAL,
  3989. access_pio_pcc_fifo_parity_err_cnt),
  3990. [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
  3991. CNTR_NORMAL,
  3992. access_pio_sb_mem_fifo1_err_cnt),
  3993. [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
  3994. CNTR_NORMAL,
  3995. access_pio_sb_mem_fifo0_err_cnt),
  3996. [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
  3997. CNTR_NORMAL,
  3998. access_pio_csr_parity_err_cnt),
  3999. [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
  4000. CNTR_NORMAL,
  4001. access_pio_write_addr_parity_err_cnt),
  4002. [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
  4003. CNTR_NORMAL,
  4004. access_pio_write_bad_ctxt_err_cnt),
  4005. /* SendDmaErrStatus */
  4006. [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
  4007. 0, CNTR_NORMAL,
  4008. access_sdma_pcie_req_tracking_cor_err_cnt),
  4009. [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
  4010. 0, CNTR_NORMAL,
  4011. access_sdma_pcie_req_tracking_unc_err_cnt),
  4012. [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
  4013. CNTR_NORMAL,
  4014. access_sdma_csr_parity_err_cnt),
  4015. [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
  4016. CNTR_NORMAL,
  4017. access_sdma_rpy_tag_err_cnt),
  4018. /* SendEgressErrStatus */
  4019. [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
  4020. CNTR_NORMAL,
  4021. access_tx_read_pio_memory_csr_unc_err_cnt),
  4022. [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
  4023. 0, CNTR_NORMAL,
  4024. access_tx_read_sdma_memory_csr_err_cnt),
  4025. [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
  4026. CNTR_NORMAL,
  4027. access_tx_egress_fifo_cor_err_cnt),
  4028. [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
  4029. CNTR_NORMAL,
  4030. access_tx_read_pio_memory_cor_err_cnt),
  4031. [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
  4032. CNTR_NORMAL,
  4033. access_tx_read_sdma_memory_cor_err_cnt),
  4034. [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
  4035. CNTR_NORMAL,
  4036. access_tx_sb_hdr_cor_err_cnt),
  4037. [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
  4038. CNTR_NORMAL,
  4039. access_tx_credit_overrun_err_cnt),
  4040. [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
  4041. CNTR_NORMAL,
  4042. access_tx_launch_fifo8_cor_err_cnt),
  4043. [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
  4044. CNTR_NORMAL,
  4045. access_tx_launch_fifo7_cor_err_cnt),
  4046. [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
  4047. CNTR_NORMAL,
  4048. access_tx_launch_fifo6_cor_err_cnt),
  4049. [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
  4050. CNTR_NORMAL,
  4051. access_tx_launch_fifo5_cor_err_cnt),
  4052. [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
  4053. CNTR_NORMAL,
  4054. access_tx_launch_fifo4_cor_err_cnt),
  4055. [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
  4056. CNTR_NORMAL,
  4057. access_tx_launch_fifo3_cor_err_cnt),
  4058. [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
  4059. CNTR_NORMAL,
  4060. access_tx_launch_fifo2_cor_err_cnt),
  4061. [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
  4062. CNTR_NORMAL,
  4063. access_tx_launch_fifo1_cor_err_cnt),
  4064. [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
  4065. CNTR_NORMAL,
  4066. access_tx_launch_fifo0_cor_err_cnt),
  4067. [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
  4068. CNTR_NORMAL,
  4069. access_tx_credit_return_vl_err_cnt),
  4070. [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
  4071. CNTR_NORMAL,
  4072. access_tx_hcrc_insertion_err_cnt),
  4073. [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
  4074. CNTR_NORMAL,
  4075. access_tx_egress_fifo_unc_err_cnt),
  4076. [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
  4077. CNTR_NORMAL,
  4078. access_tx_read_pio_memory_unc_err_cnt),
  4079. [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
  4080. CNTR_NORMAL,
  4081. access_tx_read_sdma_memory_unc_err_cnt),
  4082. [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
  4083. CNTR_NORMAL,
  4084. access_tx_sb_hdr_unc_err_cnt),
  4085. [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
  4086. CNTR_NORMAL,
  4087. access_tx_credit_return_partiy_err_cnt),
  4088. [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
  4089. 0, 0, CNTR_NORMAL,
  4090. access_tx_launch_fifo8_unc_or_parity_err_cnt),
  4091. [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
  4092. 0, 0, CNTR_NORMAL,
  4093. access_tx_launch_fifo7_unc_or_parity_err_cnt),
  4094. [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
  4095. 0, 0, CNTR_NORMAL,
  4096. access_tx_launch_fifo6_unc_or_parity_err_cnt),
  4097. [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
  4098. 0, 0, CNTR_NORMAL,
  4099. access_tx_launch_fifo5_unc_or_parity_err_cnt),
  4100. [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
  4101. 0, 0, CNTR_NORMAL,
  4102. access_tx_launch_fifo4_unc_or_parity_err_cnt),
  4103. [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
  4104. 0, 0, CNTR_NORMAL,
  4105. access_tx_launch_fifo3_unc_or_parity_err_cnt),
  4106. [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
  4107. 0, 0, CNTR_NORMAL,
  4108. access_tx_launch_fifo2_unc_or_parity_err_cnt),
  4109. [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
  4110. 0, 0, CNTR_NORMAL,
  4111. access_tx_launch_fifo1_unc_or_parity_err_cnt),
  4112. [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
  4113. 0, 0, CNTR_NORMAL,
  4114. access_tx_launch_fifo0_unc_or_parity_err_cnt),
  4115. [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
  4116. 0, 0, CNTR_NORMAL,
  4117. access_tx_sdma15_disallowed_packet_err_cnt),
  4118. [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
  4119. 0, 0, CNTR_NORMAL,
  4120. access_tx_sdma14_disallowed_packet_err_cnt),
  4121. [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
  4122. 0, 0, CNTR_NORMAL,
  4123. access_tx_sdma13_disallowed_packet_err_cnt),
  4124. [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
  4125. 0, 0, CNTR_NORMAL,
  4126. access_tx_sdma12_disallowed_packet_err_cnt),
  4127. [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
  4128. 0, 0, CNTR_NORMAL,
  4129. access_tx_sdma11_disallowed_packet_err_cnt),
  4130. [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
  4131. 0, 0, CNTR_NORMAL,
  4132. access_tx_sdma10_disallowed_packet_err_cnt),
  4133. [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
  4134. 0, 0, CNTR_NORMAL,
  4135. access_tx_sdma9_disallowed_packet_err_cnt),
  4136. [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
  4137. 0, 0, CNTR_NORMAL,
  4138. access_tx_sdma8_disallowed_packet_err_cnt),
  4139. [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
  4140. 0, 0, CNTR_NORMAL,
  4141. access_tx_sdma7_disallowed_packet_err_cnt),
  4142. [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
  4143. 0, 0, CNTR_NORMAL,
  4144. access_tx_sdma6_disallowed_packet_err_cnt),
  4145. [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
  4146. 0, 0, CNTR_NORMAL,
  4147. access_tx_sdma5_disallowed_packet_err_cnt),
  4148. [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
  4149. 0, 0, CNTR_NORMAL,
  4150. access_tx_sdma4_disallowed_packet_err_cnt),
  4151. [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
  4152. 0, 0, CNTR_NORMAL,
  4153. access_tx_sdma3_disallowed_packet_err_cnt),
  4154. [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
  4155. 0, 0, CNTR_NORMAL,
  4156. access_tx_sdma2_disallowed_packet_err_cnt),
  4157. [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
  4158. 0, 0, CNTR_NORMAL,
  4159. access_tx_sdma1_disallowed_packet_err_cnt),
  4160. [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
  4161. 0, 0, CNTR_NORMAL,
  4162. access_tx_sdma0_disallowed_packet_err_cnt),
  4163. [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
  4164. CNTR_NORMAL,
  4165. access_tx_config_parity_err_cnt),
  4166. [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
  4167. CNTR_NORMAL,
  4168. access_tx_sbrd_ctl_csr_parity_err_cnt),
  4169. [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
  4170. CNTR_NORMAL,
  4171. access_tx_launch_csr_parity_err_cnt),
  4172. [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
  4173. CNTR_NORMAL,
  4174. access_tx_illegal_vl_err_cnt),
  4175. [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
  4176. "TxSbrdCtlStateMachineParityErr", 0, 0,
  4177. CNTR_NORMAL,
  4178. access_tx_sbrd_ctl_state_machine_parity_err_cnt),
  4179. [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
  4180. CNTR_NORMAL,
  4181. access_egress_reserved_10_err_cnt),
  4182. [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
  4183. CNTR_NORMAL,
  4184. access_egress_reserved_9_err_cnt),
  4185. [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
  4186. 0, 0, CNTR_NORMAL,
  4187. access_tx_sdma_launch_intf_parity_err_cnt),
  4188. [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
  4189. CNTR_NORMAL,
  4190. access_tx_pio_launch_intf_parity_err_cnt),
  4191. [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
  4192. CNTR_NORMAL,
  4193. access_egress_reserved_6_err_cnt),
  4194. [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
  4195. CNTR_NORMAL,
  4196. access_tx_incorrect_link_state_err_cnt),
  4197. [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
  4198. CNTR_NORMAL,
  4199. access_tx_linkdown_err_cnt),
  4200. [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
  4201. "EgressFifoUnderrunOrParityErr", 0, 0,
  4202. CNTR_NORMAL,
  4203. access_tx_egress_fifi_underrun_or_parity_err_cnt),
  4204. [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
  4205. CNTR_NORMAL,
  4206. access_egress_reserved_2_err_cnt),
  4207. [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
  4208. CNTR_NORMAL,
  4209. access_tx_pkt_integrity_mem_unc_err_cnt),
  4210. [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
  4211. CNTR_NORMAL,
  4212. access_tx_pkt_integrity_mem_cor_err_cnt),
  4213. /* SendErrStatus */
  4214. [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
  4215. CNTR_NORMAL,
  4216. access_send_csr_write_bad_addr_err_cnt),
  4217. [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
  4218. CNTR_NORMAL,
  4219. access_send_csr_read_bad_addr_err_cnt),
  4220. [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
  4221. CNTR_NORMAL,
  4222. access_send_csr_parity_cnt),
  4223. /* SendCtxtErrStatus */
  4224. [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
  4225. CNTR_NORMAL,
  4226. access_pio_write_out_of_bounds_err_cnt),
  4227. [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
  4228. CNTR_NORMAL,
  4229. access_pio_write_overflow_err_cnt),
  4230. [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
  4231. 0, 0, CNTR_NORMAL,
  4232. access_pio_write_crosses_boundary_err_cnt),
  4233. [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
  4234. CNTR_NORMAL,
  4235. access_pio_disallowed_packet_err_cnt),
  4236. [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
  4237. CNTR_NORMAL,
  4238. access_pio_inconsistent_sop_err_cnt),
  4239. /* SendDmaEngErrStatus */
  4240. [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
  4241. 0, 0, CNTR_NORMAL,
  4242. access_sdma_header_request_fifo_cor_err_cnt),
  4243. [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
  4244. CNTR_NORMAL,
  4245. access_sdma_header_storage_cor_err_cnt),
  4246. [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
  4247. CNTR_NORMAL,
  4248. access_sdma_packet_tracking_cor_err_cnt),
  4249. [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
  4250. CNTR_NORMAL,
  4251. access_sdma_assembly_cor_err_cnt),
  4252. [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
  4253. CNTR_NORMAL,
  4254. access_sdma_desc_table_cor_err_cnt),
  4255. [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
  4256. 0, 0, CNTR_NORMAL,
  4257. access_sdma_header_request_fifo_unc_err_cnt),
  4258. [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
  4259. CNTR_NORMAL,
  4260. access_sdma_header_storage_unc_err_cnt),
  4261. [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
  4262. CNTR_NORMAL,
  4263. access_sdma_packet_tracking_unc_err_cnt),
  4264. [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
  4265. CNTR_NORMAL,
  4266. access_sdma_assembly_unc_err_cnt),
  4267. [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
  4268. CNTR_NORMAL,
  4269. access_sdma_desc_table_unc_err_cnt),
  4270. [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
  4271. CNTR_NORMAL,
  4272. access_sdma_timeout_err_cnt),
  4273. [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
  4274. CNTR_NORMAL,
  4275. access_sdma_header_length_err_cnt),
  4276. [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
  4277. CNTR_NORMAL,
  4278. access_sdma_header_address_err_cnt),
  4279. [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
  4280. CNTR_NORMAL,
  4281. access_sdma_header_select_err_cnt),
  4282. [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
  4283. CNTR_NORMAL,
  4284. access_sdma_reserved_9_err_cnt),
  4285. [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
  4286. CNTR_NORMAL,
  4287. access_sdma_packet_desc_overflow_err_cnt),
  4288. [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
  4289. CNTR_NORMAL,
  4290. access_sdma_length_mismatch_err_cnt),
  4291. [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
  4292. CNTR_NORMAL,
  4293. access_sdma_halt_err_cnt),
  4294. [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
  4295. CNTR_NORMAL,
  4296. access_sdma_mem_read_err_cnt),
  4297. [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
  4298. CNTR_NORMAL,
  4299. access_sdma_first_desc_err_cnt),
  4300. [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
  4301. CNTR_NORMAL,
  4302. access_sdma_tail_out_of_bounds_err_cnt),
  4303. [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
  4304. CNTR_NORMAL,
  4305. access_sdma_too_long_err_cnt),
  4306. [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
  4307. CNTR_NORMAL,
  4308. access_sdma_gen_mismatch_err_cnt),
  4309. [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
  4310. CNTR_NORMAL,
  4311. access_sdma_wrong_dw_err_cnt),
  4312. };
  4313. static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
  4314. [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
  4315. CNTR_NORMAL),
  4316. [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
  4317. CNTR_NORMAL),
  4318. [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
  4319. CNTR_NORMAL),
  4320. [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
  4321. CNTR_NORMAL),
  4322. [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
  4323. CNTR_NORMAL),
  4324. [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
  4325. CNTR_NORMAL),
  4326. [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
  4327. CNTR_NORMAL),
  4328. [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
  4329. [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
  4330. [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
  4331. [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
  4332. CNTR_SYNTH | CNTR_VL),
  4333. [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
  4334. CNTR_SYNTH | CNTR_VL),
  4335. [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
  4336. CNTR_SYNTH | CNTR_VL),
  4337. [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
  4338. [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
  4339. [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
  4340. access_sw_link_dn_cnt),
  4341. [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
  4342. access_sw_link_up_cnt),
  4343. [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
  4344. access_sw_unknown_frame_cnt),
  4345. [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
  4346. access_sw_xmit_discards),
  4347. [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
  4348. CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
  4349. access_sw_xmit_discards),
  4350. [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
  4351. access_xmit_constraint_errs),
  4352. [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
  4353. access_rcv_constraint_errs),
  4354. [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
  4355. [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
  4356. [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
  4357. [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
  4358. [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
  4359. [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
  4360. [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
  4361. [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
  4362. [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
  4363. [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
  4364. [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
  4365. [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
  4366. [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
  4367. access_sw_cpu_rc_acks),
  4368. [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
  4369. access_sw_cpu_rc_qacks),
  4370. [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
  4371. access_sw_cpu_rc_delayed_comp),
  4372. [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
  4373. [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
  4374. [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
  4375. [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
  4376. [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
  4377. [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
  4378. [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
  4379. [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
  4380. [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
  4381. [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
  4382. [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
  4383. [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
  4384. [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
  4385. [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
  4386. [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
  4387. [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
  4388. [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
  4389. [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
  4390. [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
  4391. [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
  4392. [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
  4393. [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
  4394. [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
  4395. [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
  4396. [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
  4397. [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
  4398. [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
  4399. [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
  4400. [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
  4401. [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
  4402. [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
  4403. [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
  4404. [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
  4405. [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
  4406. [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
  4407. [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
  4408. [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
  4409. [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
  4410. [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
  4411. [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
  4412. [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
  4413. [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
  4414. [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
  4415. [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
  4416. [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
  4417. [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
  4418. [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
  4419. [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
  4420. [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
  4421. [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
  4422. [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
  4423. [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
  4424. [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
  4425. [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
  4426. [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
  4427. [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
  4428. [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
  4429. [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
  4430. [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
  4431. [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
  4432. [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
  4433. [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
  4434. [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
  4435. [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
  4436. [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
  4437. [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
  4438. [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
  4439. [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
  4440. [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
  4441. [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
  4442. [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
  4443. [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
  4444. [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
  4445. [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
  4446. [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
  4447. [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
  4448. [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
  4449. [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
  4450. [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
  4451. [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
  4452. };
  4453. /* ======================================================================== */
  4454. /* return true if this is chip revision revision a */
  4455. int is_ax(struct hfi1_devdata *dd)
  4456. {
  4457. u8 chip_rev_minor =
  4458. dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
  4459. & CCE_REVISION_CHIP_REV_MINOR_MASK;
  4460. return (chip_rev_minor & 0xf0) == 0;
  4461. }
  4462. /* return true if this is chip revision revision b */
  4463. int is_bx(struct hfi1_devdata *dd)
  4464. {
  4465. u8 chip_rev_minor =
  4466. dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
  4467. & CCE_REVISION_CHIP_REV_MINOR_MASK;
  4468. return (chip_rev_minor & 0xF0) == 0x10;
  4469. }
  4470. /*
  4471. * Append string s to buffer buf. Arguments curp and len are the current
  4472. * position and remaining length, respectively.
  4473. *
  4474. * return 0 on success, 1 on out of room
  4475. */
  4476. static int append_str(char *buf, char **curp, int *lenp, const char *s)
  4477. {
  4478. char *p = *curp;
  4479. int len = *lenp;
  4480. int result = 0; /* success */
  4481. char c;
  4482. /* add a comma, if first in the buffer */
  4483. if (p != buf) {
  4484. if (len == 0) {
  4485. result = 1; /* out of room */
  4486. goto done;
  4487. }
  4488. *p++ = ',';
  4489. len--;
  4490. }
  4491. /* copy the string */
  4492. while ((c = *s++) != 0) {
  4493. if (len == 0) {
  4494. result = 1; /* out of room */
  4495. goto done;
  4496. }
  4497. *p++ = c;
  4498. len--;
  4499. }
  4500. done:
  4501. /* write return values */
  4502. *curp = p;
  4503. *lenp = len;
  4504. return result;
  4505. }
  4506. /*
  4507. * Using the given flag table, print a comma separated string into
  4508. * the buffer. End in '*' if the buffer is too short.
  4509. */
  4510. static char *flag_string(char *buf, int buf_len, u64 flags,
  4511. struct flag_table *table, int table_size)
  4512. {
  4513. char extra[32];
  4514. char *p = buf;
  4515. int len = buf_len;
  4516. int no_room = 0;
  4517. int i;
  4518. /* make sure there is at least 2 so we can form "*" */
  4519. if (len < 2)
  4520. return "";
  4521. len--; /* leave room for a nul */
  4522. for (i = 0; i < table_size; i++) {
  4523. if (flags & table[i].flag) {
  4524. no_room = append_str(buf, &p, &len, table[i].str);
  4525. if (no_room)
  4526. break;
  4527. flags &= ~table[i].flag;
  4528. }
  4529. }
  4530. /* any undocumented bits left? */
  4531. if (!no_room && flags) {
  4532. snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
  4533. no_room = append_str(buf, &p, &len, extra);
  4534. }
  4535. /* add * if ran out of room */
  4536. if (no_room) {
  4537. /* may need to back up to add space for a '*' */
  4538. if (len == 0)
  4539. --p;
  4540. *p++ = '*';
  4541. }
  4542. /* add final nul - space already allocated above */
  4543. *p = 0;
  4544. return buf;
  4545. }
  4546. /* first 8 CCE error interrupt source names */
  4547. static const char * const cce_misc_names[] = {
  4548. "CceErrInt", /* 0 */
  4549. "RxeErrInt", /* 1 */
  4550. "MiscErrInt", /* 2 */
  4551. "Reserved3", /* 3 */
  4552. "PioErrInt", /* 4 */
  4553. "SDmaErrInt", /* 5 */
  4554. "EgressErrInt", /* 6 */
  4555. "TxeErrInt" /* 7 */
  4556. };
  4557. /*
  4558. * Return the miscellaneous error interrupt name.
  4559. */
  4560. static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
  4561. {
  4562. if (source < ARRAY_SIZE(cce_misc_names))
  4563. strncpy(buf, cce_misc_names[source], bsize);
  4564. else
  4565. snprintf(buf, bsize, "Reserved%u",
  4566. source + IS_GENERAL_ERR_START);
  4567. return buf;
  4568. }
  4569. /*
  4570. * Return the SDMA engine error interrupt name.
  4571. */
  4572. static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
  4573. {
  4574. snprintf(buf, bsize, "SDmaEngErrInt%u", source);
  4575. return buf;
  4576. }
  4577. /*
  4578. * Return the send context error interrupt name.
  4579. */
  4580. static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
  4581. {
  4582. snprintf(buf, bsize, "SendCtxtErrInt%u", source);
  4583. return buf;
  4584. }
  4585. static const char * const various_names[] = {
  4586. "PbcInt",
  4587. "GpioAssertInt",
  4588. "Qsfp1Int",
  4589. "Qsfp2Int",
  4590. "TCritInt"
  4591. };
  4592. /*
  4593. * Return the various interrupt name.
  4594. */
  4595. static char *is_various_name(char *buf, size_t bsize, unsigned int source)
  4596. {
  4597. if (source < ARRAY_SIZE(various_names))
  4598. strncpy(buf, various_names[source], bsize);
  4599. else
  4600. snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
  4601. return buf;
  4602. }
  4603. /*
  4604. * Return the DC interrupt name.
  4605. */
  4606. static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
  4607. {
  4608. static const char * const dc_int_names[] = {
  4609. "common",
  4610. "lcb",
  4611. "8051",
  4612. "lbm" /* local block merge */
  4613. };
  4614. if (source < ARRAY_SIZE(dc_int_names))
  4615. snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
  4616. else
  4617. snprintf(buf, bsize, "DCInt%u", source);
  4618. return buf;
  4619. }
  4620. static const char * const sdma_int_names[] = {
  4621. "SDmaInt",
  4622. "SdmaIdleInt",
  4623. "SdmaProgressInt",
  4624. };
  4625. /*
  4626. * Return the SDMA engine interrupt name.
  4627. */
  4628. static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
  4629. {
  4630. /* what interrupt */
  4631. unsigned int what = source / TXE_NUM_SDMA_ENGINES;
  4632. /* which engine */
  4633. unsigned int which = source % TXE_NUM_SDMA_ENGINES;
  4634. if (likely(what < 3))
  4635. snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
  4636. else
  4637. snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
  4638. return buf;
  4639. }
  4640. /*
  4641. * Return the receive available interrupt name.
  4642. */
  4643. static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
  4644. {
  4645. snprintf(buf, bsize, "RcvAvailInt%u", source);
  4646. return buf;
  4647. }
  4648. /*
  4649. * Return the receive urgent interrupt name.
  4650. */
  4651. static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
  4652. {
  4653. snprintf(buf, bsize, "RcvUrgentInt%u", source);
  4654. return buf;
  4655. }
  4656. /*
  4657. * Return the send credit interrupt name.
  4658. */
  4659. static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
  4660. {
  4661. snprintf(buf, bsize, "SendCreditInt%u", source);
  4662. return buf;
  4663. }
  4664. /*
  4665. * Return the reserved interrupt name.
  4666. */
  4667. static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
  4668. {
  4669. snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
  4670. return buf;
  4671. }
  4672. static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
  4673. {
  4674. return flag_string(buf, buf_len, flags,
  4675. cce_err_status_flags,
  4676. ARRAY_SIZE(cce_err_status_flags));
  4677. }
  4678. static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
  4679. {
  4680. return flag_string(buf, buf_len, flags,
  4681. rxe_err_status_flags,
  4682. ARRAY_SIZE(rxe_err_status_flags));
  4683. }
  4684. static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
  4685. {
  4686. return flag_string(buf, buf_len, flags, misc_err_status_flags,
  4687. ARRAY_SIZE(misc_err_status_flags));
  4688. }
  4689. static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
  4690. {
  4691. return flag_string(buf, buf_len, flags,
  4692. pio_err_status_flags,
  4693. ARRAY_SIZE(pio_err_status_flags));
  4694. }
  4695. static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
  4696. {
  4697. return flag_string(buf, buf_len, flags,
  4698. sdma_err_status_flags,
  4699. ARRAY_SIZE(sdma_err_status_flags));
  4700. }
  4701. static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
  4702. {
  4703. return flag_string(buf, buf_len, flags,
  4704. egress_err_status_flags,
  4705. ARRAY_SIZE(egress_err_status_flags));
  4706. }
  4707. static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
  4708. {
  4709. return flag_string(buf, buf_len, flags,
  4710. egress_err_info_flags,
  4711. ARRAY_SIZE(egress_err_info_flags));
  4712. }
  4713. static char *send_err_status_string(char *buf, int buf_len, u64 flags)
  4714. {
  4715. return flag_string(buf, buf_len, flags,
  4716. send_err_status_flags,
  4717. ARRAY_SIZE(send_err_status_flags));
  4718. }
  4719. static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
  4720. {
  4721. char buf[96];
  4722. int i = 0;
  4723. /*
  4724. * For most these errors, there is nothing that can be done except
  4725. * report or record it.
  4726. */
  4727. dd_dev_info(dd, "CCE Error: %s\n",
  4728. cce_err_status_string(buf, sizeof(buf), reg));
  4729. if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
  4730. is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
  4731. /* this error requires a manual drop into SPC freeze mode */
  4732. /* then a fix up */
  4733. start_freeze_handling(dd->pport, FREEZE_SELF);
  4734. }
  4735. for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
  4736. if (reg & (1ull << i)) {
  4737. incr_cntr64(&dd->cce_err_status_cnt[i]);
  4738. /* maintain a counter over all cce_err_status errors */
  4739. incr_cntr64(&dd->sw_cce_err_status_aggregate);
  4740. }
  4741. }
  4742. }
  4743. /*
  4744. * Check counters for receive errors that do not have an interrupt
  4745. * associated with them.
  4746. */
  4747. #define RCVERR_CHECK_TIME 10
  4748. static void update_rcverr_timer(unsigned long opaque)
  4749. {
  4750. struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
  4751. struct hfi1_pportdata *ppd = dd->pport;
  4752. u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
  4753. if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
  4754. ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
  4755. dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
  4756. set_link_down_reason(
  4757. ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
  4758. OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
  4759. queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
  4760. }
  4761. dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
  4762. mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
  4763. }
  4764. static int init_rcverr(struct hfi1_devdata *dd)
  4765. {
  4766. setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
  4767. /* Assume the hardware counter has been reset */
  4768. dd->rcv_ovfl_cnt = 0;
  4769. return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
  4770. }
  4771. static void free_rcverr(struct hfi1_devdata *dd)
  4772. {
  4773. if (dd->rcverr_timer.data)
  4774. del_timer_sync(&dd->rcverr_timer);
  4775. dd->rcverr_timer.data = 0;
  4776. }
  4777. static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
  4778. {
  4779. char buf[96];
  4780. int i = 0;
  4781. dd_dev_info(dd, "Receive Error: %s\n",
  4782. rxe_err_status_string(buf, sizeof(buf), reg));
  4783. if (reg & ALL_RXE_FREEZE_ERR) {
  4784. int flags = 0;
  4785. /*
  4786. * Freeze mode recovery is disabled for the errors
  4787. * in RXE_FREEZE_ABORT_MASK
  4788. */
  4789. if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
  4790. flags = FREEZE_ABORT;
  4791. start_freeze_handling(dd->pport, flags);
  4792. }
  4793. for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
  4794. if (reg & (1ull << i))
  4795. incr_cntr64(&dd->rcv_err_status_cnt[i]);
  4796. }
  4797. }
  4798. static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
  4799. {
  4800. char buf[96];
  4801. int i = 0;
  4802. dd_dev_info(dd, "Misc Error: %s",
  4803. misc_err_status_string(buf, sizeof(buf), reg));
  4804. for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
  4805. if (reg & (1ull << i))
  4806. incr_cntr64(&dd->misc_err_status_cnt[i]);
  4807. }
  4808. }
  4809. static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
  4810. {
  4811. char buf[96];
  4812. int i = 0;
  4813. dd_dev_info(dd, "PIO Error: %s\n",
  4814. pio_err_status_string(buf, sizeof(buf), reg));
  4815. if (reg & ALL_PIO_FREEZE_ERR)
  4816. start_freeze_handling(dd->pport, 0);
  4817. for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
  4818. if (reg & (1ull << i))
  4819. incr_cntr64(&dd->send_pio_err_status_cnt[i]);
  4820. }
  4821. }
  4822. static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
  4823. {
  4824. char buf[96];
  4825. int i = 0;
  4826. dd_dev_info(dd, "SDMA Error: %s\n",
  4827. sdma_err_status_string(buf, sizeof(buf), reg));
  4828. if (reg & ALL_SDMA_FREEZE_ERR)
  4829. start_freeze_handling(dd->pport, 0);
  4830. for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
  4831. if (reg & (1ull << i))
  4832. incr_cntr64(&dd->send_dma_err_status_cnt[i]);
  4833. }
  4834. }
  4835. static inline void __count_port_discards(struct hfi1_pportdata *ppd)
  4836. {
  4837. incr_cntr64(&ppd->port_xmit_discards);
  4838. }
  4839. static void count_port_inactive(struct hfi1_devdata *dd)
  4840. {
  4841. __count_port_discards(dd->pport);
  4842. }
  4843. /*
  4844. * We have had a "disallowed packet" error during egress. Determine the
  4845. * integrity check which failed, and update relevant error counter, etc.
  4846. *
  4847. * Note that the SEND_EGRESS_ERR_INFO register has only a single
  4848. * bit of state per integrity check, and so we can miss the reason for an
  4849. * egress error if more than one packet fails the same integrity check
  4850. * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
  4851. */
  4852. static void handle_send_egress_err_info(struct hfi1_devdata *dd,
  4853. int vl)
  4854. {
  4855. struct hfi1_pportdata *ppd = dd->pport;
  4856. u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
  4857. u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
  4858. char buf[96];
  4859. /* clear down all observed info as quickly as possible after read */
  4860. write_csr(dd, SEND_EGRESS_ERR_INFO, info);
  4861. dd_dev_info(dd,
  4862. "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
  4863. info, egress_err_info_string(buf, sizeof(buf), info), src);
  4864. /* Eventually add other counters for each bit */
  4865. if (info & PORT_DISCARD_EGRESS_ERRS) {
  4866. int weight, i;
  4867. /*
  4868. * Count all applicable bits as individual errors and
  4869. * attribute them to the packet that triggered this handler.
  4870. * This may not be completely accurate due to limitations
  4871. * on the available hardware error information. There is
  4872. * a single information register and any number of error
  4873. * packets may have occurred and contributed to it before
  4874. * this routine is called. This means that:
  4875. * a) If multiple packets with the same error occur before
  4876. * this routine is called, earlier packets are missed.
  4877. * There is only a single bit for each error type.
  4878. * b) Errors may not be attributed to the correct VL.
  4879. * The driver is attributing all bits in the info register
  4880. * to the packet that triggered this call, but bits
  4881. * could be an accumulation of different packets with
  4882. * different VLs.
  4883. * c) A single error packet may have multiple counts attached
  4884. * to it. There is no way for the driver to know if
  4885. * multiple bits set in the info register are due to a
  4886. * single packet or multiple packets. The driver assumes
  4887. * multiple packets.
  4888. */
  4889. weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
  4890. for (i = 0; i < weight; i++) {
  4891. __count_port_discards(ppd);
  4892. if (vl >= 0 && vl < TXE_NUM_DATA_VL)
  4893. incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
  4894. else if (vl == 15)
  4895. incr_cntr64(&ppd->port_xmit_discards_vl
  4896. [C_VL_15]);
  4897. }
  4898. }
  4899. }
  4900. /*
  4901. * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
  4902. * register. Does it represent a 'port inactive' error?
  4903. */
  4904. static inline int port_inactive_err(u64 posn)
  4905. {
  4906. return (posn >= SEES(TX_LINKDOWN) &&
  4907. posn <= SEES(TX_INCORRECT_LINK_STATE));
  4908. }
  4909. /*
  4910. * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
  4911. * register. Does it represent a 'disallowed packet' error?
  4912. */
  4913. static inline int disallowed_pkt_err(int posn)
  4914. {
  4915. return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
  4916. posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
  4917. }
  4918. /*
  4919. * Input value is a bit position of one of the SDMA engine disallowed
  4920. * packet errors. Return which engine. Use of this must be guarded by
  4921. * disallowed_pkt_err().
  4922. */
  4923. static inline int disallowed_pkt_engine(int posn)
  4924. {
  4925. return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
  4926. }
  4927. /*
  4928. * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
  4929. * be done.
  4930. */
  4931. static int engine_to_vl(struct hfi1_devdata *dd, int engine)
  4932. {
  4933. struct sdma_vl_map *m;
  4934. int vl;
  4935. /* range check */
  4936. if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
  4937. return -1;
  4938. rcu_read_lock();
  4939. m = rcu_dereference(dd->sdma_map);
  4940. vl = m->engine_to_vl[engine];
  4941. rcu_read_unlock();
  4942. return vl;
  4943. }
  4944. /*
  4945. * Translate the send context (sofware index) into a VL. Return -1 if the
  4946. * translation cannot be done.
  4947. */
  4948. static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
  4949. {
  4950. struct send_context_info *sci;
  4951. struct send_context *sc;
  4952. int i;
  4953. sci = &dd->send_contexts[sw_index];
  4954. /* there is no information for user (PSM) and ack contexts */
  4955. if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
  4956. return -1;
  4957. sc = sci->sc;
  4958. if (!sc)
  4959. return -1;
  4960. if (dd->vld[15].sc == sc)
  4961. return 15;
  4962. for (i = 0; i < num_vls; i++)
  4963. if (dd->vld[i].sc == sc)
  4964. return i;
  4965. return -1;
  4966. }
  4967. static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
  4968. {
  4969. u64 reg_copy = reg, handled = 0;
  4970. char buf[96];
  4971. int i = 0;
  4972. if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
  4973. start_freeze_handling(dd->pport, 0);
  4974. else if (is_ax(dd) &&
  4975. (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
  4976. (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
  4977. start_freeze_handling(dd->pport, 0);
  4978. while (reg_copy) {
  4979. int posn = fls64(reg_copy);
  4980. /* fls64() returns a 1-based offset, we want it zero based */
  4981. int shift = posn - 1;
  4982. u64 mask = 1ULL << shift;
  4983. if (port_inactive_err(shift)) {
  4984. count_port_inactive(dd);
  4985. handled |= mask;
  4986. } else if (disallowed_pkt_err(shift)) {
  4987. int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
  4988. handle_send_egress_err_info(dd, vl);
  4989. handled |= mask;
  4990. }
  4991. reg_copy &= ~mask;
  4992. }
  4993. reg &= ~handled;
  4994. if (reg)
  4995. dd_dev_info(dd, "Egress Error: %s\n",
  4996. egress_err_status_string(buf, sizeof(buf), reg));
  4997. for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
  4998. if (reg & (1ull << i))
  4999. incr_cntr64(&dd->send_egress_err_status_cnt[i]);
  5000. }
  5001. }
  5002. static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
  5003. {
  5004. char buf[96];
  5005. int i = 0;
  5006. dd_dev_info(dd, "Send Error: %s\n",
  5007. send_err_status_string(buf, sizeof(buf), reg));
  5008. for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
  5009. if (reg & (1ull << i))
  5010. incr_cntr64(&dd->send_err_status_cnt[i]);
  5011. }
  5012. }
  5013. /*
  5014. * The maximum number of times the error clear down will loop before
  5015. * blocking a repeating error. This value is arbitrary.
  5016. */
  5017. #define MAX_CLEAR_COUNT 20
  5018. /*
  5019. * Clear and handle an error register. All error interrupts are funneled
  5020. * through here to have a central location to correctly handle single-
  5021. * or multi-shot errors.
  5022. *
  5023. * For non per-context registers, call this routine with a context value
  5024. * of 0 so the per-context offset is zero.
  5025. *
  5026. * If the handler loops too many times, assume that something is wrong
  5027. * and can't be fixed, so mask the error bits.
  5028. */
  5029. static void interrupt_clear_down(struct hfi1_devdata *dd,
  5030. u32 context,
  5031. const struct err_reg_info *eri)
  5032. {
  5033. u64 reg;
  5034. u32 count;
  5035. /* read in a loop until no more errors are seen */
  5036. count = 0;
  5037. while (1) {
  5038. reg = read_kctxt_csr(dd, context, eri->status);
  5039. if (reg == 0)
  5040. break;
  5041. write_kctxt_csr(dd, context, eri->clear, reg);
  5042. if (likely(eri->handler))
  5043. eri->handler(dd, context, reg);
  5044. count++;
  5045. if (count > MAX_CLEAR_COUNT) {
  5046. u64 mask;
  5047. dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
  5048. eri->desc, reg);
  5049. /*
  5050. * Read-modify-write so any other masked bits
  5051. * remain masked.
  5052. */
  5053. mask = read_kctxt_csr(dd, context, eri->mask);
  5054. mask &= ~reg;
  5055. write_kctxt_csr(dd, context, eri->mask, mask);
  5056. break;
  5057. }
  5058. }
  5059. }
  5060. /*
  5061. * CCE block "misc" interrupt. Source is < 16.
  5062. */
  5063. static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
  5064. {
  5065. const struct err_reg_info *eri = &misc_errs[source];
  5066. if (eri->handler) {
  5067. interrupt_clear_down(dd, 0, eri);
  5068. } else {
  5069. dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
  5070. source);
  5071. }
  5072. }
  5073. static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
  5074. {
  5075. return flag_string(buf, buf_len, flags,
  5076. sc_err_status_flags,
  5077. ARRAY_SIZE(sc_err_status_flags));
  5078. }
  5079. /*
  5080. * Send context error interrupt. Source (hw_context) is < 160.
  5081. *
  5082. * All send context errors cause the send context to halt. The normal
  5083. * clear-down mechanism cannot be used because we cannot clear the
  5084. * error bits until several other long-running items are done first.
  5085. * This is OK because with the context halted, nothing else is going
  5086. * to happen on it anyway.
  5087. */
  5088. static void is_sendctxt_err_int(struct hfi1_devdata *dd,
  5089. unsigned int hw_context)
  5090. {
  5091. struct send_context_info *sci;
  5092. struct send_context *sc;
  5093. char flags[96];
  5094. u64 status;
  5095. u32 sw_index;
  5096. int i = 0;
  5097. sw_index = dd->hw_to_sw[hw_context];
  5098. if (sw_index >= dd->num_send_contexts) {
  5099. dd_dev_err(dd,
  5100. "out of range sw index %u for send context %u\n",
  5101. sw_index, hw_context);
  5102. return;
  5103. }
  5104. sci = &dd->send_contexts[sw_index];
  5105. sc = sci->sc;
  5106. if (!sc) {
  5107. dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
  5108. sw_index, hw_context);
  5109. return;
  5110. }
  5111. /* tell the software that a halt has begun */
  5112. sc_stop(sc, SCF_HALTED);
  5113. status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
  5114. dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
  5115. send_context_err_status_string(flags, sizeof(flags),
  5116. status));
  5117. if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
  5118. handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
  5119. /*
  5120. * Automatically restart halted kernel contexts out of interrupt
  5121. * context. User contexts must ask the driver to restart the context.
  5122. */
  5123. if (sc->type != SC_USER)
  5124. queue_work(dd->pport->hfi1_wq, &sc->halt_work);
  5125. /*
  5126. * Update the counters for the corresponding status bits.
  5127. * Note that these particular counters are aggregated over all
  5128. * 160 contexts.
  5129. */
  5130. for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
  5131. if (status & (1ull << i))
  5132. incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
  5133. }
  5134. }
  5135. static void handle_sdma_eng_err(struct hfi1_devdata *dd,
  5136. unsigned int source, u64 status)
  5137. {
  5138. struct sdma_engine *sde;
  5139. int i = 0;
  5140. sde = &dd->per_sdma[source];
  5141. #ifdef CONFIG_SDMA_VERBOSITY
  5142. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
  5143. slashstrip(__FILE__), __LINE__, __func__);
  5144. dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
  5145. sde->this_idx, source, (unsigned long long)status);
  5146. #endif
  5147. sde->err_cnt++;
  5148. sdma_engine_error(sde, status);
  5149. /*
  5150. * Update the counters for the corresponding status bits.
  5151. * Note that these particular counters are aggregated over
  5152. * all 16 DMA engines.
  5153. */
  5154. for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
  5155. if (status & (1ull << i))
  5156. incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
  5157. }
  5158. }
  5159. /*
  5160. * CCE block SDMA error interrupt. Source is < 16.
  5161. */
  5162. static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
  5163. {
  5164. #ifdef CONFIG_SDMA_VERBOSITY
  5165. struct sdma_engine *sde = &dd->per_sdma[source];
  5166. dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
  5167. slashstrip(__FILE__), __LINE__, __func__);
  5168. dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
  5169. source);
  5170. sdma_dumpstate(sde);
  5171. #endif
  5172. interrupt_clear_down(dd, source, &sdma_eng_err);
  5173. }
  5174. /*
  5175. * CCE block "various" interrupt. Source is < 8.
  5176. */
  5177. static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
  5178. {
  5179. const struct err_reg_info *eri = &various_err[source];
  5180. /*
  5181. * TCritInt cannot go through interrupt_clear_down()
  5182. * because it is not a second tier interrupt. The handler
  5183. * should be called directly.
  5184. */
  5185. if (source == TCRIT_INT_SOURCE)
  5186. handle_temp_err(dd);
  5187. else if (eri->handler)
  5188. interrupt_clear_down(dd, 0, eri);
  5189. else
  5190. dd_dev_info(dd,
  5191. "%s: Unimplemented/reserved interrupt %d\n",
  5192. __func__, source);
  5193. }
  5194. static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
  5195. {
  5196. /* src_ctx is always zero */
  5197. struct hfi1_pportdata *ppd = dd->pport;
  5198. unsigned long flags;
  5199. u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
  5200. if (reg & QSFP_HFI0_MODPRST_N) {
  5201. if (!qsfp_mod_present(ppd)) {
  5202. dd_dev_info(dd, "%s: QSFP module removed\n",
  5203. __func__);
  5204. ppd->driver_link_ready = 0;
  5205. /*
  5206. * Cable removed, reset all our information about the
  5207. * cache and cable capabilities
  5208. */
  5209. spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
  5210. /*
  5211. * We don't set cache_refresh_required here as we expect
  5212. * an interrupt when a cable is inserted
  5213. */
  5214. ppd->qsfp_info.cache_valid = 0;
  5215. ppd->qsfp_info.reset_needed = 0;
  5216. ppd->qsfp_info.limiting_active = 0;
  5217. spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
  5218. flags);
  5219. /* Invert the ModPresent pin now to detect plug-in */
  5220. write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
  5221. ASIC_QSFP1_INVERT, qsfp_int_mgmt);
  5222. if ((ppd->offline_disabled_reason >
  5223. HFI1_ODR_MASK(
  5224. OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
  5225. (ppd->offline_disabled_reason ==
  5226. HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
  5227. ppd->offline_disabled_reason =
  5228. HFI1_ODR_MASK(
  5229. OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
  5230. if (ppd->host_link_state == HLS_DN_POLL) {
  5231. /*
  5232. * The link is still in POLL. This means
  5233. * that the normal link down processing
  5234. * will not happen. We have to do it here
  5235. * before turning the DC off.
  5236. */
  5237. queue_work(ppd->hfi1_wq, &ppd->link_down_work);
  5238. }
  5239. } else {
  5240. dd_dev_info(dd, "%s: QSFP module inserted\n",
  5241. __func__);
  5242. spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
  5243. ppd->qsfp_info.cache_valid = 0;
  5244. ppd->qsfp_info.cache_refresh_required = 1;
  5245. spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
  5246. flags);
  5247. /*
  5248. * Stop inversion of ModPresent pin to detect
  5249. * removal of the cable
  5250. */
  5251. qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
  5252. write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
  5253. ASIC_QSFP1_INVERT, qsfp_int_mgmt);
  5254. ppd->offline_disabled_reason =
  5255. HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
  5256. }
  5257. }
  5258. if (reg & QSFP_HFI0_INT_N) {
  5259. dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
  5260. __func__);
  5261. spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
  5262. ppd->qsfp_info.check_interrupt_flags = 1;
  5263. spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
  5264. }
  5265. /* Schedule the QSFP work only if there is a cable attached. */
  5266. if (qsfp_mod_present(ppd))
  5267. queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
  5268. }
  5269. static int request_host_lcb_access(struct hfi1_devdata *dd)
  5270. {
  5271. int ret;
  5272. ret = do_8051_command(dd, HCMD_MISC,
  5273. (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
  5274. LOAD_DATA_FIELD_ID_SHIFT, NULL);
  5275. if (ret != HCMD_SUCCESS) {
  5276. dd_dev_err(dd, "%s: command failed with error %d\n",
  5277. __func__, ret);
  5278. }
  5279. return ret == HCMD_SUCCESS ? 0 : -EBUSY;
  5280. }
  5281. static int request_8051_lcb_access(struct hfi1_devdata *dd)
  5282. {
  5283. int ret;
  5284. ret = do_8051_command(dd, HCMD_MISC,
  5285. (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
  5286. LOAD_DATA_FIELD_ID_SHIFT, NULL);
  5287. if (ret != HCMD_SUCCESS) {
  5288. dd_dev_err(dd, "%s: command failed with error %d\n",
  5289. __func__, ret);
  5290. }
  5291. return ret == HCMD_SUCCESS ? 0 : -EBUSY;
  5292. }
  5293. /*
  5294. * Set the LCB selector - allow host access. The DCC selector always
  5295. * points to the host.
  5296. */
  5297. static inline void set_host_lcb_access(struct hfi1_devdata *dd)
  5298. {
  5299. write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
  5300. DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
  5301. DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
  5302. }
  5303. /*
  5304. * Clear the LCB selector - allow 8051 access. The DCC selector always
  5305. * points to the host.
  5306. */
  5307. static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
  5308. {
  5309. write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
  5310. DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
  5311. }
  5312. /*
  5313. * Acquire LCB access from the 8051. If the host already has access,
  5314. * just increment a counter. Otherwise, inform the 8051 that the
  5315. * host is taking access.
  5316. *
  5317. * Returns:
  5318. * 0 on success
  5319. * -EBUSY if the 8051 has control and cannot be disturbed
  5320. * -errno if unable to acquire access from the 8051
  5321. */
  5322. int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
  5323. {
  5324. struct hfi1_pportdata *ppd = dd->pport;
  5325. int ret = 0;
  5326. /*
  5327. * Use the host link state lock so the operation of this routine
  5328. * { link state check, selector change, count increment } can occur
  5329. * as a unit against a link state change. Otherwise there is a
  5330. * race between the state change and the count increment.
  5331. */
  5332. if (sleep_ok) {
  5333. mutex_lock(&ppd->hls_lock);
  5334. } else {
  5335. while (!mutex_trylock(&ppd->hls_lock))
  5336. udelay(1);
  5337. }
  5338. /* this access is valid only when the link is up */
  5339. if (ppd->host_link_state & HLS_DOWN) {
  5340. dd_dev_info(dd, "%s: link state %s not up\n",
  5341. __func__, link_state_name(ppd->host_link_state));
  5342. ret = -EBUSY;
  5343. goto done;
  5344. }
  5345. if (dd->lcb_access_count == 0) {
  5346. ret = request_host_lcb_access(dd);
  5347. if (ret) {
  5348. dd_dev_err(dd,
  5349. "%s: unable to acquire LCB access, err %d\n",
  5350. __func__, ret);
  5351. goto done;
  5352. }
  5353. set_host_lcb_access(dd);
  5354. }
  5355. dd->lcb_access_count++;
  5356. done:
  5357. mutex_unlock(&ppd->hls_lock);
  5358. return ret;
  5359. }
  5360. /*
  5361. * Release LCB access by decrementing the use count. If the count is moving
  5362. * from 1 to 0, inform 8051 that it has control back.
  5363. *
  5364. * Returns:
  5365. * 0 on success
  5366. * -errno if unable to release access to the 8051
  5367. */
  5368. int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
  5369. {
  5370. int ret = 0;
  5371. /*
  5372. * Use the host link state lock because the acquire needed it.
  5373. * Here, we only need to keep { selector change, count decrement }
  5374. * as a unit.
  5375. */
  5376. if (sleep_ok) {
  5377. mutex_lock(&dd->pport->hls_lock);
  5378. } else {
  5379. while (!mutex_trylock(&dd->pport->hls_lock))
  5380. udelay(1);
  5381. }
  5382. if (dd->lcb_access_count == 0) {
  5383. dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
  5384. __func__);
  5385. goto done;
  5386. }
  5387. if (dd->lcb_access_count == 1) {
  5388. set_8051_lcb_access(dd);
  5389. ret = request_8051_lcb_access(dd);
  5390. if (ret) {
  5391. dd_dev_err(dd,
  5392. "%s: unable to release LCB access, err %d\n",
  5393. __func__, ret);
  5394. /* restore host access if the grant didn't work */
  5395. set_host_lcb_access(dd);
  5396. goto done;
  5397. }
  5398. }
  5399. dd->lcb_access_count--;
  5400. done:
  5401. mutex_unlock(&dd->pport->hls_lock);
  5402. return ret;
  5403. }
  5404. /*
  5405. * Initialize LCB access variables and state. Called during driver load,
  5406. * after most of the initialization is finished.
  5407. *
  5408. * The DC default is LCB access on for the host. The driver defaults to
  5409. * leaving access to the 8051. Assign access now - this constrains the call
  5410. * to this routine to be after all LCB set-up is done. In particular, after
  5411. * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
  5412. */
  5413. static void init_lcb_access(struct hfi1_devdata *dd)
  5414. {
  5415. dd->lcb_access_count = 0;
  5416. }
  5417. /*
  5418. * Write a response back to a 8051 request.
  5419. */
  5420. static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
  5421. {
  5422. write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
  5423. DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
  5424. (u64)return_code <<
  5425. DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
  5426. (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
  5427. }
  5428. /*
  5429. * Handle host requests from the 8051.
  5430. */
  5431. static void handle_8051_request(struct hfi1_pportdata *ppd)
  5432. {
  5433. struct hfi1_devdata *dd = ppd->dd;
  5434. u64 reg;
  5435. u16 data = 0;
  5436. u8 type;
  5437. reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
  5438. if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
  5439. return; /* no request */
  5440. /* zero out COMPLETED so the response is seen */
  5441. write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
  5442. /* extract request details */
  5443. type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
  5444. & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
  5445. data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
  5446. & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
  5447. switch (type) {
  5448. case HREQ_LOAD_CONFIG:
  5449. case HREQ_SAVE_CONFIG:
  5450. case HREQ_READ_CONFIG:
  5451. case HREQ_SET_TX_EQ_ABS:
  5452. case HREQ_SET_TX_EQ_REL:
  5453. case HREQ_ENABLE:
  5454. dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
  5455. type);
  5456. hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
  5457. break;
  5458. case HREQ_CONFIG_DONE:
  5459. hreq_response(dd, HREQ_SUCCESS, 0);
  5460. break;
  5461. case HREQ_INTERFACE_TEST:
  5462. hreq_response(dd, HREQ_SUCCESS, data);
  5463. break;
  5464. default:
  5465. dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
  5466. hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
  5467. break;
  5468. }
  5469. }
  5470. static void write_global_credit(struct hfi1_devdata *dd,
  5471. u8 vau, u16 total, u16 shared)
  5472. {
  5473. write_csr(dd, SEND_CM_GLOBAL_CREDIT,
  5474. ((u64)total <<
  5475. SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
  5476. ((u64)shared <<
  5477. SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
  5478. ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
  5479. }
  5480. /*
  5481. * Set up initial VL15 credits of the remote. Assumes the rest of
  5482. * the CM credit registers are zero from a previous global or credit reset .
  5483. */
  5484. void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
  5485. {
  5486. /* leave shared count at zero for both global and VL15 */
  5487. write_global_credit(dd, vau, vl15buf, 0);
  5488. write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
  5489. << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
  5490. }
  5491. /*
  5492. * Zero all credit details from the previous connection and
  5493. * reset the CM manager's internal counters.
  5494. */
  5495. void reset_link_credits(struct hfi1_devdata *dd)
  5496. {
  5497. int i;
  5498. /* remove all previous VL credit limits */
  5499. for (i = 0; i < TXE_NUM_DATA_VL; i++)
  5500. write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
  5501. write_csr(dd, SEND_CM_CREDIT_VL15, 0);
  5502. write_global_credit(dd, 0, 0, 0);
  5503. /* reset the CM block */
  5504. pio_send_control(dd, PSC_CM_RESET);
  5505. }
  5506. /* convert a vCU to a CU */
  5507. static u32 vcu_to_cu(u8 vcu)
  5508. {
  5509. return 1 << vcu;
  5510. }
  5511. /* convert a CU to a vCU */
  5512. static u8 cu_to_vcu(u32 cu)
  5513. {
  5514. return ilog2(cu);
  5515. }
  5516. /* convert a vAU to an AU */
  5517. static u32 vau_to_au(u8 vau)
  5518. {
  5519. return 8 * (1 << vau);
  5520. }
  5521. static void set_linkup_defaults(struct hfi1_pportdata *ppd)
  5522. {
  5523. ppd->sm_trap_qp = 0x0;
  5524. ppd->sa_qp = 0x1;
  5525. }
  5526. /*
  5527. * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
  5528. */
  5529. static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
  5530. {
  5531. u64 reg;
  5532. /* clear lcb run: LCB_CFG_RUN.EN = 0 */
  5533. write_csr(dd, DC_LCB_CFG_RUN, 0);
  5534. /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
  5535. write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
  5536. 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
  5537. /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
  5538. dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
  5539. reg = read_csr(dd, DCC_CFG_RESET);
  5540. write_csr(dd, DCC_CFG_RESET, reg |
  5541. (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
  5542. (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
  5543. (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
  5544. if (!abort) {
  5545. udelay(1); /* must hold for the longer of 16cclks or 20ns */
  5546. write_csr(dd, DCC_CFG_RESET, reg);
  5547. write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
  5548. }
  5549. }
  5550. /*
  5551. * This routine should be called after the link has been transitioned to
  5552. * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
  5553. * reset).
  5554. *
  5555. * The expectation is that the caller of this routine would have taken
  5556. * care of properly transitioning the link into the correct state.
  5557. */
  5558. static void dc_shutdown(struct hfi1_devdata *dd)
  5559. {
  5560. unsigned long flags;
  5561. spin_lock_irqsave(&dd->dc8051_lock, flags);
  5562. if (dd->dc_shutdown) {
  5563. spin_unlock_irqrestore(&dd->dc8051_lock, flags);
  5564. return;
  5565. }
  5566. dd->dc_shutdown = 1;
  5567. spin_unlock_irqrestore(&dd->dc8051_lock, flags);
  5568. /* Shutdown the LCB */
  5569. lcb_shutdown(dd, 1);
  5570. /*
  5571. * Going to OFFLINE would have causes the 8051 to put the
  5572. * SerDes into reset already. Just need to shut down the 8051,
  5573. * itself.
  5574. */
  5575. write_csr(dd, DC_DC8051_CFG_RST, 0x1);
  5576. }
  5577. /*
  5578. * Calling this after the DC has been brought out of reset should not
  5579. * do any damage.
  5580. */
  5581. static void dc_start(struct hfi1_devdata *dd)
  5582. {
  5583. unsigned long flags;
  5584. int ret;
  5585. spin_lock_irqsave(&dd->dc8051_lock, flags);
  5586. if (!dd->dc_shutdown)
  5587. goto done;
  5588. spin_unlock_irqrestore(&dd->dc8051_lock, flags);
  5589. /* Take the 8051 out of reset */
  5590. write_csr(dd, DC_DC8051_CFG_RST, 0ull);
  5591. /* Wait until 8051 is ready */
  5592. ret = wait_fm_ready(dd, TIMEOUT_8051_START);
  5593. if (ret) {
  5594. dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
  5595. __func__);
  5596. }
  5597. /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
  5598. write_csr(dd, DCC_CFG_RESET, 0x10);
  5599. /* lcb_shutdown() with abort=1 does not restore these */
  5600. write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
  5601. spin_lock_irqsave(&dd->dc8051_lock, flags);
  5602. dd->dc_shutdown = 0;
  5603. done:
  5604. spin_unlock_irqrestore(&dd->dc8051_lock, flags);
  5605. }
  5606. /*
  5607. * These LCB adjustments are for the Aurora SerDes core in the FPGA.
  5608. */
  5609. static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
  5610. {
  5611. u64 rx_radr, tx_radr;
  5612. u32 version;
  5613. if (dd->icode != ICODE_FPGA_EMULATION)
  5614. return;
  5615. /*
  5616. * These LCB defaults on emulator _s are good, nothing to do here:
  5617. * LCB_CFG_TX_FIFOS_RADR
  5618. * LCB_CFG_RX_FIFOS_RADR
  5619. * LCB_CFG_LN_DCLK
  5620. * LCB_CFG_IGNORE_LOST_RCLK
  5621. */
  5622. if (is_emulator_s(dd))
  5623. return;
  5624. /* else this is _p */
  5625. version = emulator_rev(dd);
  5626. if (!is_ax(dd))
  5627. version = 0x2d; /* all B0 use 0x2d or higher settings */
  5628. if (version <= 0x12) {
  5629. /* release 0x12 and below */
  5630. /*
  5631. * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
  5632. * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
  5633. * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
  5634. */
  5635. rx_radr =
  5636. 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
  5637. | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
  5638. | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
  5639. /*
  5640. * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
  5641. * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
  5642. */
  5643. tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
  5644. } else if (version <= 0x18) {
  5645. /* release 0x13 up to 0x18 */
  5646. /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
  5647. rx_radr =
  5648. 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
  5649. | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
  5650. | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
  5651. tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
  5652. } else if (version == 0x19) {
  5653. /* release 0x19 */
  5654. /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
  5655. rx_radr =
  5656. 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
  5657. | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
  5658. | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
  5659. tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
  5660. } else if (version == 0x1a) {
  5661. /* release 0x1a */
  5662. /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
  5663. rx_radr =
  5664. 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
  5665. | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
  5666. | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
  5667. tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
  5668. write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
  5669. } else {
  5670. /* release 0x1b and higher */
  5671. /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
  5672. rx_radr =
  5673. 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
  5674. | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
  5675. | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
  5676. tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
  5677. }
  5678. write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
  5679. /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
  5680. write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
  5681. DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
  5682. write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
  5683. }
  5684. /*
  5685. * Handle a SMA idle message
  5686. *
  5687. * This is a work-queue function outside of the interrupt.
  5688. */
  5689. void handle_sma_message(struct work_struct *work)
  5690. {
  5691. struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
  5692. sma_message_work);
  5693. struct hfi1_devdata *dd = ppd->dd;
  5694. u64 msg;
  5695. int ret;
  5696. /*
  5697. * msg is bytes 1-4 of the 40-bit idle message - the command code
  5698. * is stripped off
  5699. */
  5700. ret = read_idle_sma(dd, &msg);
  5701. if (ret)
  5702. return;
  5703. dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
  5704. /*
  5705. * React to the SMA message. Byte[1] (0 for us) is the command.
  5706. */
  5707. switch (msg & 0xff) {
  5708. case SMA_IDLE_ARM:
  5709. /*
  5710. * See OPAv1 table 9-14 - HFI and External Switch Ports Key
  5711. * State Transitions
  5712. *
  5713. * Only expected in INIT or ARMED, discard otherwise.
  5714. */
  5715. if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
  5716. ppd->neighbor_normal = 1;
  5717. break;
  5718. case SMA_IDLE_ACTIVE:
  5719. /*
  5720. * See OPAv1 table 9-14 - HFI and External Switch Ports Key
  5721. * State Transitions
  5722. *
  5723. * Can activate the node. Discard otherwise.
  5724. */
  5725. if (ppd->host_link_state == HLS_UP_ARMED &&
  5726. ppd->is_active_optimize_enabled) {
  5727. ppd->neighbor_normal = 1;
  5728. ret = set_link_state(ppd, HLS_UP_ACTIVE);
  5729. if (ret)
  5730. dd_dev_err(
  5731. dd,
  5732. "%s: received Active SMA idle message, couldn't set link to Active\n",
  5733. __func__);
  5734. }
  5735. break;
  5736. default:
  5737. dd_dev_err(dd,
  5738. "%s: received unexpected SMA idle message 0x%llx\n",
  5739. __func__, msg);
  5740. break;
  5741. }
  5742. }
  5743. static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
  5744. {
  5745. u64 rcvctrl;
  5746. unsigned long flags;
  5747. spin_lock_irqsave(&dd->rcvctrl_lock, flags);
  5748. rcvctrl = read_csr(dd, RCV_CTRL);
  5749. rcvctrl |= add;
  5750. rcvctrl &= ~clear;
  5751. write_csr(dd, RCV_CTRL, rcvctrl);
  5752. spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
  5753. }
  5754. static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
  5755. {
  5756. adjust_rcvctrl(dd, add, 0);
  5757. }
  5758. static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
  5759. {
  5760. adjust_rcvctrl(dd, 0, clear);
  5761. }
  5762. /*
  5763. * Called from all interrupt handlers to start handling an SPC freeze.
  5764. */
  5765. void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
  5766. {
  5767. struct hfi1_devdata *dd = ppd->dd;
  5768. struct send_context *sc;
  5769. int i;
  5770. if (flags & FREEZE_SELF)
  5771. write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
  5772. /* enter frozen mode */
  5773. dd->flags |= HFI1_FROZEN;
  5774. /* notify all SDMA engines that they are going into a freeze */
  5775. sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
  5776. /* do halt pre-handling on all enabled send contexts */
  5777. for (i = 0; i < dd->num_send_contexts; i++) {
  5778. sc = dd->send_contexts[i].sc;
  5779. if (sc && (sc->flags & SCF_ENABLED))
  5780. sc_stop(sc, SCF_FROZEN | SCF_HALTED);
  5781. }
  5782. /* Send context are frozen. Notify user space */
  5783. hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
  5784. if (flags & FREEZE_ABORT) {
  5785. dd_dev_err(dd,
  5786. "Aborted freeze recovery. Please REBOOT system\n");
  5787. return;
  5788. }
  5789. /* queue non-interrupt handler */
  5790. queue_work(ppd->hfi1_wq, &ppd->freeze_work);
  5791. }
  5792. /*
  5793. * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
  5794. * depending on the "freeze" parameter.
  5795. *
  5796. * No need to return an error if it times out, our only option
  5797. * is to proceed anyway.
  5798. */
  5799. static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
  5800. {
  5801. unsigned long timeout;
  5802. u64 reg;
  5803. timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
  5804. while (1) {
  5805. reg = read_csr(dd, CCE_STATUS);
  5806. if (freeze) {
  5807. /* waiting until all indicators are set */
  5808. if ((reg & ALL_FROZE) == ALL_FROZE)
  5809. return; /* all done */
  5810. } else {
  5811. /* waiting until all indicators are clear */
  5812. if ((reg & ALL_FROZE) == 0)
  5813. return; /* all done */
  5814. }
  5815. if (time_after(jiffies, timeout)) {
  5816. dd_dev_err(dd,
  5817. "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
  5818. freeze ? "" : "un", reg & ALL_FROZE,
  5819. freeze ? ALL_FROZE : 0ull);
  5820. return;
  5821. }
  5822. usleep_range(80, 120);
  5823. }
  5824. }
  5825. /*
  5826. * Do all freeze handling for the RXE block.
  5827. */
  5828. static void rxe_freeze(struct hfi1_devdata *dd)
  5829. {
  5830. int i;
  5831. /* disable port */
  5832. clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
  5833. /* disable all receive contexts */
  5834. for (i = 0; i < dd->num_rcv_contexts; i++)
  5835. hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
  5836. }
  5837. /*
  5838. * Unfreeze handling for the RXE block - kernel contexts only.
  5839. * This will also enable the port. User contexts will do unfreeze
  5840. * handling on a per-context basis as they call into the driver.
  5841. *
  5842. */
  5843. static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
  5844. {
  5845. u32 rcvmask;
  5846. int i;
  5847. /* enable all kernel contexts */
  5848. for (i = 0; i < dd->n_krcv_queues; i++) {
  5849. rcvmask = HFI1_RCVCTRL_CTXT_ENB;
  5850. /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
  5851. rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
  5852. HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
  5853. hfi1_rcvctrl(dd, rcvmask, i);
  5854. }
  5855. /* enable port */
  5856. add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
  5857. }
  5858. /*
  5859. * Non-interrupt SPC freeze handling.
  5860. *
  5861. * This is a work-queue function outside of the triggering interrupt.
  5862. */
  5863. void handle_freeze(struct work_struct *work)
  5864. {
  5865. struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
  5866. freeze_work);
  5867. struct hfi1_devdata *dd = ppd->dd;
  5868. /* wait for freeze indicators on all affected blocks */
  5869. wait_for_freeze_status(dd, 1);
  5870. /* SPC is now frozen */
  5871. /* do send PIO freeze steps */
  5872. pio_freeze(dd);
  5873. /* do send DMA freeze steps */
  5874. sdma_freeze(dd);
  5875. /* do send egress freeze steps - nothing to do */
  5876. /* do receive freeze steps */
  5877. rxe_freeze(dd);
  5878. /*
  5879. * Unfreeze the hardware - clear the freeze, wait for each
  5880. * block's frozen bit to clear, then clear the frozen flag.
  5881. */
  5882. write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
  5883. wait_for_freeze_status(dd, 0);
  5884. if (is_ax(dd)) {
  5885. write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
  5886. wait_for_freeze_status(dd, 1);
  5887. write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
  5888. wait_for_freeze_status(dd, 0);
  5889. }
  5890. /* do send PIO unfreeze steps for kernel contexts */
  5891. pio_kernel_unfreeze(dd);
  5892. /* do send DMA unfreeze steps */
  5893. sdma_unfreeze(dd);
  5894. /* do send egress unfreeze steps - nothing to do */
  5895. /* do receive unfreeze steps for kernel contexts */
  5896. rxe_kernel_unfreeze(dd);
  5897. /*
  5898. * The unfreeze procedure touches global device registers when
  5899. * it disables and re-enables RXE. Mark the device unfrozen
  5900. * after all that is done so other parts of the driver waiting
  5901. * for the device to unfreeze don't do things out of order.
  5902. *
  5903. * The above implies that the meaning of HFI1_FROZEN flag is
  5904. * "Device has gone into freeze mode and freeze mode handling
  5905. * is still in progress."
  5906. *
  5907. * The flag will be removed when freeze mode processing has
  5908. * completed.
  5909. */
  5910. dd->flags &= ~HFI1_FROZEN;
  5911. wake_up(&dd->event_queue);
  5912. /* no longer frozen */
  5913. }
  5914. /*
  5915. * Handle a link up interrupt from the 8051.
  5916. *
  5917. * This is a work-queue function outside of the interrupt.
  5918. */
  5919. void handle_link_up(struct work_struct *work)
  5920. {
  5921. struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
  5922. link_up_work);
  5923. set_link_state(ppd, HLS_UP_INIT);
  5924. /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
  5925. read_ltp_rtt(ppd->dd);
  5926. /*
  5927. * OPA specifies that certain counters are cleared on a transition
  5928. * to link up, so do that.
  5929. */
  5930. clear_linkup_counters(ppd->dd);
  5931. /*
  5932. * And (re)set link up default values.
  5933. */
  5934. set_linkup_defaults(ppd);
  5935. /* enforce link speed enabled */
  5936. if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
  5937. /* oops - current speed is not enabled, bounce */
  5938. dd_dev_err(ppd->dd,
  5939. "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
  5940. ppd->link_speed_active, ppd->link_speed_enabled);
  5941. set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
  5942. OPA_LINKDOWN_REASON_SPEED_POLICY);
  5943. set_link_state(ppd, HLS_DN_OFFLINE);
  5944. start_link(ppd);
  5945. }
  5946. }
  5947. /*
  5948. * Several pieces of LNI information were cached for SMA in ppd.
  5949. * Reset these on link down
  5950. */
  5951. static void reset_neighbor_info(struct hfi1_pportdata *ppd)
  5952. {
  5953. ppd->neighbor_guid = 0;
  5954. ppd->neighbor_port_number = 0;
  5955. ppd->neighbor_type = 0;
  5956. ppd->neighbor_fm_security = 0;
  5957. }
  5958. static const char * const link_down_reason_strs[] = {
  5959. [OPA_LINKDOWN_REASON_NONE] = "None",
  5960. [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
  5961. [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
  5962. [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
  5963. [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
  5964. [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
  5965. [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
  5966. [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
  5967. [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
  5968. [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
  5969. [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
  5970. [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
  5971. [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
  5972. [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
  5973. [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
  5974. [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
  5975. [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
  5976. [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
  5977. [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
  5978. [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
  5979. [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
  5980. [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
  5981. [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
  5982. [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
  5983. [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
  5984. [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
  5985. [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
  5986. [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
  5987. [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
  5988. [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
  5989. [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
  5990. [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
  5991. [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
  5992. "Excessive buffer overrun",
  5993. [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
  5994. [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
  5995. [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
  5996. [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
  5997. [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
  5998. [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
  5999. [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
  6000. [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
  6001. "Local media not installed",
  6002. [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
  6003. [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
  6004. [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
  6005. "End to end not installed",
  6006. [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
  6007. [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
  6008. [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
  6009. [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
  6010. [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
  6011. [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
  6012. };
  6013. /* return the neighbor link down reason string */
  6014. static const char *link_down_reason_str(u8 reason)
  6015. {
  6016. const char *str = NULL;
  6017. if (reason < ARRAY_SIZE(link_down_reason_strs))
  6018. str = link_down_reason_strs[reason];
  6019. if (!str)
  6020. str = "(invalid)";
  6021. return str;
  6022. }
  6023. /*
  6024. * Handle a link down interrupt from the 8051.
  6025. *
  6026. * This is a work-queue function outside of the interrupt.
  6027. */
  6028. void handle_link_down(struct work_struct *work)
  6029. {
  6030. u8 lcl_reason, neigh_reason = 0;
  6031. u8 link_down_reason;
  6032. struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
  6033. link_down_work);
  6034. int was_up;
  6035. static const char ldr_str[] = "Link down reason: ";
  6036. if ((ppd->host_link_state &
  6037. (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
  6038. ppd->port_type == PORT_TYPE_FIXED)
  6039. ppd->offline_disabled_reason =
  6040. HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
  6041. /* Go offline first, then deal with reading/writing through 8051 */
  6042. was_up = !!(ppd->host_link_state & HLS_UP);
  6043. set_link_state(ppd, HLS_DN_OFFLINE);
  6044. if (was_up) {
  6045. lcl_reason = 0;
  6046. /* link down reason is only valid if the link was up */
  6047. read_link_down_reason(ppd->dd, &link_down_reason);
  6048. switch (link_down_reason) {
  6049. case LDR_LINK_TRANSFER_ACTIVE_LOW:
  6050. /* the link went down, no idle message reason */
  6051. dd_dev_info(ppd->dd, "%sUnexpected link down\n",
  6052. ldr_str);
  6053. break;
  6054. case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
  6055. /*
  6056. * The neighbor reason is only valid if an idle message
  6057. * was received for it.
  6058. */
  6059. read_planned_down_reason_code(ppd->dd, &neigh_reason);
  6060. dd_dev_info(ppd->dd,
  6061. "%sNeighbor link down message %d, %s\n",
  6062. ldr_str, neigh_reason,
  6063. link_down_reason_str(neigh_reason));
  6064. break;
  6065. case LDR_RECEIVED_HOST_OFFLINE_REQ:
  6066. dd_dev_info(ppd->dd,
  6067. "%sHost requested link to go offline\n",
  6068. ldr_str);
  6069. break;
  6070. default:
  6071. dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
  6072. ldr_str, link_down_reason);
  6073. break;
  6074. }
  6075. /*
  6076. * If no reason, assume peer-initiated but missed
  6077. * LinkGoingDown idle flits.
  6078. */
  6079. if (neigh_reason == 0)
  6080. lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
  6081. } else {
  6082. /* went down while polling or going up */
  6083. lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
  6084. }
  6085. set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
  6086. /* inform the SMA when the link transitions from up to down */
  6087. if (was_up && ppd->local_link_down_reason.sma == 0 &&
  6088. ppd->neigh_link_down_reason.sma == 0) {
  6089. ppd->local_link_down_reason.sma =
  6090. ppd->local_link_down_reason.latest;
  6091. ppd->neigh_link_down_reason.sma =
  6092. ppd->neigh_link_down_reason.latest;
  6093. }
  6094. reset_neighbor_info(ppd);
  6095. /* disable the port */
  6096. clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
  6097. /*
  6098. * If there is no cable attached, turn the DC off. Otherwise,
  6099. * start the link bring up.
  6100. */
  6101. if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
  6102. dc_shutdown(ppd->dd);
  6103. else
  6104. start_link(ppd);
  6105. }
  6106. void handle_link_bounce(struct work_struct *work)
  6107. {
  6108. struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
  6109. link_bounce_work);
  6110. /*
  6111. * Only do something if the link is currently up.
  6112. */
  6113. if (ppd->host_link_state & HLS_UP) {
  6114. set_link_state(ppd, HLS_DN_OFFLINE);
  6115. start_link(ppd);
  6116. } else {
  6117. dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
  6118. __func__, link_state_name(ppd->host_link_state));
  6119. }
  6120. }
  6121. /*
  6122. * Mask conversion: Capability exchange to Port LTP. The capability
  6123. * exchange has an implicit 16b CRC that is mandatory.
  6124. */
  6125. static int cap_to_port_ltp(int cap)
  6126. {
  6127. int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
  6128. if (cap & CAP_CRC_14B)
  6129. port_ltp |= PORT_LTP_CRC_MODE_14;
  6130. if (cap & CAP_CRC_48B)
  6131. port_ltp |= PORT_LTP_CRC_MODE_48;
  6132. if (cap & CAP_CRC_12B_16B_PER_LANE)
  6133. port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
  6134. return port_ltp;
  6135. }
  6136. /*
  6137. * Convert an OPA Port LTP mask to capability mask
  6138. */
  6139. int port_ltp_to_cap(int port_ltp)
  6140. {
  6141. int cap_mask = 0;
  6142. if (port_ltp & PORT_LTP_CRC_MODE_14)
  6143. cap_mask |= CAP_CRC_14B;
  6144. if (port_ltp & PORT_LTP_CRC_MODE_48)
  6145. cap_mask |= CAP_CRC_48B;
  6146. if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
  6147. cap_mask |= CAP_CRC_12B_16B_PER_LANE;
  6148. return cap_mask;
  6149. }
  6150. /*
  6151. * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
  6152. */
  6153. static int lcb_to_port_ltp(int lcb_crc)
  6154. {
  6155. int port_ltp = 0;
  6156. if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
  6157. port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
  6158. else if (lcb_crc == LCB_CRC_48B)
  6159. port_ltp = PORT_LTP_CRC_MODE_48;
  6160. else if (lcb_crc == LCB_CRC_14B)
  6161. port_ltp = PORT_LTP_CRC_MODE_14;
  6162. else
  6163. port_ltp = PORT_LTP_CRC_MODE_16;
  6164. return port_ltp;
  6165. }
  6166. /*
  6167. * Our neighbor has indicated that we are allowed to act as a fabric
  6168. * manager, so place the full management partition key in the second
  6169. * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
  6170. * that we should already have the limited management partition key in
  6171. * array element 1, and also that the port is not yet up when
  6172. * add_full_mgmt_pkey() is invoked.
  6173. */
  6174. static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
  6175. {
  6176. struct hfi1_devdata *dd = ppd->dd;
  6177. /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
  6178. if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
  6179. dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
  6180. __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
  6181. ppd->pkeys[2] = FULL_MGMT_P_KEY;
  6182. (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
  6183. hfi1_event_pkey_change(ppd->dd, ppd->port);
  6184. }
  6185. static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
  6186. {
  6187. if (ppd->pkeys[2] != 0) {
  6188. ppd->pkeys[2] = 0;
  6189. (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
  6190. hfi1_event_pkey_change(ppd->dd, ppd->port);
  6191. }
  6192. }
  6193. /*
  6194. * Convert the given link width to the OPA link width bitmask.
  6195. */
  6196. static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
  6197. {
  6198. switch (width) {
  6199. case 0:
  6200. /*
  6201. * Simulator and quick linkup do not set the width.
  6202. * Just set it to 4x without complaint.
  6203. */
  6204. if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
  6205. return OPA_LINK_WIDTH_4X;
  6206. return 0; /* no lanes up */
  6207. case 1: return OPA_LINK_WIDTH_1X;
  6208. case 2: return OPA_LINK_WIDTH_2X;
  6209. case 3: return OPA_LINK_WIDTH_3X;
  6210. default:
  6211. dd_dev_info(dd, "%s: invalid width %d, using 4\n",
  6212. __func__, width);
  6213. /* fall through */
  6214. case 4: return OPA_LINK_WIDTH_4X;
  6215. }
  6216. }
  6217. /*
  6218. * Do a population count on the bottom nibble.
  6219. */
  6220. static const u8 bit_counts[16] = {
  6221. 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
  6222. };
  6223. static inline u8 nibble_to_count(u8 nibble)
  6224. {
  6225. return bit_counts[nibble & 0xf];
  6226. }
  6227. /*
  6228. * Read the active lane information from the 8051 registers and return
  6229. * their widths.
  6230. *
  6231. * Active lane information is found in these 8051 registers:
  6232. * enable_lane_tx
  6233. * enable_lane_rx
  6234. */
  6235. static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
  6236. u16 *rx_width)
  6237. {
  6238. u16 tx, rx;
  6239. u8 enable_lane_rx;
  6240. u8 enable_lane_tx;
  6241. u8 tx_polarity_inversion;
  6242. u8 rx_polarity_inversion;
  6243. u8 max_rate;
  6244. /* read the active lanes */
  6245. read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
  6246. &rx_polarity_inversion, &max_rate);
  6247. read_local_lni(dd, &enable_lane_rx);
  6248. /* convert to counts */
  6249. tx = nibble_to_count(enable_lane_tx);
  6250. rx = nibble_to_count(enable_lane_rx);
  6251. /*
  6252. * Set link_speed_active here, overriding what was set in
  6253. * handle_verify_cap(). The ASIC 8051 firmware does not correctly
  6254. * set the max_rate field in handle_verify_cap until v0.19.
  6255. */
  6256. if ((dd->icode == ICODE_RTL_SILICON) &&
  6257. (dd->dc8051_ver < dc8051_ver(0, 19))) {
  6258. /* max_rate: 0 = 12.5G, 1 = 25G */
  6259. switch (max_rate) {
  6260. case 0:
  6261. dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
  6262. break;
  6263. default:
  6264. dd_dev_err(dd,
  6265. "%s: unexpected max rate %d, using 25Gb\n",
  6266. __func__, (int)max_rate);
  6267. /* fall through */
  6268. case 1:
  6269. dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
  6270. break;
  6271. }
  6272. }
  6273. dd_dev_info(dd,
  6274. "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
  6275. enable_lane_tx, tx, enable_lane_rx, rx);
  6276. *tx_width = link_width_to_bits(dd, tx);
  6277. *rx_width = link_width_to_bits(dd, rx);
  6278. }
  6279. /*
  6280. * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
  6281. * Valid after the end of VerifyCap and during LinkUp. Does not change
  6282. * after link up. I.e. look elsewhere for downgrade information.
  6283. *
  6284. * Bits are:
  6285. * + bits [7:4] contain the number of active transmitters
  6286. * + bits [3:0] contain the number of active receivers
  6287. * These are numbers 1 through 4 and can be different values if the
  6288. * link is asymmetric.
  6289. *
  6290. * verify_cap_local_fm_link_width[0] retains its original value.
  6291. */
  6292. static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
  6293. u16 *rx_width)
  6294. {
  6295. u16 widths, tx, rx;
  6296. u8 misc_bits, local_flags;
  6297. u16 active_tx, active_rx;
  6298. read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
  6299. tx = widths >> 12;
  6300. rx = (widths >> 8) & 0xf;
  6301. *tx_width = link_width_to_bits(dd, tx);
  6302. *rx_width = link_width_to_bits(dd, rx);
  6303. /* print the active widths */
  6304. get_link_widths(dd, &active_tx, &active_rx);
  6305. }
  6306. /*
  6307. * Set ppd->link_width_active and ppd->link_width_downgrade_active using
  6308. * hardware information when the link first comes up.
  6309. *
  6310. * The link width is not available until after VerifyCap.AllFramesReceived
  6311. * (the trigger for handle_verify_cap), so this is outside that routine
  6312. * and should be called when the 8051 signals linkup.
  6313. */
  6314. void get_linkup_link_widths(struct hfi1_pportdata *ppd)
  6315. {
  6316. u16 tx_width, rx_width;
  6317. /* get end-of-LNI link widths */
  6318. get_linkup_widths(ppd->dd, &tx_width, &rx_width);
  6319. /* use tx_width as the link is supposed to be symmetric on link up */
  6320. ppd->link_width_active = tx_width;
  6321. /* link width downgrade active (LWD.A) starts out matching LW.A */
  6322. ppd->link_width_downgrade_tx_active = ppd->link_width_active;
  6323. ppd->link_width_downgrade_rx_active = ppd->link_width_active;
  6324. /* per OPA spec, on link up LWD.E resets to LWD.S */
  6325. ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
  6326. /* cache the active egress rate (units {10^6 bits/sec]) */
  6327. ppd->current_egress_rate = active_egress_rate(ppd);
  6328. }
  6329. /*
  6330. * Handle a verify capabilities interrupt from the 8051.
  6331. *
  6332. * This is a work-queue function outside of the interrupt.
  6333. */
  6334. void handle_verify_cap(struct work_struct *work)
  6335. {
  6336. struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
  6337. link_vc_work);
  6338. struct hfi1_devdata *dd = ppd->dd;
  6339. u64 reg;
  6340. u8 power_management;
  6341. u8 continious;
  6342. u8 vcu;
  6343. u8 vau;
  6344. u8 z;
  6345. u16 vl15buf;
  6346. u16 link_widths;
  6347. u16 crc_mask;
  6348. u16 crc_val;
  6349. u16 device_id;
  6350. u16 active_tx, active_rx;
  6351. u8 partner_supported_crc;
  6352. u8 remote_tx_rate;
  6353. u8 device_rev;
  6354. set_link_state(ppd, HLS_VERIFY_CAP);
  6355. lcb_shutdown(dd, 0);
  6356. adjust_lcb_for_fpga_serdes(dd);
  6357. /*
  6358. * These are now valid:
  6359. * remote VerifyCap fields in the general LNI config
  6360. * CSR DC8051_STS_REMOTE_GUID
  6361. * CSR DC8051_STS_REMOTE_NODE_TYPE
  6362. * CSR DC8051_STS_REMOTE_FM_SECURITY
  6363. * CSR DC8051_STS_REMOTE_PORT_NO
  6364. */
  6365. read_vc_remote_phy(dd, &power_management, &continious);
  6366. read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
  6367. &partner_supported_crc);
  6368. read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
  6369. read_remote_device_id(dd, &device_id, &device_rev);
  6370. /*
  6371. * And the 'MgmtAllowed' information, which is exchanged during
  6372. * LNI, is also be available at this point.
  6373. */
  6374. read_mgmt_allowed(dd, &ppd->mgmt_allowed);
  6375. /* print the active widths */
  6376. get_link_widths(dd, &active_tx, &active_rx);
  6377. dd_dev_info(dd,
  6378. "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
  6379. (int)power_management, (int)continious);
  6380. dd_dev_info(dd,
  6381. "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
  6382. (int)vau, (int)z, (int)vcu, (int)vl15buf,
  6383. (int)partner_supported_crc);
  6384. dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
  6385. (u32)remote_tx_rate, (u32)link_widths);
  6386. dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
  6387. (u32)device_id, (u32)device_rev);
  6388. /*
  6389. * The peer vAU value just read is the peer receiver value. HFI does
  6390. * not support a transmit vAU of 0 (AU == 8). We advertised that
  6391. * with Z=1 in the fabric capabilities sent to the peer. The peer
  6392. * will see our Z=1, and, if it advertised a vAU of 0, will move its
  6393. * receive to vAU of 1 (AU == 16). Do the same here. We do not care
  6394. * about the peer Z value - our sent vAU is 3 (hardwired) and is not
  6395. * subject to the Z value exception.
  6396. */
  6397. if (vau == 0)
  6398. vau = 1;
  6399. set_up_vl15(dd, vau, vl15buf);
  6400. /* set up the LCB CRC mode */
  6401. crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
  6402. /* order is important: use the lowest bit in common */
  6403. if (crc_mask & CAP_CRC_14B)
  6404. crc_val = LCB_CRC_14B;
  6405. else if (crc_mask & CAP_CRC_48B)
  6406. crc_val = LCB_CRC_48B;
  6407. else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
  6408. crc_val = LCB_CRC_12B_16B_PER_LANE;
  6409. else
  6410. crc_val = LCB_CRC_16B;
  6411. dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
  6412. write_csr(dd, DC_LCB_CFG_CRC_MODE,
  6413. (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
  6414. /* set (14b only) or clear sideband credit */
  6415. reg = read_csr(dd, SEND_CM_CTRL);
  6416. if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
  6417. write_csr(dd, SEND_CM_CTRL,
  6418. reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
  6419. } else {
  6420. write_csr(dd, SEND_CM_CTRL,
  6421. reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
  6422. }
  6423. ppd->link_speed_active = 0; /* invalid value */
  6424. if (dd->dc8051_ver < dc8051_ver(0, 20)) {
  6425. /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
  6426. switch (remote_tx_rate) {
  6427. case 0:
  6428. ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
  6429. break;
  6430. case 1:
  6431. ppd->link_speed_active = OPA_LINK_SPEED_25G;
  6432. break;
  6433. }
  6434. } else {
  6435. /* actual rate is highest bit of the ANDed rates */
  6436. u8 rate = remote_tx_rate & ppd->local_tx_rate;
  6437. if (rate & 2)
  6438. ppd->link_speed_active = OPA_LINK_SPEED_25G;
  6439. else if (rate & 1)
  6440. ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
  6441. }
  6442. if (ppd->link_speed_active == 0) {
  6443. dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
  6444. __func__, (int)remote_tx_rate);
  6445. ppd->link_speed_active = OPA_LINK_SPEED_25G;
  6446. }
  6447. /*
  6448. * Cache the values of the supported, enabled, and active
  6449. * LTP CRC modes to return in 'portinfo' queries. But the bit
  6450. * flags that are returned in the portinfo query differ from
  6451. * what's in the link_crc_mask, crc_sizes, and crc_val
  6452. * variables. Convert these here.
  6453. */
  6454. ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
  6455. /* supported crc modes */
  6456. ppd->port_ltp_crc_mode |=
  6457. cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
  6458. /* enabled crc modes */
  6459. ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
  6460. /* active crc mode */
  6461. /* set up the remote credit return table */
  6462. assign_remote_cm_au_table(dd, vcu);
  6463. /*
  6464. * The LCB is reset on entry to handle_verify_cap(), so this must
  6465. * be applied on every link up.
  6466. *
  6467. * Adjust LCB error kill enable to kill the link if
  6468. * these RBUF errors are seen:
  6469. * REPLAY_BUF_MBE_SMASK
  6470. * FLIT_INPUT_BUF_MBE_SMASK
  6471. */
  6472. if (is_ax(dd)) { /* fixed in B0 */
  6473. reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
  6474. reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
  6475. | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
  6476. write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
  6477. }
  6478. /* pull LCB fifos out of reset - all fifo clocks must be stable */
  6479. write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
  6480. /* give 8051 access to the LCB CSRs */
  6481. write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
  6482. set_8051_lcb_access(dd);
  6483. ppd->neighbor_guid =
  6484. read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
  6485. ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
  6486. DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
  6487. ppd->neighbor_type =
  6488. read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
  6489. DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
  6490. ppd->neighbor_fm_security =
  6491. read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
  6492. DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
  6493. dd_dev_info(dd,
  6494. "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
  6495. ppd->neighbor_guid, ppd->neighbor_type,
  6496. ppd->mgmt_allowed, ppd->neighbor_fm_security);
  6497. if (ppd->mgmt_allowed)
  6498. add_full_mgmt_pkey(ppd);
  6499. /* tell the 8051 to go to LinkUp */
  6500. set_link_state(ppd, HLS_GOING_UP);
  6501. }
  6502. /*
  6503. * Apply the link width downgrade enabled policy against the current active
  6504. * link widths.
  6505. *
  6506. * Called when the enabled policy changes or the active link widths change.
  6507. */
  6508. void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
  6509. {
  6510. int do_bounce = 0;
  6511. int tries;
  6512. u16 lwde;
  6513. u16 tx, rx;
  6514. /* use the hls lock to avoid a race with actual link up */
  6515. tries = 0;
  6516. retry:
  6517. mutex_lock(&ppd->hls_lock);
  6518. /* only apply if the link is up */
  6519. if (ppd->host_link_state & HLS_DOWN) {
  6520. /* still going up..wait and retry */
  6521. if (ppd->host_link_state & HLS_GOING_UP) {
  6522. if (++tries < 1000) {
  6523. mutex_unlock(&ppd->hls_lock);
  6524. usleep_range(100, 120); /* arbitrary */
  6525. goto retry;
  6526. }
  6527. dd_dev_err(ppd->dd,
  6528. "%s: giving up waiting for link state change\n",
  6529. __func__);
  6530. }
  6531. goto done;
  6532. }
  6533. lwde = ppd->link_width_downgrade_enabled;
  6534. if (refresh_widths) {
  6535. get_link_widths(ppd->dd, &tx, &rx);
  6536. ppd->link_width_downgrade_tx_active = tx;
  6537. ppd->link_width_downgrade_rx_active = rx;
  6538. }
  6539. if (ppd->link_width_downgrade_tx_active == 0 ||
  6540. ppd->link_width_downgrade_rx_active == 0) {
  6541. /* the 8051 reported a dead link as a downgrade */
  6542. dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
  6543. } else if (lwde == 0) {
  6544. /* downgrade is disabled */
  6545. /* bounce if not at starting active width */
  6546. if ((ppd->link_width_active !=
  6547. ppd->link_width_downgrade_tx_active) ||
  6548. (ppd->link_width_active !=
  6549. ppd->link_width_downgrade_rx_active)) {
  6550. dd_dev_err(ppd->dd,
  6551. "Link downgrade is disabled and link has downgraded, downing link\n");
  6552. dd_dev_err(ppd->dd,
  6553. " original 0x%x, tx active 0x%x, rx active 0x%x\n",
  6554. ppd->link_width_active,
  6555. ppd->link_width_downgrade_tx_active,
  6556. ppd->link_width_downgrade_rx_active);
  6557. do_bounce = 1;
  6558. }
  6559. } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
  6560. (lwde & ppd->link_width_downgrade_rx_active) == 0) {
  6561. /* Tx or Rx is outside the enabled policy */
  6562. dd_dev_err(ppd->dd,
  6563. "Link is outside of downgrade allowed, downing link\n");
  6564. dd_dev_err(ppd->dd,
  6565. " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
  6566. lwde, ppd->link_width_downgrade_tx_active,
  6567. ppd->link_width_downgrade_rx_active);
  6568. do_bounce = 1;
  6569. }
  6570. done:
  6571. mutex_unlock(&ppd->hls_lock);
  6572. if (do_bounce) {
  6573. set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
  6574. OPA_LINKDOWN_REASON_WIDTH_POLICY);
  6575. set_link_state(ppd, HLS_DN_OFFLINE);
  6576. start_link(ppd);
  6577. }
  6578. }
  6579. /*
  6580. * Handle a link downgrade interrupt from the 8051.
  6581. *
  6582. * This is a work-queue function outside of the interrupt.
  6583. */
  6584. void handle_link_downgrade(struct work_struct *work)
  6585. {
  6586. struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
  6587. link_downgrade_work);
  6588. dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
  6589. apply_link_downgrade_policy(ppd, 1);
  6590. }
  6591. static char *dcc_err_string(char *buf, int buf_len, u64 flags)
  6592. {
  6593. return flag_string(buf, buf_len, flags, dcc_err_flags,
  6594. ARRAY_SIZE(dcc_err_flags));
  6595. }
  6596. static char *lcb_err_string(char *buf, int buf_len, u64 flags)
  6597. {
  6598. return flag_string(buf, buf_len, flags, lcb_err_flags,
  6599. ARRAY_SIZE(lcb_err_flags));
  6600. }
  6601. static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
  6602. {
  6603. return flag_string(buf, buf_len, flags, dc8051_err_flags,
  6604. ARRAY_SIZE(dc8051_err_flags));
  6605. }
  6606. static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
  6607. {
  6608. return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
  6609. ARRAY_SIZE(dc8051_info_err_flags));
  6610. }
  6611. static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
  6612. {
  6613. return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
  6614. ARRAY_SIZE(dc8051_info_host_msg_flags));
  6615. }
  6616. static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
  6617. {
  6618. struct hfi1_pportdata *ppd = dd->pport;
  6619. u64 info, err, host_msg;
  6620. int queue_link_down = 0;
  6621. char buf[96];
  6622. /* look at the flags */
  6623. if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
  6624. /* 8051 information set by firmware */
  6625. /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
  6626. info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
  6627. err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
  6628. & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
  6629. host_msg = (info >>
  6630. DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
  6631. & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
  6632. /*
  6633. * Handle error flags.
  6634. */
  6635. if (err & FAILED_LNI) {
  6636. /*
  6637. * LNI error indications are cleared by the 8051
  6638. * only when starting polling. Only pay attention
  6639. * to them when in the states that occur during
  6640. * LNI.
  6641. */
  6642. if (ppd->host_link_state
  6643. & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
  6644. queue_link_down = 1;
  6645. dd_dev_info(dd, "Link error: %s\n",
  6646. dc8051_info_err_string(buf,
  6647. sizeof(buf),
  6648. err &
  6649. FAILED_LNI));
  6650. }
  6651. err &= ~(u64)FAILED_LNI;
  6652. }
  6653. /* unknown frames can happen durning LNI, just count */
  6654. if (err & UNKNOWN_FRAME) {
  6655. ppd->unknown_frame_count++;
  6656. err &= ~(u64)UNKNOWN_FRAME;
  6657. }
  6658. if (err) {
  6659. /* report remaining errors, but do not do anything */
  6660. dd_dev_err(dd, "8051 info error: %s\n",
  6661. dc8051_info_err_string(buf, sizeof(buf),
  6662. err));
  6663. }
  6664. /*
  6665. * Handle host message flags.
  6666. */
  6667. if (host_msg & HOST_REQ_DONE) {
  6668. /*
  6669. * Presently, the driver does a busy wait for
  6670. * host requests to complete. This is only an
  6671. * informational message.
  6672. * NOTE: The 8051 clears the host message
  6673. * information *on the next 8051 command*.
  6674. * Therefore, when linkup is achieved,
  6675. * this flag will still be set.
  6676. */
  6677. host_msg &= ~(u64)HOST_REQ_DONE;
  6678. }
  6679. if (host_msg & BC_SMA_MSG) {
  6680. queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
  6681. host_msg &= ~(u64)BC_SMA_MSG;
  6682. }
  6683. if (host_msg & LINKUP_ACHIEVED) {
  6684. dd_dev_info(dd, "8051: Link up\n");
  6685. queue_work(ppd->hfi1_wq, &ppd->link_up_work);
  6686. host_msg &= ~(u64)LINKUP_ACHIEVED;
  6687. }
  6688. if (host_msg & EXT_DEVICE_CFG_REQ) {
  6689. handle_8051_request(ppd);
  6690. host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
  6691. }
  6692. if (host_msg & VERIFY_CAP_FRAME) {
  6693. queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
  6694. host_msg &= ~(u64)VERIFY_CAP_FRAME;
  6695. }
  6696. if (host_msg & LINK_GOING_DOWN) {
  6697. const char *extra = "";
  6698. /* no downgrade action needed if going down */
  6699. if (host_msg & LINK_WIDTH_DOWNGRADED) {
  6700. host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
  6701. extra = " (ignoring downgrade)";
  6702. }
  6703. dd_dev_info(dd, "8051: Link down%s\n", extra);
  6704. queue_link_down = 1;
  6705. host_msg &= ~(u64)LINK_GOING_DOWN;
  6706. }
  6707. if (host_msg & LINK_WIDTH_DOWNGRADED) {
  6708. queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
  6709. host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
  6710. }
  6711. if (host_msg) {
  6712. /* report remaining messages, but do not do anything */
  6713. dd_dev_info(dd, "8051 info host message: %s\n",
  6714. dc8051_info_host_msg_string(buf,
  6715. sizeof(buf),
  6716. host_msg));
  6717. }
  6718. reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
  6719. }
  6720. if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
  6721. /*
  6722. * Lost the 8051 heartbeat. If this happens, we
  6723. * receive constant interrupts about it. Disable
  6724. * the interrupt after the first.
  6725. */
  6726. dd_dev_err(dd, "Lost 8051 heartbeat\n");
  6727. write_csr(dd, DC_DC8051_ERR_EN,
  6728. read_csr(dd, DC_DC8051_ERR_EN) &
  6729. ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
  6730. reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
  6731. }
  6732. if (reg) {
  6733. /* report the error, but do not do anything */
  6734. dd_dev_err(dd, "8051 error: %s\n",
  6735. dc8051_err_string(buf, sizeof(buf), reg));
  6736. }
  6737. if (queue_link_down) {
  6738. /*
  6739. * if the link is already going down or disabled, do not
  6740. * queue another
  6741. */
  6742. if ((ppd->host_link_state &
  6743. (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
  6744. ppd->link_enabled == 0) {
  6745. dd_dev_info(dd, "%s: not queuing link down\n",
  6746. __func__);
  6747. } else {
  6748. queue_work(ppd->hfi1_wq, &ppd->link_down_work);
  6749. }
  6750. }
  6751. }
  6752. static const char * const fm_config_txt[] = {
  6753. [0] =
  6754. "BadHeadDist: Distance violation between two head flits",
  6755. [1] =
  6756. "BadTailDist: Distance violation between two tail flits",
  6757. [2] =
  6758. "BadCtrlDist: Distance violation between two credit control flits",
  6759. [3] =
  6760. "BadCrdAck: Credits return for unsupported VL",
  6761. [4] =
  6762. "UnsupportedVLMarker: Received VL Marker",
  6763. [5] =
  6764. "BadPreempt: Exceeded the preemption nesting level",
  6765. [6] =
  6766. "BadControlFlit: Received unsupported control flit",
  6767. /* no 7 */
  6768. [8] =
  6769. "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
  6770. };
  6771. static const char * const port_rcv_txt[] = {
  6772. [1] =
  6773. "BadPktLen: Illegal PktLen",
  6774. [2] =
  6775. "PktLenTooLong: Packet longer than PktLen",
  6776. [3] =
  6777. "PktLenTooShort: Packet shorter than PktLen",
  6778. [4] =
  6779. "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
  6780. [5] =
  6781. "BadDLID: Illegal DLID (0, doesn't match HFI)",
  6782. [6] =
  6783. "BadL2: Illegal L2 opcode",
  6784. [7] =
  6785. "BadSC: Unsupported SC",
  6786. [9] =
  6787. "BadRC: Illegal RC",
  6788. [11] =
  6789. "PreemptError: Preempting with same VL",
  6790. [12] =
  6791. "PreemptVL15: Preempting a VL15 packet",
  6792. };
  6793. #define OPA_LDR_FMCONFIG_OFFSET 16
  6794. #define OPA_LDR_PORTRCV_OFFSET 0
  6795. static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
  6796. {
  6797. u64 info, hdr0, hdr1;
  6798. const char *extra;
  6799. char buf[96];
  6800. struct hfi1_pportdata *ppd = dd->pport;
  6801. u8 lcl_reason = 0;
  6802. int do_bounce = 0;
  6803. if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
  6804. if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
  6805. info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
  6806. dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
  6807. /* set status bit */
  6808. dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
  6809. }
  6810. reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
  6811. }
  6812. if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
  6813. struct hfi1_pportdata *ppd = dd->pport;
  6814. /* this counter saturates at (2^32) - 1 */
  6815. if (ppd->link_downed < (u32)UINT_MAX)
  6816. ppd->link_downed++;
  6817. reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
  6818. }
  6819. if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
  6820. u8 reason_valid = 1;
  6821. info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
  6822. if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
  6823. dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
  6824. /* set status bit */
  6825. dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
  6826. }
  6827. switch (info) {
  6828. case 0:
  6829. case 1:
  6830. case 2:
  6831. case 3:
  6832. case 4:
  6833. case 5:
  6834. case 6:
  6835. extra = fm_config_txt[info];
  6836. break;
  6837. case 8:
  6838. extra = fm_config_txt[info];
  6839. if (ppd->port_error_action &
  6840. OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
  6841. do_bounce = 1;
  6842. /*
  6843. * lcl_reason cannot be derived from info
  6844. * for this error
  6845. */
  6846. lcl_reason =
  6847. OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
  6848. }
  6849. break;
  6850. default:
  6851. reason_valid = 0;
  6852. snprintf(buf, sizeof(buf), "reserved%lld", info);
  6853. extra = buf;
  6854. break;
  6855. }
  6856. if (reason_valid && !do_bounce) {
  6857. do_bounce = ppd->port_error_action &
  6858. (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
  6859. lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
  6860. }
  6861. /* just report this */
  6862. dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
  6863. extra);
  6864. reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
  6865. }
  6866. if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
  6867. u8 reason_valid = 1;
  6868. info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
  6869. hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
  6870. hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
  6871. if (!(dd->err_info_rcvport.status_and_code &
  6872. OPA_EI_STATUS_SMASK)) {
  6873. dd->err_info_rcvport.status_and_code =
  6874. info & OPA_EI_CODE_SMASK;
  6875. /* set status bit */
  6876. dd->err_info_rcvport.status_and_code |=
  6877. OPA_EI_STATUS_SMASK;
  6878. /*
  6879. * save first 2 flits in the packet that caused
  6880. * the error
  6881. */
  6882. dd->err_info_rcvport.packet_flit1 = hdr0;
  6883. dd->err_info_rcvport.packet_flit2 = hdr1;
  6884. }
  6885. switch (info) {
  6886. case 1:
  6887. case 2:
  6888. case 3:
  6889. case 4:
  6890. case 5:
  6891. case 6:
  6892. case 7:
  6893. case 9:
  6894. case 11:
  6895. case 12:
  6896. extra = port_rcv_txt[info];
  6897. break;
  6898. default:
  6899. reason_valid = 0;
  6900. snprintf(buf, sizeof(buf), "reserved%lld", info);
  6901. extra = buf;
  6902. break;
  6903. }
  6904. if (reason_valid && !do_bounce) {
  6905. do_bounce = ppd->port_error_action &
  6906. (1 << (OPA_LDR_PORTRCV_OFFSET + info));
  6907. lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
  6908. }
  6909. /* just report this */
  6910. dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
  6911. " hdr0 0x%llx, hdr1 0x%llx\n",
  6912. extra, hdr0, hdr1);
  6913. reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
  6914. }
  6915. if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
  6916. /* informative only */
  6917. dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
  6918. reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
  6919. }
  6920. if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
  6921. /* informative only */
  6922. dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
  6923. reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
  6924. }
  6925. /* report any remaining errors */
  6926. if (reg)
  6927. dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
  6928. dcc_err_string(buf, sizeof(buf), reg));
  6929. if (lcl_reason == 0)
  6930. lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
  6931. if (do_bounce) {
  6932. dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
  6933. __func__);
  6934. set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
  6935. queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
  6936. }
  6937. }
  6938. static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
  6939. {
  6940. char buf[96];
  6941. dd_dev_info(dd, "LCB Error: %s\n",
  6942. lcb_err_string(buf, sizeof(buf), reg));
  6943. }
  6944. /*
  6945. * CCE block DC interrupt. Source is < 8.
  6946. */
  6947. static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
  6948. {
  6949. const struct err_reg_info *eri = &dc_errs[source];
  6950. if (eri->handler) {
  6951. interrupt_clear_down(dd, 0, eri);
  6952. } else if (source == 3 /* dc_lbm_int */) {
  6953. /*
  6954. * This indicates that a parity error has occurred on the
  6955. * address/control lines presented to the LBM. The error
  6956. * is a single pulse, there is no associated error flag,
  6957. * and it is non-maskable. This is because if a parity
  6958. * error occurs on the request the request is dropped.
  6959. * This should never occur, but it is nice to know if it
  6960. * ever does.
  6961. */
  6962. dd_dev_err(dd, "Parity error in DC LBM block\n");
  6963. } else {
  6964. dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
  6965. }
  6966. }
  6967. /*
  6968. * TX block send credit interrupt. Source is < 160.
  6969. */
  6970. static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
  6971. {
  6972. sc_group_release_update(dd, source);
  6973. }
  6974. /*
  6975. * TX block SDMA interrupt. Source is < 48.
  6976. *
  6977. * SDMA interrupts are grouped by type:
  6978. *
  6979. * 0 - N-1 = SDma
  6980. * N - 2N-1 = SDmaProgress
  6981. * 2N - 3N-1 = SDmaIdle
  6982. */
  6983. static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
  6984. {
  6985. /* what interrupt */
  6986. unsigned int what = source / TXE_NUM_SDMA_ENGINES;
  6987. /* which engine */
  6988. unsigned int which = source % TXE_NUM_SDMA_ENGINES;
  6989. #ifdef CONFIG_SDMA_VERBOSITY
  6990. dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
  6991. slashstrip(__FILE__), __LINE__, __func__);
  6992. sdma_dumpstate(&dd->per_sdma[which]);
  6993. #endif
  6994. if (likely(what < 3 && which < dd->num_sdma)) {
  6995. sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
  6996. } else {
  6997. /* should not happen */
  6998. dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
  6999. }
  7000. }
  7001. /*
  7002. * RX block receive available interrupt. Source is < 160.
  7003. */
  7004. static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
  7005. {
  7006. struct hfi1_ctxtdata *rcd;
  7007. char *err_detail;
  7008. if (likely(source < dd->num_rcv_contexts)) {
  7009. rcd = dd->rcd[source];
  7010. if (rcd) {
  7011. if (source < dd->first_user_ctxt)
  7012. rcd->do_interrupt(rcd, 0);
  7013. else
  7014. handle_user_interrupt(rcd);
  7015. return; /* OK */
  7016. }
  7017. /* received an interrupt, but no rcd */
  7018. err_detail = "dataless";
  7019. } else {
  7020. /* received an interrupt, but are not using that context */
  7021. err_detail = "out of range";
  7022. }
  7023. dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
  7024. err_detail, source);
  7025. }
  7026. /*
  7027. * RX block receive urgent interrupt. Source is < 160.
  7028. */
  7029. static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
  7030. {
  7031. struct hfi1_ctxtdata *rcd;
  7032. char *err_detail;
  7033. if (likely(source < dd->num_rcv_contexts)) {
  7034. rcd = dd->rcd[source];
  7035. if (rcd) {
  7036. /* only pay attention to user urgent interrupts */
  7037. if (source >= dd->first_user_ctxt)
  7038. handle_user_interrupt(rcd);
  7039. return; /* OK */
  7040. }
  7041. /* received an interrupt, but no rcd */
  7042. err_detail = "dataless";
  7043. } else {
  7044. /* received an interrupt, but are not using that context */
  7045. err_detail = "out of range";
  7046. }
  7047. dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
  7048. err_detail, source);
  7049. }
  7050. /*
  7051. * Reserved range interrupt. Should not be called in normal operation.
  7052. */
  7053. static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
  7054. {
  7055. char name[64];
  7056. dd_dev_err(dd, "unexpected %s interrupt\n",
  7057. is_reserved_name(name, sizeof(name), source));
  7058. }
  7059. static const struct is_table is_table[] = {
  7060. /*
  7061. * start end
  7062. * name func interrupt func
  7063. */
  7064. { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
  7065. is_misc_err_name, is_misc_err_int },
  7066. { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
  7067. is_sdma_eng_err_name, is_sdma_eng_err_int },
  7068. { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
  7069. is_sendctxt_err_name, is_sendctxt_err_int },
  7070. { IS_SDMA_START, IS_SDMA_END,
  7071. is_sdma_eng_name, is_sdma_eng_int },
  7072. { IS_VARIOUS_START, IS_VARIOUS_END,
  7073. is_various_name, is_various_int },
  7074. { IS_DC_START, IS_DC_END,
  7075. is_dc_name, is_dc_int },
  7076. { IS_RCVAVAIL_START, IS_RCVAVAIL_END,
  7077. is_rcv_avail_name, is_rcv_avail_int },
  7078. { IS_RCVURGENT_START, IS_RCVURGENT_END,
  7079. is_rcv_urgent_name, is_rcv_urgent_int },
  7080. { IS_SENDCREDIT_START, IS_SENDCREDIT_END,
  7081. is_send_credit_name, is_send_credit_int},
  7082. { IS_RESERVED_START, IS_RESERVED_END,
  7083. is_reserved_name, is_reserved_int},
  7084. };
  7085. /*
  7086. * Interrupt source interrupt - called when the given source has an interrupt.
  7087. * Source is a bit index into an array of 64-bit integers.
  7088. */
  7089. static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
  7090. {
  7091. const struct is_table *entry;
  7092. /* avoids a double compare by walking the table in-order */
  7093. for (entry = &is_table[0]; entry->is_name; entry++) {
  7094. if (source < entry->end) {
  7095. trace_hfi1_interrupt(dd, entry, source);
  7096. entry->is_int(dd, source - entry->start);
  7097. return;
  7098. }
  7099. }
  7100. /* fell off the end */
  7101. dd_dev_err(dd, "invalid interrupt source %u\n", source);
  7102. }
  7103. /*
  7104. * General interrupt handler. This is able to correctly handle
  7105. * all interrupts in case INTx is used.
  7106. */
  7107. static irqreturn_t general_interrupt(int irq, void *data)
  7108. {
  7109. struct hfi1_devdata *dd = data;
  7110. u64 regs[CCE_NUM_INT_CSRS];
  7111. u32 bit;
  7112. int i;
  7113. this_cpu_inc(*dd->int_counter);
  7114. /* phase 1: scan and clear all handled interrupts */
  7115. for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
  7116. if (dd->gi_mask[i] == 0) {
  7117. regs[i] = 0; /* used later */
  7118. continue;
  7119. }
  7120. regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
  7121. dd->gi_mask[i];
  7122. /* only clear if anything is set */
  7123. if (regs[i])
  7124. write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
  7125. }
  7126. /* phase 2: call the appropriate handler */
  7127. for_each_set_bit(bit, (unsigned long *)&regs[0],
  7128. CCE_NUM_INT_CSRS * 64) {
  7129. is_interrupt(dd, bit);
  7130. }
  7131. return IRQ_HANDLED;
  7132. }
  7133. static irqreturn_t sdma_interrupt(int irq, void *data)
  7134. {
  7135. struct sdma_engine *sde = data;
  7136. struct hfi1_devdata *dd = sde->dd;
  7137. u64 status;
  7138. #ifdef CONFIG_SDMA_VERBOSITY
  7139. dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
  7140. slashstrip(__FILE__), __LINE__, __func__);
  7141. sdma_dumpstate(sde);
  7142. #endif
  7143. this_cpu_inc(*dd->int_counter);
  7144. /* This read_csr is really bad in the hot path */
  7145. status = read_csr(dd,
  7146. CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
  7147. & sde->imask;
  7148. if (likely(status)) {
  7149. /* clear the interrupt(s) */
  7150. write_csr(dd,
  7151. CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
  7152. status);
  7153. /* handle the interrupt(s) */
  7154. sdma_engine_interrupt(sde, status);
  7155. } else
  7156. dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
  7157. sde->this_idx);
  7158. return IRQ_HANDLED;
  7159. }
  7160. /*
  7161. * Clear the receive interrupt. Use a read of the interrupt clear CSR
  7162. * to insure that the write completed. This does NOT guarantee that
  7163. * queued DMA writes to memory from the chip are pushed.
  7164. */
  7165. static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
  7166. {
  7167. struct hfi1_devdata *dd = rcd->dd;
  7168. u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
  7169. mmiowb(); /* make sure everything before is written */
  7170. write_csr(dd, addr, rcd->imask);
  7171. /* force the above write on the chip and get a value back */
  7172. (void)read_csr(dd, addr);
  7173. }
  7174. /* force the receive interrupt */
  7175. void force_recv_intr(struct hfi1_ctxtdata *rcd)
  7176. {
  7177. write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
  7178. }
  7179. /*
  7180. * Return non-zero if a packet is present.
  7181. *
  7182. * This routine is called when rechecking for packets after the RcvAvail
  7183. * interrupt has been cleared down. First, do a quick check of memory for
  7184. * a packet present. If not found, use an expensive CSR read of the context
  7185. * tail to determine the actual tail. The CSR read is necessary because there
  7186. * is no method to push pending DMAs to memory other than an interrupt and we
  7187. * are trying to determine if we need to force an interrupt.
  7188. */
  7189. static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
  7190. {
  7191. u32 tail;
  7192. int present;
  7193. if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
  7194. present = (rcd->seq_cnt ==
  7195. rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
  7196. else /* is RDMA rtail */
  7197. present = (rcd->head != get_rcvhdrtail(rcd));
  7198. if (present)
  7199. return 1;
  7200. /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
  7201. tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
  7202. return rcd->head != tail;
  7203. }
  7204. /*
  7205. * Receive packet IRQ handler. This routine expects to be on its own IRQ.
  7206. * This routine will try to handle packets immediately (latency), but if
  7207. * it finds too many, it will invoke the thread handler (bandwitdh). The
  7208. * chip receive interrupt is *not* cleared down until this or the thread (if
  7209. * invoked) is finished. The intent is to avoid extra interrupts while we
  7210. * are processing packets anyway.
  7211. */
  7212. static irqreturn_t receive_context_interrupt(int irq, void *data)
  7213. {
  7214. struct hfi1_ctxtdata *rcd = data;
  7215. struct hfi1_devdata *dd = rcd->dd;
  7216. int disposition;
  7217. int present;
  7218. trace_hfi1_receive_interrupt(dd, rcd->ctxt);
  7219. this_cpu_inc(*dd->int_counter);
  7220. aspm_ctx_disable(rcd);
  7221. /* receive interrupt remains blocked while processing packets */
  7222. disposition = rcd->do_interrupt(rcd, 0);
  7223. /*
  7224. * Too many packets were seen while processing packets in this
  7225. * IRQ handler. Invoke the handler thread. The receive interrupt
  7226. * remains blocked.
  7227. */
  7228. if (disposition == RCV_PKT_LIMIT)
  7229. return IRQ_WAKE_THREAD;
  7230. /*
  7231. * The packet processor detected no more packets. Clear the receive
  7232. * interrupt and recheck for a packet packet that may have arrived
  7233. * after the previous check and interrupt clear. If a packet arrived,
  7234. * force another interrupt.
  7235. */
  7236. clear_recv_intr(rcd);
  7237. present = check_packet_present(rcd);
  7238. if (present)
  7239. force_recv_intr(rcd);
  7240. return IRQ_HANDLED;
  7241. }
  7242. /*
  7243. * Receive packet thread handler. This expects to be invoked with the
  7244. * receive interrupt still blocked.
  7245. */
  7246. static irqreturn_t receive_context_thread(int irq, void *data)
  7247. {
  7248. struct hfi1_ctxtdata *rcd = data;
  7249. int present;
  7250. /* receive interrupt is still blocked from the IRQ handler */
  7251. (void)rcd->do_interrupt(rcd, 1);
  7252. /*
  7253. * The packet processor will only return if it detected no more
  7254. * packets. Hold IRQs here so we can safely clear the interrupt and
  7255. * recheck for a packet that may have arrived after the previous
  7256. * check and the interrupt clear. If a packet arrived, force another
  7257. * interrupt.
  7258. */
  7259. local_irq_disable();
  7260. clear_recv_intr(rcd);
  7261. present = check_packet_present(rcd);
  7262. if (present)
  7263. force_recv_intr(rcd);
  7264. local_irq_enable();
  7265. return IRQ_HANDLED;
  7266. }
  7267. /* ========================================================================= */
  7268. u32 read_physical_state(struct hfi1_devdata *dd)
  7269. {
  7270. u64 reg;
  7271. reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
  7272. return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
  7273. & DC_DC8051_STS_CUR_STATE_PORT_MASK;
  7274. }
  7275. u32 read_logical_state(struct hfi1_devdata *dd)
  7276. {
  7277. u64 reg;
  7278. reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
  7279. return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
  7280. & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
  7281. }
  7282. static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
  7283. {
  7284. u64 reg;
  7285. reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
  7286. /* clear current state, set new state */
  7287. reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
  7288. reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
  7289. write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
  7290. }
  7291. /*
  7292. * Use the 8051 to read a LCB CSR.
  7293. */
  7294. static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
  7295. {
  7296. u32 regno;
  7297. int ret;
  7298. if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
  7299. if (acquire_lcb_access(dd, 0) == 0) {
  7300. *data = read_csr(dd, addr);
  7301. release_lcb_access(dd, 0);
  7302. return 0;
  7303. }
  7304. return -EBUSY;
  7305. }
  7306. /* register is an index of LCB registers: (offset - base) / 8 */
  7307. regno = (addr - DC_LCB_CFG_RUN) >> 3;
  7308. ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
  7309. if (ret != HCMD_SUCCESS)
  7310. return -EBUSY;
  7311. return 0;
  7312. }
  7313. /*
  7314. * Read an LCB CSR. Access may not be in host control, so check.
  7315. * Return 0 on success, -EBUSY on failure.
  7316. */
  7317. int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
  7318. {
  7319. struct hfi1_pportdata *ppd = dd->pport;
  7320. /* if up, go through the 8051 for the value */
  7321. if (ppd->host_link_state & HLS_UP)
  7322. return read_lcb_via_8051(dd, addr, data);
  7323. /* if going up or down, no access */
  7324. if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
  7325. return -EBUSY;
  7326. /* otherwise, host has access */
  7327. *data = read_csr(dd, addr);
  7328. return 0;
  7329. }
  7330. /*
  7331. * Use the 8051 to write a LCB CSR.
  7332. */
  7333. static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
  7334. {
  7335. u32 regno;
  7336. int ret;
  7337. if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
  7338. (dd->dc8051_ver < dc8051_ver(0, 20))) {
  7339. if (acquire_lcb_access(dd, 0) == 0) {
  7340. write_csr(dd, addr, data);
  7341. release_lcb_access(dd, 0);
  7342. return 0;
  7343. }
  7344. return -EBUSY;
  7345. }
  7346. /* register is an index of LCB registers: (offset - base) / 8 */
  7347. regno = (addr - DC_LCB_CFG_RUN) >> 3;
  7348. ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
  7349. if (ret != HCMD_SUCCESS)
  7350. return -EBUSY;
  7351. return 0;
  7352. }
  7353. /*
  7354. * Write an LCB CSR. Access may not be in host control, so check.
  7355. * Return 0 on success, -EBUSY on failure.
  7356. */
  7357. int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
  7358. {
  7359. struct hfi1_pportdata *ppd = dd->pport;
  7360. /* if up, go through the 8051 for the value */
  7361. if (ppd->host_link_state & HLS_UP)
  7362. return write_lcb_via_8051(dd, addr, data);
  7363. /* if going up or down, no access */
  7364. if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
  7365. return -EBUSY;
  7366. /* otherwise, host has access */
  7367. write_csr(dd, addr, data);
  7368. return 0;
  7369. }
  7370. /*
  7371. * Returns:
  7372. * < 0 = Linux error, not able to get access
  7373. * > 0 = 8051 command RETURN_CODE
  7374. */
  7375. static int do_8051_command(
  7376. struct hfi1_devdata *dd,
  7377. u32 type,
  7378. u64 in_data,
  7379. u64 *out_data)
  7380. {
  7381. u64 reg, completed;
  7382. int return_code;
  7383. unsigned long flags;
  7384. unsigned long timeout;
  7385. hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
  7386. /*
  7387. * Alternative to holding the lock for a long time:
  7388. * - keep busy wait - have other users bounce off
  7389. */
  7390. spin_lock_irqsave(&dd->dc8051_lock, flags);
  7391. /* We can't send any commands to the 8051 if it's in reset */
  7392. if (dd->dc_shutdown) {
  7393. return_code = -ENODEV;
  7394. goto fail;
  7395. }
  7396. /*
  7397. * If an 8051 host command timed out previously, then the 8051 is
  7398. * stuck.
  7399. *
  7400. * On first timeout, attempt to reset and restart the entire DC
  7401. * block (including 8051). (Is this too big of a hammer?)
  7402. *
  7403. * If the 8051 times out a second time, the reset did not bring it
  7404. * back to healthy life. In that case, fail any subsequent commands.
  7405. */
  7406. if (dd->dc8051_timed_out) {
  7407. if (dd->dc8051_timed_out > 1) {
  7408. dd_dev_err(dd,
  7409. "Previous 8051 host command timed out, skipping command %u\n",
  7410. type);
  7411. return_code = -ENXIO;
  7412. goto fail;
  7413. }
  7414. spin_unlock_irqrestore(&dd->dc8051_lock, flags);
  7415. dc_shutdown(dd);
  7416. dc_start(dd);
  7417. spin_lock_irqsave(&dd->dc8051_lock, flags);
  7418. }
  7419. /*
  7420. * If there is no timeout, then the 8051 command interface is
  7421. * waiting for a command.
  7422. */
  7423. /*
  7424. * When writing a LCB CSR, out_data contains the full value to
  7425. * to be written, while in_data contains the relative LCB
  7426. * address in 7:0. Do the work here, rather than the caller,
  7427. * of distrubting the write data to where it needs to go:
  7428. *
  7429. * Write data
  7430. * 39:00 -> in_data[47:8]
  7431. * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
  7432. * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
  7433. */
  7434. if (type == HCMD_WRITE_LCB_CSR) {
  7435. in_data |= ((*out_data) & 0xffffffffffull) << 8;
  7436. /* must preserve COMPLETED - it is tied to hardware */
  7437. reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
  7438. reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
  7439. reg |= ((((*out_data) >> 40) & 0xff) <<
  7440. DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
  7441. | ((((*out_data) >> 48) & 0xffff) <<
  7442. DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
  7443. write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
  7444. }
  7445. /*
  7446. * Do two writes: the first to stabilize the type and req_data, the
  7447. * second to activate.
  7448. */
  7449. reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
  7450. << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
  7451. | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
  7452. << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
  7453. write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
  7454. reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
  7455. write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
  7456. /* wait for completion, alternate: interrupt */
  7457. timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
  7458. while (1) {
  7459. reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
  7460. completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
  7461. if (completed)
  7462. break;
  7463. if (time_after(jiffies, timeout)) {
  7464. dd->dc8051_timed_out++;
  7465. dd_dev_err(dd, "8051 host command %u timeout\n", type);
  7466. if (out_data)
  7467. *out_data = 0;
  7468. return_code = -ETIMEDOUT;
  7469. goto fail;
  7470. }
  7471. udelay(2);
  7472. }
  7473. if (out_data) {
  7474. *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
  7475. & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
  7476. if (type == HCMD_READ_LCB_CSR) {
  7477. /* top 16 bits are in a different register */
  7478. *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
  7479. & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
  7480. << (48
  7481. - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
  7482. }
  7483. }
  7484. return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
  7485. & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
  7486. dd->dc8051_timed_out = 0;
  7487. /*
  7488. * Clear command for next user.
  7489. */
  7490. write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
  7491. fail:
  7492. spin_unlock_irqrestore(&dd->dc8051_lock, flags);
  7493. return return_code;
  7494. }
  7495. static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
  7496. {
  7497. return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
  7498. }
  7499. int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
  7500. u8 lane_id, u32 config_data)
  7501. {
  7502. u64 data;
  7503. int ret;
  7504. data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
  7505. | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
  7506. | (u64)config_data << LOAD_DATA_DATA_SHIFT;
  7507. ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
  7508. if (ret != HCMD_SUCCESS) {
  7509. dd_dev_err(dd,
  7510. "load 8051 config: field id %d, lane %d, err %d\n",
  7511. (int)field_id, (int)lane_id, ret);
  7512. }
  7513. return ret;
  7514. }
  7515. /*
  7516. * Read the 8051 firmware "registers". Use the RAM directly. Always
  7517. * set the result, even on error.
  7518. * Return 0 on success, -errno on failure
  7519. */
  7520. int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
  7521. u32 *result)
  7522. {
  7523. u64 big_data;
  7524. u32 addr;
  7525. int ret;
  7526. /* address start depends on the lane_id */
  7527. if (lane_id < 4)
  7528. addr = (4 * NUM_GENERAL_FIELDS)
  7529. + (lane_id * 4 * NUM_LANE_FIELDS);
  7530. else
  7531. addr = 0;
  7532. addr += field_id * 4;
  7533. /* read is in 8-byte chunks, hardware will truncate the address down */
  7534. ret = read_8051_data(dd, addr, 8, &big_data);
  7535. if (ret == 0) {
  7536. /* extract the 4 bytes we want */
  7537. if (addr & 0x4)
  7538. *result = (u32)(big_data >> 32);
  7539. else
  7540. *result = (u32)big_data;
  7541. } else {
  7542. *result = 0;
  7543. dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
  7544. __func__, lane_id, field_id);
  7545. }
  7546. return ret;
  7547. }
  7548. static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
  7549. u8 continuous)
  7550. {
  7551. u32 frame;
  7552. frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
  7553. | power_management << POWER_MANAGEMENT_SHIFT;
  7554. return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
  7555. GENERAL_CONFIG, frame);
  7556. }
  7557. static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
  7558. u16 vl15buf, u8 crc_sizes)
  7559. {
  7560. u32 frame;
  7561. frame = (u32)vau << VAU_SHIFT
  7562. | (u32)z << Z_SHIFT
  7563. | (u32)vcu << VCU_SHIFT
  7564. | (u32)vl15buf << VL15BUF_SHIFT
  7565. | (u32)crc_sizes << CRC_SIZES_SHIFT;
  7566. return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
  7567. GENERAL_CONFIG, frame);
  7568. }
  7569. static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
  7570. u8 *flag_bits, u16 *link_widths)
  7571. {
  7572. u32 frame;
  7573. read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
  7574. &frame);
  7575. *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
  7576. *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
  7577. *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
  7578. }
  7579. static int write_vc_local_link_width(struct hfi1_devdata *dd,
  7580. u8 misc_bits,
  7581. u8 flag_bits,
  7582. u16 link_widths)
  7583. {
  7584. u32 frame;
  7585. frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
  7586. | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
  7587. | (u32)link_widths << LINK_WIDTH_SHIFT;
  7588. return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
  7589. frame);
  7590. }
  7591. static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
  7592. u8 device_rev)
  7593. {
  7594. u32 frame;
  7595. frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
  7596. | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
  7597. return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
  7598. }
  7599. static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
  7600. u8 *device_rev)
  7601. {
  7602. u32 frame;
  7603. read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
  7604. *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
  7605. *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
  7606. & REMOTE_DEVICE_REV_MASK;
  7607. }
  7608. void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
  7609. {
  7610. u32 frame;
  7611. read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
  7612. *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
  7613. *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
  7614. }
  7615. static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
  7616. u8 *continuous)
  7617. {
  7618. u32 frame;
  7619. read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
  7620. *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
  7621. & POWER_MANAGEMENT_MASK;
  7622. *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
  7623. & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
  7624. }
  7625. static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
  7626. u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
  7627. {
  7628. u32 frame;
  7629. read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
  7630. *vau = (frame >> VAU_SHIFT) & VAU_MASK;
  7631. *z = (frame >> Z_SHIFT) & Z_MASK;
  7632. *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
  7633. *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
  7634. *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
  7635. }
  7636. static void read_vc_remote_link_width(struct hfi1_devdata *dd,
  7637. u8 *remote_tx_rate,
  7638. u16 *link_widths)
  7639. {
  7640. u32 frame;
  7641. read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
  7642. &frame);
  7643. *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
  7644. & REMOTE_TX_RATE_MASK;
  7645. *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
  7646. }
  7647. static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
  7648. {
  7649. u32 frame;
  7650. read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
  7651. *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
  7652. }
  7653. static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
  7654. {
  7655. u32 frame;
  7656. read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
  7657. *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
  7658. }
  7659. static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
  7660. {
  7661. read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
  7662. }
  7663. static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
  7664. {
  7665. read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
  7666. }
  7667. void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
  7668. {
  7669. u32 frame;
  7670. int ret;
  7671. *link_quality = 0;
  7672. if (dd->pport->host_link_state & HLS_UP) {
  7673. ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
  7674. &frame);
  7675. if (ret == 0)
  7676. *link_quality = (frame >> LINK_QUALITY_SHIFT)
  7677. & LINK_QUALITY_MASK;
  7678. }
  7679. }
  7680. static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
  7681. {
  7682. u32 frame;
  7683. read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
  7684. *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
  7685. }
  7686. static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
  7687. {
  7688. u32 frame;
  7689. read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
  7690. *ldr = (frame & 0xff);
  7691. }
  7692. static int read_tx_settings(struct hfi1_devdata *dd,
  7693. u8 *enable_lane_tx,
  7694. u8 *tx_polarity_inversion,
  7695. u8 *rx_polarity_inversion,
  7696. u8 *max_rate)
  7697. {
  7698. u32 frame;
  7699. int ret;
  7700. ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
  7701. *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
  7702. & ENABLE_LANE_TX_MASK;
  7703. *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
  7704. & TX_POLARITY_INVERSION_MASK;
  7705. *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
  7706. & RX_POLARITY_INVERSION_MASK;
  7707. *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
  7708. return ret;
  7709. }
  7710. static int write_tx_settings(struct hfi1_devdata *dd,
  7711. u8 enable_lane_tx,
  7712. u8 tx_polarity_inversion,
  7713. u8 rx_polarity_inversion,
  7714. u8 max_rate)
  7715. {
  7716. u32 frame;
  7717. /* no need to mask, all variable sizes match field widths */
  7718. frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
  7719. | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
  7720. | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
  7721. | max_rate << MAX_RATE_SHIFT;
  7722. return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
  7723. }
  7724. /*
  7725. * Read an idle LCB message.
  7726. *
  7727. * Returns 0 on success, -EINVAL on error
  7728. */
  7729. static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
  7730. {
  7731. int ret;
  7732. ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
  7733. if (ret != HCMD_SUCCESS) {
  7734. dd_dev_err(dd, "read idle message: type %d, err %d\n",
  7735. (u32)type, ret);
  7736. return -EINVAL;
  7737. }
  7738. dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
  7739. /* return only the payload as we already know the type */
  7740. *data_out >>= IDLE_PAYLOAD_SHIFT;
  7741. return 0;
  7742. }
  7743. /*
  7744. * Read an idle SMA message. To be done in response to a notification from
  7745. * the 8051.
  7746. *
  7747. * Returns 0 on success, -EINVAL on error
  7748. */
  7749. static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
  7750. {
  7751. return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
  7752. data);
  7753. }
  7754. /*
  7755. * Send an idle LCB message.
  7756. *
  7757. * Returns 0 on success, -EINVAL on error
  7758. */
  7759. static int send_idle_message(struct hfi1_devdata *dd, u64 data)
  7760. {
  7761. int ret;
  7762. dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
  7763. ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
  7764. if (ret != HCMD_SUCCESS) {
  7765. dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
  7766. data, ret);
  7767. return -EINVAL;
  7768. }
  7769. return 0;
  7770. }
  7771. /*
  7772. * Send an idle SMA message.
  7773. *
  7774. * Returns 0 on success, -EINVAL on error
  7775. */
  7776. int send_idle_sma(struct hfi1_devdata *dd, u64 message)
  7777. {
  7778. u64 data;
  7779. data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
  7780. ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
  7781. return send_idle_message(dd, data);
  7782. }
  7783. /*
  7784. * Initialize the LCB then do a quick link up. This may or may not be
  7785. * in loopback.
  7786. *
  7787. * return 0 on success, -errno on error
  7788. */
  7789. static int do_quick_linkup(struct hfi1_devdata *dd)
  7790. {
  7791. u64 reg;
  7792. unsigned long timeout;
  7793. int ret;
  7794. lcb_shutdown(dd, 0);
  7795. if (loopback) {
  7796. /* LCB_CFG_LOOPBACK.VAL = 2 */
  7797. /* LCB_CFG_LANE_WIDTH.VAL = 0 */
  7798. write_csr(dd, DC_LCB_CFG_LOOPBACK,
  7799. IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
  7800. write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
  7801. }
  7802. /* start the LCBs */
  7803. /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
  7804. write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
  7805. /* simulator only loopback steps */
  7806. if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
  7807. /* LCB_CFG_RUN.EN = 1 */
  7808. write_csr(dd, DC_LCB_CFG_RUN,
  7809. 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
  7810. /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
  7811. timeout = jiffies + msecs_to_jiffies(10);
  7812. while (1) {
  7813. reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
  7814. if (reg)
  7815. break;
  7816. if (time_after(jiffies, timeout)) {
  7817. dd_dev_err(dd,
  7818. "timeout waiting for LINK_TRANSFER_ACTIVE\n");
  7819. return -ETIMEDOUT;
  7820. }
  7821. udelay(2);
  7822. }
  7823. write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
  7824. 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
  7825. }
  7826. if (!loopback) {
  7827. /*
  7828. * When doing quick linkup and not in loopback, both
  7829. * sides must be done with LCB set-up before either
  7830. * starts the quick linkup. Put a delay here so that
  7831. * both sides can be started and have a chance to be
  7832. * done with LCB set up before resuming.
  7833. */
  7834. dd_dev_err(dd,
  7835. "Pausing for peer to be finished with LCB set up\n");
  7836. msleep(5000);
  7837. dd_dev_err(dd, "Continuing with quick linkup\n");
  7838. }
  7839. write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
  7840. set_8051_lcb_access(dd);
  7841. /*
  7842. * State "quick" LinkUp request sets the physical link state to
  7843. * LinkUp without a verify capability sequence.
  7844. * This state is in simulator v37 and later.
  7845. */
  7846. ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
  7847. if (ret != HCMD_SUCCESS) {
  7848. dd_dev_err(dd,
  7849. "%s: set physical link state to quick LinkUp failed with return %d\n",
  7850. __func__, ret);
  7851. set_host_lcb_access(dd);
  7852. write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
  7853. if (ret >= 0)
  7854. ret = -EINVAL;
  7855. return ret;
  7856. }
  7857. return 0; /* success */
  7858. }
  7859. /*
  7860. * Set the SerDes to internal loopback mode.
  7861. * Returns 0 on success, -errno on error.
  7862. */
  7863. static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
  7864. {
  7865. int ret;
  7866. ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
  7867. if (ret == HCMD_SUCCESS)
  7868. return 0;
  7869. dd_dev_err(dd,
  7870. "Set physical link state to SerDes Loopback failed with return %d\n",
  7871. ret);
  7872. if (ret >= 0)
  7873. ret = -EINVAL;
  7874. return ret;
  7875. }
  7876. /*
  7877. * Do all special steps to set up loopback.
  7878. */
  7879. static int init_loopback(struct hfi1_devdata *dd)
  7880. {
  7881. dd_dev_info(dd, "Entering loopback mode\n");
  7882. /* all loopbacks should disable self GUID check */
  7883. write_csr(dd, DC_DC8051_CFG_MODE,
  7884. (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
  7885. /*
  7886. * The simulator has only one loopback option - LCB. Switch
  7887. * to that option, which includes quick link up.
  7888. *
  7889. * Accept all valid loopback values.
  7890. */
  7891. if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
  7892. (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
  7893. loopback == LOOPBACK_CABLE)) {
  7894. loopback = LOOPBACK_LCB;
  7895. quick_linkup = 1;
  7896. return 0;
  7897. }
  7898. /* handle serdes loopback */
  7899. if (loopback == LOOPBACK_SERDES) {
  7900. /* internal serdes loopack needs quick linkup on RTL */
  7901. if (dd->icode == ICODE_RTL_SILICON)
  7902. quick_linkup = 1;
  7903. return set_serdes_loopback_mode(dd);
  7904. }
  7905. /* LCB loopback - handled at poll time */
  7906. if (loopback == LOOPBACK_LCB) {
  7907. quick_linkup = 1; /* LCB is always quick linkup */
  7908. /* not supported in emulation due to emulation RTL changes */
  7909. if (dd->icode == ICODE_FPGA_EMULATION) {
  7910. dd_dev_err(dd,
  7911. "LCB loopback not supported in emulation\n");
  7912. return -EINVAL;
  7913. }
  7914. return 0;
  7915. }
  7916. /* external cable loopback requires no extra steps */
  7917. if (loopback == LOOPBACK_CABLE)
  7918. return 0;
  7919. dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
  7920. return -EINVAL;
  7921. }
  7922. /*
  7923. * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
  7924. * used in the Verify Capability link width attribute.
  7925. */
  7926. static u16 opa_to_vc_link_widths(u16 opa_widths)
  7927. {
  7928. int i;
  7929. u16 result = 0;
  7930. static const struct link_bits {
  7931. u16 from;
  7932. u16 to;
  7933. } opa_link_xlate[] = {
  7934. { OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
  7935. { OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
  7936. { OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
  7937. { OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
  7938. };
  7939. for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
  7940. if (opa_widths & opa_link_xlate[i].from)
  7941. result |= opa_link_xlate[i].to;
  7942. }
  7943. return result;
  7944. }
  7945. /*
  7946. * Set link attributes before moving to polling.
  7947. */
  7948. static int set_local_link_attributes(struct hfi1_pportdata *ppd)
  7949. {
  7950. struct hfi1_devdata *dd = ppd->dd;
  7951. u8 enable_lane_tx;
  7952. u8 tx_polarity_inversion;
  7953. u8 rx_polarity_inversion;
  7954. int ret;
  7955. /* reset our fabric serdes to clear any lingering problems */
  7956. fabric_serdes_reset(dd);
  7957. /* set the local tx rate - need to read-modify-write */
  7958. ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
  7959. &rx_polarity_inversion, &ppd->local_tx_rate);
  7960. if (ret)
  7961. goto set_local_link_attributes_fail;
  7962. if (dd->dc8051_ver < dc8051_ver(0, 20)) {
  7963. /* set the tx rate to the fastest enabled */
  7964. if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
  7965. ppd->local_tx_rate = 1;
  7966. else
  7967. ppd->local_tx_rate = 0;
  7968. } else {
  7969. /* set the tx rate to all enabled */
  7970. ppd->local_tx_rate = 0;
  7971. if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
  7972. ppd->local_tx_rate |= 2;
  7973. if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
  7974. ppd->local_tx_rate |= 1;
  7975. }
  7976. enable_lane_tx = 0xF; /* enable all four lanes */
  7977. ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
  7978. rx_polarity_inversion, ppd->local_tx_rate);
  7979. if (ret != HCMD_SUCCESS)
  7980. goto set_local_link_attributes_fail;
  7981. /*
  7982. * DC supports continuous updates.
  7983. */
  7984. ret = write_vc_local_phy(dd,
  7985. 0 /* no power management */,
  7986. 1 /* continuous updates */);
  7987. if (ret != HCMD_SUCCESS)
  7988. goto set_local_link_attributes_fail;
  7989. /* z=1 in the next call: AU of 0 is not supported by the hardware */
  7990. ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
  7991. ppd->port_crc_mode_enabled);
  7992. if (ret != HCMD_SUCCESS)
  7993. goto set_local_link_attributes_fail;
  7994. ret = write_vc_local_link_width(dd, 0, 0,
  7995. opa_to_vc_link_widths(
  7996. ppd->link_width_enabled));
  7997. if (ret != HCMD_SUCCESS)
  7998. goto set_local_link_attributes_fail;
  7999. /* let peer know who we are */
  8000. ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
  8001. if (ret == HCMD_SUCCESS)
  8002. return 0;
  8003. set_local_link_attributes_fail:
  8004. dd_dev_err(dd,
  8005. "Failed to set local link attributes, return 0x%x\n",
  8006. ret);
  8007. return ret;
  8008. }
  8009. /*
  8010. * Call this to start the link.
  8011. * Do not do anything if the link is disabled.
  8012. * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
  8013. */
  8014. int start_link(struct hfi1_pportdata *ppd)
  8015. {
  8016. /*
  8017. * Tune the SerDes to a ballpark setting for optimal signal and bit
  8018. * error rate. Needs to be done before starting the link.
  8019. */
  8020. tune_serdes(ppd);
  8021. if (!ppd->link_enabled) {
  8022. dd_dev_info(ppd->dd,
  8023. "%s: stopping link start because link is disabled\n",
  8024. __func__);
  8025. return 0;
  8026. }
  8027. if (!ppd->driver_link_ready) {
  8028. dd_dev_info(ppd->dd,
  8029. "%s: stopping link start because driver is not ready\n",
  8030. __func__);
  8031. return 0;
  8032. }
  8033. /*
  8034. * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
  8035. * pkey table can be configured properly if the HFI unit is connected
  8036. * to switch port with MgmtAllowed=NO
  8037. */
  8038. clear_full_mgmt_pkey(ppd);
  8039. return set_link_state(ppd, HLS_DN_POLL);
  8040. }
  8041. static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
  8042. {
  8043. struct hfi1_devdata *dd = ppd->dd;
  8044. u64 mask;
  8045. unsigned long timeout;
  8046. /*
  8047. * Some QSFP cables have a quirk that asserts the IntN line as a side
  8048. * effect of power up on plug-in. We ignore this false positive
  8049. * interrupt until the module has finished powering up by waiting for
  8050. * a minimum timeout of the module inrush initialization time of
  8051. * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
  8052. * module have stabilized.
  8053. */
  8054. msleep(500);
  8055. /*
  8056. * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
  8057. */
  8058. timeout = jiffies + msecs_to_jiffies(2000);
  8059. while (1) {
  8060. mask = read_csr(dd, dd->hfi1_id ?
  8061. ASIC_QSFP2_IN : ASIC_QSFP1_IN);
  8062. if (!(mask & QSFP_HFI0_INT_N))
  8063. break;
  8064. if (time_after(jiffies, timeout)) {
  8065. dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
  8066. __func__);
  8067. break;
  8068. }
  8069. udelay(2);
  8070. }
  8071. }
  8072. static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
  8073. {
  8074. struct hfi1_devdata *dd = ppd->dd;
  8075. u64 mask;
  8076. mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
  8077. if (enable) {
  8078. /*
  8079. * Clear the status register to avoid an immediate interrupt
  8080. * when we re-enable the IntN pin
  8081. */
  8082. write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
  8083. QSFP_HFI0_INT_N);
  8084. mask |= (u64)QSFP_HFI0_INT_N;
  8085. } else {
  8086. mask &= ~(u64)QSFP_HFI0_INT_N;
  8087. }
  8088. write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
  8089. }
  8090. void reset_qsfp(struct hfi1_pportdata *ppd)
  8091. {
  8092. struct hfi1_devdata *dd = ppd->dd;
  8093. u64 mask, qsfp_mask;
  8094. /* Disable INT_N from triggering QSFP interrupts */
  8095. set_qsfp_int_n(ppd, 0);
  8096. /* Reset the QSFP */
  8097. mask = (u64)QSFP_HFI0_RESET_N;
  8098. qsfp_mask = read_csr(dd,
  8099. dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
  8100. qsfp_mask &= ~mask;
  8101. write_csr(dd,
  8102. dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
  8103. udelay(10);
  8104. qsfp_mask |= mask;
  8105. write_csr(dd,
  8106. dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
  8107. wait_for_qsfp_init(ppd);
  8108. /*
  8109. * Allow INT_N to trigger the QSFP interrupt to watch
  8110. * for alarms and warnings
  8111. */
  8112. set_qsfp_int_n(ppd, 1);
  8113. }
  8114. static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
  8115. u8 *qsfp_interrupt_status)
  8116. {
  8117. struct hfi1_devdata *dd = ppd->dd;
  8118. if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
  8119. (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
  8120. dd_dev_info(dd, "%s: QSFP cable on fire\n",
  8121. __func__);
  8122. if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
  8123. (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
  8124. dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
  8125. __func__);
  8126. /*
  8127. * The remaining alarms/warnings don't matter if the link is down.
  8128. */
  8129. if (ppd->host_link_state & HLS_DOWN)
  8130. return 0;
  8131. if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
  8132. (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
  8133. dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
  8134. __func__);
  8135. if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
  8136. (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
  8137. dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
  8138. __func__);
  8139. /* Byte 2 is vendor specific */
  8140. if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
  8141. (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
  8142. dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
  8143. __func__);
  8144. if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
  8145. (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
  8146. dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
  8147. __func__);
  8148. if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
  8149. (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
  8150. dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
  8151. __func__);
  8152. if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
  8153. (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
  8154. dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
  8155. __func__);
  8156. if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
  8157. (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
  8158. dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
  8159. __func__);
  8160. if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
  8161. (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
  8162. dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
  8163. __func__);
  8164. if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
  8165. (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
  8166. dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
  8167. __func__);
  8168. if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
  8169. (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
  8170. dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
  8171. __func__);
  8172. if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
  8173. (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
  8174. dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
  8175. __func__);
  8176. if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
  8177. (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
  8178. dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
  8179. __func__);
  8180. if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
  8181. (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
  8182. dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
  8183. __func__);
  8184. if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
  8185. (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
  8186. dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
  8187. __func__);
  8188. /* Bytes 9-10 and 11-12 are reserved */
  8189. /* Bytes 13-15 are vendor specific */
  8190. return 0;
  8191. }
  8192. /* This routine will only be scheduled if the QSFP module present is asserted */
  8193. void qsfp_event(struct work_struct *work)
  8194. {
  8195. struct qsfp_data *qd;
  8196. struct hfi1_pportdata *ppd;
  8197. struct hfi1_devdata *dd;
  8198. qd = container_of(work, struct qsfp_data, qsfp_work);
  8199. ppd = qd->ppd;
  8200. dd = ppd->dd;
  8201. /* Sanity check */
  8202. if (!qsfp_mod_present(ppd))
  8203. return;
  8204. /*
  8205. * Turn DC back on after cable has been re-inserted. Up until
  8206. * now, the DC has been in reset to save power.
  8207. */
  8208. dc_start(dd);
  8209. if (qd->cache_refresh_required) {
  8210. set_qsfp_int_n(ppd, 0);
  8211. wait_for_qsfp_init(ppd);
  8212. /*
  8213. * Allow INT_N to trigger the QSFP interrupt to watch
  8214. * for alarms and warnings
  8215. */
  8216. set_qsfp_int_n(ppd, 1);
  8217. start_link(ppd);
  8218. }
  8219. if (qd->check_interrupt_flags) {
  8220. u8 qsfp_interrupt_status[16] = {0,};
  8221. if (one_qsfp_read(ppd, dd->hfi1_id, 6,
  8222. &qsfp_interrupt_status[0], 16) != 16) {
  8223. dd_dev_info(dd,
  8224. "%s: Failed to read status of QSFP module\n",
  8225. __func__);
  8226. } else {
  8227. unsigned long flags;
  8228. handle_qsfp_error_conditions(
  8229. ppd, qsfp_interrupt_status);
  8230. spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
  8231. ppd->qsfp_info.check_interrupt_flags = 0;
  8232. spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
  8233. flags);
  8234. }
  8235. }
  8236. }
  8237. static void init_qsfp_int(struct hfi1_devdata *dd)
  8238. {
  8239. struct hfi1_pportdata *ppd = dd->pport;
  8240. u64 qsfp_mask, cce_int_mask;
  8241. const int qsfp1_int_smask = QSFP1_INT % 64;
  8242. const int qsfp2_int_smask = QSFP2_INT % 64;
  8243. /*
  8244. * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
  8245. * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
  8246. * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
  8247. * the index of the appropriate CSR in the CCEIntMask CSR array
  8248. */
  8249. cce_int_mask = read_csr(dd, CCE_INT_MASK +
  8250. (8 * (QSFP1_INT / 64)));
  8251. if (dd->hfi1_id) {
  8252. cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
  8253. write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
  8254. cce_int_mask);
  8255. } else {
  8256. cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
  8257. write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
  8258. cce_int_mask);
  8259. }
  8260. qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
  8261. /* Clear current status to avoid spurious interrupts */
  8262. write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
  8263. qsfp_mask);
  8264. write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
  8265. qsfp_mask);
  8266. set_qsfp_int_n(ppd, 0);
  8267. /* Handle active low nature of INT_N and MODPRST_N pins */
  8268. if (qsfp_mod_present(ppd))
  8269. qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
  8270. write_csr(dd,
  8271. dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
  8272. qsfp_mask);
  8273. }
  8274. /*
  8275. * Do a one-time initialize of the LCB block.
  8276. */
  8277. static void init_lcb(struct hfi1_devdata *dd)
  8278. {
  8279. /* simulator does not correctly handle LCB cclk loopback, skip */
  8280. if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
  8281. return;
  8282. /* the DC has been reset earlier in the driver load */
  8283. /* set LCB for cclk loopback on the port */
  8284. write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
  8285. write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
  8286. write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
  8287. write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
  8288. write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
  8289. write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
  8290. write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
  8291. }
  8292. /*
  8293. * Perform a test read on the QSFP. Return 0 on success, -ERRNO
  8294. * on error.
  8295. */
  8296. static int test_qsfp_read(struct hfi1_pportdata *ppd)
  8297. {
  8298. int ret;
  8299. u8 status;
  8300. /* report success if not a QSFP */
  8301. if (ppd->port_type != PORT_TYPE_QSFP)
  8302. return 0;
  8303. /* read byte 2, the status byte */
  8304. ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
  8305. if (ret < 0)
  8306. return ret;
  8307. if (ret != 1)
  8308. return -EIO;
  8309. return 0; /* success */
  8310. }
  8311. /*
  8312. * Values for QSFP retry.
  8313. *
  8314. * Give up after 10s (20 x 500ms). The overall timeout was empirically
  8315. * arrived at from experience on a large cluster.
  8316. */
  8317. #define MAX_QSFP_RETRIES 20
  8318. #define QSFP_RETRY_WAIT 500 /* msec */
  8319. /*
  8320. * Try a QSFP read. If it fails, schedule a retry for later.
  8321. * Called on first link activation after driver load.
  8322. */
  8323. static void try_start_link(struct hfi1_pportdata *ppd)
  8324. {
  8325. if (test_qsfp_read(ppd)) {
  8326. /* read failed */
  8327. if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
  8328. dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
  8329. return;
  8330. }
  8331. dd_dev_info(ppd->dd,
  8332. "QSFP not responding, waiting and retrying %d\n",
  8333. (int)ppd->qsfp_retry_count);
  8334. ppd->qsfp_retry_count++;
  8335. queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work,
  8336. msecs_to_jiffies(QSFP_RETRY_WAIT));
  8337. return;
  8338. }
  8339. ppd->qsfp_retry_count = 0;
  8340. start_link(ppd);
  8341. }
  8342. /*
  8343. * Workqueue function to start the link after a delay.
  8344. */
  8345. void handle_start_link(struct work_struct *work)
  8346. {
  8347. struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
  8348. start_link_work.work);
  8349. try_start_link(ppd);
  8350. }
  8351. int bringup_serdes(struct hfi1_pportdata *ppd)
  8352. {
  8353. struct hfi1_devdata *dd = ppd->dd;
  8354. u64 guid;
  8355. int ret;
  8356. if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
  8357. add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
  8358. guid = ppd->guids[HFI1_PORT_GUID_INDEX];
  8359. if (!guid) {
  8360. if (dd->base_guid)
  8361. guid = dd->base_guid + ppd->port - 1;
  8362. ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
  8363. }
  8364. /* Set linkinit_reason on power up per OPA spec */
  8365. ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
  8366. /* one-time init of the LCB */
  8367. init_lcb(dd);
  8368. if (loopback) {
  8369. ret = init_loopback(dd);
  8370. if (ret < 0)
  8371. return ret;
  8372. }
  8373. get_port_type(ppd);
  8374. if (ppd->port_type == PORT_TYPE_QSFP) {
  8375. set_qsfp_int_n(ppd, 0);
  8376. wait_for_qsfp_init(ppd);
  8377. set_qsfp_int_n(ppd, 1);
  8378. }
  8379. try_start_link(ppd);
  8380. return 0;
  8381. }
  8382. void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
  8383. {
  8384. struct hfi1_devdata *dd = ppd->dd;
  8385. /*
  8386. * Shut down the link and keep it down. First turn off that the
  8387. * driver wants to allow the link to be up (driver_link_ready).
  8388. * Then make sure the link is not automatically restarted
  8389. * (link_enabled). Cancel any pending restart. And finally
  8390. * go offline.
  8391. */
  8392. ppd->driver_link_ready = 0;
  8393. ppd->link_enabled = 0;
  8394. ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
  8395. flush_delayed_work(&ppd->start_link_work);
  8396. cancel_delayed_work_sync(&ppd->start_link_work);
  8397. ppd->offline_disabled_reason =
  8398. HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
  8399. set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
  8400. OPA_LINKDOWN_REASON_SMA_DISABLED);
  8401. set_link_state(ppd, HLS_DN_OFFLINE);
  8402. /* disable the port */
  8403. clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
  8404. }
  8405. static inline int init_cpu_counters(struct hfi1_devdata *dd)
  8406. {
  8407. struct hfi1_pportdata *ppd;
  8408. int i;
  8409. ppd = (struct hfi1_pportdata *)(dd + 1);
  8410. for (i = 0; i < dd->num_pports; i++, ppd++) {
  8411. ppd->ibport_data.rvp.rc_acks = NULL;
  8412. ppd->ibport_data.rvp.rc_qacks = NULL;
  8413. ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
  8414. ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
  8415. ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
  8416. if (!ppd->ibport_data.rvp.rc_acks ||
  8417. !ppd->ibport_data.rvp.rc_delayed_comp ||
  8418. !ppd->ibport_data.rvp.rc_qacks)
  8419. return -ENOMEM;
  8420. }
  8421. return 0;
  8422. }
  8423. static const char * const pt_names[] = {
  8424. "expected",
  8425. "eager",
  8426. "invalid"
  8427. };
  8428. static const char *pt_name(u32 type)
  8429. {
  8430. return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
  8431. }
  8432. /*
  8433. * index is the index into the receive array
  8434. */
  8435. void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
  8436. u32 type, unsigned long pa, u16 order)
  8437. {
  8438. u64 reg;
  8439. void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
  8440. (dd->kregbase + RCV_ARRAY));
  8441. if (!(dd->flags & HFI1_PRESENT))
  8442. goto done;
  8443. if (type == PT_INVALID) {
  8444. pa = 0;
  8445. } else if (type > PT_INVALID) {
  8446. dd_dev_err(dd,
  8447. "unexpected receive array type %u for index %u, not handled\n",
  8448. type, index);
  8449. goto done;
  8450. }
  8451. hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
  8452. pt_name(type), index, pa, (unsigned long)order);
  8453. #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
  8454. reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
  8455. | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
  8456. | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
  8457. << RCV_ARRAY_RT_ADDR_SHIFT;
  8458. writeq(reg, base + (index * 8));
  8459. if (type == PT_EAGER)
  8460. /*
  8461. * Eager entries are written one-by-one so we have to push them
  8462. * after we write the entry.
  8463. */
  8464. flush_wc();
  8465. done:
  8466. return;
  8467. }
  8468. void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
  8469. {
  8470. struct hfi1_devdata *dd = rcd->dd;
  8471. u32 i;
  8472. /* this could be optimized */
  8473. for (i = rcd->eager_base; i < rcd->eager_base +
  8474. rcd->egrbufs.alloced; i++)
  8475. hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
  8476. for (i = rcd->expected_base;
  8477. i < rcd->expected_base + rcd->expected_count; i++)
  8478. hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
  8479. }
  8480. struct ib_header *hfi1_get_msgheader(
  8481. struct hfi1_devdata *dd, __le32 *rhf_addr)
  8482. {
  8483. u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
  8484. return (struct ib_header *)
  8485. (rhf_addr - dd->rhf_offset + offset);
  8486. }
  8487. static const char * const ib_cfg_name_strings[] = {
  8488. "HFI1_IB_CFG_LIDLMC",
  8489. "HFI1_IB_CFG_LWID_DG_ENB",
  8490. "HFI1_IB_CFG_LWID_ENB",
  8491. "HFI1_IB_CFG_LWID",
  8492. "HFI1_IB_CFG_SPD_ENB",
  8493. "HFI1_IB_CFG_SPD",
  8494. "HFI1_IB_CFG_RXPOL_ENB",
  8495. "HFI1_IB_CFG_LREV_ENB",
  8496. "HFI1_IB_CFG_LINKLATENCY",
  8497. "HFI1_IB_CFG_HRTBT",
  8498. "HFI1_IB_CFG_OP_VLS",
  8499. "HFI1_IB_CFG_VL_HIGH_CAP",
  8500. "HFI1_IB_CFG_VL_LOW_CAP",
  8501. "HFI1_IB_CFG_OVERRUN_THRESH",
  8502. "HFI1_IB_CFG_PHYERR_THRESH",
  8503. "HFI1_IB_CFG_LINKDEFAULT",
  8504. "HFI1_IB_CFG_PKEYS",
  8505. "HFI1_IB_CFG_MTU",
  8506. "HFI1_IB_CFG_LSTATE",
  8507. "HFI1_IB_CFG_VL_HIGH_LIMIT",
  8508. "HFI1_IB_CFG_PMA_TICKS",
  8509. "HFI1_IB_CFG_PORT"
  8510. };
  8511. static const char *ib_cfg_name(int which)
  8512. {
  8513. if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
  8514. return "invalid";
  8515. return ib_cfg_name_strings[which];
  8516. }
  8517. int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
  8518. {
  8519. struct hfi1_devdata *dd = ppd->dd;
  8520. int val = 0;
  8521. switch (which) {
  8522. case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
  8523. val = ppd->link_width_enabled;
  8524. break;
  8525. case HFI1_IB_CFG_LWID: /* currently active Link-width */
  8526. val = ppd->link_width_active;
  8527. break;
  8528. case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
  8529. val = ppd->link_speed_enabled;
  8530. break;
  8531. case HFI1_IB_CFG_SPD: /* current Link speed */
  8532. val = ppd->link_speed_active;
  8533. break;
  8534. case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
  8535. case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
  8536. case HFI1_IB_CFG_LINKLATENCY:
  8537. goto unimplemented;
  8538. case HFI1_IB_CFG_OP_VLS:
  8539. val = ppd->vls_operational;
  8540. break;
  8541. case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
  8542. val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
  8543. break;
  8544. case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
  8545. val = VL_ARB_LOW_PRIO_TABLE_SIZE;
  8546. break;
  8547. case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
  8548. val = ppd->overrun_threshold;
  8549. break;
  8550. case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
  8551. val = ppd->phy_error_threshold;
  8552. break;
  8553. case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
  8554. val = dd->link_default;
  8555. break;
  8556. case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
  8557. case HFI1_IB_CFG_PMA_TICKS:
  8558. default:
  8559. unimplemented:
  8560. if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
  8561. dd_dev_info(
  8562. dd,
  8563. "%s: which %s: not implemented\n",
  8564. __func__,
  8565. ib_cfg_name(which));
  8566. break;
  8567. }
  8568. return val;
  8569. }
  8570. /*
  8571. * The largest MAD packet size.
  8572. */
  8573. #define MAX_MAD_PACKET 2048
  8574. /*
  8575. * Return the maximum header bytes that can go on the _wire_
  8576. * for this device. This count includes the ICRC which is
  8577. * not part of the packet held in memory but it is appended
  8578. * by the HW.
  8579. * This is dependent on the device's receive header entry size.
  8580. * HFI allows this to be set per-receive context, but the
  8581. * driver presently enforces a global value.
  8582. */
  8583. u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
  8584. {
  8585. /*
  8586. * The maximum non-payload (MTU) bytes in LRH.PktLen are
  8587. * the Receive Header Entry Size minus the PBC (or RHF) size
  8588. * plus one DW for the ICRC appended by HW.
  8589. *
  8590. * dd->rcd[0].rcvhdrqentsize is in DW.
  8591. * We use rcd[0] as all context will have the same value. Also,
  8592. * the first kernel context would have been allocated by now so
  8593. * we are guaranteed a valid value.
  8594. */
  8595. return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
  8596. }
  8597. /*
  8598. * Set Send Length
  8599. * @ppd - per port data
  8600. *
  8601. * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
  8602. * registers compare against LRH.PktLen, so use the max bytes included
  8603. * in the LRH.
  8604. *
  8605. * This routine changes all VL values except VL15, which it maintains at
  8606. * the same value.
  8607. */
  8608. static void set_send_length(struct hfi1_pportdata *ppd)
  8609. {
  8610. struct hfi1_devdata *dd = ppd->dd;
  8611. u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
  8612. u32 maxvlmtu = dd->vld[15].mtu;
  8613. u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
  8614. & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
  8615. SEND_LEN_CHECK1_LEN_VL15_SHIFT;
  8616. int i, j;
  8617. u32 thres;
  8618. for (i = 0; i < ppd->vls_supported; i++) {
  8619. if (dd->vld[i].mtu > maxvlmtu)
  8620. maxvlmtu = dd->vld[i].mtu;
  8621. if (i <= 3)
  8622. len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
  8623. & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
  8624. ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
  8625. else
  8626. len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
  8627. & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
  8628. ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
  8629. }
  8630. write_csr(dd, SEND_LEN_CHECK0, len1);
  8631. write_csr(dd, SEND_LEN_CHECK1, len2);
  8632. /* adjust kernel credit return thresholds based on new MTUs */
  8633. /* all kernel receive contexts have the same hdrqentsize */
  8634. for (i = 0; i < ppd->vls_supported; i++) {
  8635. thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
  8636. sc_mtu_to_threshold(dd->vld[i].sc,
  8637. dd->vld[i].mtu,
  8638. dd->rcd[0]->rcvhdrqentsize));
  8639. for (j = 0; j < INIT_SC_PER_VL; j++)
  8640. sc_set_cr_threshold(
  8641. pio_select_send_context_vl(dd, j, i),
  8642. thres);
  8643. }
  8644. thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
  8645. sc_mtu_to_threshold(dd->vld[15].sc,
  8646. dd->vld[15].mtu,
  8647. dd->rcd[0]->rcvhdrqentsize));
  8648. sc_set_cr_threshold(dd->vld[15].sc, thres);
  8649. /* Adjust maximum MTU for the port in DC */
  8650. dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
  8651. (ilog2(maxvlmtu >> 8) + 1);
  8652. len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
  8653. len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
  8654. len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
  8655. DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
  8656. write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
  8657. }
  8658. static void set_lidlmc(struct hfi1_pportdata *ppd)
  8659. {
  8660. int i;
  8661. u64 sreg = 0;
  8662. struct hfi1_devdata *dd = ppd->dd;
  8663. u32 mask = ~((1U << ppd->lmc) - 1);
  8664. u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
  8665. c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
  8666. | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
  8667. c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
  8668. << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
  8669. ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
  8670. << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
  8671. write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
  8672. /*
  8673. * Iterate over all the send contexts and set their SLID check
  8674. */
  8675. sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
  8676. SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
  8677. (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
  8678. SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
  8679. for (i = 0; i < dd->chip_send_contexts; i++) {
  8680. hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
  8681. i, (u32)sreg);
  8682. write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
  8683. }
  8684. /* Now we have to do the same thing for the sdma engines */
  8685. sdma_update_lmc(dd, mask, ppd->lid);
  8686. }
  8687. static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
  8688. {
  8689. unsigned long timeout;
  8690. u32 curr_state;
  8691. timeout = jiffies + msecs_to_jiffies(msecs);
  8692. while (1) {
  8693. curr_state = read_physical_state(dd);
  8694. if (curr_state == state)
  8695. break;
  8696. if (time_after(jiffies, timeout)) {
  8697. dd_dev_err(dd,
  8698. "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
  8699. state, curr_state);
  8700. return -ETIMEDOUT;
  8701. }
  8702. usleep_range(1950, 2050); /* sleep 2ms-ish */
  8703. }
  8704. return 0;
  8705. }
  8706. static const char *state_completed_string(u32 completed)
  8707. {
  8708. static const char * const state_completed[] = {
  8709. "EstablishComm",
  8710. "OptimizeEQ",
  8711. "VerifyCap"
  8712. };
  8713. if (completed < ARRAY_SIZE(state_completed))
  8714. return state_completed[completed];
  8715. return "unknown";
  8716. }
  8717. static const char all_lanes_dead_timeout_expired[] =
  8718. "All lanes were inactive – was the interconnect media removed?";
  8719. static const char tx_out_of_policy[] =
  8720. "Passing lanes on local port do not meet the local link width policy";
  8721. static const char no_state_complete[] =
  8722. "State timeout occurred before link partner completed the state";
  8723. static const char * const state_complete_reasons[] = {
  8724. [0x00] = "Reason unknown",
  8725. [0x01] = "Link was halted by driver, refer to LinkDownReason",
  8726. [0x02] = "Link partner reported failure",
  8727. [0x10] = "Unable to achieve frame sync on any lane",
  8728. [0x11] =
  8729. "Unable to find a common bit rate with the link partner",
  8730. [0x12] =
  8731. "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
  8732. [0x13] =
  8733. "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
  8734. [0x14] = no_state_complete,
  8735. [0x15] =
  8736. "State timeout occurred before link partner identified equalization presets",
  8737. [0x16] =
  8738. "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
  8739. [0x17] = tx_out_of_policy,
  8740. [0x20] = all_lanes_dead_timeout_expired,
  8741. [0x21] =
  8742. "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
  8743. [0x22] = no_state_complete,
  8744. [0x23] =
  8745. "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
  8746. [0x24] = tx_out_of_policy,
  8747. [0x30] = all_lanes_dead_timeout_expired,
  8748. [0x31] =
  8749. "State timeout occurred waiting for host to process received frames",
  8750. [0x32] = no_state_complete,
  8751. [0x33] =
  8752. "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
  8753. [0x34] = tx_out_of_policy,
  8754. };
  8755. static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
  8756. u32 code)
  8757. {
  8758. const char *str = NULL;
  8759. if (code < ARRAY_SIZE(state_complete_reasons))
  8760. str = state_complete_reasons[code];
  8761. if (str)
  8762. return str;
  8763. return "Reserved";
  8764. }
  8765. /* describe the given last state complete frame */
  8766. static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
  8767. const char *prefix)
  8768. {
  8769. struct hfi1_devdata *dd = ppd->dd;
  8770. u32 success;
  8771. u32 state;
  8772. u32 reason;
  8773. u32 lanes;
  8774. /*
  8775. * Decode frame:
  8776. * [ 0: 0] - success
  8777. * [ 3: 1] - state
  8778. * [ 7: 4] - next state timeout
  8779. * [15: 8] - reason code
  8780. * [31:16] - lanes
  8781. */
  8782. success = frame & 0x1;
  8783. state = (frame >> 1) & 0x7;
  8784. reason = (frame >> 8) & 0xff;
  8785. lanes = (frame >> 16) & 0xffff;
  8786. dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
  8787. prefix, frame);
  8788. dd_dev_err(dd, " last reported state state: %s (0x%x)\n",
  8789. state_completed_string(state), state);
  8790. dd_dev_err(dd, " state successfully completed: %s\n",
  8791. success ? "yes" : "no");
  8792. dd_dev_err(dd, " fail reason 0x%x: %s\n",
  8793. reason, state_complete_reason_code_string(ppd, reason));
  8794. dd_dev_err(dd, " passing lane mask: 0x%x", lanes);
  8795. }
  8796. /*
  8797. * Read the last state complete frames and explain them. This routine
  8798. * expects to be called if the link went down during link negotiation
  8799. * and initialization (LNI). That is, anywhere between polling and link up.
  8800. */
  8801. static void check_lni_states(struct hfi1_pportdata *ppd)
  8802. {
  8803. u32 last_local_state;
  8804. u32 last_remote_state;
  8805. read_last_local_state(ppd->dd, &last_local_state);
  8806. read_last_remote_state(ppd->dd, &last_remote_state);
  8807. /*
  8808. * Don't report anything if there is nothing to report. A value of
  8809. * 0 means the link was taken down while polling and there was no
  8810. * training in-process.
  8811. */
  8812. if (last_local_state == 0 && last_remote_state == 0)
  8813. return;
  8814. decode_state_complete(ppd, last_local_state, "transmitted");
  8815. decode_state_complete(ppd, last_remote_state, "received");
  8816. }
  8817. /*
  8818. * Helper for set_link_state(). Do not call except from that routine.
  8819. * Expects ppd->hls_mutex to be held.
  8820. *
  8821. * @rem_reason value to be sent to the neighbor
  8822. *
  8823. * LinkDownReasons only set if transition succeeds.
  8824. */
  8825. static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
  8826. {
  8827. struct hfi1_devdata *dd = ppd->dd;
  8828. u32 pstate, previous_state;
  8829. int ret;
  8830. int do_transition;
  8831. int do_wait;
  8832. previous_state = ppd->host_link_state;
  8833. ppd->host_link_state = HLS_GOING_OFFLINE;
  8834. pstate = read_physical_state(dd);
  8835. if (pstate == PLS_OFFLINE) {
  8836. do_transition = 0; /* in right state */
  8837. do_wait = 0; /* ...no need to wait */
  8838. } else if ((pstate & 0xff) == PLS_OFFLINE) {
  8839. do_transition = 0; /* in an offline transient state */
  8840. do_wait = 1; /* ...wait for it to settle */
  8841. } else {
  8842. do_transition = 1; /* need to move to offline */
  8843. do_wait = 1; /* ...will need to wait */
  8844. }
  8845. if (do_transition) {
  8846. ret = set_physical_link_state(dd,
  8847. (rem_reason << 8) | PLS_OFFLINE);
  8848. if (ret != HCMD_SUCCESS) {
  8849. dd_dev_err(dd,
  8850. "Failed to transition to Offline link state, return %d\n",
  8851. ret);
  8852. return -EINVAL;
  8853. }
  8854. if (ppd->offline_disabled_reason ==
  8855. HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
  8856. ppd->offline_disabled_reason =
  8857. HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
  8858. }
  8859. if (do_wait) {
  8860. /* it can take a while for the link to go down */
  8861. ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
  8862. if (ret < 0)
  8863. return ret;
  8864. }
  8865. /* make sure the logical state is also down */
  8866. wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
  8867. /*
  8868. * Now in charge of LCB - must be after the physical state is
  8869. * offline.quiet and before host_link_state is changed.
  8870. */
  8871. set_host_lcb_access(dd);
  8872. write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
  8873. ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
  8874. if (ppd->port_type == PORT_TYPE_QSFP &&
  8875. ppd->qsfp_info.limiting_active &&
  8876. qsfp_mod_present(ppd)) {
  8877. int ret;
  8878. ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
  8879. if (ret == 0) {
  8880. set_qsfp_tx(ppd, 0);
  8881. release_chip_resource(dd, qsfp_resource(dd));
  8882. } else {
  8883. /* not fatal, but should warn */
  8884. dd_dev_err(dd,
  8885. "Unable to acquire lock to turn off QSFP TX\n");
  8886. }
  8887. }
  8888. /*
  8889. * The LNI has a mandatory wait time after the physical state
  8890. * moves to Offline.Quiet. The wait time may be different
  8891. * depending on how the link went down. The 8051 firmware
  8892. * will observe the needed wait time and only move to ready
  8893. * when that is completed. The largest of the quiet timeouts
  8894. * is 6s, so wait that long and then at least 0.5s more for
  8895. * other transitions, and another 0.5s for a buffer.
  8896. */
  8897. ret = wait_fm_ready(dd, 7000);
  8898. if (ret) {
  8899. dd_dev_err(dd,
  8900. "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
  8901. /* state is really offline, so make it so */
  8902. ppd->host_link_state = HLS_DN_OFFLINE;
  8903. return ret;
  8904. }
  8905. /*
  8906. * The state is now offline and the 8051 is ready to accept host
  8907. * requests.
  8908. * - change our state
  8909. * - notify others if we were previously in a linkup state
  8910. */
  8911. ppd->host_link_state = HLS_DN_OFFLINE;
  8912. if (previous_state & HLS_UP) {
  8913. /* went down while link was up */
  8914. handle_linkup_change(dd, 0);
  8915. } else if (previous_state
  8916. & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
  8917. /* went down while attempting link up */
  8918. check_lni_states(ppd);
  8919. }
  8920. /* the active link width (downgrade) is 0 on link down */
  8921. ppd->link_width_active = 0;
  8922. ppd->link_width_downgrade_tx_active = 0;
  8923. ppd->link_width_downgrade_rx_active = 0;
  8924. ppd->current_egress_rate = 0;
  8925. return 0;
  8926. }
  8927. /* return the link state name */
  8928. static const char *link_state_name(u32 state)
  8929. {
  8930. const char *name;
  8931. int n = ilog2(state);
  8932. static const char * const names[] = {
  8933. [__HLS_UP_INIT_BP] = "INIT",
  8934. [__HLS_UP_ARMED_BP] = "ARMED",
  8935. [__HLS_UP_ACTIVE_BP] = "ACTIVE",
  8936. [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
  8937. [__HLS_DN_POLL_BP] = "POLL",
  8938. [__HLS_DN_DISABLE_BP] = "DISABLE",
  8939. [__HLS_DN_OFFLINE_BP] = "OFFLINE",
  8940. [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
  8941. [__HLS_GOING_UP_BP] = "GOING_UP",
  8942. [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
  8943. [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
  8944. };
  8945. name = n < ARRAY_SIZE(names) ? names[n] : NULL;
  8946. return name ? name : "unknown";
  8947. }
  8948. /* return the link state reason name */
  8949. static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
  8950. {
  8951. if (state == HLS_UP_INIT) {
  8952. switch (ppd->linkinit_reason) {
  8953. case OPA_LINKINIT_REASON_LINKUP:
  8954. return "(LINKUP)";
  8955. case OPA_LINKINIT_REASON_FLAPPING:
  8956. return "(FLAPPING)";
  8957. case OPA_LINKINIT_OUTSIDE_POLICY:
  8958. return "(OUTSIDE_POLICY)";
  8959. case OPA_LINKINIT_QUARANTINED:
  8960. return "(QUARANTINED)";
  8961. case OPA_LINKINIT_INSUFIC_CAPABILITY:
  8962. return "(INSUFIC_CAPABILITY)";
  8963. default:
  8964. break;
  8965. }
  8966. }
  8967. return "";
  8968. }
  8969. /*
  8970. * driver_physical_state - convert the driver's notion of a port's
  8971. * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
  8972. * Return -1 (converted to a u32) to indicate error.
  8973. */
  8974. u32 driver_physical_state(struct hfi1_pportdata *ppd)
  8975. {
  8976. switch (ppd->host_link_state) {
  8977. case HLS_UP_INIT:
  8978. case HLS_UP_ARMED:
  8979. case HLS_UP_ACTIVE:
  8980. return IB_PORTPHYSSTATE_LINKUP;
  8981. case HLS_DN_POLL:
  8982. return IB_PORTPHYSSTATE_POLLING;
  8983. case HLS_DN_DISABLE:
  8984. return IB_PORTPHYSSTATE_DISABLED;
  8985. case HLS_DN_OFFLINE:
  8986. return OPA_PORTPHYSSTATE_OFFLINE;
  8987. case HLS_VERIFY_CAP:
  8988. return IB_PORTPHYSSTATE_POLLING;
  8989. case HLS_GOING_UP:
  8990. return IB_PORTPHYSSTATE_POLLING;
  8991. case HLS_GOING_OFFLINE:
  8992. return OPA_PORTPHYSSTATE_OFFLINE;
  8993. case HLS_LINK_COOLDOWN:
  8994. return OPA_PORTPHYSSTATE_OFFLINE;
  8995. case HLS_DN_DOWNDEF:
  8996. default:
  8997. dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
  8998. ppd->host_link_state);
  8999. return -1;
  9000. }
  9001. }
  9002. /*
  9003. * driver_logical_state - convert the driver's notion of a port's
  9004. * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
  9005. * (converted to a u32) to indicate error.
  9006. */
  9007. u32 driver_logical_state(struct hfi1_pportdata *ppd)
  9008. {
  9009. if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
  9010. return IB_PORT_DOWN;
  9011. switch (ppd->host_link_state & HLS_UP) {
  9012. case HLS_UP_INIT:
  9013. return IB_PORT_INIT;
  9014. case HLS_UP_ARMED:
  9015. return IB_PORT_ARMED;
  9016. case HLS_UP_ACTIVE:
  9017. return IB_PORT_ACTIVE;
  9018. default:
  9019. dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
  9020. ppd->host_link_state);
  9021. return -1;
  9022. }
  9023. }
  9024. void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
  9025. u8 neigh_reason, u8 rem_reason)
  9026. {
  9027. if (ppd->local_link_down_reason.latest == 0 &&
  9028. ppd->neigh_link_down_reason.latest == 0) {
  9029. ppd->local_link_down_reason.latest = lcl_reason;
  9030. ppd->neigh_link_down_reason.latest = neigh_reason;
  9031. ppd->remote_link_down_reason = rem_reason;
  9032. }
  9033. }
  9034. /*
  9035. * Change the physical and/or logical link state.
  9036. *
  9037. * Do not call this routine while inside an interrupt. It contains
  9038. * calls to routines that can take multiple seconds to finish.
  9039. *
  9040. * Returns 0 on success, -errno on failure.
  9041. */
  9042. int set_link_state(struct hfi1_pportdata *ppd, u32 state)
  9043. {
  9044. struct hfi1_devdata *dd = ppd->dd;
  9045. struct ib_event event = {.device = NULL};
  9046. int ret1, ret = 0;
  9047. int orig_new_state, poll_bounce;
  9048. mutex_lock(&ppd->hls_lock);
  9049. orig_new_state = state;
  9050. if (state == HLS_DN_DOWNDEF)
  9051. state = dd->link_default;
  9052. /* interpret poll -> poll as a link bounce */
  9053. poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
  9054. state == HLS_DN_POLL;
  9055. dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
  9056. link_state_name(ppd->host_link_state),
  9057. link_state_name(orig_new_state),
  9058. poll_bounce ? "(bounce) " : "",
  9059. link_state_reason_name(ppd, state));
  9060. /*
  9061. * If we're going to a (HLS_*) link state that implies the logical
  9062. * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
  9063. * reset is_sm_config_started to 0.
  9064. */
  9065. if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
  9066. ppd->is_sm_config_started = 0;
  9067. /*
  9068. * Do nothing if the states match. Let a poll to poll link bounce
  9069. * go through.
  9070. */
  9071. if (ppd->host_link_state == state && !poll_bounce)
  9072. goto done;
  9073. switch (state) {
  9074. case HLS_UP_INIT:
  9075. if (ppd->host_link_state == HLS_DN_POLL &&
  9076. (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
  9077. /*
  9078. * Quick link up jumps from polling to here.
  9079. *
  9080. * Whether in normal or loopback mode, the
  9081. * simulator jumps from polling to link up.
  9082. * Accept that here.
  9083. */
  9084. /* OK */
  9085. } else if (ppd->host_link_state != HLS_GOING_UP) {
  9086. goto unexpected;
  9087. }
  9088. ppd->host_link_state = HLS_UP_INIT;
  9089. ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
  9090. if (ret) {
  9091. /* logical state didn't change, stay at going_up */
  9092. ppd->host_link_state = HLS_GOING_UP;
  9093. dd_dev_err(dd,
  9094. "%s: logical state did not change to INIT\n",
  9095. __func__);
  9096. } else {
  9097. /* clear old transient LINKINIT_REASON code */
  9098. if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
  9099. ppd->linkinit_reason =
  9100. OPA_LINKINIT_REASON_LINKUP;
  9101. /* enable the port */
  9102. add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
  9103. handle_linkup_change(dd, 1);
  9104. }
  9105. break;
  9106. case HLS_UP_ARMED:
  9107. if (ppd->host_link_state != HLS_UP_INIT)
  9108. goto unexpected;
  9109. ppd->host_link_state = HLS_UP_ARMED;
  9110. set_logical_state(dd, LSTATE_ARMED);
  9111. ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
  9112. if (ret) {
  9113. /* logical state didn't change, stay at init */
  9114. ppd->host_link_state = HLS_UP_INIT;
  9115. dd_dev_err(dd,
  9116. "%s: logical state did not change to ARMED\n",
  9117. __func__);
  9118. }
  9119. /*
  9120. * The simulator does not currently implement SMA messages,
  9121. * so neighbor_normal is not set. Set it here when we first
  9122. * move to Armed.
  9123. */
  9124. if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
  9125. ppd->neighbor_normal = 1;
  9126. break;
  9127. case HLS_UP_ACTIVE:
  9128. if (ppd->host_link_state != HLS_UP_ARMED)
  9129. goto unexpected;
  9130. ppd->host_link_state = HLS_UP_ACTIVE;
  9131. set_logical_state(dd, LSTATE_ACTIVE);
  9132. ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
  9133. if (ret) {
  9134. /* logical state didn't change, stay at armed */
  9135. ppd->host_link_state = HLS_UP_ARMED;
  9136. dd_dev_err(dd,
  9137. "%s: logical state did not change to ACTIVE\n",
  9138. __func__);
  9139. } else {
  9140. /* tell all engines to go running */
  9141. sdma_all_running(dd);
  9142. /* Signal the IB layer that the port has went active */
  9143. event.device = &dd->verbs_dev.rdi.ibdev;
  9144. event.element.port_num = ppd->port;
  9145. event.event = IB_EVENT_PORT_ACTIVE;
  9146. }
  9147. break;
  9148. case HLS_DN_POLL:
  9149. if ((ppd->host_link_state == HLS_DN_DISABLE ||
  9150. ppd->host_link_state == HLS_DN_OFFLINE) &&
  9151. dd->dc_shutdown)
  9152. dc_start(dd);
  9153. /* Hand LED control to the DC */
  9154. write_csr(dd, DCC_CFG_LED_CNTRL, 0);
  9155. if (ppd->host_link_state != HLS_DN_OFFLINE) {
  9156. u8 tmp = ppd->link_enabled;
  9157. ret = goto_offline(ppd, ppd->remote_link_down_reason);
  9158. if (ret) {
  9159. ppd->link_enabled = tmp;
  9160. break;
  9161. }
  9162. ppd->remote_link_down_reason = 0;
  9163. if (ppd->driver_link_ready)
  9164. ppd->link_enabled = 1;
  9165. }
  9166. set_all_slowpath(ppd->dd);
  9167. ret = set_local_link_attributes(ppd);
  9168. if (ret)
  9169. break;
  9170. ppd->port_error_action = 0;
  9171. ppd->host_link_state = HLS_DN_POLL;
  9172. if (quick_linkup) {
  9173. /* quick linkup does not go into polling */
  9174. ret = do_quick_linkup(dd);
  9175. } else {
  9176. ret1 = set_physical_link_state(dd, PLS_POLLING);
  9177. if (ret1 != HCMD_SUCCESS) {
  9178. dd_dev_err(dd,
  9179. "Failed to transition to Polling link state, return 0x%x\n",
  9180. ret1);
  9181. ret = -EINVAL;
  9182. }
  9183. }
  9184. ppd->offline_disabled_reason =
  9185. HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
  9186. /*
  9187. * If an error occurred above, go back to offline. The
  9188. * caller may reschedule another attempt.
  9189. */
  9190. if (ret)
  9191. goto_offline(ppd, 0);
  9192. break;
  9193. case HLS_DN_DISABLE:
  9194. /* link is disabled */
  9195. ppd->link_enabled = 0;
  9196. /* allow any state to transition to disabled */
  9197. /* must transition to offline first */
  9198. if (ppd->host_link_state != HLS_DN_OFFLINE) {
  9199. ret = goto_offline(ppd, ppd->remote_link_down_reason);
  9200. if (ret)
  9201. break;
  9202. ppd->remote_link_down_reason = 0;
  9203. }
  9204. if (!dd->dc_shutdown) {
  9205. ret1 = set_physical_link_state(dd, PLS_DISABLED);
  9206. if (ret1 != HCMD_SUCCESS) {
  9207. dd_dev_err(dd,
  9208. "Failed to transition to Disabled link state, return 0x%x\n",
  9209. ret1);
  9210. ret = -EINVAL;
  9211. break;
  9212. }
  9213. dc_shutdown(dd);
  9214. }
  9215. ppd->host_link_state = HLS_DN_DISABLE;
  9216. break;
  9217. case HLS_DN_OFFLINE:
  9218. if (ppd->host_link_state == HLS_DN_DISABLE)
  9219. dc_start(dd);
  9220. /* allow any state to transition to offline */
  9221. ret = goto_offline(ppd, ppd->remote_link_down_reason);
  9222. if (!ret)
  9223. ppd->remote_link_down_reason = 0;
  9224. break;
  9225. case HLS_VERIFY_CAP:
  9226. if (ppd->host_link_state != HLS_DN_POLL)
  9227. goto unexpected;
  9228. ppd->host_link_state = HLS_VERIFY_CAP;
  9229. break;
  9230. case HLS_GOING_UP:
  9231. if (ppd->host_link_state != HLS_VERIFY_CAP)
  9232. goto unexpected;
  9233. ret1 = set_physical_link_state(dd, PLS_LINKUP);
  9234. if (ret1 != HCMD_SUCCESS) {
  9235. dd_dev_err(dd,
  9236. "Failed to transition to link up state, return 0x%x\n",
  9237. ret1);
  9238. ret = -EINVAL;
  9239. break;
  9240. }
  9241. ppd->host_link_state = HLS_GOING_UP;
  9242. break;
  9243. case HLS_GOING_OFFLINE: /* transient within goto_offline() */
  9244. case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
  9245. default:
  9246. dd_dev_info(dd, "%s: state 0x%x: not supported\n",
  9247. __func__, state);
  9248. ret = -EINVAL;
  9249. break;
  9250. }
  9251. goto done;
  9252. unexpected:
  9253. dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
  9254. __func__, link_state_name(ppd->host_link_state),
  9255. link_state_name(state));
  9256. ret = -EINVAL;
  9257. done:
  9258. mutex_unlock(&ppd->hls_lock);
  9259. if (event.device)
  9260. ib_dispatch_event(&event);
  9261. return ret;
  9262. }
  9263. int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
  9264. {
  9265. u64 reg;
  9266. int ret = 0;
  9267. switch (which) {
  9268. case HFI1_IB_CFG_LIDLMC:
  9269. set_lidlmc(ppd);
  9270. break;
  9271. case HFI1_IB_CFG_VL_HIGH_LIMIT:
  9272. /*
  9273. * The VL Arbitrator high limit is sent in units of 4k
  9274. * bytes, while HFI stores it in units of 64 bytes.
  9275. */
  9276. val *= 4096 / 64;
  9277. reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
  9278. << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
  9279. write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
  9280. break;
  9281. case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
  9282. /* HFI only supports POLL as the default link down state */
  9283. if (val != HLS_DN_POLL)
  9284. ret = -EINVAL;
  9285. break;
  9286. case HFI1_IB_CFG_OP_VLS:
  9287. if (ppd->vls_operational != val) {
  9288. ppd->vls_operational = val;
  9289. if (!ppd->port)
  9290. ret = -EINVAL;
  9291. }
  9292. break;
  9293. /*
  9294. * For link width, link width downgrade, and speed enable, always AND
  9295. * the setting with what is actually supported. This has two benefits.
  9296. * First, enabled can't have unsupported values, no matter what the
  9297. * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
  9298. * "fill in with your supported value" have all the bits in the
  9299. * field set, so simply ANDing with supported has the desired result.
  9300. */
  9301. case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
  9302. ppd->link_width_enabled = val & ppd->link_width_supported;
  9303. break;
  9304. case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
  9305. ppd->link_width_downgrade_enabled =
  9306. val & ppd->link_width_downgrade_supported;
  9307. break;
  9308. case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
  9309. ppd->link_speed_enabled = val & ppd->link_speed_supported;
  9310. break;
  9311. case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
  9312. /*
  9313. * HFI does not follow IB specs, save this value
  9314. * so we can report it, if asked.
  9315. */
  9316. ppd->overrun_threshold = val;
  9317. break;
  9318. case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
  9319. /*
  9320. * HFI does not follow IB specs, save this value
  9321. * so we can report it, if asked.
  9322. */
  9323. ppd->phy_error_threshold = val;
  9324. break;
  9325. case HFI1_IB_CFG_MTU:
  9326. set_send_length(ppd);
  9327. break;
  9328. case HFI1_IB_CFG_PKEYS:
  9329. if (HFI1_CAP_IS_KSET(PKEY_CHECK))
  9330. set_partition_keys(ppd);
  9331. break;
  9332. default:
  9333. if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
  9334. dd_dev_info(ppd->dd,
  9335. "%s: which %s, val 0x%x: not implemented\n",
  9336. __func__, ib_cfg_name(which), val);
  9337. break;
  9338. }
  9339. return ret;
  9340. }
  9341. /* begin functions related to vl arbitration table caching */
  9342. static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
  9343. {
  9344. int i;
  9345. BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
  9346. VL_ARB_LOW_PRIO_TABLE_SIZE);
  9347. BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
  9348. VL_ARB_HIGH_PRIO_TABLE_SIZE);
  9349. /*
  9350. * Note that we always return values directly from the
  9351. * 'vl_arb_cache' (and do no CSR reads) in response to a
  9352. * 'Get(VLArbTable)'. This is obviously correct after a
  9353. * 'Set(VLArbTable)', since the cache will then be up to
  9354. * date. But it's also correct prior to any 'Set(VLArbTable)'
  9355. * since then both the cache, and the relevant h/w registers
  9356. * will be zeroed.
  9357. */
  9358. for (i = 0; i < MAX_PRIO_TABLE; i++)
  9359. spin_lock_init(&ppd->vl_arb_cache[i].lock);
  9360. }
  9361. /*
  9362. * vl_arb_lock_cache
  9363. *
  9364. * All other vl_arb_* functions should be called only after locking
  9365. * the cache.
  9366. */
  9367. static inline struct vl_arb_cache *
  9368. vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
  9369. {
  9370. if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
  9371. return NULL;
  9372. spin_lock(&ppd->vl_arb_cache[idx].lock);
  9373. return &ppd->vl_arb_cache[idx];
  9374. }
  9375. static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
  9376. {
  9377. spin_unlock(&ppd->vl_arb_cache[idx].lock);
  9378. }
  9379. static void vl_arb_get_cache(struct vl_arb_cache *cache,
  9380. struct ib_vl_weight_elem *vl)
  9381. {
  9382. memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
  9383. }
  9384. static void vl_arb_set_cache(struct vl_arb_cache *cache,
  9385. struct ib_vl_weight_elem *vl)
  9386. {
  9387. memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
  9388. }
  9389. static int vl_arb_match_cache(struct vl_arb_cache *cache,
  9390. struct ib_vl_weight_elem *vl)
  9391. {
  9392. return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
  9393. }
  9394. /* end functions related to vl arbitration table caching */
  9395. static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
  9396. u32 size, struct ib_vl_weight_elem *vl)
  9397. {
  9398. struct hfi1_devdata *dd = ppd->dd;
  9399. u64 reg;
  9400. unsigned int i, is_up = 0;
  9401. int drain, ret = 0;
  9402. mutex_lock(&ppd->hls_lock);
  9403. if (ppd->host_link_state & HLS_UP)
  9404. is_up = 1;
  9405. drain = !is_ax(dd) && is_up;
  9406. if (drain)
  9407. /*
  9408. * Before adjusting VL arbitration weights, empty per-VL
  9409. * FIFOs, otherwise a packet whose VL weight is being
  9410. * set to 0 could get stuck in a FIFO with no chance to
  9411. * egress.
  9412. */
  9413. ret = stop_drain_data_vls(dd);
  9414. if (ret) {
  9415. dd_dev_err(
  9416. dd,
  9417. "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
  9418. __func__);
  9419. goto err;
  9420. }
  9421. for (i = 0; i < size; i++, vl++) {
  9422. /*
  9423. * NOTE: The low priority shift and mask are used here, but
  9424. * they are the same for both the low and high registers.
  9425. */
  9426. reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
  9427. << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
  9428. | (((u64)vl->weight
  9429. & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
  9430. << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
  9431. write_csr(dd, target + (i * 8), reg);
  9432. }
  9433. pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
  9434. if (drain)
  9435. open_fill_data_vls(dd); /* reopen all VLs */
  9436. err:
  9437. mutex_unlock(&ppd->hls_lock);
  9438. return ret;
  9439. }
  9440. /*
  9441. * Read one credit merge VL register.
  9442. */
  9443. static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
  9444. struct vl_limit *vll)
  9445. {
  9446. u64 reg = read_csr(dd, csr);
  9447. vll->dedicated = cpu_to_be16(
  9448. (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
  9449. & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
  9450. vll->shared = cpu_to_be16(
  9451. (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
  9452. & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
  9453. }
  9454. /*
  9455. * Read the current credit merge limits.
  9456. */
  9457. static int get_buffer_control(struct hfi1_devdata *dd,
  9458. struct buffer_control *bc, u16 *overall_limit)
  9459. {
  9460. u64 reg;
  9461. int i;
  9462. /* not all entries are filled in */
  9463. memset(bc, 0, sizeof(*bc));
  9464. /* OPA and HFI have a 1-1 mapping */
  9465. for (i = 0; i < TXE_NUM_DATA_VL; i++)
  9466. read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
  9467. /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
  9468. read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
  9469. reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
  9470. bc->overall_shared_limit = cpu_to_be16(
  9471. (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
  9472. & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
  9473. if (overall_limit)
  9474. *overall_limit = (reg
  9475. >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
  9476. & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
  9477. return sizeof(struct buffer_control);
  9478. }
  9479. static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
  9480. {
  9481. u64 reg;
  9482. int i;
  9483. /* each register contains 16 SC->VLnt mappings, 4 bits each */
  9484. reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
  9485. for (i = 0; i < sizeof(u64); i++) {
  9486. u8 byte = *(((u8 *)&reg) + i);
  9487. dp->vlnt[2 * i] = byte & 0xf;
  9488. dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
  9489. }
  9490. reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
  9491. for (i = 0; i < sizeof(u64); i++) {
  9492. u8 byte = *(((u8 *)&reg) + i);
  9493. dp->vlnt[16 + (2 * i)] = byte & 0xf;
  9494. dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
  9495. }
  9496. return sizeof(struct sc2vlnt);
  9497. }
  9498. static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
  9499. struct ib_vl_weight_elem *vl)
  9500. {
  9501. unsigned int i;
  9502. for (i = 0; i < nelems; i++, vl++) {
  9503. vl->vl = 0xf;
  9504. vl->weight = 0;
  9505. }
  9506. }
  9507. static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
  9508. {
  9509. write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
  9510. DC_SC_VL_VAL(15_0,
  9511. 0, dp->vlnt[0] & 0xf,
  9512. 1, dp->vlnt[1] & 0xf,
  9513. 2, dp->vlnt[2] & 0xf,
  9514. 3, dp->vlnt[3] & 0xf,
  9515. 4, dp->vlnt[4] & 0xf,
  9516. 5, dp->vlnt[5] & 0xf,
  9517. 6, dp->vlnt[6] & 0xf,
  9518. 7, dp->vlnt[7] & 0xf,
  9519. 8, dp->vlnt[8] & 0xf,
  9520. 9, dp->vlnt[9] & 0xf,
  9521. 10, dp->vlnt[10] & 0xf,
  9522. 11, dp->vlnt[11] & 0xf,
  9523. 12, dp->vlnt[12] & 0xf,
  9524. 13, dp->vlnt[13] & 0xf,
  9525. 14, dp->vlnt[14] & 0xf,
  9526. 15, dp->vlnt[15] & 0xf));
  9527. write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
  9528. DC_SC_VL_VAL(31_16,
  9529. 16, dp->vlnt[16] & 0xf,
  9530. 17, dp->vlnt[17] & 0xf,
  9531. 18, dp->vlnt[18] & 0xf,
  9532. 19, dp->vlnt[19] & 0xf,
  9533. 20, dp->vlnt[20] & 0xf,
  9534. 21, dp->vlnt[21] & 0xf,
  9535. 22, dp->vlnt[22] & 0xf,
  9536. 23, dp->vlnt[23] & 0xf,
  9537. 24, dp->vlnt[24] & 0xf,
  9538. 25, dp->vlnt[25] & 0xf,
  9539. 26, dp->vlnt[26] & 0xf,
  9540. 27, dp->vlnt[27] & 0xf,
  9541. 28, dp->vlnt[28] & 0xf,
  9542. 29, dp->vlnt[29] & 0xf,
  9543. 30, dp->vlnt[30] & 0xf,
  9544. 31, dp->vlnt[31] & 0xf));
  9545. }
  9546. static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
  9547. u16 limit)
  9548. {
  9549. if (limit != 0)
  9550. dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
  9551. what, (int)limit, idx);
  9552. }
  9553. /* change only the shared limit portion of SendCmGLobalCredit */
  9554. static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
  9555. {
  9556. u64 reg;
  9557. reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
  9558. reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
  9559. reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
  9560. write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
  9561. }
  9562. /* change only the total credit limit portion of SendCmGLobalCredit */
  9563. static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
  9564. {
  9565. u64 reg;
  9566. reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
  9567. reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
  9568. reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
  9569. write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
  9570. }
  9571. /* set the given per-VL shared limit */
  9572. static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
  9573. {
  9574. u64 reg;
  9575. u32 addr;
  9576. if (vl < TXE_NUM_DATA_VL)
  9577. addr = SEND_CM_CREDIT_VL + (8 * vl);
  9578. else
  9579. addr = SEND_CM_CREDIT_VL15;
  9580. reg = read_csr(dd, addr);
  9581. reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
  9582. reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
  9583. write_csr(dd, addr, reg);
  9584. }
  9585. /* set the given per-VL dedicated limit */
  9586. static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
  9587. {
  9588. u64 reg;
  9589. u32 addr;
  9590. if (vl < TXE_NUM_DATA_VL)
  9591. addr = SEND_CM_CREDIT_VL + (8 * vl);
  9592. else
  9593. addr = SEND_CM_CREDIT_VL15;
  9594. reg = read_csr(dd, addr);
  9595. reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
  9596. reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
  9597. write_csr(dd, addr, reg);
  9598. }
  9599. /* spin until the given per-VL status mask bits clear */
  9600. static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
  9601. const char *which)
  9602. {
  9603. unsigned long timeout;
  9604. u64 reg;
  9605. timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
  9606. while (1) {
  9607. reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
  9608. if (reg == 0)
  9609. return; /* success */
  9610. if (time_after(jiffies, timeout))
  9611. break; /* timed out */
  9612. udelay(1);
  9613. }
  9614. dd_dev_err(dd,
  9615. "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
  9616. which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
  9617. /*
  9618. * If this occurs, it is likely there was a credit loss on the link.
  9619. * The only recovery from that is a link bounce.
  9620. */
  9621. dd_dev_err(dd,
  9622. "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
  9623. }
  9624. /*
  9625. * The number of credits on the VLs may be changed while everything
  9626. * is "live", but the following algorithm must be followed due to
  9627. * how the hardware is actually implemented. In particular,
  9628. * Return_Credit_Status[] is the only correct status check.
  9629. *
  9630. * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
  9631. * set Global_Shared_Credit_Limit = 0
  9632. * use_all_vl = 1
  9633. * mask0 = all VLs that are changing either dedicated or shared limits
  9634. * set Shared_Limit[mask0] = 0
  9635. * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
  9636. * if (changing any dedicated limit)
  9637. * mask1 = all VLs that are lowering dedicated limits
  9638. * lower Dedicated_Limit[mask1]
  9639. * spin until Return_Credit_Status[mask1] == 0
  9640. * raise Dedicated_Limits
  9641. * raise Shared_Limits
  9642. * raise Global_Shared_Credit_Limit
  9643. *
  9644. * lower = if the new limit is lower, set the limit to the new value
  9645. * raise = if the new limit is higher than the current value (may be changed
  9646. * earlier in the algorithm), set the new limit to the new value
  9647. */
  9648. int set_buffer_control(struct hfi1_pportdata *ppd,
  9649. struct buffer_control *new_bc)
  9650. {
  9651. struct hfi1_devdata *dd = ppd->dd;
  9652. u64 changing_mask, ld_mask, stat_mask;
  9653. int change_count;
  9654. int i, use_all_mask;
  9655. int this_shared_changing;
  9656. int vl_count = 0, ret;
  9657. /*
  9658. * A0: add the variable any_shared_limit_changing below and in the
  9659. * algorithm above. If removing A0 support, it can be removed.
  9660. */
  9661. int any_shared_limit_changing;
  9662. struct buffer_control cur_bc;
  9663. u8 changing[OPA_MAX_VLS];
  9664. u8 lowering_dedicated[OPA_MAX_VLS];
  9665. u16 cur_total;
  9666. u32 new_total = 0;
  9667. const u64 all_mask =
  9668. SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
  9669. | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
  9670. | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
  9671. | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
  9672. | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
  9673. | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
  9674. | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
  9675. | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
  9676. | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
  9677. #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
  9678. #define NUM_USABLE_VLS 16 /* look at VL15 and less */
  9679. /* find the new total credits, do sanity check on unused VLs */
  9680. for (i = 0; i < OPA_MAX_VLS; i++) {
  9681. if (valid_vl(i)) {
  9682. new_total += be16_to_cpu(new_bc->vl[i].dedicated);
  9683. continue;
  9684. }
  9685. nonzero_msg(dd, i, "dedicated",
  9686. be16_to_cpu(new_bc->vl[i].dedicated));
  9687. nonzero_msg(dd, i, "shared",
  9688. be16_to_cpu(new_bc->vl[i].shared));
  9689. new_bc->vl[i].dedicated = 0;
  9690. new_bc->vl[i].shared = 0;
  9691. }
  9692. new_total += be16_to_cpu(new_bc->overall_shared_limit);
  9693. /* fetch the current values */
  9694. get_buffer_control(dd, &cur_bc, &cur_total);
  9695. /*
  9696. * Create the masks we will use.
  9697. */
  9698. memset(changing, 0, sizeof(changing));
  9699. memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
  9700. /*
  9701. * NOTE: Assumes that the individual VL bits are adjacent and in
  9702. * increasing order
  9703. */
  9704. stat_mask =
  9705. SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
  9706. changing_mask = 0;
  9707. ld_mask = 0;
  9708. change_count = 0;
  9709. any_shared_limit_changing = 0;
  9710. for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
  9711. if (!valid_vl(i))
  9712. continue;
  9713. this_shared_changing = new_bc->vl[i].shared
  9714. != cur_bc.vl[i].shared;
  9715. if (this_shared_changing)
  9716. any_shared_limit_changing = 1;
  9717. if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
  9718. this_shared_changing) {
  9719. changing[i] = 1;
  9720. changing_mask |= stat_mask;
  9721. change_count++;
  9722. }
  9723. if (be16_to_cpu(new_bc->vl[i].dedicated) <
  9724. be16_to_cpu(cur_bc.vl[i].dedicated)) {
  9725. lowering_dedicated[i] = 1;
  9726. ld_mask |= stat_mask;
  9727. }
  9728. }
  9729. /* bracket the credit change with a total adjustment */
  9730. if (new_total > cur_total)
  9731. set_global_limit(dd, new_total);
  9732. /*
  9733. * Start the credit change algorithm.
  9734. */
  9735. use_all_mask = 0;
  9736. if ((be16_to_cpu(new_bc->overall_shared_limit) <
  9737. be16_to_cpu(cur_bc.overall_shared_limit)) ||
  9738. (is_ax(dd) && any_shared_limit_changing)) {
  9739. set_global_shared(dd, 0);
  9740. cur_bc.overall_shared_limit = 0;
  9741. use_all_mask = 1;
  9742. }
  9743. for (i = 0; i < NUM_USABLE_VLS; i++) {
  9744. if (!valid_vl(i))
  9745. continue;
  9746. if (changing[i]) {
  9747. set_vl_shared(dd, i, 0);
  9748. cur_bc.vl[i].shared = 0;
  9749. }
  9750. }
  9751. wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
  9752. "shared");
  9753. if (change_count > 0) {
  9754. for (i = 0; i < NUM_USABLE_VLS; i++) {
  9755. if (!valid_vl(i))
  9756. continue;
  9757. if (lowering_dedicated[i]) {
  9758. set_vl_dedicated(dd, i,
  9759. be16_to_cpu(new_bc->
  9760. vl[i].dedicated));
  9761. cur_bc.vl[i].dedicated =
  9762. new_bc->vl[i].dedicated;
  9763. }
  9764. }
  9765. wait_for_vl_status_clear(dd, ld_mask, "dedicated");
  9766. /* now raise all dedicated that are going up */
  9767. for (i = 0; i < NUM_USABLE_VLS; i++) {
  9768. if (!valid_vl(i))
  9769. continue;
  9770. if (be16_to_cpu(new_bc->vl[i].dedicated) >
  9771. be16_to_cpu(cur_bc.vl[i].dedicated))
  9772. set_vl_dedicated(dd, i,
  9773. be16_to_cpu(new_bc->
  9774. vl[i].dedicated));
  9775. }
  9776. }
  9777. /* next raise all shared that are going up */
  9778. for (i = 0; i < NUM_USABLE_VLS; i++) {
  9779. if (!valid_vl(i))
  9780. continue;
  9781. if (be16_to_cpu(new_bc->vl[i].shared) >
  9782. be16_to_cpu(cur_bc.vl[i].shared))
  9783. set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
  9784. }
  9785. /* finally raise the global shared */
  9786. if (be16_to_cpu(new_bc->overall_shared_limit) >
  9787. be16_to_cpu(cur_bc.overall_shared_limit))
  9788. set_global_shared(dd,
  9789. be16_to_cpu(new_bc->overall_shared_limit));
  9790. /* bracket the credit change with a total adjustment */
  9791. if (new_total < cur_total)
  9792. set_global_limit(dd, new_total);
  9793. /*
  9794. * Determine the actual number of operational VLS using the number of
  9795. * dedicated and shared credits for each VL.
  9796. */
  9797. if (change_count > 0) {
  9798. for (i = 0; i < TXE_NUM_DATA_VL; i++)
  9799. if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
  9800. be16_to_cpu(new_bc->vl[i].shared) > 0)
  9801. vl_count++;
  9802. ppd->actual_vls_operational = vl_count;
  9803. ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
  9804. ppd->actual_vls_operational :
  9805. ppd->vls_operational,
  9806. NULL);
  9807. if (ret == 0)
  9808. ret = pio_map_init(dd, ppd->port - 1, vl_count ?
  9809. ppd->actual_vls_operational :
  9810. ppd->vls_operational, NULL);
  9811. if (ret)
  9812. return ret;
  9813. }
  9814. return 0;
  9815. }
  9816. /*
  9817. * Read the given fabric manager table. Return the size of the
  9818. * table (in bytes) on success, and a negative error code on
  9819. * failure.
  9820. */
  9821. int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
  9822. {
  9823. int size;
  9824. struct vl_arb_cache *vlc;
  9825. switch (which) {
  9826. case FM_TBL_VL_HIGH_ARB:
  9827. size = 256;
  9828. /*
  9829. * OPA specifies 128 elements (of 2 bytes each), though
  9830. * HFI supports only 16 elements in h/w.
  9831. */
  9832. vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
  9833. vl_arb_get_cache(vlc, t);
  9834. vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
  9835. break;
  9836. case FM_TBL_VL_LOW_ARB:
  9837. size = 256;
  9838. /*
  9839. * OPA specifies 128 elements (of 2 bytes each), though
  9840. * HFI supports only 16 elements in h/w.
  9841. */
  9842. vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
  9843. vl_arb_get_cache(vlc, t);
  9844. vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
  9845. break;
  9846. case FM_TBL_BUFFER_CONTROL:
  9847. size = get_buffer_control(ppd->dd, t, NULL);
  9848. break;
  9849. case FM_TBL_SC2VLNT:
  9850. size = get_sc2vlnt(ppd->dd, t);
  9851. break;
  9852. case FM_TBL_VL_PREEMPT_ELEMS:
  9853. size = 256;
  9854. /* OPA specifies 128 elements, of 2 bytes each */
  9855. get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
  9856. break;
  9857. case FM_TBL_VL_PREEMPT_MATRIX:
  9858. size = 256;
  9859. /*
  9860. * OPA specifies that this is the same size as the VL
  9861. * arbitration tables (i.e., 256 bytes).
  9862. */
  9863. break;
  9864. default:
  9865. return -EINVAL;
  9866. }
  9867. return size;
  9868. }
  9869. /*
  9870. * Write the given fabric manager table.
  9871. */
  9872. int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
  9873. {
  9874. int ret = 0;
  9875. struct vl_arb_cache *vlc;
  9876. switch (which) {
  9877. case FM_TBL_VL_HIGH_ARB:
  9878. vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
  9879. if (vl_arb_match_cache(vlc, t)) {
  9880. vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
  9881. break;
  9882. }
  9883. vl_arb_set_cache(vlc, t);
  9884. vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
  9885. ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
  9886. VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
  9887. break;
  9888. case FM_TBL_VL_LOW_ARB:
  9889. vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
  9890. if (vl_arb_match_cache(vlc, t)) {
  9891. vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
  9892. break;
  9893. }
  9894. vl_arb_set_cache(vlc, t);
  9895. vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
  9896. ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
  9897. VL_ARB_LOW_PRIO_TABLE_SIZE, t);
  9898. break;
  9899. case FM_TBL_BUFFER_CONTROL:
  9900. ret = set_buffer_control(ppd, t);
  9901. break;
  9902. case FM_TBL_SC2VLNT:
  9903. set_sc2vlnt(ppd->dd, t);
  9904. break;
  9905. default:
  9906. ret = -EINVAL;
  9907. }
  9908. return ret;
  9909. }
  9910. /*
  9911. * Disable all data VLs.
  9912. *
  9913. * Return 0 if disabled, non-zero if the VLs cannot be disabled.
  9914. */
  9915. static int disable_data_vls(struct hfi1_devdata *dd)
  9916. {
  9917. if (is_ax(dd))
  9918. return 1;
  9919. pio_send_control(dd, PSC_DATA_VL_DISABLE);
  9920. return 0;
  9921. }
  9922. /*
  9923. * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
  9924. * Just re-enables all data VLs (the "fill" part happens
  9925. * automatically - the name was chosen for symmetry with
  9926. * stop_drain_data_vls()).
  9927. *
  9928. * Return 0 if successful, non-zero if the VLs cannot be enabled.
  9929. */
  9930. int open_fill_data_vls(struct hfi1_devdata *dd)
  9931. {
  9932. if (is_ax(dd))
  9933. return 1;
  9934. pio_send_control(dd, PSC_DATA_VL_ENABLE);
  9935. return 0;
  9936. }
  9937. /*
  9938. * drain_data_vls() - assumes that disable_data_vls() has been called,
  9939. * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
  9940. * engines to drop to 0.
  9941. */
  9942. static void drain_data_vls(struct hfi1_devdata *dd)
  9943. {
  9944. sc_wait(dd);
  9945. sdma_wait(dd);
  9946. pause_for_credit_return(dd);
  9947. }
  9948. /*
  9949. * stop_drain_data_vls() - disable, then drain all per-VL fifos.
  9950. *
  9951. * Use open_fill_data_vls() to resume using data VLs. This pair is
  9952. * meant to be used like this:
  9953. *
  9954. * stop_drain_data_vls(dd);
  9955. * // do things with per-VL resources
  9956. * open_fill_data_vls(dd);
  9957. */
  9958. int stop_drain_data_vls(struct hfi1_devdata *dd)
  9959. {
  9960. int ret;
  9961. ret = disable_data_vls(dd);
  9962. if (ret == 0)
  9963. drain_data_vls(dd);
  9964. return ret;
  9965. }
  9966. /*
  9967. * Convert a nanosecond time to a cclock count. No matter how slow
  9968. * the cclock, a non-zero ns will always have a non-zero result.
  9969. */
  9970. u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
  9971. {
  9972. u32 cclocks;
  9973. if (dd->icode == ICODE_FPGA_EMULATION)
  9974. cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
  9975. else /* simulation pretends to be ASIC */
  9976. cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
  9977. if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
  9978. cclocks = 1;
  9979. return cclocks;
  9980. }
  9981. /*
  9982. * Convert a cclock count to nanoseconds. Not matter how slow
  9983. * the cclock, a non-zero cclocks will always have a non-zero result.
  9984. */
  9985. u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
  9986. {
  9987. u32 ns;
  9988. if (dd->icode == ICODE_FPGA_EMULATION)
  9989. ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
  9990. else /* simulation pretends to be ASIC */
  9991. ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
  9992. if (cclocks && !ns)
  9993. ns = 1;
  9994. return ns;
  9995. }
  9996. /*
  9997. * Dynamically adjust the receive interrupt timeout for a context based on
  9998. * incoming packet rate.
  9999. *
  10000. * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
  10001. */
  10002. static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
  10003. {
  10004. struct hfi1_devdata *dd = rcd->dd;
  10005. u32 timeout = rcd->rcvavail_timeout;
  10006. /*
  10007. * This algorithm doubles or halves the timeout depending on whether
  10008. * the number of packets received in this interrupt were less than or
  10009. * greater equal the interrupt count.
  10010. *
  10011. * The calculations below do not allow a steady state to be achieved.
  10012. * Only at the endpoints it is possible to have an unchanging
  10013. * timeout.
  10014. */
  10015. if (npkts < rcv_intr_count) {
  10016. /*
  10017. * Not enough packets arrived before the timeout, adjust
  10018. * timeout downward.
  10019. */
  10020. if (timeout < 2) /* already at minimum? */
  10021. return;
  10022. timeout >>= 1;
  10023. } else {
  10024. /*
  10025. * More than enough packets arrived before the timeout, adjust
  10026. * timeout upward.
  10027. */
  10028. if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
  10029. return;
  10030. timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
  10031. }
  10032. rcd->rcvavail_timeout = timeout;
  10033. /*
  10034. * timeout cannot be larger than rcv_intr_timeout_csr which has already
  10035. * been verified to be in range
  10036. */
  10037. write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
  10038. (u64)timeout <<
  10039. RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
  10040. }
  10041. void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
  10042. u32 intr_adjust, u32 npkts)
  10043. {
  10044. struct hfi1_devdata *dd = rcd->dd;
  10045. u64 reg;
  10046. u32 ctxt = rcd->ctxt;
  10047. /*
  10048. * Need to write timeout register before updating RcvHdrHead to ensure
  10049. * that a new value is used when the HW decides to restart counting.
  10050. */
  10051. if (intr_adjust)
  10052. adjust_rcv_timeout(rcd, npkts);
  10053. if (updegr) {
  10054. reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
  10055. << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
  10056. write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
  10057. }
  10058. mmiowb();
  10059. reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
  10060. (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
  10061. << RCV_HDR_HEAD_HEAD_SHIFT);
  10062. write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
  10063. mmiowb();
  10064. }
  10065. u32 hdrqempty(struct hfi1_ctxtdata *rcd)
  10066. {
  10067. u32 head, tail;
  10068. head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
  10069. & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
  10070. if (rcd->rcvhdrtail_kvaddr)
  10071. tail = get_rcvhdrtail(rcd);
  10072. else
  10073. tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
  10074. return head == tail;
  10075. }
  10076. /*
  10077. * Context Control and Receive Array encoding for buffer size:
  10078. * 0x0 invalid
  10079. * 0x1 4 KB
  10080. * 0x2 8 KB
  10081. * 0x3 16 KB
  10082. * 0x4 32 KB
  10083. * 0x5 64 KB
  10084. * 0x6 128 KB
  10085. * 0x7 256 KB
  10086. * 0x8 512 KB (Receive Array only)
  10087. * 0x9 1 MB (Receive Array only)
  10088. * 0xa 2 MB (Receive Array only)
  10089. *
  10090. * 0xB-0xF - reserved (Receive Array only)
  10091. *
  10092. *
  10093. * This routine assumes that the value has already been sanity checked.
  10094. */
  10095. static u32 encoded_size(u32 size)
  10096. {
  10097. switch (size) {
  10098. case 4 * 1024: return 0x1;
  10099. case 8 * 1024: return 0x2;
  10100. case 16 * 1024: return 0x3;
  10101. case 32 * 1024: return 0x4;
  10102. case 64 * 1024: return 0x5;
  10103. case 128 * 1024: return 0x6;
  10104. case 256 * 1024: return 0x7;
  10105. case 512 * 1024: return 0x8;
  10106. case 1 * 1024 * 1024: return 0x9;
  10107. case 2 * 1024 * 1024: return 0xa;
  10108. }
  10109. return 0x1; /* if invalid, go with the minimum size */
  10110. }
  10111. void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
  10112. {
  10113. struct hfi1_ctxtdata *rcd;
  10114. u64 rcvctrl, reg;
  10115. int did_enable = 0;
  10116. rcd = dd->rcd[ctxt];
  10117. if (!rcd)
  10118. return;
  10119. hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
  10120. rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
  10121. /* if the context already enabled, don't do the extra steps */
  10122. if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
  10123. !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
  10124. /* reset the tail and hdr addresses, and sequence count */
  10125. write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
  10126. rcd->rcvhdrq_dma);
  10127. if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
  10128. write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
  10129. rcd->rcvhdrqtailaddr_dma);
  10130. rcd->seq_cnt = 1;
  10131. /* reset the cached receive header queue head value */
  10132. rcd->head = 0;
  10133. /*
  10134. * Zero the receive header queue so we don't get false
  10135. * positives when checking the sequence number. The
  10136. * sequence numbers could land exactly on the same spot.
  10137. * E.g. a rcd restart before the receive header wrapped.
  10138. */
  10139. memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
  10140. /* starting timeout */
  10141. rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
  10142. /* enable the context */
  10143. rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
  10144. /* clean the egr buffer size first */
  10145. rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
  10146. rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
  10147. & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
  10148. << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
  10149. /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
  10150. write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
  10151. did_enable = 1;
  10152. /* zero RcvEgrIndexHead */
  10153. write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
  10154. /* set eager count and base index */
  10155. reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
  10156. & RCV_EGR_CTRL_EGR_CNT_MASK)
  10157. << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
  10158. (((rcd->eager_base >> RCV_SHIFT)
  10159. & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
  10160. << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
  10161. write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
  10162. /*
  10163. * Set TID (expected) count and base index.
  10164. * rcd->expected_count is set to individual RcvArray entries,
  10165. * not pairs, and the CSR takes a pair-count in groups of
  10166. * four, so divide by 8.
  10167. */
  10168. reg = (((rcd->expected_count >> RCV_SHIFT)
  10169. & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
  10170. << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
  10171. (((rcd->expected_base >> RCV_SHIFT)
  10172. & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
  10173. << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
  10174. write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
  10175. if (ctxt == HFI1_CTRL_CTXT)
  10176. write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
  10177. }
  10178. if (op & HFI1_RCVCTRL_CTXT_DIS) {
  10179. write_csr(dd, RCV_VL15, 0);
  10180. /*
  10181. * When receive context is being disabled turn on tail
  10182. * update with a dummy tail address and then disable
  10183. * receive context.
  10184. */
  10185. if (dd->rcvhdrtail_dummy_dma) {
  10186. write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
  10187. dd->rcvhdrtail_dummy_dma);
  10188. /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
  10189. rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
  10190. }
  10191. rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
  10192. }
  10193. if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
  10194. rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
  10195. if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
  10196. rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
  10197. if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
  10198. rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
  10199. if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
  10200. /* See comment on RcvCtxtCtrl.TailUpd above */
  10201. if (!(op & HFI1_RCVCTRL_CTXT_DIS))
  10202. rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
  10203. }
  10204. if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
  10205. rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
  10206. if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
  10207. rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
  10208. if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
  10209. /*
  10210. * In one-packet-per-eager mode, the size comes from
  10211. * the RcvArray entry.
  10212. */
  10213. rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
  10214. rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
  10215. }
  10216. if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
  10217. rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
  10218. if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
  10219. rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
  10220. if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
  10221. rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
  10222. if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
  10223. rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
  10224. if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
  10225. rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
  10226. rcd->rcvctrl = rcvctrl;
  10227. hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
  10228. write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
  10229. /* work around sticky RcvCtxtStatus.BlockedRHQFull */
  10230. if (did_enable &&
  10231. (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
  10232. reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
  10233. if (reg != 0) {
  10234. dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
  10235. ctxt, reg);
  10236. read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
  10237. write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
  10238. write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
  10239. read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
  10240. reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
  10241. dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
  10242. ctxt, reg, reg == 0 ? "not" : "still");
  10243. }
  10244. }
  10245. if (did_enable) {
  10246. /*
  10247. * The interrupt timeout and count must be set after
  10248. * the context is enabled to take effect.
  10249. */
  10250. /* set interrupt timeout */
  10251. write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
  10252. (u64)rcd->rcvavail_timeout <<
  10253. RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
  10254. /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
  10255. reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
  10256. write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
  10257. }
  10258. if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
  10259. /*
  10260. * If the context has been disabled and the Tail Update has
  10261. * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
  10262. * so it doesn't contain an address that is invalid.
  10263. */
  10264. write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
  10265. dd->rcvhdrtail_dummy_dma);
  10266. }
  10267. u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
  10268. {
  10269. int ret;
  10270. u64 val = 0;
  10271. if (namep) {
  10272. ret = dd->cntrnameslen;
  10273. *namep = dd->cntrnames;
  10274. } else {
  10275. const struct cntr_entry *entry;
  10276. int i, j;
  10277. ret = (dd->ndevcntrs) * sizeof(u64);
  10278. /* Get the start of the block of counters */
  10279. *cntrp = dd->cntrs;
  10280. /*
  10281. * Now go and fill in each counter in the block.
  10282. */
  10283. for (i = 0; i < DEV_CNTR_LAST; i++) {
  10284. entry = &dev_cntrs[i];
  10285. hfi1_cdbg(CNTR, "reading %s", entry->name);
  10286. if (entry->flags & CNTR_DISABLED) {
  10287. /* Nothing */
  10288. hfi1_cdbg(CNTR, "\tDisabled\n");
  10289. } else {
  10290. if (entry->flags & CNTR_VL) {
  10291. hfi1_cdbg(CNTR, "\tPer VL\n");
  10292. for (j = 0; j < C_VL_COUNT; j++) {
  10293. val = entry->rw_cntr(entry,
  10294. dd, j,
  10295. CNTR_MODE_R,
  10296. 0);
  10297. hfi1_cdbg(
  10298. CNTR,
  10299. "\t\tRead 0x%llx for %d\n",
  10300. val, j);
  10301. dd->cntrs[entry->offset + j] =
  10302. val;
  10303. }
  10304. } else if (entry->flags & CNTR_SDMA) {
  10305. hfi1_cdbg(CNTR,
  10306. "\t Per SDMA Engine\n");
  10307. for (j = 0; j < dd->chip_sdma_engines;
  10308. j++) {
  10309. val =
  10310. entry->rw_cntr(entry, dd, j,
  10311. CNTR_MODE_R, 0);
  10312. hfi1_cdbg(CNTR,
  10313. "\t\tRead 0x%llx for %d\n",
  10314. val, j);
  10315. dd->cntrs[entry->offset + j] =
  10316. val;
  10317. }
  10318. } else {
  10319. val = entry->rw_cntr(entry, dd,
  10320. CNTR_INVALID_VL,
  10321. CNTR_MODE_R, 0);
  10322. dd->cntrs[entry->offset] = val;
  10323. hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
  10324. }
  10325. }
  10326. }
  10327. }
  10328. return ret;
  10329. }
  10330. /*
  10331. * Used by sysfs to create files for hfi stats to read
  10332. */
  10333. u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
  10334. {
  10335. int ret;
  10336. u64 val = 0;
  10337. if (namep) {
  10338. ret = ppd->dd->portcntrnameslen;
  10339. *namep = ppd->dd->portcntrnames;
  10340. } else {
  10341. const struct cntr_entry *entry;
  10342. int i, j;
  10343. ret = ppd->dd->nportcntrs * sizeof(u64);
  10344. *cntrp = ppd->cntrs;
  10345. for (i = 0; i < PORT_CNTR_LAST; i++) {
  10346. entry = &port_cntrs[i];
  10347. hfi1_cdbg(CNTR, "reading %s", entry->name);
  10348. if (entry->flags & CNTR_DISABLED) {
  10349. /* Nothing */
  10350. hfi1_cdbg(CNTR, "\tDisabled\n");
  10351. continue;
  10352. }
  10353. if (entry->flags & CNTR_VL) {
  10354. hfi1_cdbg(CNTR, "\tPer VL");
  10355. for (j = 0; j < C_VL_COUNT; j++) {
  10356. val = entry->rw_cntr(entry, ppd, j,
  10357. CNTR_MODE_R,
  10358. 0);
  10359. hfi1_cdbg(
  10360. CNTR,
  10361. "\t\tRead 0x%llx for %d",
  10362. val, j);
  10363. ppd->cntrs[entry->offset + j] = val;
  10364. }
  10365. } else {
  10366. val = entry->rw_cntr(entry, ppd,
  10367. CNTR_INVALID_VL,
  10368. CNTR_MODE_R,
  10369. 0);
  10370. ppd->cntrs[entry->offset] = val;
  10371. hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
  10372. }
  10373. }
  10374. }
  10375. return ret;
  10376. }
  10377. static void free_cntrs(struct hfi1_devdata *dd)
  10378. {
  10379. struct hfi1_pportdata *ppd;
  10380. int i;
  10381. if (dd->synth_stats_timer.data)
  10382. del_timer_sync(&dd->synth_stats_timer);
  10383. dd->synth_stats_timer.data = 0;
  10384. ppd = (struct hfi1_pportdata *)(dd + 1);
  10385. for (i = 0; i < dd->num_pports; i++, ppd++) {
  10386. kfree(ppd->cntrs);
  10387. kfree(ppd->scntrs);
  10388. free_percpu(ppd->ibport_data.rvp.rc_acks);
  10389. free_percpu(ppd->ibport_data.rvp.rc_qacks);
  10390. free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
  10391. ppd->cntrs = NULL;
  10392. ppd->scntrs = NULL;
  10393. ppd->ibport_data.rvp.rc_acks = NULL;
  10394. ppd->ibport_data.rvp.rc_qacks = NULL;
  10395. ppd->ibport_data.rvp.rc_delayed_comp = NULL;
  10396. }
  10397. kfree(dd->portcntrnames);
  10398. dd->portcntrnames = NULL;
  10399. kfree(dd->cntrs);
  10400. dd->cntrs = NULL;
  10401. kfree(dd->scntrs);
  10402. dd->scntrs = NULL;
  10403. kfree(dd->cntrnames);
  10404. dd->cntrnames = NULL;
  10405. }
  10406. static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
  10407. u64 *psval, void *context, int vl)
  10408. {
  10409. u64 val;
  10410. u64 sval = *psval;
  10411. if (entry->flags & CNTR_DISABLED) {
  10412. dd_dev_err(dd, "Counter %s not enabled", entry->name);
  10413. return 0;
  10414. }
  10415. hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
  10416. val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
  10417. /* If its a synthetic counter there is more work we need to do */
  10418. if (entry->flags & CNTR_SYNTH) {
  10419. if (sval == CNTR_MAX) {
  10420. /* No need to read already saturated */
  10421. return CNTR_MAX;
  10422. }
  10423. if (entry->flags & CNTR_32BIT) {
  10424. /* 32bit counters can wrap multiple times */
  10425. u64 upper = sval >> 32;
  10426. u64 lower = (sval << 32) >> 32;
  10427. if (lower > val) { /* hw wrapped */
  10428. if (upper == CNTR_32BIT_MAX)
  10429. val = CNTR_MAX;
  10430. else
  10431. upper++;
  10432. }
  10433. if (val != CNTR_MAX)
  10434. val = (upper << 32) | val;
  10435. } else {
  10436. /* If we rolled we are saturated */
  10437. if ((val < sval) || (val > CNTR_MAX))
  10438. val = CNTR_MAX;
  10439. }
  10440. }
  10441. *psval = val;
  10442. hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
  10443. return val;
  10444. }
  10445. static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
  10446. struct cntr_entry *entry,
  10447. u64 *psval, void *context, int vl, u64 data)
  10448. {
  10449. u64 val;
  10450. if (entry->flags & CNTR_DISABLED) {
  10451. dd_dev_err(dd, "Counter %s not enabled", entry->name);
  10452. return 0;
  10453. }
  10454. hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
  10455. if (entry->flags & CNTR_SYNTH) {
  10456. *psval = data;
  10457. if (entry->flags & CNTR_32BIT) {
  10458. val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
  10459. (data << 32) >> 32);
  10460. val = data; /* return the full 64bit value */
  10461. } else {
  10462. val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
  10463. data);
  10464. }
  10465. } else {
  10466. val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
  10467. }
  10468. *psval = val;
  10469. hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
  10470. return val;
  10471. }
  10472. u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
  10473. {
  10474. struct cntr_entry *entry;
  10475. u64 *sval;
  10476. entry = &dev_cntrs[index];
  10477. sval = dd->scntrs + entry->offset;
  10478. if (vl != CNTR_INVALID_VL)
  10479. sval += vl;
  10480. return read_dev_port_cntr(dd, entry, sval, dd, vl);
  10481. }
  10482. u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
  10483. {
  10484. struct cntr_entry *entry;
  10485. u64 *sval;
  10486. entry = &dev_cntrs[index];
  10487. sval = dd->scntrs + entry->offset;
  10488. if (vl != CNTR_INVALID_VL)
  10489. sval += vl;
  10490. return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
  10491. }
  10492. u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
  10493. {
  10494. struct cntr_entry *entry;
  10495. u64 *sval;
  10496. entry = &port_cntrs[index];
  10497. sval = ppd->scntrs + entry->offset;
  10498. if (vl != CNTR_INVALID_VL)
  10499. sval += vl;
  10500. if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
  10501. (index <= C_RCV_HDR_OVF_LAST)) {
  10502. /* We do not want to bother for disabled contexts */
  10503. return 0;
  10504. }
  10505. return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
  10506. }
  10507. u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
  10508. {
  10509. struct cntr_entry *entry;
  10510. u64 *sval;
  10511. entry = &port_cntrs[index];
  10512. sval = ppd->scntrs + entry->offset;
  10513. if (vl != CNTR_INVALID_VL)
  10514. sval += vl;
  10515. if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
  10516. (index <= C_RCV_HDR_OVF_LAST)) {
  10517. /* We do not want to bother for disabled contexts */
  10518. return 0;
  10519. }
  10520. return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
  10521. }
  10522. static void update_synth_timer(unsigned long opaque)
  10523. {
  10524. u64 cur_tx;
  10525. u64 cur_rx;
  10526. u64 total_flits;
  10527. u8 update = 0;
  10528. int i, j, vl;
  10529. struct hfi1_pportdata *ppd;
  10530. struct cntr_entry *entry;
  10531. struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
  10532. /*
  10533. * Rather than keep beating on the CSRs pick a minimal set that we can
  10534. * check to watch for potential roll over. We can do this by looking at
  10535. * the number of flits sent/recv. If the total flits exceeds 32bits then
  10536. * we have to iterate all the counters and update.
  10537. */
  10538. entry = &dev_cntrs[C_DC_RCV_FLITS];
  10539. cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
  10540. entry = &dev_cntrs[C_DC_XMIT_FLITS];
  10541. cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
  10542. hfi1_cdbg(
  10543. CNTR,
  10544. "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
  10545. dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
  10546. if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
  10547. /*
  10548. * May not be strictly necessary to update but it won't hurt and
  10549. * simplifies the logic here.
  10550. */
  10551. update = 1;
  10552. hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
  10553. dd->unit);
  10554. } else {
  10555. total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
  10556. hfi1_cdbg(CNTR,
  10557. "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
  10558. total_flits, (u64)CNTR_32BIT_MAX);
  10559. if (total_flits >= CNTR_32BIT_MAX) {
  10560. hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
  10561. dd->unit);
  10562. update = 1;
  10563. }
  10564. }
  10565. if (update) {
  10566. hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
  10567. for (i = 0; i < DEV_CNTR_LAST; i++) {
  10568. entry = &dev_cntrs[i];
  10569. if (entry->flags & CNTR_VL) {
  10570. for (vl = 0; vl < C_VL_COUNT; vl++)
  10571. read_dev_cntr(dd, i, vl);
  10572. } else {
  10573. read_dev_cntr(dd, i, CNTR_INVALID_VL);
  10574. }
  10575. }
  10576. ppd = (struct hfi1_pportdata *)(dd + 1);
  10577. for (i = 0; i < dd->num_pports; i++, ppd++) {
  10578. for (j = 0; j < PORT_CNTR_LAST; j++) {
  10579. entry = &port_cntrs[j];
  10580. if (entry->flags & CNTR_VL) {
  10581. for (vl = 0; vl < C_VL_COUNT; vl++)
  10582. read_port_cntr(ppd, j, vl);
  10583. } else {
  10584. read_port_cntr(ppd, j, CNTR_INVALID_VL);
  10585. }
  10586. }
  10587. }
  10588. /*
  10589. * We want the value in the register. The goal is to keep track
  10590. * of the number of "ticks" not the counter value. In other
  10591. * words if the register rolls we want to notice it and go ahead
  10592. * and force an update.
  10593. */
  10594. entry = &dev_cntrs[C_DC_XMIT_FLITS];
  10595. dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
  10596. CNTR_MODE_R, 0);
  10597. entry = &dev_cntrs[C_DC_RCV_FLITS];
  10598. dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
  10599. CNTR_MODE_R, 0);
  10600. hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
  10601. dd->unit, dd->last_tx, dd->last_rx);
  10602. } else {
  10603. hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
  10604. }
  10605. mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
  10606. }
  10607. #define C_MAX_NAME 16 /* 15 chars + one for /0 */
  10608. static int init_cntrs(struct hfi1_devdata *dd)
  10609. {
  10610. int i, rcv_ctxts, j;
  10611. size_t sz;
  10612. char *p;
  10613. char name[C_MAX_NAME];
  10614. struct hfi1_pportdata *ppd;
  10615. const char *bit_type_32 = ",32";
  10616. const int bit_type_32_sz = strlen(bit_type_32);
  10617. /* set up the stats timer; the add_timer is done at the end */
  10618. setup_timer(&dd->synth_stats_timer, update_synth_timer,
  10619. (unsigned long)dd);
  10620. /***********************/
  10621. /* per device counters */
  10622. /***********************/
  10623. /* size names and determine how many we have*/
  10624. dd->ndevcntrs = 0;
  10625. sz = 0;
  10626. for (i = 0; i < DEV_CNTR_LAST; i++) {
  10627. if (dev_cntrs[i].flags & CNTR_DISABLED) {
  10628. hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
  10629. continue;
  10630. }
  10631. if (dev_cntrs[i].flags & CNTR_VL) {
  10632. dev_cntrs[i].offset = dd->ndevcntrs;
  10633. for (j = 0; j < C_VL_COUNT; j++) {
  10634. snprintf(name, C_MAX_NAME, "%s%d",
  10635. dev_cntrs[i].name, vl_from_idx(j));
  10636. sz += strlen(name);
  10637. /* Add ",32" for 32-bit counters */
  10638. if (dev_cntrs[i].flags & CNTR_32BIT)
  10639. sz += bit_type_32_sz;
  10640. sz++;
  10641. dd->ndevcntrs++;
  10642. }
  10643. } else if (dev_cntrs[i].flags & CNTR_SDMA) {
  10644. dev_cntrs[i].offset = dd->ndevcntrs;
  10645. for (j = 0; j < dd->chip_sdma_engines; j++) {
  10646. snprintf(name, C_MAX_NAME, "%s%d",
  10647. dev_cntrs[i].name, j);
  10648. sz += strlen(name);
  10649. /* Add ",32" for 32-bit counters */
  10650. if (dev_cntrs[i].flags & CNTR_32BIT)
  10651. sz += bit_type_32_sz;
  10652. sz++;
  10653. dd->ndevcntrs++;
  10654. }
  10655. } else {
  10656. /* +1 for newline. */
  10657. sz += strlen(dev_cntrs[i].name) + 1;
  10658. /* Add ",32" for 32-bit counters */
  10659. if (dev_cntrs[i].flags & CNTR_32BIT)
  10660. sz += bit_type_32_sz;
  10661. dev_cntrs[i].offset = dd->ndevcntrs;
  10662. dd->ndevcntrs++;
  10663. }
  10664. }
  10665. /* allocate space for the counter values */
  10666. dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
  10667. if (!dd->cntrs)
  10668. goto bail;
  10669. dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
  10670. if (!dd->scntrs)
  10671. goto bail;
  10672. /* allocate space for the counter names */
  10673. dd->cntrnameslen = sz;
  10674. dd->cntrnames = kmalloc(sz, GFP_KERNEL);
  10675. if (!dd->cntrnames)
  10676. goto bail;
  10677. /* fill in the names */
  10678. for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
  10679. if (dev_cntrs[i].flags & CNTR_DISABLED) {
  10680. /* Nothing */
  10681. } else if (dev_cntrs[i].flags & CNTR_VL) {
  10682. for (j = 0; j < C_VL_COUNT; j++) {
  10683. snprintf(name, C_MAX_NAME, "%s%d",
  10684. dev_cntrs[i].name,
  10685. vl_from_idx(j));
  10686. memcpy(p, name, strlen(name));
  10687. p += strlen(name);
  10688. /* Counter is 32 bits */
  10689. if (dev_cntrs[i].flags & CNTR_32BIT) {
  10690. memcpy(p, bit_type_32, bit_type_32_sz);
  10691. p += bit_type_32_sz;
  10692. }
  10693. *p++ = '\n';
  10694. }
  10695. } else if (dev_cntrs[i].flags & CNTR_SDMA) {
  10696. for (j = 0; j < dd->chip_sdma_engines; j++) {
  10697. snprintf(name, C_MAX_NAME, "%s%d",
  10698. dev_cntrs[i].name, j);
  10699. memcpy(p, name, strlen(name));
  10700. p += strlen(name);
  10701. /* Counter is 32 bits */
  10702. if (dev_cntrs[i].flags & CNTR_32BIT) {
  10703. memcpy(p, bit_type_32, bit_type_32_sz);
  10704. p += bit_type_32_sz;
  10705. }
  10706. *p++ = '\n';
  10707. }
  10708. } else {
  10709. memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
  10710. p += strlen(dev_cntrs[i].name);
  10711. /* Counter is 32 bits */
  10712. if (dev_cntrs[i].flags & CNTR_32BIT) {
  10713. memcpy(p, bit_type_32, bit_type_32_sz);
  10714. p += bit_type_32_sz;
  10715. }
  10716. *p++ = '\n';
  10717. }
  10718. }
  10719. /*********************/
  10720. /* per port counters */
  10721. /*********************/
  10722. /*
  10723. * Go through the counters for the overflows and disable the ones we
  10724. * don't need. This varies based on platform so we need to do it
  10725. * dynamically here.
  10726. */
  10727. rcv_ctxts = dd->num_rcv_contexts;
  10728. for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
  10729. i <= C_RCV_HDR_OVF_LAST; i++) {
  10730. port_cntrs[i].flags |= CNTR_DISABLED;
  10731. }
  10732. /* size port counter names and determine how many we have*/
  10733. sz = 0;
  10734. dd->nportcntrs = 0;
  10735. for (i = 0; i < PORT_CNTR_LAST; i++) {
  10736. if (port_cntrs[i].flags & CNTR_DISABLED) {
  10737. hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
  10738. continue;
  10739. }
  10740. if (port_cntrs[i].flags & CNTR_VL) {
  10741. port_cntrs[i].offset = dd->nportcntrs;
  10742. for (j = 0; j < C_VL_COUNT; j++) {
  10743. snprintf(name, C_MAX_NAME, "%s%d",
  10744. port_cntrs[i].name, vl_from_idx(j));
  10745. sz += strlen(name);
  10746. /* Add ",32" for 32-bit counters */
  10747. if (port_cntrs[i].flags & CNTR_32BIT)
  10748. sz += bit_type_32_sz;
  10749. sz++;
  10750. dd->nportcntrs++;
  10751. }
  10752. } else {
  10753. /* +1 for newline */
  10754. sz += strlen(port_cntrs[i].name) + 1;
  10755. /* Add ",32" for 32-bit counters */
  10756. if (port_cntrs[i].flags & CNTR_32BIT)
  10757. sz += bit_type_32_sz;
  10758. port_cntrs[i].offset = dd->nportcntrs;
  10759. dd->nportcntrs++;
  10760. }
  10761. }
  10762. /* allocate space for the counter names */
  10763. dd->portcntrnameslen = sz;
  10764. dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
  10765. if (!dd->portcntrnames)
  10766. goto bail;
  10767. /* fill in port cntr names */
  10768. for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
  10769. if (port_cntrs[i].flags & CNTR_DISABLED)
  10770. continue;
  10771. if (port_cntrs[i].flags & CNTR_VL) {
  10772. for (j = 0; j < C_VL_COUNT; j++) {
  10773. snprintf(name, C_MAX_NAME, "%s%d",
  10774. port_cntrs[i].name, vl_from_idx(j));
  10775. memcpy(p, name, strlen(name));
  10776. p += strlen(name);
  10777. /* Counter is 32 bits */
  10778. if (port_cntrs[i].flags & CNTR_32BIT) {
  10779. memcpy(p, bit_type_32, bit_type_32_sz);
  10780. p += bit_type_32_sz;
  10781. }
  10782. *p++ = '\n';
  10783. }
  10784. } else {
  10785. memcpy(p, port_cntrs[i].name,
  10786. strlen(port_cntrs[i].name));
  10787. p += strlen(port_cntrs[i].name);
  10788. /* Counter is 32 bits */
  10789. if (port_cntrs[i].flags & CNTR_32BIT) {
  10790. memcpy(p, bit_type_32, bit_type_32_sz);
  10791. p += bit_type_32_sz;
  10792. }
  10793. *p++ = '\n';
  10794. }
  10795. }
  10796. /* allocate per port storage for counter values */
  10797. ppd = (struct hfi1_pportdata *)(dd + 1);
  10798. for (i = 0; i < dd->num_pports; i++, ppd++) {
  10799. ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
  10800. if (!ppd->cntrs)
  10801. goto bail;
  10802. ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
  10803. if (!ppd->scntrs)
  10804. goto bail;
  10805. }
  10806. /* CPU counters need to be allocated and zeroed */
  10807. if (init_cpu_counters(dd))
  10808. goto bail;
  10809. mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
  10810. return 0;
  10811. bail:
  10812. free_cntrs(dd);
  10813. return -ENOMEM;
  10814. }
  10815. static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
  10816. {
  10817. switch (chip_lstate) {
  10818. default:
  10819. dd_dev_err(dd,
  10820. "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
  10821. chip_lstate);
  10822. /* fall through */
  10823. case LSTATE_DOWN:
  10824. return IB_PORT_DOWN;
  10825. case LSTATE_INIT:
  10826. return IB_PORT_INIT;
  10827. case LSTATE_ARMED:
  10828. return IB_PORT_ARMED;
  10829. case LSTATE_ACTIVE:
  10830. return IB_PORT_ACTIVE;
  10831. }
  10832. }
  10833. u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
  10834. {
  10835. /* look at the HFI meta-states only */
  10836. switch (chip_pstate & 0xf0) {
  10837. default:
  10838. dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
  10839. chip_pstate);
  10840. /* fall through */
  10841. case PLS_DISABLED:
  10842. return IB_PORTPHYSSTATE_DISABLED;
  10843. case PLS_OFFLINE:
  10844. return OPA_PORTPHYSSTATE_OFFLINE;
  10845. case PLS_POLLING:
  10846. return IB_PORTPHYSSTATE_POLLING;
  10847. case PLS_CONFIGPHY:
  10848. return IB_PORTPHYSSTATE_TRAINING;
  10849. case PLS_LINKUP:
  10850. return IB_PORTPHYSSTATE_LINKUP;
  10851. case PLS_PHYTEST:
  10852. return IB_PORTPHYSSTATE_PHY_TEST;
  10853. }
  10854. }
  10855. /* return the OPA port logical state name */
  10856. const char *opa_lstate_name(u32 lstate)
  10857. {
  10858. static const char * const port_logical_names[] = {
  10859. "PORT_NOP",
  10860. "PORT_DOWN",
  10861. "PORT_INIT",
  10862. "PORT_ARMED",
  10863. "PORT_ACTIVE",
  10864. "PORT_ACTIVE_DEFER",
  10865. };
  10866. if (lstate < ARRAY_SIZE(port_logical_names))
  10867. return port_logical_names[lstate];
  10868. return "unknown";
  10869. }
  10870. /* return the OPA port physical state name */
  10871. const char *opa_pstate_name(u32 pstate)
  10872. {
  10873. static const char * const port_physical_names[] = {
  10874. "PHYS_NOP",
  10875. "reserved1",
  10876. "PHYS_POLL",
  10877. "PHYS_DISABLED",
  10878. "PHYS_TRAINING",
  10879. "PHYS_LINKUP",
  10880. "PHYS_LINK_ERR_RECOVER",
  10881. "PHYS_PHY_TEST",
  10882. "reserved8",
  10883. "PHYS_OFFLINE",
  10884. "PHYS_GANGED",
  10885. "PHYS_TEST",
  10886. };
  10887. if (pstate < ARRAY_SIZE(port_physical_names))
  10888. return port_physical_names[pstate];
  10889. return "unknown";
  10890. }
  10891. /*
  10892. * Read the hardware link state and set the driver's cached value of it.
  10893. * Return the (new) current value.
  10894. */
  10895. u32 get_logical_state(struct hfi1_pportdata *ppd)
  10896. {
  10897. u32 new_state;
  10898. new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
  10899. if (new_state != ppd->lstate) {
  10900. dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
  10901. opa_lstate_name(new_state), new_state);
  10902. ppd->lstate = new_state;
  10903. }
  10904. /*
  10905. * Set port status flags in the page mapped into userspace
  10906. * memory. Do it here to ensure a reliable state - this is
  10907. * the only function called by all state handling code.
  10908. * Always set the flags due to the fact that the cache value
  10909. * might have been changed explicitly outside of this
  10910. * function.
  10911. */
  10912. if (ppd->statusp) {
  10913. switch (ppd->lstate) {
  10914. case IB_PORT_DOWN:
  10915. case IB_PORT_INIT:
  10916. *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
  10917. HFI1_STATUS_IB_READY);
  10918. break;
  10919. case IB_PORT_ARMED:
  10920. *ppd->statusp |= HFI1_STATUS_IB_CONF;
  10921. break;
  10922. case IB_PORT_ACTIVE:
  10923. *ppd->statusp |= HFI1_STATUS_IB_READY;
  10924. break;
  10925. }
  10926. }
  10927. return ppd->lstate;
  10928. }
  10929. /**
  10930. * wait_logical_linkstate - wait for an IB link state change to occur
  10931. * @ppd: port device
  10932. * @state: the state to wait for
  10933. * @msecs: the number of milliseconds to wait
  10934. *
  10935. * Wait up to msecs milliseconds for IB link state change to occur.
  10936. * For now, take the easy polling route.
  10937. * Returns 0 if state reached, otherwise -ETIMEDOUT.
  10938. */
  10939. static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
  10940. int msecs)
  10941. {
  10942. unsigned long timeout;
  10943. timeout = jiffies + msecs_to_jiffies(msecs);
  10944. while (1) {
  10945. if (get_logical_state(ppd) == state)
  10946. return 0;
  10947. if (time_after(jiffies, timeout))
  10948. break;
  10949. msleep(20);
  10950. }
  10951. dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
  10952. return -ETIMEDOUT;
  10953. }
  10954. u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
  10955. {
  10956. u32 pstate;
  10957. u32 ib_pstate;
  10958. pstate = read_physical_state(ppd->dd);
  10959. ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
  10960. if (ppd->last_pstate != ib_pstate) {
  10961. dd_dev_info(ppd->dd,
  10962. "%s: physical state changed to %s (0x%x), phy 0x%x\n",
  10963. __func__, opa_pstate_name(ib_pstate), ib_pstate,
  10964. pstate);
  10965. ppd->last_pstate = ib_pstate;
  10966. }
  10967. return ib_pstate;
  10968. }
  10969. #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
  10970. (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
  10971. #define SET_STATIC_RATE_CONTROL_SMASK(r) \
  10972. (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
  10973. int hfi1_init_ctxt(struct send_context *sc)
  10974. {
  10975. if (sc) {
  10976. struct hfi1_devdata *dd = sc->dd;
  10977. u64 reg;
  10978. u8 set = (sc->type == SC_USER ?
  10979. HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
  10980. HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
  10981. reg = read_kctxt_csr(dd, sc->hw_context,
  10982. SEND_CTXT_CHECK_ENABLE);
  10983. if (set)
  10984. CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
  10985. else
  10986. SET_STATIC_RATE_CONTROL_SMASK(reg);
  10987. write_kctxt_csr(dd, sc->hw_context,
  10988. SEND_CTXT_CHECK_ENABLE, reg);
  10989. }
  10990. return 0;
  10991. }
  10992. int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
  10993. {
  10994. int ret = 0;
  10995. u64 reg;
  10996. if (dd->icode != ICODE_RTL_SILICON) {
  10997. if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
  10998. dd_dev_info(dd, "%s: tempsense not supported by HW\n",
  10999. __func__);
  11000. return -EINVAL;
  11001. }
  11002. reg = read_csr(dd, ASIC_STS_THERM);
  11003. temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
  11004. ASIC_STS_THERM_CURR_TEMP_MASK);
  11005. temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
  11006. ASIC_STS_THERM_LO_TEMP_MASK);
  11007. temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
  11008. ASIC_STS_THERM_HI_TEMP_MASK);
  11009. temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
  11010. ASIC_STS_THERM_CRIT_TEMP_MASK);
  11011. /* triggers is a 3-bit value - 1 bit per trigger. */
  11012. temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
  11013. return ret;
  11014. }
  11015. /* ========================================================================= */
  11016. /*
  11017. * Enable/disable chip from delivering interrupts.
  11018. */
  11019. void set_intr_state(struct hfi1_devdata *dd, u32 enable)
  11020. {
  11021. int i;
  11022. /*
  11023. * In HFI, the mask needs to be 1 to allow interrupts.
  11024. */
  11025. if (enable) {
  11026. /* enable all interrupts */
  11027. for (i = 0; i < CCE_NUM_INT_CSRS; i++)
  11028. write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
  11029. init_qsfp_int(dd);
  11030. } else {
  11031. for (i = 0; i < CCE_NUM_INT_CSRS; i++)
  11032. write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
  11033. }
  11034. }
  11035. /*
  11036. * Clear all interrupt sources on the chip.
  11037. */
  11038. static void clear_all_interrupts(struct hfi1_devdata *dd)
  11039. {
  11040. int i;
  11041. for (i = 0; i < CCE_NUM_INT_CSRS; i++)
  11042. write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
  11043. write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
  11044. write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
  11045. write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
  11046. write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
  11047. write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
  11048. write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
  11049. write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
  11050. for (i = 0; i < dd->chip_send_contexts; i++)
  11051. write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
  11052. for (i = 0; i < dd->chip_sdma_engines; i++)
  11053. write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
  11054. write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
  11055. write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
  11056. write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
  11057. }
  11058. /* Move to pcie.c? */
  11059. static void disable_intx(struct pci_dev *pdev)
  11060. {
  11061. pci_intx(pdev, 0);
  11062. }
  11063. static void clean_up_interrupts(struct hfi1_devdata *dd)
  11064. {
  11065. int i;
  11066. /* remove irqs - must happen before disabling/turning off */
  11067. if (dd->num_msix_entries) {
  11068. /* MSI-X */
  11069. struct hfi1_msix_entry *me = dd->msix_entries;
  11070. for (i = 0; i < dd->num_msix_entries; i++, me++) {
  11071. if (!me->arg) /* => no irq, no affinity */
  11072. continue;
  11073. hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
  11074. free_irq(me->msix.vector, me->arg);
  11075. }
  11076. } else {
  11077. /* INTx */
  11078. if (dd->requested_intx_irq) {
  11079. free_irq(dd->pcidev->irq, dd);
  11080. dd->requested_intx_irq = 0;
  11081. }
  11082. }
  11083. /* turn off interrupts */
  11084. if (dd->num_msix_entries) {
  11085. /* MSI-X */
  11086. pci_disable_msix(dd->pcidev);
  11087. } else {
  11088. /* INTx */
  11089. disable_intx(dd->pcidev);
  11090. }
  11091. /* clean structures */
  11092. kfree(dd->msix_entries);
  11093. dd->msix_entries = NULL;
  11094. dd->num_msix_entries = 0;
  11095. }
  11096. /*
  11097. * Remap the interrupt source from the general handler to the given MSI-X
  11098. * interrupt.
  11099. */
  11100. static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
  11101. {
  11102. u64 reg;
  11103. int m, n;
  11104. /* clear from the handled mask of the general interrupt */
  11105. m = isrc / 64;
  11106. n = isrc % 64;
  11107. dd->gi_mask[m] &= ~((u64)1 << n);
  11108. /* direct the chip source to the given MSI-X interrupt */
  11109. m = isrc / 8;
  11110. n = isrc % 8;
  11111. reg = read_csr(dd, CCE_INT_MAP + (8 * m));
  11112. reg &= ~((u64)0xff << (8 * n));
  11113. reg |= ((u64)msix_intr & 0xff) << (8 * n);
  11114. write_csr(dd, CCE_INT_MAP + (8 * m), reg);
  11115. }
  11116. static void remap_sdma_interrupts(struct hfi1_devdata *dd,
  11117. int engine, int msix_intr)
  11118. {
  11119. /*
  11120. * SDMA engine interrupt sources grouped by type, rather than
  11121. * engine. Per-engine interrupts are as follows:
  11122. * SDMA
  11123. * SDMAProgress
  11124. * SDMAIdle
  11125. */
  11126. remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
  11127. msix_intr);
  11128. remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
  11129. msix_intr);
  11130. remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
  11131. msix_intr);
  11132. }
  11133. static int request_intx_irq(struct hfi1_devdata *dd)
  11134. {
  11135. int ret;
  11136. snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
  11137. dd->unit);
  11138. ret = request_irq(dd->pcidev->irq, general_interrupt,
  11139. IRQF_SHARED, dd->intx_name, dd);
  11140. if (ret)
  11141. dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
  11142. ret);
  11143. else
  11144. dd->requested_intx_irq = 1;
  11145. return ret;
  11146. }
  11147. static int request_msix_irqs(struct hfi1_devdata *dd)
  11148. {
  11149. int first_general, last_general;
  11150. int first_sdma, last_sdma;
  11151. int first_rx, last_rx;
  11152. int i, ret = 0;
  11153. /* calculate the ranges we are going to use */
  11154. first_general = 0;
  11155. last_general = first_general + 1;
  11156. first_sdma = last_general;
  11157. last_sdma = first_sdma + dd->num_sdma;
  11158. first_rx = last_sdma;
  11159. last_rx = first_rx + dd->n_krcv_queues;
  11160. /*
  11161. * Sanity check - the code expects all SDMA chip source
  11162. * interrupts to be in the same CSR, starting at bit 0. Verify
  11163. * that this is true by checking the bit location of the start.
  11164. */
  11165. BUILD_BUG_ON(IS_SDMA_START % 64);
  11166. for (i = 0; i < dd->num_msix_entries; i++) {
  11167. struct hfi1_msix_entry *me = &dd->msix_entries[i];
  11168. const char *err_info;
  11169. irq_handler_t handler;
  11170. irq_handler_t thread = NULL;
  11171. void *arg;
  11172. int idx;
  11173. struct hfi1_ctxtdata *rcd = NULL;
  11174. struct sdma_engine *sde = NULL;
  11175. /* obtain the arguments to request_irq */
  11176. if (first_general <= i && i < last_general) {
  11177. idx = i - first_general;
  11178. handler = general_interrupt;
  11179. arg = dd;
  11180. snprintf(me->name, sizeof(me->name),
  11181. DRIVER_NAME "_%d", dd->unit);
  11182. err_info = "general";
  11183. me->type = IRQ_GENERAL;
  11184. } else if (first_sdma <= i && i < last_sdma) {
  11185. idx = i - first_sdma;
  11186. sde = &dd->per_sdma[idx];
  11187. handler = sdma_interrupt;
  11188. arg = sde;
  11189. snprintf(me->name, sizeof(me->name),
  11190. DRIVER_NAME "_%d sdma%d", dd->unit, idx);
  11191. err_info = "sdma";
  11192. remap_sdma_interrupts(dd, idx, i);
  11193. me->type = IRQ_SDMA;
  11194. } else if (first_rx <= i && i < last_rx) {
  11195. idx = i - first_rx;
  11196. rcd = dd->rcd[idx];
  11197. /* no interrupt if no rcd */
  11198. if (!rcd)
  11199. continue;
  11200. /*
  11201. * Set the interrupt register and mask for this
  11202. * context's interrupt.
  11203. */
  11204. rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
  11205. rcd->imask = ((u64)1) <<
  11206. ((IS_RCVAVAIL_START + idx) % 64);
  11207. handler = receive_context_interrupt;
  11208. thread = receive_context_thread;
  11209. arg = rcd;
  11210. snprintf(me->name, sizeof(me->name),
  11211. DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
  11212. err_info = "receive context";
  11213. remap_intr(dd, IS_RCVAVAIL_START + idx, i);
  11214. me->type = IRQ_RCVCTXT;
  11215. } else {
  11216. /* not in our expected range - complain, then
  11217. * ignore it
  11218. */
  11219. dd_dev_err(dd,
  11220. "Unexpected extra MSI-X interrupt %d\n", i);
  11221. continue;
  11222. }
  11223. /* no argument, no interrupt */
  11224. if (!arg)
  11225. continue;
  11226. /* make sure the name is terminated */
  11227. me->name[sizeof(me->name) - 1] = 0;
  11228. ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
  11229. me->name, arg);
  11230. if (ret) {
  11231. dd_dev_err(dd,
  11232. "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
  11233. err_info, me->msix.vector, idx, ret);
  11234. return ret;
  11235. }
  11236. /*
  11237. * assign arg after request_irq call, so it will be
  11238. * cleaned up
  11239. */
  11240. me->arg = arg;
  11241. ret = hfi1_get_irq_affinity(dd, me);
  11242. if (ret)
  11243. dd_dev_err(dd,
  11244. "unable to pin IRQ %d\n", ret);
  11245. }
  11246. return ret;
  11247. }
  11248. /*
  11249. * Set the general handler to accept all interrupts, remap all
  11250. * chip interrupts back to MSI-X 0.
  11251. */
  11252. static void reset_interrupts(struct hfi1_devdata *dd)
  11253. {
  11254. int i;
  11255. /* all interrupts handled by the general handler */
  11256. for (i = 0; i < CCE_NUM_INT_CSRS; i++)
  11257. dd->gi_mask[i] = ~(u64)0;
  11258. /* all chip interrupts map to MSI-X 0 */
  11259. for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
  11260. write_csr(dd, CCE_INT_MAP + (8 * i), 0);
  11261. }
  11262. static int set_up_interrupts(struct hfi1_devdata *dd)
  11263. {
  11264. struct hfi1_msix_entry *entries;
  11265. u32 total, request;
  11266. int i, ret;
  11267. int single_interrupt = 0; /* we expect to have all the interrupts */
  11268. /*
  11269. * Interrupt count:
  11270. * 1 general, "slow path" interrupt (includes the SDMA engines
  11271. * slow source, SDMACleanupDone)
  11272. * N interrupts - one per used SDMA engine
  11273. * M interrupt - one per kernel receive context
  11274. */
  11275. total = 1 + dd->num_sdma + dd->n_krcv_queues;
  11276. entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
  11277. if (!entries) {
  11278. ret = -ENOMEM;
  11279. goto fail;
  11280. }
  11281. /* 1-1 MSI-X entry assignment */
  11282. for (i = 0; i < total; i++)
  11283. entries[i].msix.entry = i;
  11284. /* ask for MSI-X interrupts */
  11285. request = total;
  11286. request_msix(dd, &request, entries);
  11287. if (request == 0) {
  11288. /* using INTx */
  11289. /* dd->num_msix_entries already zero */
  11290. kfree(entries);
  11291. single_interrupt = 1;
  11292. dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
  11293. } else {
  11294. /* using MSI-X */
  11295. dd->num_msix_entries = request;
  11296. dd->msix_entries = entries;
  11297. if (request != total) {
  11298. /* using MSI-X, with reduced interrupts */
  11299. dd_dev_err(
  11300. dd,
  11301. "cannot handle reduced interrupt case, want %u, got %u\n",
  11302. total, request);
  11303. ret = -EINVAL;
  11304. goto fail;
  11305. }
  11306. dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
  11307. }
  11308. /* mask all interrupts */
  11309. set_intr_state(dd, 0);
  11310. /* clear all pending interrupts */
  11311. clear_all_interrupts(dd);
  11312. /* reset general handler mask, chip MSI-X mappings */
  11313. reset_interrupts(dd);
  11314. if (single_interrupt)
  11315. ret = request_intx_irq(dd);
  11316. else
  11317. ret = request_msix_irqs(dd);
  11318. if (ret)
  11319. goto fail;
  11320. return 0;
  11321. fail:
  11322. clean_up_interrupts(dd);
  11323. return ret;
  11324. }
  11325. /*
  11326. * Set up context values in dd. Sets:
  11327. *
  11328. * num_rcv_contexts - number of contexts being used
  11329. * n_krcv_queues - number of kernel contexts
  11330. * first_user_ctxt - first non-kernel context in array of contexts
  11331. * freectxts - number of free user contexts
  11332. * num_send_contexts - number of PIO send contexts being used
  11333. */
  11334. static int set_up_context_variables(struct hfi1_devdata *dd)
  11335. {
  11336. unsigned long num_kernel_contexts;
  11337. int total_contexts;
  11338. int ret;
  11339. unsigned ngroups;
  11340. int qos_rmt_count;
  11341. int user_rmt_reduced;
  11342. /*
  11343. * Kernel receive contexts:
  11344. * - Context 0 - control context (VL15/multicast/error)
  11345. * - Context 1 - first kernel context
  11346. * - Context 2 - second kernel context
  11347. * ...
  11348. */
  11349. if (n_krcvqs)
  11350. /*
  11351. * n_krcvqs is the sum of module parameter kernel receive
  11352. * contexts, krcvqs[]. It does not include the control
  11353. * context, so add that.
  11354. */
  11355. num_kernel_contexts = n_krcvqs + 1;
  11356. else
  11357. num_kernel_contexts = DEFAULT_KRCVQS + 1;
  11358. /*
  11359. * Every kernel receive context needs an ACK send context.
  11360. * one send context is allocated for each VL{0-7} and VL15
  11361. */
  11362. if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
  11363. dd_dev_err(dd,
  11364. "Reducing # kernel rcv contexts to: %d, from %lu\n",
  11365. (int)(dd->chip_send_contexts - num_vls - 1),
  11366. num_kernel_contexts);
  11367. num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
  11368. }
  11369. /*
  11370. * User contexts:
  11371. * - default to 1 user context per real (non-HT) CPU core if
  11372. * num_user_contexts is negative
  11373. */
  11374. if (num_user_contexts < 0)
  11375. num_user_contexts =
  11376. cpumask_weight(&node_affinity.real_cpu_mask);
  11377. total_contexts = num_kernel_contexts + num_user_contexts;
  11378. /*
  11379. * Adjust the counts given a global max.
  11380. */
  11381. if (total_contexts > dd->chip_rcv_contexts) {
  11382. dd_dev_err(dd,
  11383. "Reducing # user receive contexts to: %d, from %d\n",
  11384. (int)(dd->chip_rcv_contexts - num_kernel_contexts),
  11385. (int)num_user_contexts);
  11386. num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
  11387. /* recalculate */
  11388. total_contexts = num_kernel_contexts + num_user_contexts;
  11389. }
  11390. /* each user context requires an entry in the RMT */
  11391. qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
  11392. if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
  11393. user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
  11394. dd_dev_err(dd,
  11395. "RMT size is reducing the number of user receive contexts from %d to %d\n",
  11396. (int)num_user_contexts,
  11397. user_rmt_reduced);
  11398. /* recalculate */
  11399. num_user_contexts = user_rmt_reduced;
  11400. total_contexts = num_kernel_contexts + num_user_contexts;
  11401. }
  11402. /* the first N are kernel contexts, the rest are user contexts */
  11403. dd->num_rcv_contexts = total_contexts;
  11404. dd->n_krcv_queues = num_kernel_contexts;
  11405. dd->first_user_ctxt = num_kernel_contexts;
  11406. dd->num_user_contexts = num_user_contexts;
  11407. dd->freectxts = num_user_contexts;
  11408. dd_dev_info(dd,
  11409. "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
  11410. (int)dd->chip_rcv_contexts,
  11411. (int)dd->num_rcv_contexts,
  11412. (int)dd->n_krcv_queues,
  11413. (int)dd->num_rcv_contexts - dd->n_krcv_queues);
  11414. /*
  11415. * Receive array allocation:
  11416. * All RcvArray entries are divided into groups of 8. This
  11417. * is required by the hardware and will speed up writes to
  11418. * consecutive entries by using write-combining of the entire
  11419. * cacheline.
  11420. *
  11421. * The number of groups are evenly divided among all contexts.
  11422. * any left over groups will be given to the first N user
  11423. * contexts.
  11424. */
  11425. dd->rcv_entries.group_size = RCV_INCREMENT;
  11426. ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
  11427. dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
  11428. dd->rcv_entries.nctxt_extra = ngroups -
  11429. (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
  11430. dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
  11431. dd->rcv_entries.ngroups,
  11432. dd->rcv_entries.nctxt_extra);
  11433. if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
  11434. MAX_EAGER_ENTRIES * 2) {
  11435. dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
  11436. dd->rcv_entries.group_size;
  11437. dd_dev_info(dd,
  11438. "RcvArray group count too high, change to %u\n",
  11439. dd->rcv_entries.ngroups);
  11440. dd->rcv_entries.nctxt_extra = 0;
  11441. }
  11442. /*
  11443. * PIO send contexts
  11444. */
  11445. ret = init_sc_pools_and_sizes(dd);
  11446. if (ret >= 0) { /* success */
  11447. dd->num_send_contexts = ret;
  11448. dd_dev_info(
  11449. dd,
  11450. "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
  11451. dd->chip_send_contexts,
  11452. dd->num_send_contexts,
  11453. dd->sc_sizes[SC_KERNEL].count,
  11454. dd->sc_sizes[SC_ACK].count,
  11455. dd->sc_sizes[SC_USER].count,
  11456. dd->sc_sizes[SC_VL15].count);
  11457. ret = 0; /* success */
  11458. }
  11459. return ret;
  11460. }
  11461. /*
  11462. * Set the device/port partition key table. The MAD code
  11463. * will ensure that, at least, the partial management
  11464. * partition key is present in the table.
  11465. */
  11466. static void set_partition_keys(struct hfi1_pportdata *ppd)
  11467. {
  11468. struct hfi1_devdata *dd = ppd->dd;
  11469. u64 reg = 0;
  11470. int i;
  11471. dd_dev_info(dd, "Setting partition keys\n");
  11472. for (i = 0; i < hfi1_get_npkeys(dd); i++) {
  11473. reg |= (ppd->pkeys[i] &
  11474. RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
  11475. ((i % 4) *
  11476. RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
  11477. /* Each register holds 4 PKey values. */
  11478. if ((i % 4) == 3) {
  11479. write_csr(dd, RCV_PARTITION_KEY +
  11480. ((i - 3) * 2), reg);
  11481. reg = 0;
  11482. }
  11483. }
  11484. /* Always enable HW pkeys check when pkeys table is set */
  11485. add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
  11486. }
  11487. /*
  11488. * These CSRs and memories are uninitialized on reset and must be
  11489. * written before reading to set the ECC/parity bits.
  11490. *
  11491. * NOTE: All user context CSRs that are not mmaped write-only
  11492. * (e.g. the TID flows) must be initialized even if the driver never
  11493. * reads them.
  11494. */
  11495. static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
  11496. {
  11497. int i, j;
  11498. /* CceIntMap */
  11499. for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
  11500. write_csr(dd, CCE_INT_MAP + (8 * i), 0);
  11501. /* SendCtxtCreditReturnAddr */
  11502. for (i = 0; i < dd->chip_send_contexts; i++)
  11503. write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
  11504. /* PIO Send buffers */
  11505. /* SDMA Send buffers */
  11506. /*
  11507. * These are not normally read, and (presently) have no method
  11508. * to be read, so are not pre-initialized
  11509. */
  11510. /* RcvHdrAddr */
  11511. /* RcvHdrTailAddr */
  11512. /* RcvTidFlowTable */
  11513. for (i = 0; i < dd->chip_rcv_contexts; i++) {
  11514. write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
  11515. write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
  11516. for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
  11517. write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
  11518. }
  11519. /* RcvArray */
  11520. for (i = 0; i < dd->chip_rcv_array_count; i++)
  11521. write_csr(dd, RCV_ARRAY + (8 * i),
  11522. RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
  11523. /* RcvQPMapTable */
  11524. for (i = 0; i < 32; i++)
  11525. write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
  11526. }
  11527. /*
  11528. * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
  11529. */
  11530. static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
  11531. u64 ctrl_bits)
  11532. {
  11533. unsigned long timeout;
  11534. u64 reg;
  11535. /* is the condition present? */
  11536. reg = read_csr(dd, CCE_STATUS);
  11537. if ((reg & status_bits) == 0)
  11538. return;
  11539. /* clear the condition */
  11540. write_csr(dd, CCE_CTRL, ctrl_bits);
  11541. /* wait for the condition to clear */
  11542. timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
  11543. while (1) {
  11544. reg = read_csr(dd, CCE_STATUS);
  11545. if ((reg & status_bits) == 0)
  11546. return;
  11547. if (time_after(jiffies, timeout)) {
  11548. dd_dev_err(dd,
  11549. "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
  11550. status_bits, reg & status_bits);
  11551. return;
  11552. }
  11553. udelay(1);
  11554. }
  11555. }
  11556. /* set CCE CSRs to chip reset defaults */
  11557. static void reset_cce_csrs(struct hfi1_devdata *dd)
  11558. {
  11559. int i;
  11560. /* CCE_REVISION read-only */
  11561. /* CCE_REVISION2 read-only */
  11562. /* CCE_CTRL - bits clear automatically */
  11563. /* CCE_STATUS read-only, use CceCtrl to clear */
  11564. clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
  11565. clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
  11566. clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
  11567. for (i = 0; i < CCE_NUM_SCRATCH; i++)
  11568. write_csr(dd, CCE_SCRATCH + (8 * i), 0);
  11569. /* CCE_ERR_STATUS read-only */
  11570. write_csr(dd, CCE_ERR_MASK, 0);
  11571. write_csr(dd, CCE_ERR_CLEAR, ~0ull);
  11572. /* CCE_ERR_FORCE leave alone */
  11573. for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
  11574. write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
  11575. write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
  11576. /* CCE_PCIE_CTRL leave alone */
  11577. for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
  11578. write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
  11579. write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
  11580. CCE_MSIX_TABLE_UPPER_RESETCSR);
  11581. }
  11582. for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
  11583. /* CCE_MSIX_PBA read-only */
  11584. write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
  11585. write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
  11586. }
  11587. for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
  11588. write_csr(dd, CCE_INT_MAP, 0);
  11589. for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
  11590. /* CCE_INT_STATUS read-only */
  11591. write_csr(dd, CCE_INT_MASK + (8 * i), 0);
  11592. write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
  11593. /* CCE_INT_FORCE leave alone */
  11594. /* CCE_INT_BLOCKED read-only */
  11595. }
  11596. for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
  11597. write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
  11598. }
  11599. /* set MISC CSRs to chip reset defaults */
  11600. static void reset_misc_csrs(struct hfi1_devdata *dd)
  11601. {
  11602. int i;
  11603. for (i = 0; i < 32; i++) {
  11604. write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
  11605. write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
  11606. write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
  11607. }
  11608. /*
  11609. * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
  11610. * only be written 128-byte chunks
  11611. */
  11612. /* init RSA engine to clear lingering errors */
  11613. write_csr(dd, MISC_CFG_RSA_CMD, 1);
  11614. write_csr(dd, MISC_CFG_RSA_MU, 0);
  11615. write_csr(dd, MISC_CFG_FW_CTRL, 0);
  11616. /* MISC_STS_8051_DIGEST read-only */
  11617. /* MISC_STS_SBM_DIGEST read-only */
  11618. /* MISC_STS_PCIE_DIGEST read-only */
  11619. /* MISC_STS_FAB_DIGEST read-only */
  11620. /* MISC_ERR_STATUS read-only */
  11621. write_csr(dd, MISC_ERR_MASK, 0);
  11622. write_csr(dd, MISC_ERR_CLEAR, ~0ull);
  11623. /* MISC_ERR_FORCE leave alone */
  11624. }
  11625. /* set TXE CSRs to chip reset defaults */
  11626. static void reset_txe_csrs(struct hfi1_devdata *dd)
  11627. {
  11628. int i;
  11629. /*
  11630. * TXE Kernel CSRs
  11631. */
  11632. write_csr(dd, SEND_CTRL, 0);
  11633. __cm_reset(dd, 0); /* reset CM internal state */
  11634. /* SEND_CONTEXTS read-only */
  11635. /* SEND_DMA_ENGINES read-only */
  11636. /* SEND_PIO_MEM_SIZE read-only */
  11637. /* SEND_DMA_MEM_SIZE read-only */
  11638. write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
  11639. pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
  11640. /* SEND_PIO_ERR_STATUS read-only */
  11641. write_csr(dd, SEND_PIO_ERR_MASK, 0);
  11642. write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
  11643. /* SEND_PIO_ERR_FORCE leave alone */
  11644. /* SEND_DMA_ERR_STATUS read-only */
  11645. write_csr(dd, SEND_DMA_ERR_MASK, 0);
  11646. write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
  11647. /* SEND_DMA_ERR_FORCE leave alone */
  11648. /* SEND_EGRESS_ERR_STATUS read-only */
  11649. write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
  11650. write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
  11651. /* SEND_EGRESS_ERR_FORCE leave alone */
  11652. write_csr(dd, SEND_BTH_QP, 0);
  11653. write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
  11654. write_csr(dd, SEND_SC2VLT0, 0);
  11655. write_csr(dd, SEND_SC2VLT1, 0);
  11656. write_csr(dd, SEND_SC2VLT2, 0);
  11657. write_csr(dd, SEND_SC2VLT3, 0);
  11658. write_csr(dd, SEND_LEN_CHECK0, 0);
  11659. write_csr(dd, SEND_LEN_CHECK1, 0);
  11660. /* SEND_ERR_STATUS read-only */
  11661. write_csr(dd, SEND_ERR_MASK, 0);
  11662. write_csr(dd, SEND_ERR_CLEAR, ~0ull);
  11663. /* SEND_ERR_FORCE read-only */
  11664. for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
  11665. write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
  11666. for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
  11667. write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
  11668. for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
  11669. write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
  11670. for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
  11671. write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
  11672. for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
  11673. write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
  11674. write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
  11675. write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
  11676. /* SEND_CM_CREDIT_USED_STATUS read-only */
  11677. write_csr(dd, SEND_CM_TIMER_CTRL, 0);
  11678. write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
  11679. write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
  11680. write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
  11681. write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
  11682. for (i = 0; i < TXE_NUM_DATA_VL; i++)
  11683. write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
  11684. write_csr(dd, SEND_CM_CREDIT_VL15, 0);
  11685. /* SEND_CM_CREDIT_USED_VL read-only */
  11686. /* SEND_CM_CREDIT_USED_VL15 read-only */
  11687. /* SEND_EGRESS_CTXT_STATUS read-only */
  11688. /* SEND_EGRESS_SEND_DMA_STATUS read-only */
  11689. write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
  11690. /* SEND_EGRESS_ERR_INFO read-only */
  11691. /* SEND_EGRESS_ERR_SOURCE read-only */
  11692. /*
  11693. * TXE Per-Context CSRs
  11694. */
  11695. for (i = 0; i < dd->chip_send_contexts; i++) {
  11696. write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
  11697. write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
  11698. write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
  11699. write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
  11700. write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
  11701. write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
  11702. write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
  11703. write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
  11704. write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
  11705. write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
  11706. write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
  11707. write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
  11708. }
  11709. /*
  11710. * TXE Per-SDMA CSRs
  11711. */
  11712. for (i = 0; i < dd->chip_sdma_engines; i++) {
  11713. write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
  11714. /* SEND_DMA_STATUS read-only */
  11715. write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
  11716. write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
  11717. write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
  11718. /* SEND_DMA_HEAD read-only */
  11719. write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
  11720. write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
  11721. /* SEND_DMA_IDLE_CNT read-only */
  11722. write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
  11723. write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
  11724. /* SEND_DMA_DESC_FETCHED_CNT read-only */
  11725. /* SEND_DMA_ENG_ERR_STATUS read-only */
  11726. write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
  11727. write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
  11728. /* SEND_DMA_ENG_ERR_FORCE leave alone */
  11729. write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
  11730. write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
  11731. write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
  11732. write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
  11733. write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
  11734. write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
  11735. write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
  11736. }
  11737. }
  11738. /*
  11739. * Expect on entry:
  11740. * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
  11741. */
  11742. static void init_rbufs(struct hfi1_devdata *dd)
  11743. {
  11744. u64 reg;
  11745. int count;
  11746. /*
  11747. * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
  11748. * clear.
  11749. */
  11750. count = 0;
  11751. while (1) {
  11752. reg = read_csr(dd, RCV_STATUS);
  11753. if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
  11754. | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
  11755. break;
  11756. /*
  11757. * Give up after 1ms - maximum wait time.
  11758. *
  11759. * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at
  11760. * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
  11761. * 136 KB / (66% * 250MB/s) = 844us
  11762. */
  11763. if (count++ > 500) {
  11764. dd_dev_err(dd,
  11765. "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
  11766. __func__, reg);
  11767. break;
  11768. }
  11769. udelay(2); /* do not busy-wait the CSR */
  11770. }
  11771. /* start the init - expect RcvCtrl to be 0 */
  11772. write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
  11773. /*
  11774. * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
  11775. * period after the write before RcvStatus.RxRbufInitDone is valid.
  11776. * The delay in the first run through the loop below is sufficient and
  11777. * required before the first read of RcvStatus.RxRbufInintDone.
  11778. */
  11779. read_csr(dd, RCV_CTRL);
  11780. /* wait for the init to finish */
  11781. count = 0;
  11782. while (1) {
  11783. /* delay is required first time through - see above */
  11784. udelay(2); /* do not busy-wait the CSR */
  11785. reg = read_csr(dd, RCV_STATUS);
  11786. if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
  11787. break;
  11788. /* give up after 100us - slowest possible at 33MHz is 73us */
  11789. if (count++ > 50) {
  11790. dd_dev_err(dd,
  11791. "%s: RcvStatus.RxRbufInit not set, continuing\n",
  11792. __func__);
  11793. break;
  11794. }
  11795. }
  11796. }
  11797. /* set RXE CSRs to chip reset defaults */
  11798. static void reset_rxe_csrs(struct hfi1_devdata *dd)
  11799. {
  11800. int i, j;
  11801. /*
  11802. * RXE Kernel CSRs
  11803. */
  11804. write_csr(dd, RCV_CTRL, 0);
  11805. init_rbufs(dd);
  11806. /* RCV_STATUS read-only */
  11807. /* RCV_CONTEXTS read-only */
  11808. /* RCV_ARRAY_CNT read-only */
  11809. /* RCV_BUF_SIZE read-only */
  11810. write_csr(dd, RCV_BTH_QP, 0);
  11811. write_csr(dd, RCV_MULTICAST, 0);
  11812. write_csr(dd, RCV_BYPASS, 0);
  11813. write_csr(dd, RCV_VL15, 0);
  11814. /* this is a clear-down */
  11815. write_csr(dd, RCV_ERR_INFO,
  11816. RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
  11817. /* RCV_ERR_STATUS read-only */
  11818. write_csr(dd, RCV_ERR_MASK, 0);
  11819. write_csr(dd, RCV_ERR_CLEAR, ~0ull);
  11820. /* RCV_ERR_FORCE leave alone */
  11821. for (i = 0; i < 32; i++)
  11822. write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
  11823. for (i = 0; i < 4; i++)
  11824. write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
  11825. for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
  11826. write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
  11827. for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
  11828. write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
  11829. for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
  11830. write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
  11831. write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
  11832. write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
  11833. }
  11834. for (i = 0; i < 32; i++)
  11835. write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
  11836. /*
  11837. * RXE Kernel and User Per-Context CSRs
  11838. */
  11839. for (i = 0; i < dd->chip_rcv_contexts; i++) {
  11840. /* kernel */
  11841. write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
  11842. /* RCV_CTXT_STATUS read-only */
  11843. write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
  11844. write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
  11845. write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
  11846. write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
  11847. write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
  11848. write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
  11849. write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
  11850. write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
  11851. write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
  11852. write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
  11853. /* user */
  11854. /* RCV_HDR_TAIL read-only */
  11855. write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
  11856. /* RCV_EGR_INDEX_TAIL read-only */
  11857. write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
  11858. /* RCV_EGR_OFFSET_TAIL read-only */
  11859. for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
  11860. write_uctxt_csr(dd, i,
  11861. RCV_TID_FLOW_TABLE + (8 * j), 0);
  11862. }
  11863. }
  11864. }
  11865. /*
  11866. * Set sc2vl tables.
  11867. *
  11868. * They power on to zeros, so to avoid send context errors
  11869. * they need to be set:
  11870. *
  11871. * SC 0-7 -> VL 0-7 (respectively)
  11872. * SC 15 -> VL 15
  11873. * otherwise
  11874. * -> VL 0
  11875. */
  11876. static void init_sc2vl_tables(struct hfi1_devdata *dd)
  11877. {
  11878. int i;
  11879. /* init per architecture spec, constrained by hardware capability */
  11880. /* HFI maps sent packets */
  11881. write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
  11882. 0,
  11883. 0, 0, 1, 1,
  11884. 2, 2, 3, 3,
  11885. 4, 4, 5, 5,
  11886. 6, 6, 7, 7));
  11887. write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
  11888. 1,
  11889. 8, 0, 9, 0,
  11890. 10, 0, 11, 0,
  11891. 12, 0, 13, 0,
  11892. 14, 0, 15, 15));
  11893. write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
  11894. 2,
  11895. 16, 0, 17, 0,
  11896. 18, 0, 19, 0,
  11897. 20, 0, 21, 0,
  11898. 22, 0, 23, 0));
  11899. write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
  11900. 3,
  11901. 24, 0, 25, 0,
  11902. 26, 0, 27, 0,
  11903. 28, 0, 29, 0,
  11904. 30, 0, 31, 0));
  11905. /* DC maps received packets */
  11906. write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
  11907. 15_0,
  11908. 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
  11909. 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
  11910. write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
  11911. 31_16,
  11912. 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
  11913. 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
  11914. /* initialize the cached sc2vl values consistently with h/w */
  11915. for (i = 0; i < 32; i++) {
  11916. if (i < 8 || i == 15)
  11917. *((u8 *)(dd->sc2vl) + i) = (u8)i;
  11918. else
  11919. *((u8 *)(dd->sc2vl) + i) = 0;
  11920. }
  11921. }
  11922. /*
  11923. * Read chip sizes and then reset parts to sane, disabled, values. We cannot
  11924. * depend on the chip going through a power-on reset - a driver may be loaded
  11925. * and unloaded many times.
  11926. *
  11927. * Do not write any CSR values to the chip in this routine - there may be
  11928. * a reset following the (possible) FLR in this routine.
  11929. *
  11930. */
  11931. static void init_chip(struct hfi1_devdata *dd)
  11932. {
  11933. int i;
  11934. /*
  11935. * Put the HFI CSRs in a known state.
  11936. * Combine this with a DC reset.
  11937. *
  11938. * Stop the device from doing anything while we do a
  11939. * reset. We know there are no other active users of
  11940. * the device since we are now in charge. Turn off
  11941. * off all outbound and inbound traffic and make sure
  11942. * the device does not generate any interrupts.
  11943. */
  11944. /* disable send contexts and SDMA engines */
  11945. write_csr(dd, SEND_CTRL, 0);
  11946. for (i = 0; i < dd->chip_send_contexts; i++)
  11947. write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
  11948. for (i = 0; i < dd->chip_sdma_engines; i++)
  11949. write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
  11950. /* disable port (turn off RXE inbound traffic) and contexts */
  11951. write_csr(dd, RCV_CTRL, 0);
  11952. for (i = 0; i < dd->chip_rcv_contexts; i++)
  11953. write_csr(dd, RCV_CTXT_CTRL, 0);
  11954. /* mask all interrupt sources */
  11955. for (i = 0; i < CCE_NUM_INT_CSRS; i++)
  11956. write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
  11957. /*
  11958. * DC Reset: do a full DC reset before the register clear.
  11959. * A recommended length of time to hold is one CSR read,
  11960. * so reread the CceDcCtrl. Then, hold the DC in reset
  11961. * across the clear.
  11962. */
  11963. write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
  11964. (void)read_csr(dd, CCE_DC_CTRL);
  11965. if (use_flr) {
  11966. /*
  11967. * A FLR will reset the SPC core and part of the PCIe.
  11968. * The parts that need to be restored have already been
  11969. * saved.
  11970. */
  11971. dd_dev_info(dd, "Resetting CSRs with FLR\n");
  11972. /* do the FLR, the DC reset will remain */
  11973. hfi1_pcie_flr(dd);
  11974. /* restore command and BARs */
  11975. restore_pci_variables(dd);
  11976. if (is_ax(dd)) {
  11977. dd_dev_info(dd, "Resetting CSRs with FLR\n");
  11978. hfi1_pcie_flr(dd);
  11979. restore_pci_variables(dd);
  11980. }
  11981. } else {
  11982. dd_dev_info(dd, "Resetting CSRs with writes\n");
  11983. reset_cce_csrs(dd);
  11984. reset_txe_csrs(dd);
  11985. reset_rxe_csrs(dd);
  11986. reset_misc_csrs(dd);
  11987. }
  11988. /* clear the DC reset */
  11989. write_csr(dd, CCE_DC_CTRL, 0);
  11990. /* Set the LED off */
  11991. setextled(dd, 0);
  11992. /*
  11993. * Clear the QSFP reset.
  11994. * An FLR enforces a 0 on all out pins. The driver does not touch
  11995. * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
  11996. * anything plugged constantly in reset, if it pays attention
  11997. * to RESET_N.
  11998. * Prime examples of this are optical cables. Set all pins high.
  11999. * I2CCLK and I2CDAT will change per direction, and INT_N and
  12000. * MODPRS_N are input only and their value is ignored.
  12001. */
  12002. write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
  12003. write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
  12004. init_chip_resources(dd);
  12005. }
  12006. static void init_early_variables(struct hfi1_devdata *dd)
  12007. {
  12008. int i;
  12009. /* assign link credit variables */
  12010. dd->vau = CM_VAU;
  12011. dd->link_credits = CM_GLOBAL_CREDITS;
  12012. if (is_ax(dd))
  12013. dd->link_credits--;
  12014. dd->vcu = cu_to_vcu(hfi1_cu);
  12015. /* enough room for 8 MAD packets plus header - 17K */
  12016. dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
  12017. if (dd->vl15_init > dd->link_credits)
  12018. dd->vl15_init = dd->link_credits;
  12019. write_uninitialized_csrs_and_memories(dd);
  12020. if (HFI1_CAP_IS_KSET(PKEY_CHECK))
  12021. for (i = 0; i < dd->num_pports; i++) {
  12022. struct hfi1_pportdata *ppd = &dd->pport[i];
  12023. set_partition_keys(ppd);
  12024. }
  12025. init_sc2vl_tables(dd);
  12026. }
  12027. static void init_kdeth_qp(struct hfi1_devdata *dd)
  12028. {
  12029. /* user changed the KDETH_QP */
  12030. if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
  12031. /* out of range or illegal value */
  12032. dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
  12033. kdeth_qp = 0;
  12034. }
  12035. if (kdeth_qp == 0) /* not set, or failed range check */
  12036. kdeth_qp = DEFAULT_KDETH_QP;
  12037. write_csr(dd, SEND_BTH_QP,
  12038. (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
  12039. SEND_BTH_QP_KDETH_QP_SHIFT);
  12040. write_csr(dd, RCV_BTH_QP,
  12041. (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
  12042. RCV_BTH_QP_KDETH_QP_SHIFT);
  12043. }
  12044. /**
  12045. * init_qpmap_table
  12046. * @dd - device data
  12047. * @first_ctxt - first context
  12048. * @last_ctxt - first context
  12049. *
  12050. * This return sets the qpn mapping table that
  12051. * is indexed by qpn[8:1].
  12052. *
  12053. * The routine will round robin the 256 settings
  12054. * from first_ctxt to last_ctxt.
  12055. *
  12056. * The first/last looks ahead to having specialized
  12057. * receive contexts for mgmt and bypass. Normal
  12058. * verbs traffic will assumed to be on a range
  12059. * of receive contexts.
  12060. */
  12061. static void init_qpmap_table(struct hfi1_devdata *dd,
  12062. u32 first_ctxt,
  12063. u32 last_ctxt)
  12064. {
  12065. u64 reg = 0;
  12066. u64 regno = RCV_QP_MAP_TABLE;
  12067. int i;
  12068. u64 ctxt = first_ctxt;
  12069. for (i = 0; i < 256; i++) {
  12070. reg |= ctxt << (8 * (i % 8));
  12071. ctxt++;
  12072. if (ctxt > last_ctxt)
  12073. ctxt = first_ctxt;
  12074. if (i % 8 == 7) {
  12075. write_csr(dd, regno, reg);
  12076. reg = 0;
  12077. regno += 8;
  12078. }
  12079. }
  12080. add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
  12081. | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
  12082. }
  12083. struct rsm_map_table {
  12084. u64 map[NUM_MAP_REGS];
  12085. unsigned int used;
  12086. };
  12087. struct rsm_rule_data {
  12088. u8 offset;
  12089. u8 pkt_type;
  12090. u32 field1_off;
  12091. u32 field2_off;
  12092. u32 index1_off;
  12093. u32 index1_width;
  12094. u32 index2_off;
  12095. u32 index2_width;
  12096. u32 mask1;
  12097. u32 value1;
  12098. u32 mask2;
  12099. u32 value2;
  12100. };
  12101. /*
  12102. * Return an initialized RMT map table for users to fill in. OK if it
  12103. * returns NULL, indicating no table.
  12104. */
  12105. static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
  12106. {
  12107. struct rsm_map_table *rmt;
  12108. u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
  12109. rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
  12110. if (rmt) {
  12111. memset(rmt->map, rxcontext, sizeof(rmt->map));
  12112. rmt->used = 0;
  12113. }
  12114. return rmt;
  12115. }
  12116. /*
  12117. * Write the final RMT map table to the chip and free the table. OK if
  12118. * table is NULL.
  12119. */
  12120. static void complete_rsm_map_table(struct hfi1_devdata *dd,
  12121. struct rsm_map_table *rmt)
  12122. {
  12123. int i;
  12124. if (rmt) {
  12125. /* write table to chip */
  12126. for (i = 0; i < NUM_MAP_REGS; i++)
  12127. write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
  12128. /* enable RSM */
  12129. add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
  12130. }
  12131. }
  12132. /*
  12133. * Add a receive side mapping rule.
  12134. */
  12135. static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
  12136. struct rsm_rule_data *rrd)
  12137. {
  12138. write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
  12139. (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
  12140. 1ull << rule_index | /* enable bit */
  12141. (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
  12142. write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
  12143. (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
  12144. (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
  12145. (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
  12146. (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
  12147. (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
  12148. (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
  12149. write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
  12150. (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
  12151. (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
  12152. (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
  12153. (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
  12154. }
  12155. /* return the number of RSM map table entries that will be used for QOS */
  12156. static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
  12157. unsigned int *np)
  12158. {
  12159. int i;
  12160. unsigned int m, n;
  12161. u8 max_by_vl = 0;
  12162. /* is QOS active at all? */
  12163. if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
  12164. num_vls == 1 ||
  12165. krcvqsset <= 1)
  12166. goto no_qos;
  12167. /* determine bits for qpn */
  12168. for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
  12169. if (krcvqs[i] > max_by_vl)
  12170. max_by_vl = krcvqs[i];
  12171. if (max_by_vl > 32)
  12172. goto no_qos;
  12173. m = ilog2(__roundup_pow_of_two(max_by_vl));
  12174. /* determine bits for vl */
  12175. n = ilog2(__roundup_pow_of_two(num_vls));
  12176. /* reject if too much is used */
  12177. if ((m + n) > 7)
  12178. goto no_qos;
  12179. if (mp)
  12180. *mp = m;
  12181. if (np)
  12182. *np = n;
  12183. return 1 << (m + n);
  12184. no_qos:
  12185. if (mp)
  12186. *mp = 0;
  12187. if (np)
  12188. *np = 0;
  12189. return 0;
  12190. }
  12191. /**
  12192. * init_qos - init RX qos
  12193. * @dd - device data
  12194. * @rmt - RSM map table
  12195. *
  12196. * This routine initializes Rule 0 and the RSM map table to implement
  12197. * quality of service (qos).
  12198. *
  12199. * If all of the limit tests succeed, qos is applied based on the array
  12200. * interpretation of krcvqs where entry 0 is VL0.
  12201. *
  12202. * The number of vl bits (n) and the number of qpn bits (m) are computed to
  12203. * feed both the RSM map table and the single rule.
  12204. */
  12205. static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
  12206. {
  12207. struct rsm_rule_data rrd;
  12208. unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
  12209. unsigned int rmt_entries;
  12210. u64 reg;
  12211. if (!rmt)
  12212. goto bail;
  12213. rmt_entries = qos_rmt_entries(dd, &m, &n);
  12214. if (rmt_entries == 0)
  12215. goto bail;
  12216. qpns_per_vl = 1 << m;
  12217. /* enough room in the map table? */
  12218. rmt_entries = 1 << (m + n);
  12219. if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
  12220. goto bail;
  12221. /* add qos entries to the the RSM map table */
  12222. for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
  12223. unsigned tctxt;
  12224. for (qpn = 0, tctxt = ctxt;
  12225. krcvqs[i] && qpn < qpns_per_vl; qpn++) {
  12226. unsigned idx, regoff, regidx;
  12227. /* generate the index the hardware will produce */
  12228. idx = rmt->used + ((qpn << n) ^ i);
  12229. regoff = (idx % 8) * 8;
  12230. regidx = idx / 8;
  12231. /* replace default with context number */
  12232. reg = rmt->map[regidx];
  12233. reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
  12234. << regoff);
  12235. reg |= (u64)(tctxt++) << regoff;
  12236. rmt->map[regidx] = reg;
  12237. if (tctxt == ctxt + krcvqs[i])
  12238. tctxt = ctxt;
  12239. }
  12240. ctxt += krcvqs[i];
  12241. }
  12242. rrd.offset = rmt->used;
  12243. rrd.pkt_type = 2;
  12244. rrd.field1_off = LRH_BTH_MATCH_OFFSET;
  12245. rrd.field2_off = LRH_SC_MATCH_OFFSET;
  12246. rrd.index1_off = LRH_SC_SELECT_OFFSET;
  12247. rrd.index1_width = n;
  12248. rrd.index2_off = QPN_SELECT_OFFSET;
  12249. rrd.index2_width = m + n;
  12250. rrd.mask1 = LRH_BTH_MASK;
  12251. rrd.value1 = LRH_BTH_VALUE;
  12252. rrd.mask2 = LRH_SC_MASK;
  12253. rrd.value2 = LRH_SC_VALUE;
  12254. /* add rule 0 */
  12255. add_rsm_rule(dd, 0, &rrd);
  12256. /* mark RSM map entries as used */
  12257. rmt->used += rmt_entries;
  12258. /* map everything else to the mcast/err/vl15 context */
  12259. init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
  12260. dd->qos_shift = n + 1;
  12261. return;
  12262. bail:
  12263. dd->qos_shift = 1;
  12264. init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
  12265. }
  12266. static void init_user_fecn_handling(struct hfi1_devdata *dd,
  12267. struct rsm_map_table *rmt)
  12268. {
  12269. struct rsm_rule_data rrd;
  12270. u64 reg;
  12271. int i, idx, regoff, regidx;
  12272. u8 offset;
  12273. /* there needs to be enough room in the map table */
  12274. if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
  12275. dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
  12276. return;
  12277. }
  12278. /*
  12279. * RSM will extract the destination context as an index into the
  12280. * map table. The destination contexts are a sequential block
  12281. * in the range first_user_ctxt...num_rcv_contexts-1 (inclusive).
  12282. * Map entries are accessed as offset + extracted value. Adjust
  12283. * the added offset so this sequence can be placed anywhere in
  12284. * the table - as long as the entries themselves do not wrap.
  12285. * There are only enough bits in offset for the table size, so
  12286. * start with that to allow for a "negative" offset.
  12287. */
  12288. offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
  12289. (int)dd->first_user_ctxt);
  12290. for (i = dd->first_user_ctxt, idx = rmt->used;
  12291. i < dd->num_rcv_contexts; i++, idx++) {
  12292. /* replace with identity mapping */
  12293. regoff = (idx % 8) * 8;
  12294. regidx = idx / 8;
  12295. reg = rmt->map[regidx];
  12296. reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
  12297. reg |= (u64)i << regoff;
  12298. rmt->map[regidx] = reg;
  12299. }
  12300. /*
  12301. * For RSM intercept of Expected FECN packets:
  12302. * o packet type 0 - expected
  12303. * o match on F (bit 95), using select/match 1, and
  12304. * o match on SH (bit 133), using select/match 2.
  12305. *
  12306. * Use index 1 to extract the 8-bit receive context from DestQP
  12307. * (start at bit 64). Use that as the RSM map table index.
  12308. */
  12309. rrd.offset = offset;
  12310. rrd.pkt_type = 0;
  12311. rrd.field1_off = 95;
  12312. rrd.field2_off = 133;
  12313. rrd.index1_off = 64;
  12314. rrd.index1_width = 8;
  12315. rrd.index2_off = 0;
  12316. rrd.index2_width = 0;
  12317. rrd.mask1 = 1;
  12318. rrd.value1 = 1;
  12319. rrd.mask2 = 1;
  12320. rrd.value2 = 1;
  12321. /* add rule 1 */
  12322. add_rsm_rule(dd, 1, &rrd);
  12323. rmt->used += dd->num_user_contexts;
  12324. }
  12325. static void init_rxe(struct hfi1_devdata *dd)
  12326. {
  12327. struct rsm_map_table *rmt;
  12328. /* enable all receive errors */
  12329. write_csr(dd, RCV_ERR_MASK, ~0ull);
  12330. rmt = alloc_rsm_map_table(dd);
  12331. /* set up QOS, including the QPN map table */
  12332. init_qos(dd, rmt);
  12333. init_user_fecn_handling(dd, rmt);
  12334. complete_rsm_map_table(dd, rmt);
  12335. kfree(rmt);
  12336. /*
  12337. * make sure RcvCtrl.RcvWcb <= PCIe Device Control
  12338. * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
  12339. * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
  12340. * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
  12341. * Max_PayLoad_Size set to its minimum of 128.
  12342. *
  12343. * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
  12344. * (64 bytes). Max_Payload_Size is possibly modified upward in
  12345. * tune_pcie_caps() which is called after this routine.
  12346. */
  12347. }
  12348. static void init_other(struct hfi1_devdata *dd)
  12349. {
  12350. /* enable all CCE errors */
  12351. write_csr(dd, CCE_ERR_MASK, ~0ull);
  12352. /* enable *some* Misc errors */
  12353. write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
  12354. /* enable all DC errors, except LCB */
  12355. write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
  12356. write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
  12357. }
  12358. /*
  12359. * Fill out the given AU table using the given CU. A CU is defined in terms
  12360. * AUs. The table is a an encoding: given the index, how many AUs does that
  12361. * represent?
  12362. *
  12363. * NOTE: Assumes that the register layout is the same for the
  12364. * local and remote tables.
  12365. */
  12366. static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
  12367. u32 csr0to3, u32 csr4to7)
  12368. {
  12369. write_csr(dd, csr0to3,
  12370. 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
  12371. 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
  12372. 2ull * cu <<
  12373. SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
  12374. 4ull * cu <<
  12375. SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
  12376. write_csr(dd, csr4to7,
  12377. 8ull * cu <<
  12378. SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
  12379. 16ull * cu <<
  12380. SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
  12381. 32ull * cu <<
  12382. SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
  12383. 64ull * cu <<
  12384. SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
  12385. }
  12386. static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
  12387. {
  12388. assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
  12389. SEND_CM_LOCAL_AU_TABLE4_TO7);
  12390. }
  12391. void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
  12392. {
  12393. assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
  12394. SEND_CM_REMOTE_AU_TABLE4_TO7);
  12395. }
  12396. static void init_txe(struct hfi1_devdata *dd)
  12397. {
  12398. int i;
  12399. /* enable all PIO, SDMA, general, and Egress errors */
  12400. write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
  12401. write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
  12402. write_csr(dd, SEND_ERR_MASK, ~0ull);
  12403. write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
  12404. /* enable all per-context and per-SDMA engine errors */
  12405. for (i = 0; i < dd->chip_send_contexts; i++)
  12406. write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
  12407. for (i = 0; i < dd->chip_sdma_engines; i++)
  12408. write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
  12409. /* set the local CU to AU mapping */
  12410. assign_local_cm_au_table(dd, dd->vcu);
  12411. /*
  12412. * Set reasonable default for Credit Return Timer
  12413. * Don't set on Simulator - causes it to choke.
  12414. */
  12415. if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
  12416. write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
  12417. }
  12418. int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
  12419. {
  12420. struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
  12421. unsigned sctxt;
  12422. int ret = 0;
  12423. u64 reg;
  12424. if (!rcd || !rcd->sc) {
  12425. ret = -EINVAL;
  12426. goto done;
  12427. }
  12428. sctxt = rcd->sc->hw_context;
  12429. reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
  12430. ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
  12431. SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
  12432. /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
  12433. if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
  12434. reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
  12435. write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
  12436. /*
  12437. * Enable send-side J_KEY integrity check, unless this is A0 h/w
  12438. */
  12439. if (!is_ax(dd)) {
  12440. reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
  12441. reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
  12442. write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
  12443. }
  12444. /* Enable J_KEY check on receive context. */
  12445. reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
  12446. ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
  12447. RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
  12448. write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
  12449. done:
  12450. return ret;
  12451. }
  12452. int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
  12453. {
  12454. struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
  12455. unsigned sctxt;
  12456. int ret = 0;
  12457. u64 reg;
  12458. if (!rcd || !rcd->sc) {
  12459. ret = -EINVAL;
  12460. goto done;
  12461. }
  12462. sctxt = rcd->sc->hw_context;
  12463. write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
  12464. /*
  12465. * Disable send-side J_KEY integrity check, unless this is A0 h/w.
  12466. * This check would not have been enabled for A0 h/w, see
  12467. * set_ctxt_jkey().
  12468. */
  12469. if (!is_ax(dd)) {
  12470. reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
  12471. reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
  12472. write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
  12473. }
  12474. /* Turn off the J_KEY on the receive side */
  12475. write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
  12476. done:
  12477. return ret;
  12478. }
  12479. int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
  12480. {
  12481. struct hfi1_ctxtdata *rcd;
  12482. unsigned sctxt;
  12483. int ret = 0;
  12484. u64 reg;
  12485. if (ctxt < dd->num_rcv_contexts) {
  12486. rcd = dd->rcd[ctxt];
  12487. } else {
  12488. ret = -EINVAL;
  12489. goto done;
  12490. }
  12491. if (!rcd || !rcd->sc) {
  12492. ret = -EINVAL;
  12493. goto done;
  12494. }
  12495. sctxt = rcd->sc->hw_context;
  12496. reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
  12497. SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
  12498. write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
  12499. reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
  12500. reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
  12501. reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
  12502. write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
  12503. done:
  12504. return ret;
  12505. }
  12506. int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
  12507. {
  12508. struct hfi1_ctxtdata *rcd;
  12509. unsigned sctxt;
  12510. int ret = 0;
  12511. u64 reg;
  12512. if (ctxt < dd->num_rcv_contexts) {
  12513. rcd = dd->rcd[ctxt];
  12514. } else {
  12515. ret = -EINVAL;
  12516. goto done;
  12517. }
  12518. if (!rcd || !rcd->sc) {
  12519. ret = -EINVAL;
  12520. goto done;
  12521. }
  12522. sctxt = rcd->sc->hw_context;
  12523. reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
  12524. reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
  12525. write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
  12526. write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
  12527. done:
  12528. return ret;
  12529. }
  12530. /*
  12531. * Start doing the clean up the the chip. Our clean up happens in multiple
  12532. * stages and this is just the first.
  12533. */
  12534. void hfi1_start_cleanup(struct hfi1_devdata *dd)
  12535. {
  12536. aspm_exit(dd);
  12537. free_cntrs(dd);
  12538. free_rcverr(dd);
  12539. clean_up_interrupts(dd);
  12540. finish_chip_resources(dd);
  12541. }
  12542. #define HFI_BASE_GUID(dev) \
  12543. ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
  12544. /*
  12545. * Information can be shared between the two HFIs on the same ASIC
  12546. * in the same OS. This function finds the peer device and sets
  12547. * up a shared structure.
  12548. */
  12549. static int init_asic_data(struct hfi1_devdata *dd)
  12550. {
  12551. unsigned long flags;
  12552. struct hfi1_devdata *tmp, *peer = NULL;
  12553. struct hfi1_asic_data *asic_data;
  12554. int ret = 0;
  12555. /* pre-allocate the asic structure in case we are the first device */
  12556. asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
  12557. if (!asic_data)
  12558. return -ENOMEM;
  12559. spin_lock_irqsave(&hfi1_devs_lock, flags);
  12560. /* Find our peer device */
  12561. list_for_each_entry(tmp, &hfi1_dev_list, list) {
  12562. if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
  12563. dd->unit != tmp->unit) {
  12564. peer = tmp;
  12565. break;
  12566. }
  12567. }
  12568. if (peer) {
  12569. /* use already allocated structure */
  12570. dd->asic_data = peer->asic_data;
  12571. kfree(asic_data);
  12572. } else {
  12573. dd->asic_data = asic_data;
  12574. mutex_init(&dd->asic_data->asic_resource_mutex);
  12575. }
  12576. dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
  12577. spin_unlock_irqrestore(&hfi1_devs_lock, flags);
  12578. /* first one through - set up i2c devices */
  12579. if (!peer)
  12580. ret = set_up_i2c(dd, dd->asic_data);
  12581. return ret;
  12582. }
  12583. /*
  12584. * Set dd->boardname. Use a generic name if a name is not returned from
  12585. * EFI variable space.
  12586. *
  12587. * Return 0 on success, -ENOMEM if space could not be allocated.
  12588. */
  12589. static int obtain_boardname(struct hfi1_devdata *dd)
  12590. {
  12591. /* generic board description */
  12592. const char generic[] =
  12593. "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
  12594. unsigned long size;
  12595. int ret;
  12596. ret = read_hfi1_efi_var(dd, "description", &size,
  12597. (void **)&dd->boardname);
  12598. if (ret) {
  12599. dd_dev_info(dd, "Board description not found\n");
  12600. /* use generic description */
  12601. dd->boardname = kstrdup(generic, GFP_KERNEL);
  12602. if (!dd->boardname)
  12603. return -ENOMEM;
  12604. }
  12605. return 0;
  12606. }
  12607. /*
  12608. * Check the interrupt registers to make sure that they are mapped correctly.
  12609. * It is intended to help user identify any mismapping by VMM when the driver
  12610. * is running in a VM. This function should only be called before interrupt
  12611. * is set up properly.
  12612. *
  12613. * Return 0 on success, -EINVAL on failure.
  12614. */
  12615. static int check_int_registers(struct hfi1_devdata *dd)
  12616. {
  12617. u64 reg;
  12618. u64 all_bits = ~(u64)0;
  12619. u64 mask;
  12620. /* Clear CceIntMask[0] to avoid raising any interrupts */
  12621. mask = read_csr(dd, CCE_INT_MASK);
  12622. write_csr(dd, CCE_INT_MASK, 0ull);
  12623. reg = read_csr(dd, CCE_INT_MASK);
  12624. if (reg)
  12625. goto err_exit;
  12626. /* Clear all interrupt status bits */
  12627. write_csr(dd, CCE_INT_CLEAR, all_bits);
  12628. reg = read_csr(dd, CCE_INT_STATUS);
  12629. if (reg)
  12630. goto err_exit;
  12631. /* Set all interrupt status bits */
  12632. write_csr(dd, CCE_INT_FORCE, all_bits);
  12633. reg = read_csr(dd, CCE_INT_STATUS);
  12634. if (reg != all_bits)
  12635. goto err_exit;
  12636. /* Restore the interrupt mask */
  12637. write_csr(dd, CCE_INT_CLEAR, all_bits);
  12638. write_csr(dd, CCE_INT_MASK, mask);
  12639. return 0;
  12640. err_exit:
  12641. write_csr(dd, CCE_INT_MASK, mask);
  12642. dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
  12643. return -EINVAL;
  12644. }
  12645. /**
  12646. * Allocate and initialize the device structure for the hfi.
  12647. * @dev: the pci_dev for hfi1_ib device
  12648. * @ent: pci_device_id struct for this dev
  12649. *
  12650. * Also allocates, initializes, and returns the devdata struct for this
  12651. * device instance
  12652. *
  12653. * This is global, and is called directly at init to set up the
  12654. * chip-specific function pointers for later use.
  12655. */
  12656. struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
  12657. const struct pci_device_id *ent)
  12658. {
  12659. struct hfi1_devdata *dd;
  12660. struct hfi1_pportdata *ppd;
  12661. u64 reg;
  12662. int i, ret;
  12663. static const char * const inames[] = { /* implementation names */
  12664. "RTL silicon",
  12665. "RTL VCS simulation",
  12666. "RTL FPGA emulation",
  12667. "Functional simulator"
  12668. };
  12669. struct pci_dev *parent = pdev->bus->self;
  12670. dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
  12671. sizeof(struct hfi1_pportdata));
  12672. if (IS_ERR(dd))
  12673. goto bail;
  12674. ppd = dd->pport;
  12675. for (i = 0; i < dd->num_pports; i++, ppd++) {
  12676. int vl;
  12677. /* init common fields */
  12678. hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
  12679. /* DC supports 4 link widths */
  12680. ppd->link_width_supported =
  12681. OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
  12682. OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
  12683. ppd->link_width_downgrade_supported =
  12684. ppd->link_width_supported;
  12685. /* start out enabling only 4X */
  12686. ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
  12687. ppd->link_width_downgrade_enabled =
  12688. ppd->link_width_downgrade_supported;
  12689. /* link width active is 0 when link is down */
  12690. /* link width downgrade active is 0 when link is down */
  12691. if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
  12692. num_vls > HFI1_MAX_VLS_SUPPORTED) {
  12693. hfi1_early_err(&pdev->dev,
  12694. "Invalid num_vls %u, using %u VLs\n",
  12695. num_vls, HFI1_MAX_VLS_SUPPORTED);
  12696. num_vls = HFI1_MAX_VLS_SUPPORTED;
  12697. }
  12698. ppd->vls_supported = num_vls;
  12699. ppd->vls_operational = ppd->vls_supported;
  12700. ppd->actual_vls_operational = ppd->vls_supported;
  12701. /* Set the default MTU. */
  12702. for (vl = 0; vl < num_vls; vl++)
  12703. dd->vld[vl].mtu = hfi1_max_mtu;
  12704. dd->vld[15].mtu = MAX_MAD_PACKET;
  12705. /*
  12706. * Set the initial values to reasonable default, will be set
  12707. * for real when link is up.
  12708. */
  12709. ppd->lstate = IB_PORT_DOWN;
  12710. ppd->overrun_threshold = 0x4;
  12711. ppd->phy_error_threshold = 0xf;
  12712. ppd->port_crc_mode_enabled = link_crc_mask;
  12713. /* initialize supported LTP CRC mode */
  12714. ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
  12715. /* initialize enabled LTP CRC mode */
  12716. ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
  12717. /* start in offline */
  12718. ppd->host_link_state = HLS_DN_OFFLINE;
  12719. init_vl_arb_caches(ppd);
  12720. ppd->last_pstate = 0xff; /* invalid value */
  12721. }
  12722. dd->link_default = HLS_DN_POLL;
  12723. /*
  12724. * Do remaining PCIe setup and save PCIe values in dd.
  12725. * Any error printing is already done by the init code.
  12726. * On return, we have the chip mapped.
  12727. */
  12728. ret = hfi1_pcie_ddinit(dd, pdev);
  12729. if (ret < 0)
  12730. goto bail_free;
  12731. /* verify that reads actually work, save revision for reset check */
  12732. dd->revision = read_csr(dd, CCE_REVISION);
  12733. if (dd->revision == ~(u64)0) {
  12734. dd_dev_err(dd, "cannot read chip CSRs\n");
  12735. ret = -EINVAL;
  12736. goto bail_cleanup;
  12737. }
  12738. dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
  12739. & CCE_REVISION_CHIP_REV_MAJOR_MASK;
  12740. dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
  12741. & CCE_REVISION_CHIP_REV_MINOR_MASK;
  12742. /*
  12743. * Check interrupt registers mapping if the driver has no access to
  12744. * the upstream component. In this case, it is likely that the driver
  12745. * is running in a VM.
  12746. */
  12747. if (!parent) {
  12748. ret = check_int_registers(dd);
  12749. if (ret)
  12750. goto bail_cleanup;
  12751. }
  12752. /*
  12753. * obtain the hardware ID - NOT related to unit, which is a
  12754. * software enumeration
  12755. */
  12756. reg = read_csr(dd, CCE_REVISION2);
  12757. dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
  12758. & CCE_REVISION2_HFI_ID_MASK;
  12759. /* the variable size will remove unwanted bits */
  12760. dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
  12761. dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
  12762. dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
  12763. dd->icode < ARRAY_SIZE(inames) ?
  12764. inames[dd->icode] : "unknown", (int)dd->irev);
  12765. /* speeds the hardware can support */
  12766. dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
  12767. /* speeds allowed to run at */
  12768. dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
  12769. /* give a reasonable active value, will be set on link up */
  12770. dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
  12771. dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
  12772. dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
  12773. dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
  12774. dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
  12775. dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
  12776. /* fix up link widths for emulation _p */
  12777. ppd = dd->pport;
  12778. if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
  12779. ppd->link_width_supported =
  12780. ppd->link_width_enabled =
  12781. ppd->link_width_downgrade_supported =
  12782. ppd->link_width_downgrade_enabled =
  12783. OPA_LINK_WIDTH_1X;
  12784. }
  12785. /* insure num_vls isn't larger than number of sdma engines */
  12786. if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
  12787. dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
  12788. num_vls, dd->chip_sdma_engines);
  12789. num_vls = dd->chip_sdma_engines;
  12790. ppd->vls_supported = dd->chip_sdma_engines;
  12791. ppd->vls_operational = ppd->vls_supported;
  12792. }
  12793. /*
  12794. * Convert the ns parameter to the 64 * cclocks used in the CSR.
  12795. * Limit the max if larger than the field holds. If timeout is
  12796. * non-zero, then the calculated field will be at least 1.
  12797. *
  12798. * Must be after icode is set up - the cclock rate depends
  12799. * on knowing the hardware being used.
  12800. */
  12801. dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
  12802. if (dd->rcv_intr_timeout_csr >
  12803. RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
  12804. dd->rcv_intr_timeout_csr =
  12805. RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
  12806. else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
  12807. dd->rcv_intr_timeout_csr = 1;
  12808. /* needs to be done before we look for the peer device */
  12809. read_guid(dd);
  12810. /* set up shared ASIC data with peer device */
  12811. ret = init_asic_data(dd);
  12812. if (ret)
  12813. goto bail_cleanup;
  12814. /* obtain chip sizes, reset chip CSRs */
  12815. init_chip(dd);
  12816. /* read in the PCIe link speed information */
  12817. ret = pcie_speeds(dd);
  12818. if (ret)
  12819. goto bail_cleanup;
  12820. /* call before get_platform_config(), after init_chip_resources() */
  12821. ret = eprom_init(dd);
  12822. if (ret)
  12823. goto bail_free_rcverr;
  12824. /* Needs to be called before hfi1_firmware_init */
  12825. get_platform_config(dd);
  12826. /* read in firmware */
  12827. ret = hfi1_firmware_init(dd);
  12828. if (ret)
  12829. goto bail_cleanup;
  12830. /*
  12831. * In general, the PCIe Gen3 transition must occur after the
  12832. * chip has been idled (so it won't initiate any PCIe transactions
  12833. * e.g. an interrupt) and before the driver changes any registers
  12834. * (the transition will reset the registers).
  12835. *
  12836. * In particular, place this call after:
  12837. * - init_chip() - the chip will not initiate any PCIe transactions
  12838. * - pcie_speeds() - reads the current link speed
  12839. * - hfi1_firmware_init() - the needed firmware is ready to be
  12840. * downloaded
  12841. */
  12842. ret = do_pcie_gen3_transition(dd);
  12843. if (ret)
  12844. goto bail_cleanup;
  12845. /* start setting dd values and adjusting CSRs */
  12846. init_early_variables(dd);
  12847. parse_platform_config(dd);
  12848. ret = obtain_boardname(dd);
  12849. if (ret)
  12850. goto bail_cleanup;
  12851. snprintf(dd->boardversion, BOARD_VERS_MAX,
  12852. "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
  12853. HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
  12854. (u32)dd->majrev,
  12855. (u32)dd->minrev,
  12856. (dd->revision >> CCE_REVISION_SW_SHIFT)
  12857. & CCE_REVISION_SW_MASK);
  12858. ret = set_up_context_variables(dd);
  12859. if (ret)
  12860. goto bail_cleanup;
  12861. /* set initial RXE CSRs */
  12862. init_rxe(dd);
  12863. /* set initial TXE CSRs */
  12864. init_txe(dd);
  12865. /* set initial non-RXE, non-TXE CSRs */
  12866. init_other(dd);
  12867. /* set up KDETH QP prefix in both RX and TX CSRs */
  12868. init_kdeth_qp(dd);
  12869. ret = hfi1_dev_affinity_init(dd);
  12870. if (ret)
  12871. goto bail_cleanup;
  12872. /* send contexts must be set up before receive contexts */
  12873. ret = init_send_contexts(dd);
  12874. if (ret)
  12875. goto bail_cleanup;
  12876. ret = hfi1_create_ctxts(dd);
  12877. if (ret)
  12878. goto bail_cleanup;
  12879. dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
  12880. /*
  12881. * rcd[0] is guaranteed to be valid by this point. Also, all
  12882. * context are using the same value, as per the module parameter.
  12883. */
  12884. dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
  12885. ret = init_pervl_scs(dd);
  12886. if (ret)
  12887. goto bail_cleanup;
  12888. /* sdma init */
  12889. for (i = 0; i < dd->num_pports; ++i) {
  12890. ret = sdma_init(dd, i);
  12891. if (ret)
  12892. goto bail_cleanup;
  12893. }
  12894. /* use contexts created by hfi1_create_ctxts */
  12895. ret = set_up_interrupts(dd);
  12896. if (ret)
  12897. goto bail_cleanup;
  12898. /* set up LCB access - must be after set_up_interrupts() */
  12899. init_lcb_access(dd);
  12900. /*
  12901. * Serial number is created from the base guid:
  12902. * [27:24] = base guid [38:35]
  12903. * [23: 0] = base guid [23: 0]
  12904. */
  12905. snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
  12906. (dd->base_guid & 0xFFFFFF) |
  12907. ((dd->base_guid >> 11) & 0xF000000));
  12908. dd->oui1 = dd->base_guid >> 56 & 0xFF;
  12909. dd->oui2 = dd->base_guid >> 48 & 0xFF;
  12910. dd->oui3 = dd->base_guid >> 40 & 0xFF;
  12911. ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
  12912. if (ret)
  12913. goto bail_clear_intr;
  12914. thermal_init(dd);
  12915. ret = init_cntrs(dd);
  12916. if (ret)
  12917. goto bail_clear_intr;
  12918. ret = init_rcverr(dd);
  12919. if (ret)
  12920. goto bail_free_cntrs;
  12921. init_completion(&dd->user_comp);
  12922. /* The user refcount starts with one to inidicate an active device */
  12923. atomic_set(&dd->user_refcount, 1);
  12924. goto bail;
  12925. bail_free_rcverr:
  12926. free_rcverr(dd);
  12927. bail_free_cntrs:
  12928. free_cntrs(dd);
  12929. bail_clear_intr:
  12930. clean_up_interrupts(dd);
  12931. bail_cleanup:
  12932. hfi1_pcie_ddcleanup(dd);
  12933. bail_free:
  12934. hfi1_free_devdata(dd);
  12935. dd = ERR_PTR(ret);
  12936. bail:
  12937. return dd;
  12938. }
  12939. static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
  12940. u32 dw_len)
  12941. {
  12942. u32 delta_cycles;
  12943. u32 current_egress_rate = ppd->current_egress_rate;
  12944. /* rates here are in units of 10^6 bits/sec */
  12945. if (desired_egress_rate == -1)
  12946. return 0; /* shouldn't happen */
  12947. if (desired_egress_rate >= current_egress_rate)
  12948. return 0; /* we can't help go faster, only slower */
  12949. delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
  12950. egress_cycles(dw_len * 4, current_egress_rate);
  12951. return (u16)delta_cycles;
  12952. }
  12953. /**
  12954. * create_pbc - build a pbc for transmission
  12955. * @flags: special case flags or-ed in built pbc
  12956. * @srate: static rate
  12957. * @vl: vl
  12958. * @dwlen: dword length (header words + data words + pbc words)
  12959. *
  12960. * Create a PBC with the given flags, rate, VL, and length.
  12961. *
  12962. * NOTE: The PBC created will not insert any HCRC - all callers but one are
  12963. * for verbs, which does not use this PSM feature. The lone other caller
  12964. * is for the diagnostic interface which calls this if the user does not
  12965. * supply their own PBC.
  12966. */
  12967. u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
  12968. u32 dw_len)
  12969. {
  12970. u64 pbc, delay = 0;
  12971. if (unlikely(srate_mbs))
  12972. delay = delay_cycles(ppd, srate_mbs, dw_len);
  12973. pbc = flags
  12974. | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
  12975. | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
  12976. | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
  12977. | (dw_len & PBC_LENGTH_DWS_MASK)
  12978. << PBC_LENGTH_DWS_SHIFT;
  12979. return pbc;
  12980. }
  12981. #define SBUS_THERMAL 0x4f
  12982. #define SBUS_THERM_MONITOR_MODE 0x1
  12983. #define THERM_FAILURE(dev, ret, reason) \
  12984. dd_dev_err((dd), \
  12985. "Thermal sensor initialization failed: %s (%d)\n", \
  12986. (reason), (ret))
  12987. /*
  12988. * Initialize the thermal sensor.
  12989. *
  12990. * After initialization, enable polling of thermal sensor through
  12991. * SBus interface. In order for this to work, the SBus Master
  12992. * firmware has to be loaded due to the fact that the HW polling
  12993. * logic uses SBus interrupts, which are not supported with
  12994. * default firmware. Otherwise, no data will be returned through
  12995. * the ASIC_STS_THERM CSR.
  12996. */
  12997. static int thermal_init(struct hfi1_devdata *dd)
  12998. {
  12999. int ret = 0;
  13000. if (dd->icode != ICODE_RTL_SILICON ||
  13001. check_chip_resource(dd, CR_THERM_INIT, NULL))
  13002. return ret;
  13003. ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
  13004. if (ret) {
  13005. THERM_FAILURE(dd, ret, "Acquire SBus");
  13006. return ret;
  13007. }
  13008. dd_dev_info(dd, "Initializing thermal sensor\n");
  13009. /* Disable polling of thermal readings */
  13010. write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
  13011. msleep(100);
  13012. /* Thermal Sensor Initialization */
  13013. /* Step 1: Reset the Thermal SBus Receiver */
  13014. ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
  13015. RESET_SBUS_RECEIVER, 0);
  13016. if (ret) {
  13017. THERM_FAILURE(dd, ret, "Bus Reset");
  13018. goto done;
  13019. }
  13020. /* Step 2: Set Reset bit in Thermal block */
  13021. ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
  13022. WRITE_SBUS_RECEIVER, 0x1);
  13023. if (ret) {
  13024. THERM_FAILURE(dd, ret, "Therm Block Reset");
  13025. goto done;
  13026. }
  13027. /* Step 3: Write clock divider value (100MHz -> 2MHz) */
  13028. ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
  13029. WRITE_SBUS_RECEIVER, 0x32);
  13030. if (ret) {
  13031. THERM_FAILURE(dd, ret, "Write Clock Div");
  13032. goto done;
  13033. }
  13034. /* Step 4: Select temperature mode */
  13035. ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
  13036. WRITE_SBUS_RECEIVER,
  13037. SBUS_THERM_MONITOR_MODE);
  13038. if (ret) {
  13039. THERM_FAILURE(dd, ret, "Write Mode Sel");
  13040. goto done;
  13041. }
  13042. /* Step 5: De-assert block reset and start conversion */
  13043. ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
  13044. WRITE_SBUS_RECEIVER, 0x2);
  13045. if (ret) {
  13046. THERM_FAILURE(dd, ret, "Write Reset Deassert");
  13047. goto done;
  13048. }
  13049. /* Step 5.1: Wait for first conversion (21.5ms per spec) */
  13050. msleep(22);
  13051. /* Enable polling of thermal readings */
  13052. write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
  13053. /* Set initialized flag */
  13054. ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
  13055. if (ret)
  13056. THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
  13057. done:
  13058. release_chip_resource(dd, CR_SBUS);
  13059. return ret;
  13060. }
  13061. static void handle_temp_err(struct hfi1_devdata *dd)
  13062. {
  13063. struct hfi1_pportdata *ppd = &dd->pport[0];
  13064. /*
  13065. * Thermal Critical Interrupt
  13066. * Put the device into forced freeze mode, take link down to
  13067. * offline, and put DC into reset.
  13068. */
  13069. dd_dev_emerg(dd,
  13070. "Critical temperature reached! Forcing device into freeze mode!\n");
  13071. dd->flags |= HFI1_FORCED_FREEZE;
  13072. start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
  13073. /*
  13074. * Shut DC down as much and as quickly as possible.
  13075. *
  13076. * Step 1: Take the link down to OFFLINE. This will cause the
  13077. * 8051 to put the Serdes in reset. However, we don't want to
  13078. * go through the entire link state machine since we want to
  13079. * shutdown ASAP. Furthermore, this is not a graceful shutdown
  13080. * but rather an attempt to save the chip.
  13081. * Code below is almost the same as quiet_serdes() but avoids
  13082. * all the extra work and the sleeps.
  13083. */
  13084. ppd->driver_link_ready = 0;
  13085. ppd->link_enabled = 0;
  13086. set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
  13087. PLS_OFFLINE);
  13088. /*
  13089. * Step 2: Shutdown LCB and 8051
  13090. * After shutdown, do not restore DC_CFG_RESET value.
  13091. */
  13092. dc_shutdown(dd);
  13093. }