qcom-spmi-vadc.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244
  1. /*
  2. * Copyright (c) 2012-2016, The Linux Foundation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 and
  6. * only version 2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. */
  13. #include <linux/bitops.h>
  14. #include <linux/completion.h>
  15. #include <linux/delay.h>
  16. #include <linux/err.h>
  17. #include <linux/iio/iio.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/kernel.h>
  20. #include <linux/math64.h>
  21. #include <linux/module.h>
  22. #include <linux/of.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/regmap.h>
  25. #include <linux/slab.h>
  26. #include <linux/log2.h>
  27. #include <dt-bindings/iio/qcom,spmi-vadc.h>
  28. /* VADC register and bit definitions */
  29. #define VADC_REVISION2 0x1
  30. #define VADC_REVISION2_SUPPORTED_VADC 1
  31. #define VADC_PERPH_TYPE 0x4
  32. #define VADC_PERPH_TYPE_ADC 8
  33. #define VADC_PERPH_SUBTYPE 0x5
  34. #define VADC_PERPH_SUBTYPE_VADC 1
  35. #define VADC_STATUS1 0x8
  36. #define VADC_STATUS1_OP_MODE 4
  37. #define VADC_STATUS1_REQ_STS BIT(1)
  38. #define VADC_STATUS1_EOC BIT(0)
  39. #define VADC_STATUS1_REQ_STS_EOC_MASK 0x3
  40. #define VADC_MODE_CTL 0x40
  41. #define VADC_OP_MODE_SHIFT 3
  42. #define VADC_OP_MODE_NORMAL 0
  43. #define VADC_AMUX_TRIM_EN BIT(1)
  44. #define VADC_ADC_TRIM_EN BIT(0)
  45. #define VADC_EN_CTL1 0x46
  46. #define VADC_EN_CTL1_SET BIT(7)
  47. #define VADC_ADC_CH_SEL_CTL 0x48
  48. #define VADC_ADC_DIG_PARAM 0x50
  49. #define VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT 2
  50. #define VADC_HW_SETTLE_DELAY 0x51
  51. #define VADC_CONV_REQ 0x52
  52. #define VADC_CONV_REQ_SET BIT(7)
  53. #define VADC_FAST_AVG_CTL 0x5a
  54. #define VADC_FAST_AVG_EN 0x5b
  55. #define VADC_FAST_AVG_EN_SET BIT(7)
  56. #define VADC_ACCESS 0xd0
  57. #define VADC_ACCESS_DATA 0xa5
  58. #define VADC_PERH_RESET_CTL3 0xda
  59. #define VADC_FOLLOW_WARM_RB BIT(2)
  60. #define VADC_DATA 0x60 /* 16 bits */
  61. #define VADC_CONV_TIME_MIN_US 2000
  62. #define VADC_CONV_TIME_MAX_US 2100
  63. /* Min ADC code represents 0V */
  64. #define VADC_MIN_ADC_CODE 0x6000
  65. /* Max ADC code represents full-scale range of 1.8V */
  66. #define VADC_MAX_ADC_CODE 0xa800
  67. #define VADC_ABSOLUTE_RANGE_UV 625000
  68. #define VADC_RATIOMETRIC_RANGE 1800
  69. #define VADC_DEF_PRESCALING 0 /* 1:1 */
  70. #define VADC_DEF_DECIMATION 0 /* 512 */
  71. #define VADC_DEF_HW_SETTLE_TIME 0 /* 0 us */
  72. #define VADC_DEF_AVG_SAMPLES 0 /* 1 sample */
  73. #define VADC_DEF_CALIB_TYPE VADC_CALIB_ABSOLUTE
  74. #define VADC_DECIMATION_MIN 512
  75. #define VADC_DECIMATION_MAX 4096
  76. #define VADC_HW_SETTLE_DELAY_MAX 10000
  77. #define VADC_AVG_SAMPLES_MAX 512
  78. #define KELVINMIL_CELSIUSMIL 273150
  79. #define PMI_CHG_SCALE_1 -138890
  80. #define PMI_CHG_SCALE_2 391750000000LL
  81. #define VADC_CHAN_MIN VADC_USBIN
  82. #define VADC_CHAN_MAX VADC_LR_MUX3_BUF_PU1_PU2_XO_THERM
  83. /**
  84. * struct vadc_map_pt - Map the graph representation for ADC channel
  85. * @x: Represent the ADC digitized code.
  86. * @y: Represent the physical data which can be temperature, voltage,
  87. * resistance.
  88. */
  89. struct vadc_map_pt {
  90. s32 x;
  91. s32 y;
  92. };
  93. /*
  94. * VADC_CALIB_ABSOLUTE: uses the 625mV and 1.25V as reference channels.
  95. * VADC_CALIB_RATIOMETRIC: uses the reference voltage (1.8V) and GND for
  96. * calibration.
  97. */
  98. enum vadc_calibration {
  99. VADC_CALIB_ABSOLUTE = 0,
  100. VADC_CALIB_RATIOMETRIC
  101. };
  102. /**
  103. * struct vadc_linear_graph - Represent ADC characteristics.
  104. * @dy: numerator slope to calculate the gain.
  105. * @dx: denominator slope to calculate the gain.
  106. * @gnd: A/D word of the ground reference used for the channel.
  107. *
  108. * Each ADC device has different offset and gain parameters which are
  109. * computed to calibrate the device.
  110. */
  111. struct vadc_linear_graph {
  112. s32 dy;
  113. s32 dx;
  114. s32 gnd;
  115. };
  116. /**
  117. * struct vadc_prescale_ratio - Represent scaling ratio for ADC input.
  118. * @num: the inverse numerator of the gain applied to the input channel.
  119. * @den: the inverse denominator of the gain applied to the input channel.
  120. */
  121. struct vadc_prescale_ratio {
  122. u32 num;
  123. u32 den;
  124. };
  125. /**
  126. * struct vadc_channel_prop - VADC channel property.
  127. * @channel: channel number, refer to the channel list.
  128. * @calibration: calibration type.
  129. * @decimation: sampling rate supported for the channel.
  130. * @prescale: channel scaling performed on the input signal.
  131. * @hw_settle_time: the time between AMUX being configured and the
  132. * start of conversion.
  133. * @avg_samples: ability to provide single result from the ADC
  134. * that is an average of multiple measurements.
  135. * @scale_fn: Represents the scaling function to convert voltage
  136. * physical units desired by the client for the channel.
  137. * Referenced from enum vadc_scale_fn_type.
  138. */
  139. struct vadc_channel_prop {
  140. unsigned int channel;
  141. enum vadc_calibration calibration;
  142. unsigned int decimation;
  143. unsigned int prescale;
  144. unsigned int hw_settle_time;
  145. unsigned int avg_samples;
  146. unsigned int scale_fn;
  147. };
  148. /**
  149. * struct vadc_priv - VADC private structure.
  150. * @regmap: pointer to struct regmap.
  151. * @dev: pointer to struct device.
  152. * @base: base address for the ADC peripheral.
  153. * @nchannels: number of VADC channels.
  154. * @chan_props: array of VADC channel properties.
  155. * @iio_chans: array of IIO channels specification.
  156. * @are_ref_measured: are reference points measured.
  157. * @poll_eoc: use polling instead of interrupt.
  158. * @complete: VADC result notification after interrupt is received.
  159. * @graph: store parameters for calibration.
  160. * @lock: ADC lock for access to the peripheral.
  161. */
  162. struct vadc_priv {
  163. struct regmap *regmap;
  164. struct device *dev;
  165. u16 base;
  166. unsigned int nchannels;
  167. struct vadc_channel_prop *chan_props;
  168. struct iio_chan_spec *iio_chans;
  169. bool are_ref_measured;
  170. bool poll_eoc;
  171. struct completion complete;
  172. struct vadc_linear_graph graph[2];
  173. struct mutex lock;
  174. };
  175. /**
  176. * struct vadc_scale_fn - Scaling function prototype
  177. * @scale: Function pointer to one of the scaling functions
  178. * which takes the adc properties, channel properties,
  179. * and returns the physical result.
  180. */
  181. struct vadc_scale_fn {
  182. int (*scale)(struct vadc_priv *, const struct vadc_channel_prop *,
  183. u16, int *);
  184. };
  185. /**
  186. * enum vadc_scale_fn_type - Scaling function to convert ADC code to
  187. * physical scaled units for the channel.
  188. * SCALE_DEFAULT: Default scaling to convert raw adc code to voltage (uV).
  189. * SCALE_THERM_100K_PULLUP: Returns temperature in millidegC.
  190. * Uses a mapping table with 100K pullup.
  191. * SCALE_PMIC_THERM: Returns result in milli degree's Centigrade.
  192. * SCALE_XOTHERM: Returns XO thermistor voltage in millidegC.
  193. * SCALE_PMI_CHG_TEMP: Conversion for PMI CHG temp
  194. */
  195. enum vadc_scale_fn_type {
  196. SCALE_DEFAULT = 0,
  197. SCALE_THERM_100K_PULLUP,
  198. SCALE_PMIC_THERM,
  199. SCALE_XOTHERM,
  200. SCALE_PMI_CHG_TEMP,
  201. };
  202. static const struct vadc_prescale_ratio vadc_prescale_ratios[] = {
  203. {.num = 1, .den = 1},
  204. {.num = 1, .den = 3},
  205. {.num = 1, .den = 4},
  206. {.num = 1, .den = 6},
  207. {.num = 1, .den = 20},
  208. {.num = 1, .den = 8},
  209. {.num = 10, .den = 81},
  210. {.num = 1, .den = 10}
  211. };
  212. /* Voltage to temperature */
  213. static const struct vadc_map_pt adcmap_100k_104ef_104fb[] = {
  214. {1758, -40},
  215. {1742, -35},
  216. {1719, -30},
  217. {1691, -25},
  218. {1654, -20},
  219. {1608, -15},
  220. {1551, -10},
  221. {1483, -5},
  222. {1404, 0},
  223. {1315, 5},
  224. {1218, 10},
  225. {1114, 15},
  226. {1007, 20},
  227. {900, 25},
  228. {795, 30},
  229. {696, 35},
  230. {605, 40},
  231. {522, 45},
  232. {448, 50},
  233. {383, 55},
  234. {327, 60},
  235. {278, 65},
  236. {237, 70},
  237. {202, 75},
  238. {172, 80},
  239. {146, 85},
  240. {125, 90},
  241. {107, 95},
  242. {92, 100},
  243. {79, 105},
  244. {68, 110},
  245. {59, 115},
  246. {51, 120},
  247. {44, 125}
  248. };
  249. static int vadc_read(struct vadc_priv *vadc, u16 offset, u8 *data)
  250. {
  251. return regmap_bulk_read(vadc->regmap, vadc->base + offset, data, 1);
  252. }
  253. static int vadc_write(struct vadc_priv *vadc, u16 offset, u8 data)
  254. {
  255. return regmap_write(vadc->regmap, vadc->base + offset, data);
  256. }
  257. static int vadc_reset(struct vadc_priv *vadc)
  258. {
  259. u8 data;
  260. int ret;
  261. ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA);
  262. if (ret)
  263. return ret;
  264. ret = vadc_read(vadc, VADC_PERH_RESET_CTL3, &data);
  265. if (ret)
  266. return ret;
  267. ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA);
  268. if (ret)
  269. return ret;
  270. data |= VADC_FOLLOW_WARM_RB;
  271. return vadc_write(vadc, VADC_PERH_RESET_CTL3, data);
  272. }
  273. static int vadc_set_state(struct vadc_priv *vadc, bool state)
  274. {
  275. return vadc_write(vadc, VADC_EN_CTL1, state ? VADC_EN_CTL1_SET : 0);
  276. }
  277. static void vadc_show_status(struct vadc_priv *vadc)
  278. {
  279. u8 mode, sta1, chan, dig, en, req;
  280. int ret;
  281. ret = vadc_read(vadc, VADC_MODE_CTL, &mode);
  282. if (ret)
  283. return;
  284. ret = vadc_read(vadc, VADC_ADC_DIG_PARAM, &dig);
  285. if (ret)
  286. return;
  287. ret = vadc_read(vadc, VADC_ADC_CH_SEL_CTL, &chan);
  288. if (ret)
  289. return;
  290. ret = vadc_read(vadc, VADC_CONV_REQ, &req);
  291. if (ret)
  292. return;
  293. ret = vadc_read(vadc, VADC_STATUS1, &sta1);
  294. if (ret)
  295. return;
  296. ret = vadc_read(vadc, VADC_EN_CTL1, &en);
  297. if (ret)
  298. return;
  299. dev_err(vadc->dev,
  300. "mode:%02x en:%02x chan:%02x dig:%02x req:%02x sta1:%02x\n",
  301. mode, en, chan, dig, req, sta1);
  302. }
  303. static int vadc_configure(struct vadc_priv *vadc,
  304. struct vadc_channel_prop *prop)
  305. {
  306. u8 decimation, mode_ctrl;
  307. int ret;
  308. /* Mode selection */
  309. mode_ctrl = (VADC_OP_MODE_NORMAL << VADC_OP_MODE_SHIFT) |
  310. VADC_ADC_TRIM_EN | VADC_AMUX_TRIM_EN;
  311. ret = vadc_write(vadc, VADC_MODE_CTL, mode_ctrl);
  312. if (ret)
  313. return ret;
  314. /* Channel selection */
  315. ret = vadc_write(vadc, VADC_ADC_CH_SEL_CTL, prop->channel);
  316. if (ret)
  317. return ret;
  318. /* Digital parameter setup */
  319. decimation = prop->decimation << VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT;
  320. ret = vadc_write(vadc, VADC_ADC_DIG_PARAM, decimation);
  321. if (ret)
  322. return ret;
  323. /* HW settle time delay */
  324. ret = vadc_write(vadc, VADC_HW_SETTLE_DELAY, prop->hw_settle_time);
  325. if (ret)
  326. return ret;
  327. ret = vadc_write(vadc, VADC_FAST_AVG_CTL, prop->avg_samples);
  328. if (ret)
  329. return ret;
  330. if (prop->avg_samples)
  331. ret = vadc_write(vadc, VADC_FAST_AVG_EN, VADC_FAST_AVG_EN_SET);
  332. else
  333. ret = vadc_write(vadc, VADC_FAST_AVG_EN, 0);
  334. return ret;
  335. }
  336. static int vadc_poll_wait_eoc(struct vadc_priv *vadc, unsigned int interval_us)
  337. {
  338. unsigned int count, retry;
  339. u8 sta1;
  340. int ret;
  341. retry = interval_us / VADC_CONV_TIME_MIN_US;
  342. for (count = 0; count < retry; count++) {
  343. ret = vadc_read(vadc, VADC_STATUS1, &sta1);
  344. if (ret)
  345. return ret;
  346. sta1 &= VADC_STATUS1_REQ_STS_EOC_MASK;
  347. if (sta1 == VADC_STATUS1_EOC)
  348. return 0;
  349. usleep_range(VADC_CONV_TIME_MIN_US, VADC_CONV_TIME_MAX_US);
  350. }
  351. vadc_show_status(vadc);
  352. return -ETIMEDOUT;
  353. }
  354. static int vadc_read_result(struct vadc_priv *vadc, u16 *data)
  355. {
  356. int ret;
  357. ret = regmap_bulk_read(vadc->regmap, vadc->base + VADC_DATA, data, 2);
  358. if (ret)
  359. return ret;
  360. *data = clamp_t(u16, *data, VADC_MIN_ADC_CODE, VADC_MAX_ADC_CODE);
  361. return 0;
  362. }
  363. static struct vadc_channel_prop *vadc_get_channel(struct vadc_priv *vadc,
  364. unsigned int num)
  365. {
  366. unsigned int i;
  367. for (i = 0; i < vadc->nchannels; i++)
  368. if (vadc->chan_props[i].channel == num)
  369. return &vadc->chan_props[i];
  370. dev_dbg(vadc->dev, "no such channel %02x\n", num);
  371. return NULL;
  372. }
  373. static int vadc_do_conversion(struct vadc_priv *vadc,
  374. struct vadc_channel_prop *prop, u16 *data)
  375. {
  376. unsigned int timeout;
  377. int ret;
  378. mutex_lock(&vadc->lock);
  379. ret = vadc_configure(vadc, prop);
  380. if (ret)
  381. goto unlock;
  382. if (!vadc->poll_eoc)
  383. reinit_completion(&vadc->complete);
  384. ret = vadc_set_state(vadc, true);
  385. if (ret)
  386. goto unlock;
  387. ret = vadc_write(vadc, VADC_CONV_REQ, VADC_CONV_REQ_SET);
  388. if (ret)
  389. goto err_disable;
  390. timeout = BIT(prop->avg_samples) * VADC_CONV_TIME_MIN_US * 2;
  391. if (vadc->poll_eoc) {
  392. ret = vadc_poll_wait_eoc(vadc, timeout);
  393. } else {
  394. ret = wait_for_completion_timeout(&vadc->complete, timeout);
  395. if (!ret) {
  396. ret = -ETIMEDOUT;
  397. goto err_disable;
  398. }
  399. /* Double check conversion status */
  400. ret = vadc_poll_wait_eoc(vadc, VADC_CONV_TIME_MIN_US);
  401. if (ret)
  402. goto err_disable;
  403. }
  404. ret = vadc_read_result(vadc, data);
  405. err_disable:
  406. vadc_set_state(vadc, false);
  407. if (ret)
  408. dev_err(vadc->dev, "conversion failed\n");
  409. unlock:
  410. mutex_unlock(&vadc->lock);
  411. return ret;
  412. }
  413. static int vadc_measure_ref_points(struct vadc_priv *vadc)
  414. {
  415. struct vadc_channel_prop *prop;
  416. u16 read_1, read_2;
  417. int ret;
  418. vadc->graph[VADC_CALIB_RATIOMETRIC].dx = VADC_RATIOMETRIC_RANGE;
  419. vadc->graph[VADC_CALIB_ABSOLUTE].dx = VADC_ABSOLUTE_RANGE_UV;
  420. prop = vadc_get_channel(vadc, VADC_REF_1250MV);
  421. ret = vadc_do_conversion(vadc, prop, &read_1);
  422. if (ret)
  423. goto err;
  424. /* Try with buffered 625mV channel first */
  425. prop = vadc_get_channel(vadc, VADC_SPARE1);
  426. if (!prop)
  427. prop = vadc_get_channel(vadc, VADC_REF_625MV);
  428. ret = vadc_do_conversion(vadc, prop, &read_2);
  429. if (ret)
  430. goto err;
  431. if (read_1 == read_2) {
  432. ret = -EINVAL;
  433. goto err;
  434. }
  435. vadc->graph[VADC_CALIB_ABSOLUTE].dy = read_1 - read_2;
  436. vadc->graph[VADC_CALIB_ABSOLUTE].gnd = read_2;
  437. /* Ratiometric calibration */
  438. prop = vadc_get_channel(vadc, VADC_VDD_VADC);
  439. ret = vadc_do_conversion(vadc, prop, &read_1);
  440. if (ret)
  441. goto err;
  442. prop = vadc_get_channel(vadc, VADC_GND_REF);
  443. ret = vadc_do_conversion(vadc, prop, &read_2);
  444. if (ret)
  445. goto err;
  446. if (read_1 == read_2) {
  447. ret = -EINVAL;
  448. goto err;
  449. }
  450. vadc->graph[VADC_CALIB_RATIOMETRIC].dy = read_1 - read_2;
  451. vadc->graph[VADC_CALIB_RATIOMETRIC].gnd = read_2;
  452. err:
  453. if (ret)
  454. dev_err(vadc->dev, "measure reference points failed\n");
  455. return ret;
  456. }
  457. static int vadc_map_voltage_temp(const struct vadc_map_pt *pts,
  458. u32 tablesize, s32 input, s64 *output)
  459. {
  460. bool descending = 1;
  461. u32 i = 0;
  462. if (!pts)
  463. return -EINVAL;
  464. /* Check if table is descending or ascending */
  465. if (tablesize > 1) {
  466. if (pts[0].x < pts[1].x)
  467. descending = 0;
  468. }
  469. while (i < tablesize) {
  470. if ((descending) && (pts[i].x < input)) {
  471. /* table entry is less than measured*/
  472. /* value and table is descending, stop */
  473. break;
  474. } else if ((!descending) &&
  475. (pts[i].x > input)) {
  476. /* table entry is greater than measured*/
  477. /*value and table is ascending, stop */
  478. break;
  479. }
  480. i++;
  481. }
  482. if (i == 0) {
  483. *output = pts[0].y;
  484. } else if (i == tablesize) {
  485. *output = pts[tablesize - 1].y;
  486. } else {
  487. /* result is between search_index and search_index-1 */
  488. /* interpolate linearly */
  489. *output = (((s32)((pts[i].y - pts[i - 1].y) *
  490. (input - pts[i - 1].x)) /
  491. (pts[i].x - pts[i - 1].x)) +
  492. pts[i - 1].y);
  493. }
  494. return 0;
  495. }
  496. static void vadc_scale_calib(struct vadc_priv *vadc, u16 adc_code,
  497. const struct vadc_channel_prop *prop,
  498. s64 *scale_voltage)
  499. {
  500. *scale_voltage = (adc_code -
  501. vadc->graph[prop->calibration].gnd);
  502. *scale_voltage *= vadc->graph[prop->calibration].dx;
  503. *scale_voltage = div64_s64(*scale_voltage,
  504. vadc->graph[prop->calibration].dy);
  505. if (prop->calibration == VADC_CALIB_ABSOLUTE)
  506. *scale_voltage +=
  507. vadc->graph[prop->calibration].dx;
  508. if (*scale_voltage < 0)
  509. *scale_voltage = 0;
  510. }
  511. static int vadc_scale_volt(struct vadc_priv *vadc,
  512. const struct vadc_channel_prop *prop, u16 adc_code,
  513. int *result_uv)
  514. {
  515. const struct vadc_prescale_ratio *prescale;
  516. s64 voltage = 0, result = 0;
  517. vadc_scale_calib(vadc, adc_code, prop, &voltage);
  518. prescale = &vadc_prescale_ratios[prop->prescale];
  519. voltage = voltage * prescale->den;
  520. result = div64_s64(voltage, prescale->num);
  521. *result_uv = result;
  522. return 0;
  523. }
  524. static int vadc_scale_therm(struct vadc_priv *vadc,
  525. const struct vadc_channel_prop *prop, u16 adc_code,
  526. int *result_mdec)
  527. {
  528. s64 voltage = 0, result = 0;
  529. vadc_scale_calib(vadc, adc_code, prop, &voltage);
  530. if (prop->calibration == VADC_CALIB_ABSOLUTE)
  531. voltage = div64_s64(voltage, 1000);
  532. vadc_map_voltage_temp(adcmap_100k_104ef_104fb,
  533. ARRAY_SIZE(adcmap_100k_104ef_104fb),
  534. voltage, &result);
  535. result *= 1000;
  536. *result_mdec = result;
  537. return 0;
  538. }
  539. static int vadc_scale_die_temp(struct vadc_priv *vadc,
  540. const struct vadc_channel_prop *prop,
  541. u16 adc_code, int *result_mdec)
  542. {
  543. const struct vadc_prescale_ratio *prescale;
  544. s64 voltage = 0;
  545. u64 temp; /* Temporary variable for do_div */
  546. vadc_scale_calib(vadc, adc_code, prop, &voltage);
  547. if (voltage > 0) {
  548. prescale = &vadc_prescale_ratios[prop->prescale];
  549. temp = voltage * prescale->den;
  550. do_div(temp, prescale->num * 2);
  551. voltage = temp;
  552. } else {
  553. voltage = 0;
  554. }
  555. voltage -= KELVINMIL_CELSIUSMIL;
  556. *result_mdec = voltage;
  557. return 0;
  558. }
  559. static int vadc_scale_chg_temp(struct vadc_priv *vadc,
  560. const struct vadc_channel_prop *prop,
  561. u16 adc_code, int *result_mdec)
  562. {
  563. const struct vadc_prescale_ratio *prescale;
  564. s64 voltage = 0, result = 0;
  565. vadc_scale_calib(vadc, adc_code, prop, &voltage);
  566. prescale = &vadc_prescale_ratios[prop->prescale];
  567. voltage = voltage * prescale->den;
  568. voltage = div64_s64(voltage, prescale->num);
  569. voltage = ((PMI_CHG_SCALE_1) * (voltage * 2));
  570. voltage = (voltage + PMI_CHG_SCALE_2);
  571. result = div64_s64(voltage, 1000000);
  572. *result_mdec = result;
  573. return 0;
  574. }
  575. static int vadc_decimation_from_dt(u32 value)
  576. {
  577. if (!is_power_of_2(value) || value < VADC_DECIMATION_MIN ||
  578. value > VADC_DECIMATION_MAX)
  579. return -EINVAL;
  580. return __ffs64(value / VADC_DECIMATION_MIN);
  581. }
  582. static int vadc_prescaling_from_dt(u32 num, u32 den)
  583. {
  584. unsigned int pre;
  585. for (pre = 0; pre < ARRAY_SIZE(vadc_prescale_ratios); pre++)
  586. if (vadc_prescale_ratios[pre].num == num &&
  587. vadc_prescale_ratios[pre].den == den)
  588. break;
  589. if (pre == ARRAY_SIZE(vadc_prescale_ratios))
  590. return -EINVAL;
  591. return pre;
  592. }
  593. static int vadc_hw_settle_time_from_dt(u32 value)
  594. {
  595. if ((value <= 1000 && value % 100) || (value > 1000 && value % 2000))
  596. return -EINVAL;
  597. if (value <= 1000)
  598. value /= 100;
  599. else
  600. value = value / 2000 + 10;
  601. return value;
  602. }
  603. static int vadc_avg_samples_from_dt(u32 value)
  604. {
  605. if (!is_power_of_2(value) || value > VADC_AVG_SAMPLES_MAX)
  606. return -EINVAL;
  607. return __ffs64(value);
  608. }
  609. static struct vadc_scale_fn scale_fn[] = {
  610. [SCALE_DEFAULT] = {vadc_scale_volt},
  611. [SCALE_THERM_100K_PULLUP] = {vadc_scale_therm},
  612. [SCALE_PMIC_THERM] = {vadc_scale_die_temp},
  613. [SCALE_XOTHERM] = {vadc_scale_therm},
  614. [SCALE_PMI_CHG_TEMP] = {vadc_scale_chg_temp},
  615. };
  616. static int vadc_read_raw(struct iio_dev *indio_dev,
  617. struct iio_chan_spec const *chan, int *val, int *val2,
  618. long mask)
  619. {
  620. struct vadc_priv *vadc = iio_priv(indio_dev);
  621. struct vadc_channel_prop *prop;
  622. u16 adc_code;
  623. int ret;
  624. switch (mask) {
  625. case IIO_CHAN_INFO_PROCESSED:
  626. prop = &vadc->chan_props[chan->address];
  627. ret = vadc_do_conversion(vadc, prop, &adc_code);
  628. if (ret)
  629. break;
  630. scale_fn[prop->scale_fn].scale(vadc, prop, adc_code, val);
  631. return IIO_VAL_INT;
  632. case IIO_CHAN_INFO_RAW:
  633. prop = &vadc->chan_props[chan->address];
  634. ret = vadc_do_conversion(vadc, prop, &adc_code);
  635. if (ret)
  636. break;
  637. *val = (int)adc_code;
  638. return IIO_VAL_INT;
  639. default:
  640. ret = -EINVAL;
  641. break;
  642. }
  643. return ret;
  644. }
  645. static int vadc_of_xlate(struct iio_dev *indio_dev,
  646. const struct of_phandle_args *iiospec)
  647. {
  648. struct vadc_priv *vadc = iio_priv(indio_dev);
  649. unsigned int i;
  650. for (i = 0; i < vadc->nchannels; i++)
  651. if (vadc->iio_chans[i].channel == iiospec->args[0])
  652. return i;
  653. return -EINVAL;
  654. }
  655. static const struct iio_info vadc_info = {
  656. .read_raw = vadc_read_raw,
  657. .of_xlate = vadc_of_xlate,
  658. .driver_module = THIS_MODULE,
  659. };
  660. struct vadc_channels {
  661. const char *datasheet_name;
  662. unsigned int prescale_index;
  663. enum iio_chan_type type;
  664. long info_mask;
  665. unsigned int scale_fn;
  666. };
  667. #define VADC_CHAN(_dname, _type, _mask, _pre, _scale) \
  668. [VADC_##_dname] = { \
  669. .datasheet_name = __stringify(_dname), \
  670. .prescale_index = _pre, \
  671. .type = _type, \
  672. .info_mask = _mask, \
  673. .scale_fn = _scale \
  674. }, \
  675. #define VADC_NO_CHAN(_dname, _type, _mask, _pre) \
  676. [VADC_##_dname] = { \
  677. .datasheet_name = __stringify(_dname), \
  678. .prescale_index = _pre, \
  679. .type = _type, \
  680. .info_mask = _mask \
  681. },
  682. #define VADC_CHAN_TEMP(_dname, _pre, _scale) \
  683. VADC_CHAN(_dname, IIO_TEMP, \
  684. BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED), \
  685. _pre, _scale) \
  686. #define VADC_CHAN_VOLT(_dname, _pre, _scale) \
  687. VADC_CHAN(_dname, IIO_VOLTAGE, \
  688. BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED),\
  689. _pre, _scale) \
  690. #define VADC_CHAN_NO_SCALE(_dname, _pre) \
  691. VADC_NO_CHAN(_dname, IIO_VOLTAGE, \
  692. BIT(IIO_CHAN_INFO_RAW), \
  693. _pre) \
  694. /*
  695. * The array represents all possible ADC channels found in the supported PMICs.
  696. * Every index in the array is equal to the channel number per datasheet. The
  697. * gaps in the array should be treated as reserved channels.
  698. */
  699. static const struct vadc_channels vadc_chans[] = {
  700. VADC_CHAN_VOLT(USBIN, 4, SCALE_DEFAULT)
  701. VADC_CHAN_VOLT(DCIN, 4, SCALE_DEFAULT)
  702. VADC_CHAN_NO_SCALE(VCHG_SNS, 3)
  703. VADC_CHAN_NO_SCALE(SPARE1_03, 1)
  704. VADC_CHAN_NO_SCALE(USB_ID_MV, 1)
  705. VADC_CHAN_VOLT(VCOIN, 1, SCALE_DEFAULT)
  706. VADC_CHAN_NO_SCALE(VBAT_SNS, 1)
  707. VADC_CHAN_VOLT(VSYS, 1, SCALE_DEFAULT)
  708. VADC_CHAN_TEMP(DIE_TEMP, 0, SCALE_PMIC_THERM)
  709. VADC_CHAN_VOLT(REF_625MV, 0, SCALE_DEFAULT)
  710. VADC_CHAN_VOLT(REF_1250MV, 0, SCALE_DEFAULT)
  711. VADC_CHAN_NO_SCALE(CHG_TEMP, 0)
  712. VADC_CHAN_NO_SCALE(SPARE1, 0)
  713. VADC_CHAN_TEMP(SPARE2, 0, SCALE_PMI_CHG_TEMP)
  714. VADC_CHAN_VOLT(GND_REF, 0, SCALE_DEFAULT)
  715. VADC_CHAN_VOLT(VDD_VADC, 0, SCALE_DEFAULT)
  716. VADC_CHAN_NO_SCALE(P_MUX1_1_1, 0)
  717. VADC_CHAN_NO_SCALE(P_MUX2_1_1, 0)
  718. VADC_CHAN_NO_SCALE(P_MUX3_1_1, 0)
  719. VADC_CHAN_NO_SCALE(P_MUX4_1_1, 0)
  720. VADC_CHAN_NO_SCALE(P_MUX5_1_1, 0)
  721. VADC_CHAN_NO_SCALE(P_MUX6_1_1, 0)
  722. VADC_CHAN_NO_SCALE(P_MUX7_1_1, 0)
  723. VADC_CHAN_NO_SCALE(P_MUX8_1_1, 0)
  724. VADC_CHAN_NO_SCALE(P_MUX9_1_1, 0)
  725. VADC_CHAN_NO_SCALE(P_MUX10_1_1, 0)
  726. VADC_CHAN_NO_SCALE(P_MUX11_1_1, 0)
  727. VADC_CHAN_NO_SCALE(P_MUX12_1_1, 0)
  728. VADC_CHAN_NO_SCALE(P_MUX13_1_1, 0)
  729. VADC_CHAN_NO_SCALE(P_MUX14_1_1, 0)
  730. VADC_CHAN_NO_SCALE(P_MUX15_1_1, 0)
  731. VADC_CHAN_NO_SCALE(P_MUX16_1_1, 0)
  732. VADC_CHAN_NO_SCALE(P_MUX1_1_3, 1)
  733. VADC_CHAN_NO_SCALE(P_MUX2_1_3, 1)
  734. VADC_CHAN_NO_SCALE(P_MUX3_1_3, 1)
  735. VADC_CHAN_NO_SCALE(P_MUX4_1_3, 1)
  736. VADC_CHAN_NO_SCALE(P_MUX5_1_3, 1)
  737. VADC_CHAN_NO_SCALE(P_MUX6_1_3, 1)
  738. VADC_CHAN_NO_SCALE(P_MUX7_1_3, 1)
  739. VADC_CHAN_NO_SCALE(P_MUX8_1_3, 1)
  740. VADC_CHAN_NO_SCALE(P_MUX9_1_3, 1)
  741. VADC_CHAN_NO_SCALE(P_MUX10_1_3, 1)
  742. VADC_CHAN_NO_SCALE(P_MUX11_1_3, 1)
  743. VADC_CHAN_NO_SCALE(P_MUX12_1_3, 1)
  744. VADC_CHAN_NO_SCALE(P_MUX13_1_3, 1)
  745. VADC_CHAN_NO_SCALE(P_MUX14_1_3, 1)
  746. VADC_CHAN_NO_SCALE(P_MUX15_1_3, 1)
  747. VADC_CHAN_NO_SCALE(P_MUX16_1_3, 1)
  748. VADC_CHAN_NO_SCALE(LR_MUX1_BAT_THERM, 0)
  749. VADC_CHAN_NO_SCALE(LR_MUX2_BAT_ID, 0)
  750. VADC_CHAN_NO_SCALE(LR_MUX3_XO_THERM, 0)
  751. VADC_CHAN_NO_SCALE(LR_MUX4_AMUX_THM1, 0)
  752. VADC_CHAN_NO_SCALE(LR_MUX5_AMUX_THM2, 0)
  753. VADC_CHAN_NO_SCALE(LR_MUX6_AMUX_THM3, 0)
  754. VADC_CHAN_NO_SCALE(LR_MUX7_HW_ID, 0)
  755. VADC_CHAN_NO_SCALE(LR_MUX8_AMUX_THM4, 0)
  756. VADC_CHAN_NO_SCALE(LR_MUX9_AMUX_THM5, 0)
  757. VADC_CHAN_NO_SCALE(LR_MUX10_USB_ID, 0)
  758. VADC_CHAN_NO_SCALE(AMUX_PU1, 0)
  759. VADC_CHAN_NO_SCALE(AMUX_PU2, 0)
  760. VADC_CHAN_NO_SCALE(LR_MUX3_BUF_XO_THERM, 0)
  761. VADC_CHAN_NO_SCALE(LR_MUX1_PU1_BAT_THERM, 0)
  762. VADC_CHAN_NO_SCALE(LR_MUX2_PU1_BAT_ID, 0)
  763. VADC_CHAN_NO_SCALE(LR_MUX3_PU1_XO_THERM, 0)
  764. VADC_CHAN_TEMP(LR_MUX4_PU1_AMUX_THM1, 0, SCALE_THERM_100K_PULLUP)
  765. VADC_CHAN_TEMP(LR_MUX5_PU1_AMUX_THM2, 0, SCALE_THERM_100K_PULLUP)
  766. VADC_CHAN_TEMP(LR_MUX6_PU1_AMUX_THM3, 0, SCALE_THERM_100K_PULLUP)
  767. VADC_CHAN_NO_SCALE(LR_MUX7_PU1_AMUX_HW_ID, 0)
  768. VADC_CHAN_TEMP(LR_MUX8_PU1_AMUX_THM4, 0, SCALE_THERM_100K_PULLUP)
  769. VADC_CHAN_TEMP(LR_MUX9_PU1_AMUX_THM5, 0, SCALE_THERM_100K_PULLUP)
  770. VADC_CHAN_NO_SCALE(LR_MUX10_PU1_AMUX_USB_ID, 0)
  771. VADC_CHAN_TEMP(LR_MUX3_BUF_PU1_XO_THERM, 0, SCALE_XOTHERM)
  772. VADC_CHAN_NO_SCALE(LR_MUX1_PU2_BAT_THERM, 0)
  773. VADC_CHAN_NO_SCALE(LR_MUX2_PU2_BAT_ID, 0)
  774. VADC_CHAN_NO_SCALE(LR_MUX3_PU2_XO_THERM, 0)
  775. VADC_CHAN_NO_SCALE(LR_MUX4_PU2_AMUX_THM1, 0)
  776. VADC_CHAN_NO_SCALE(LR_MUX5_PU2_AMUX_THM2, 0)
  777. VADC_CHAN_NO_SCALE(LR_MUX6_PU2_AMUX_THM3, 0)
  778. VADC_CHAN_NO_SCALE(LR_MUX7_PU2_AMUX_HW_ID, 0)
  779. VADC_CHAN_NO_SCALE(LR_MUX8_PU2_AMUX_THM4, 0)
  780. VADC_CHAN_NO_SCALE(LR_MUX9_PU2_AMUX_THM5, 0)
  781. VADC_CHAN_NO_SCALE(LR_MUX10_PU2_AMUX_USB_ID, 0)
  782. VADC_CHAN_NO_SCALE(LR_MUX3_BUF_PU2_XO_THERM, 0)
  783. VADC_CHAN_NO_SCALE(LR_MUX1_PU1_PU2_BAT_THERM, 0)
  784. VADC_CHAN_NO_SCALE(LR_MUX2_PU1_PU2_BAT_ID, 0)
  785. VADC_CHAN_NO_SCALE(LR_MUX3_PU1_PU2_XO_THERM, 0)
  786. VADC_CHAN_NO_SCALE(LR_MUX4_PU1_PU2_AMUX_THM1, 0)
  787. VADC_CHAN_NO_SCALE(LR_MUX5_PU1_PU2_AMUX_THM2, 0)
  788. VADC_CHAN_NO_SCALE(LR_MUX6_PU1_PU2_AMUX_THM3, 0)
  789. VADC_CHAN_NO_SCALE(LR_MUX7_PU1_PU2_AMUX_HW_ID, 0)
  790. VADC_CHAN_NO_SCALE(LR_MUX8_PU1_PU2_AMUX_THM4, 0)
  791. VADC_CHAN_NO_SCALE(LR_MUX9_PU1_PU2_AMUX_THM5, 0)
  792. VADC_CHAN_NO_SCALE(LR_MUX10_PU1_PU2_AMUX_USB_ID, 0)
  793. VADC_CHAN_NO_SCALE(LR_MUX3_BUF_PU1_PU2_XO_THERM, 0)
  794. };
  795. static int vadc_get_dt_channel_data(struct device *dev,
  796. struct vadc_channel_prop *prop,
  797. struct device_node *node)
  798. {
  799. const char *name = node->name;
  800. u32 chan, value, varr[2];
  801. int ret;
  802. ret = of_property_read_u32(node, "reg", &chan);
  803. if (ret) {
  804. dev_err(dev, "invalid channel number %s\n", name);
  805. return ret;
  806. }
  807. if (chan > VADC_CHAN_MAX || chan < VADC_CHAN_MIN) {
  808. dev_err(dev, "%s invalid channel number %d\n", name, chan);
  809. return -EINVAL;
  810. }
  811. /* the channel has DT description */
  812. prop->channel = chan;
  813. ret = of_property_read_u32(node, "qcom,decimation", &value);
  814. if (!ret) {
  815. ret = vadc_decimation_from_dt(value);
  816. if (ret < 0) {
  817. dev_err(dev, "%02x invalid decimation %d\n",
  818. chan, value);
  819. return ret;
  820. }
  821. prop->decimation = ret;
  822. } else {
  823. prop->decimation = VADC_DEF_DECIMATION;
  824. }
  825. ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2);
  826. if (!ret) {
  827. ret = vadc_prescaling_from_dt(varr[0], varr[1]);
  828. if (ret < 0) {
  829. dev_err(dev, "%02x invalid pre-scaling <%d %d>\n",
  830. chan, varr[0], varr[1]);
  831. return ret;
  832. }
  833. prop->prescale = ret;
  834. } else {
  835. prop->prescale = vadc_chans[prop->channel].prescale_index;
  836. }
  837. ret = of_property_read_u32(node, "qcom,hw-settle-time", &value);
  838. if (!ret) {
  839. ret = vadc_hw_settle_time_from_dt(value);
  840. if (ret < 0) {
  841. dev_err(dev, "%02x invalid hw-settle-time %d us\n",
  842. chan, value);
  843. return ret;
  844. }
  845. prop->hw_settle_time = ret;
  846. } else {
  847. prop->hw_settle_time = VADC_DEF_HW_SETTLE_TIME;
  848. }
  849. ret = of_property_read_u32(node, "qcom,avg-samples", &value);
  850. if (!ret) {
  851. ret = vadc_avg_samples_from_dt(value);
  852. if (ret < 0) {
  853. dev_err(dev, "%02x invalid avg-samples %d\n",
  854. chan, value);
  855. return ret;
  856. }
  857. prop->avg_samples = ret;
  858. } else {
  859. prop->avg_samples = VADC_DEF_AVG_SAMPLES;
  860. }
  861. if (of_property_read_bool(node, "qcom,ratiometric"))
  862. prop->calibration = VADC_CALIB_RATIOMETRIC;
  863. else
  864. prop->calibration = VADC_CALIB_ABSOLUTE;
  865. dev_dbg(dev, "%02x name %s\n", chan, name);
  866. return 0;
  867. }
  868. static int vadc_get_dt_data(struct vadc_priv *vadc, struct device_node *node)
  869. {
  870. const struct vadc_channels *vadc_chan;
  871. struct iio_chan_spec *iio_chan;
  872. struct vadc_channel_prop prop;
  873. struct device_node *child;
  874. unsigned int index = 0;
  875. int ret;
  876. vadc->nchannels = of_get_available_child_count(node);
  877. if (!vadc->nchannels)
  878. return -EINVAL;
  879. vadc->iio_chans = devm_kcalloc(vadc->dev, vadc->nchannels,
  880. sizeof(*vadc->iio_chans), GFP_KERNEL);
  881. if (!vadc->iio_chans)
  882. return -ENOMEM;
  883. vadc->chan_props = devm_kcalloc(vadc->dev, vadc->nchannels,
  884. sizeof(*vadc->chan_props), GFP_KERNEL);
  885. if (!vadc->chan_props)
  886. return -ENOMEM;
  887. iio_chan = vadc->iio_chans;
  888. for_each_available_child_of_node(node, child) {
  889. ret = vadc_get_dt_channel_data(vadc->dev, &prop, child);
  890. if (ret) {
  891. of_node_put(child);
  892. return ret;
  893. }
  894. prop.scale_fn = vadc_chans[prop.channel].scale_fn;
  895. vadc->chan_props[index] = prop;
  896. vadc_chan = &vadc_chans[prop.channel];
  897. iio_chan->channel = prop.channel;
  898. iio_chan->datasheet_name = vadc_chan->datasheet_name;
  899. iio_chan->info_mask_separate = vadc_chan->info_mask;
  900. iio_chan->type = vadc_chan->type;
  901. iio_chan->indexed = 1;
  902. iio_chan->address = index++;
  903. iio_chan++;
  904. }
  905. /* These channels are mandatory, they are used as reference points */
  906. if (!vadc_get_channel(vadc, VADC_REF_1250MV)) {
  907. dev_err(vadc->dev, "Please define 1.25V channel\n");
  908. return -ENODEV;
  909. }
  910. if (!vadc_get_channel(vadc, VADC_REF_625MV)) {
  911. dev_err(vadc->dev, "Please define 0.625V channel\n");
  912. return -ENODEV;
  913. }
  914. if (!vadc_get_channel(vadc, VADC_VDD_VADC)) {
  915. dev_err(vadc->dev, "Please define VDD channel\n");
  916. return -ENODEV;
  917. }
  918. if (!vadc_get_channel(vadc, VADC_GND_REF)) {
  919. dev_err(vadc->dev, "Please define GND channel\n");
  920. return -ENODEV;
  921. }
  922. return 0;
  923. }
  924. static irqreturn_t vadc_isr(int irq, void *dev_id)
  925. {
  926. struct vadc_priv *vadc = dev_id;
  927. complete(&vadc->complete);
  928. return IRQ_HANDLED;
  929. }
  930. static int vadc_check_revision(struct vadc_priv *vadc)
  931. {
  932. u8 val;
  933. int ret;
  934. ret = vadc_read(vadc, VADC_PERPH_TYPE, &val);
  935. if (ret)
  936. return ret;
  937. if (val < VADC_PERPH_TYPE_ADC) {
  938. dev_err(vadc->dev, "%d is not ADC\n", val);
  939. return -ENODEV;
  940. }
  941. ret = vadc_read(vadc, VADC_PERPH_SUBTYPE, &val);
  942. if (ret)
  943. return ret;
  944. if (val < VADC_PERPH_SUBTYPE_VADC) {
  945. dev_err(vadc->dev, "%d is not VADC\n", val);
  946. return -ENODEV;
  947. }
  948. ret = vadc_read(vadc, VADC_REVISION2, &val);
  949. if (ret)
  950. return ret;
  951. if (val < VADC_REVISION2_SUPPORTED_VADC) {
  952. dev_err(vadc->dev, "revision %d not supported\n", val);
  953. return -ENODEV;
  954. }
  955. return 0;
  956. }
  957. static int vadc_probe(struct platform_device *pdev)
  958. {
  959. struct device_node *node = pdev->dev.of_node;
  960. struct device *dev = &pdev->dev;
  961. struct iio_dev *indio_dev;
  962. struct vadc_priv *vadc;
  963. struct regmap *regmap;
  964. int ret, irq_eoc;
  965. u32 reg;
  966. regmap = dev_get_regmap(dev->parent, NULL);
  967. if (!regmap)
  968. return -ENODEV;
  969. ret = of_property_read_u32(node, "reg", &reg);
  970. if (ret < 0)
  971. return ret;
  972. indio_dev = devm_iio_device_alloc(dev, sizeof(*vadc));
  973. if (!indio_dev)
  974. return -ENOMEM;
  975. vadc = iio_priv(indio_dev);
  976. vadc->regmap = regmap;
  977. vadc->dev = dev;
  978. vadc->base = reg;
  979. vadc->are_ref_measured = false;
  980. init_completion(&vadc->complete);
  981. mutex_init(&vadc->lock);
  982. ret = vadc_check_revision(vadc);
  983. if (ret)
  984. return ret;
  985. ret = vadc_get_dt_data(vadc, node);
  986. if (ret)
  987. return ret;
  988. irq_eoc = platform_get_irq(pdev, 0);
  989. if (irq_eoc < 0) {
  990. if (irq_eoc == -EPROBE_DEFER || irq_eoc == -EINVAL)
  991. return irq_eoc;
  992. vadc->poll_eoc = true;
  993. } else {
  994. ret = devm_request_irq(dev, irq_eoc, vadc_isr, 0,
  995. "spmi-vadc", vadc);
  996. if (ret)
  997. return ret;
  998. }
  999. ret = vadc_reset(vadc);
  1000. if (ret) {
  1001. dev_err(dev, "reset failed\n");
  1002. return ret;
  1003. }
  1004. ret = vadc_measure_ref_points(vadc);
  1005. if (ret)
  1006. return ret;
  1007. indio_dev->dev.parent = dev;
  1008. indio_dev->dev.of_node = node;
  1009. indio_dev->name = pdev->name;
  1010. indio_dev->modes = INDIO_DIRECT_MODE;
  1011. indio_dev->info = &vadc_info;
  1012. indio_dev->channels = vadc->iio_chans;
  1013. indio_dev->num_channels = vadc->nchannels;
  1014. return devm_iio_device_register(dev, indio_dev);
  1015. }
  1016. static const struct of_device_id vadc_match_table[] = {
  1017. { .compatible = "qcom,spmi-vadc" },
  1018. { }
  1019. };
  1020. MODULE_DEVICE_TABLE(of, vadc_match_table);
  1021. static struct platform_driver vadc_driver = {
  1022. .driver = {
  1023. .name = "qcom-spmi-vadc",
  1024. .of_match_table = vadc_match_table,
  1025. },
  1026. .probe = vadc_probe,
  1027. };
  1028. module_platform_driver(vadc_driver);
  1029. MODULE_ALIAS("platform:qcom-spmi-vadc");
  1030. MODULE_DESCRIPTION("Qualcomm SPMI PMIC voltage ADC driver");
  1031. MODULE_LICENSE("GPL v2");
  1032. MODULE_AUTHOR("Stanimir Varbanov <svarbanov@mm-sol.com>");
  1033. MODULE_AUTHOR("Ivan T. Ivanov <iivanov@mm-sol.com>");