i2c-exynos5.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912
  1. /**
  2. * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver
  3. *
  4. * Copyright (C) 2013 Samsung Electronics Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/i2c.h>
  13. #include <linux/time.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/clk.h>
  20. #include <linux/slab.h>
  21. #include <linux/io.h>
  22. #include <linux/of_address.h>
  23. #include <linux/of_irq.h>
  24. #include <linux/spinlock.h>
  25. /*
  26. * HSI2C controller from Samsung supports 2 modes of operation
  27. * 1. Auto mode: Where in master automatically controls the whole transaction
  28. * 2. Manual mode: Software controls the transaction by issuing commands
  29. * START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register.
  30. *
  31. * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register
  32. *
  33. * Special bits are available for both modes of operation to set commands
  34. * and for checking transfer status
  35. */
  36. /* Register Map */
  37. #define HSI2C_CTL 0x00
  38. #define HSI2C_FIFO_CTL 0x04
  39. #define HSI2C_TRAILIG_CTL 0x08
  40. #define HSI2C_CLK_CTL 0x0C
  41. #define HSI2C_CLK_SLOT 0x10
  42. #define HSI2C_INT_ENABLE 0x20
  43. #define HSI2C_INT_STATUS 0x24
  44. #define HSI2C_ERR_STATUS 0x2C
  45. #define HSI2C_FIFO_STATUS 0x30
  46. #define HSI2C_TX_DATA 0x34
  47. #define HSI2C_RX_DATA 0x38
  48. #define HSI2C_CONF 0x40
  49. #define HSI2C_AUTO_CONF 0x44
  50. #define HSI2C_TIMEOUT 0x48
  51. #define HSI2C_MANUAL_CMD 0x4C
  52. #define HSI2C_TRANS_STATUS 0x50
  53. #define HSI2C_TIMING_HS1 0x54
  54. #define HSI2C_TIMING_HS2 0x58
  55. #define HSI2C_TIMING_HS3 0x5C
  56. #define HSI2C_TIMING_FS1 0x60
  57. #define HSI2C_TIMING_FS2 0x64
  58. #define HSI2C_TIMING_FS3 0x68
  59. #define HSI2C_TIMING_SLA 0x6C
  60. #define HSI2C_ADDR 0x70
  61. /* I2C_CTL Register bits */
  62. #define HSI2C_FUNC_MODE_I2C (1u << 0)
  63. #define HSI2C_MASTER (1u << 3)
  64. #define HSI2C_RXCHON (1u << 6)
  65. #define HSI2C_TXCHON (1u << 7)
  66. #define HSI2C_SW_RST (1u << 31)
  67. /* I2C_FIFO_CTL Register bits */
  68. #define HSI2C_RXFIFO_EN (1u << 0)
  69. #define HSI2C_TXFIFO_EN (1u << 1)
  70. #define HSI2C_RXFIFO_TRIGGER_LEVEL(x) ((x) << 4)
  71. #define HSI2C_TXFIFO_TRIGGER_LEVEL(x) ((x) << 16)
  72. /* I2C_TRAILING_CTL Register bits */
  73. #define HSI2C_TRAILING_COUNT (0xf)
  74. /* I2C_INT_EN Register bits */
  75. #define HSI2C_INT_TX_ALMOSTEMPTY_EN (1u << 0)
  76. #define HSI2C_INT_RX_ALMOSTFULL_EN (1u << 1)
  77. #define HSI2C_INT_TRAILING_EN (1u << 6)
  78. /* I2C_INT_STAT Register bits */
  79. #define HSI2C_INT_TX_ALMOSTEMPTY (1u << 0)
  80. #define HSI2C_INT_RX_ALMOSTFULL (1u << 1)
  81. #define HSI2C_INT_TX_UNDERRUN (1u << 2)
  82. #define HSI2C_INT_TX_OVERRUN (1u << 3)
  83. #define HSI2C_INT_RX_UNDERRUN (1u << 4)
  84. #define HSI2C_INT_RX_OVERRUN (1u << 5)
  85. #define HSI2C_INT_TRAILING (1u << 6)
  86. #define HSI2C_INT_I2C (1u << 9)
  87. #define HSI2C_INT_TRANS_DONE (1u << 7)
  88. #define HSI2C_INT_TRANS_ABORT (1u << 8)
  89. #define HSI2C_INT_NO_DEV_ACK (1u << 9)
  90. #define HSI2C_INT_NO_DEV (1u << 10)
  91. #define HSI2C_INT_TIMEOUT (1u << 11)
  92. #define HSI2C_INT_I2C_TRANS (HSI2C_INT_TRANS_DONE | \
  93. HSI2C_INT_TRANS_ABORT | \
  94. HSI2C_INT_NO_DEV_ACK | \
  95. HSI2C_INT_NO_DEV | \
  96. HSI2C_INT_TIMEOUT)
  97. /* I2C_FIFO_STAT Register bits */
  98. #define HSI2C_RX_FIFO_EMPTY (1u << 24)
  99. #define HSI2C_RX_FIFO_FULL (1u << 23)
  100. #define HSI2C_RX_FIFO_LVL(x) ((x >> 16) & 0x7f)
  101. #define HSI2C_TX_FIFO_EMPTY (1u << 8)
  102. #define HSI2C_TX_FIFO_FULL (1u << 7)
  103. #define HSI2C_TX_FIFO_LVL(x) ((x >> 0) & 0x7f)
  104. /* I2C_CONF Register bits */
  105. #define HSI2C_AUTO_MODE (1u << 31)
  106. #define HSI2C_10BIT_ADDR_MODE (1u << 30)
  107. #define HSI2C_HS_MODE (1u << 29)
  108. /* I2C_AUTO_CONF Register bits */
  109. #define HSI2C_READ_WRITE (1u << 16)
  110. #define HSI2C_STOP_AFTER_TRANS (1u << 17)
  111. #define HSI2C_MASTER_RUN (1u << 31)
  112. /* I2C_TIMEOUT Register bits */
  113. #define HSI2C_TIMEOUT_EN (1u << 31)
  114. #define HSI2C_TIMEOUT_MASK 0xff
  115. /* I2C_TRANS_STATUS register bits */
  116. #define HSI2C_MASTER_BUSY (1u << 17)
  117. #define HSI2C_SLAVE_BUSY (1u << 16)
  118. /* I2C_TRANS_STATUS register bits for Exynos5 variant */
  119. #define HSI2C_TIMEOUT_AUTO (1u << 4)
  120. #define HSI2C_NO_DEV (1u << 3)
  121. #define HSI2C_NO_DEV_ACK (1u << 2)
  122. #define HSI2C_TRANS_ABORT (1u << 1)
  123. #define HSI2C_TRANS_DONE (1u << 0)
  124. /* I2C_TRANS_STATUS register bits for Exynos7 variant */
  125. #define HSI2C_MASTER_ST_MASK 0xf
  126. #define HSI2C_MASTER_ST_IDLE 0x0
  127. #define HSI2C_MASTER_ST_START 0x1
  128. #define HSI2C_MASTER_ST_RESTART 0x2
  129. #define HSI2C_MASTER_ST_STOP 0x3
  130. #define HSI2C_MASTER_ST_MASTER_ID 0x4
  131. #define HSI2C_MASTER_ST_ADDR0 0x5
  132. #define HSI2C_MASTER_ST_ADDR1 0x6
  133. #define HSI2C_MASTER_ST_ADDR2 0x7
  134. #define HSI2C_MASTER_ST_ADDR_SR 0x8
  135. #define HSI2C_MASTER_ST_READ 0x9
  136. #define HSI2C_MASTER_ST_WRITE 0xa
  137. #define HSI2C_MASTER_ST_NO_ACK 0xb
  138. #define HSI2C_MASTER_ST_LOSE 0xc
  139. #define HSI2C_MASTER_ST_WAIT 0xd
  140. #define HSI2C_MASTER_ST_WAIT_CMD 0xe
  141. /* I2C_ADDR register bits */
  142. #define HSI2C_SLV_ADDR_SLV(x) ((x & 0x3ff) << 0)
  143. #define HSI2C_SLV_ADDR_MAS(x) ((x & 0x3ff) << 10)
  144. #define HSI2C_MASTER_ID(x) ((x & 0xff) << 24)
  145. #define MASTER_ID(x) ((x & 0x7) + 0x08)
  146. /*
  147. * Controller operating frequency, timing values for operation
  148. * are calculated against this frequency
  149. */
  150. #define HSI2C_HS_TX_CLOCK 1000000
  151. #define HSI2C_FS_TX_CLOCK 100000
  152. #define HSI2C_HIGH_SPD 1
  153. #define HSI2C_FAST_SPD 0
  154. #define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(1000))
  155. #define HSI2C_EXYNOS7 BIT(0)
  156. struct exynos5_i2c {
  157. struct i2c_adapter adap;
  158. unsigned int suspended:1;
  159. struct i2c_msg *msg;
  160. struct completion msg_complete;
  161. unsigned int msg_ptr;
  162. unsigned int irq;
  163. void __iomem *regs;
  164. struct clk *clk;
  165. struct device *dev;
  166. int state;
  167. spinlock_t lock; /* IRQ synchronization */
  168. /*
  169. * Since the TRANS_DONE bit is cleared on read, and we may read it
  170. * either during an IRQ or after a transaction, keep track of its
  171. * state here.
  172. */
  173. int trans_done;
  174. /* Controller operating frequency */
  175. unsigned int fs_clock;
  176. unsigned int hs_clock;
  177. /*
  178. * HSI2C Controller can operate in
  179. * 1. High speed upto 3.4Mbps
  180. * 2. Fast speed upto 1Mbps
  181. */
  182. int speed_mode;
  183. /* Version of HS-I2C Hardware */
  184. struct exynos_hsi2c_variant *variant;
  185. };
  186. /**
  187. * struct exynos_hsi2c_variant - platform specific HSI2C driver data
  188. * @fifo_depth: the fifo depth supported by the HSI2C module
  189. *
  190. * Specifies platform specific configuration of HSI2C module.
  191. * Note: A structure for driver specific platform data is used for future
  192. * expansion of its usage.
  193. */
  194. struct exynos_hsi2c_variant {
  195. unsigned int fifo_depth;
  196. unsigned int hw;
  197. };
  198. static const struct exynos_hsi2c_variant exynos5250_hsi2c_data = {
  199. .fifo_depth = 64,
  200. };
  201. static const struct exynos_hsi2c_variant exynos5260_hsi2c_data = {
  202. .fifo_depth = 16,
  203. };
  204. static const struct exynos_hsi2c_variant exynos7_hsi2c_data = {
  205. .fifo_depth = 16,
  206. .hw = HSI2C_EXYNOS7,
  207. };
  208. static const struct of_device_id exynos5_i2c_match[] = {
  209. {
  210. .compatible = "samsung,exynos5-hsi2c",
  211. .data = &exynos5250_hsi2c_data
  212. }, {
  213. .compatible = "samsung,exynos5250-hsi2c",
  214. .data = &exynos5250_hsi2c_data
  215. }, {
  216. .compatible = "samsung,exynos5260-hsi2c",
  217. .data = &exynos5260_hsi2c_data
  218. }, {
  219. .compatible = "samsung,exynos7-hsi2c",
  220. .data = &exynos7_hsi2c_data
  221. }, {},
  222. };
  223. MODULE_DEVICE_TABLE(of, exynos5_i2c_match);
  224. static inline struct exynos_hsi2c_variant *exynos5_i2c_get_variant
  225. (struct platform_device *pdev)
  226. {
  227. const struct of_device_id *match;
  228. match = of_match_node(exynos5_i2c_match, pdev->dev.of_node);
  229. return (struct exynos_hsi2c_variant *)match->data;
  230. }
  231. static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c)
  232. {
  233. writel(readl(i2c->regs + HSI2C_INT_STATUS),
  234. i2c->regs + HSI2C_INT_STATUS);
  235. }
  236. /*
  237. * exynos5_i2c_set_timing: updates the registers with appropriate
  238. * timing values calculated
  239. *
  240. * Returns 0 on success, -EINVAL if the cycle length cannot
  241. * be calculated.
  242. */
  243. static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, int mode)
  244. {
  245. u32 i2c_timing_s1;
  246. u32 i2c_timing_s2;
  247. u32 i2c_timing_s3;
  248. u32 i2c_timing_sla;
  249. unsigned int t_start_su, t_start_hd;
  250. unsigned int t_stop_su;
  251. unsigned int t_data_su, t_data_hd;
  252. unsigned int t_scl_l, t_scl_h;
  253. unsigned int t_sr_release;
  254. unsigned int t_ftl_cycle;
  255. unsigned int clkin = clk_get_rate(i2c->clk);
  256. unsigned int div, utemp0 = 0, utemp1 = 0, clk_cycle;
  257. unsigned int op_clk = (mode == HSI2C_HIGH_SPD) ?
  258. i2c->hs_clock : i2c->fs_clock;
  259. /*
  260. * In case of HSI2C controller in Exynos5 series
  261. * FPCLK / FI2C =
  262. * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
  263. *
  264. * In case of HSI2C controllers in Exynos7 series
  265. * FPCLK / FI2C =
  266. * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + FLT_CYCLE
  267. *
  268. * utemp0 = (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2)
  269. * utemp1 = (TSCLK_L + TSCLK_H + 2)
  270. */
  271. t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7;
  272. utemp0 = (clkin / op_clk) - 8;
  273. if (i2c->variant->hw == HSI2C_EXYNOS7)
  274. utemp0 -= t_ftl_cycle;
  275. else
  276. utemp0 -= 2 * t_ftl_cycle;
  277. /* CLK_DIV max is 256 */
  278. for (div = 0; div < 256; div++) {
  279. utemp1 = utemp0 / (div + 1);
  280. /*
  281. * SCL_L and SCL_H each has max value of 255
  282. * Hence, For the clk_cycle to the have right value
  283. * utemp1 has to be less then 512 and more than 4.
  284. */
  285. if ((utemp1 < 512) && (utemp1 > 4)) {
  286. clk_cycle = utemp1 - 2;
  287. break;
  288. } else if (div == 255) {
  289. dev_warn(i2c->dev, "Failed to calculate divisor");
  290. return -EINVAL;
  291. }
  292. }
  293. t_scl_l = clk_cycle / 2;
  294. t_scl_h = clk_cycle / 2;
  295. t_start_su = t_scl_l;
  296. t_start_hd = t_scl_l;
  297. t_stop_su = t_scl_l;
  298. t_data_su = t_scl_l / 2;
  299. t_data_hd = t_scl_l / 2;
  300. t_sr_release = clk_cycle;
  301. i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
  302. i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
  303. i2c_timing_s3 = div << 16 | t_sr_release << 0;
  304. i2c_timing_sla = t_data_hd << 0;
  305. dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n",
  306. t_start_su, t_start_hd, t_stop_su);
  307. dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n",
  308. t_data_su, t_scl_l, t_scl_h);
  309. dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n",
  310. div, t_sr_release);
  311. dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd);
  312. if (mode == HSI2C_HIGH_SPD) {
  313. writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1);
  314. writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2);
  315. writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
  316. } else {
  317. writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1);
  318. writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2);
  319. writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
  320. }
  321. writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA);
  322. return 0;
  323. }
  324. static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c)
  325. {
  326. /*
  327. * Configure the Fast speed timing values
  328. * Even the High Speed mode initially starts with Fast mode
  329. */
  330. if (exynos5_i2c_set_timing(i2c, HSI2C_FAST_SPD)) {
  331. dev_err(i2c->dev, "HSI2C FS Clock set up failed\n");
  332. return -EINVAL;
  333. }
  334. /* configure the High speed timing values */
  335. if (i2c->speed_mode == HSI2C_HIGH_SPD) {
  336. if (exynos5_i2c_set_timing(i2c, HSI2C_HIGH_SPD)) {
  337. dev_err(i2c->dev, "HSI2C HS Clock set up failed\n");
  338. return -EINVAL;
  339. }
  340. }
  341. return 0;
  342. }
  343. /*
  344. * exynos5_i2c_init: configures the controller for I2C functionality
  345. * Programs I2C controller for Master mode operation
  346. */
  347. static void exynos5_i2c_init(struct exynos5_i2c *i2c)
  348. {
  349. u32 i2c_conf = readl(i2c->regs + HSI2C_CONF);
  350. u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT);
  351. /* Clear to disable Timeout */
  352. i2c_timeout &= ~HSI2C_TIMEOUT_EN;
  353. writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT);
  354. writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
  355. i2c->regs + HSI2C_CTL);
  356. writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL);
  357. if (i2c->speed_mode == HSI2C_HIGH_SPD) {
  358. writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)),
  359. i2c->regs + HSI2C_ADDR);
  360. i2c_conf |= HSI2C_HS_MODE;
  361. }
  362. writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF);
  363. }
  364. static void exynos5_i2c_reset(struct exynos5_i2c *i2c)
  365. {
  366. u32 i2c_ctl;
  367. /* Set and clear the bit for reset */
  368. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  369. i2c_ctl |= HSI2C_SW_RST;
  370. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  371. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  372. i2c_ctl &= ~HSI2C_SW_RST;
  373. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  374. /* We don't expect calculations to fail during the run */
  375. exynos5_hsi2c_clock_setup(i2c);
  376. /* Initialize the configure registers */
  377. exynos5_i2c_init(i2c);
  378. }
  379. /*
  380. * exynos5_i2c_irq: top level IRQ servicing routine
  381. *
  382. * INT_STATUS registers gives the interrupt details. Further,
  383. * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed
  384. * state of the bus.
  385. */
  386. static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id)
  387. {
  388. struct exynos5_i2c *i2c = dev_id;
  389. u32 fifo_level, int_status, fifo_status, trans_status;
  390. unsigned char byte;
  391. int len = 0;
  392. i2c->state = -EINVAL;
  393. spin_lock(&i2c->lock);
  394. int_status = readl(i2c->regs + HSI2C_INT_STATUS);
  395. writel(int_status, i2c->regs + HSI2C_INT_STATUS);
  396. /* handle interrupt related to the transfer status */
  397. if (i2c->variant->hw == HSI2C_EXYNOS7) {
  398. if (int_status & HSI2C_INT_TRANS_DONE) {
  399. i2c->trans_done = 1;
  400. i2c->state = 0;
  401. } else if (int_status & HSI2C_INT_TRANS_ABORT) {
  402. dev_dbg(i2c->dev, "Deal with arbitration lose\n");
  403. i2c->state = -EAGAIN;
  404. goto stop;
  405. } else if (int_status & HSI2C_INT_NO_DEV_ACK) {
  406. dev_dbg(i2c->dev, "No ACK from device\n");
  407. i2c->state = -ENXIO;
  408. goto stop;
  409. } else if (int_status & HSI2C_INT_NO_DEV) {
  410. dev_dbg(i2c->dev, "No device\n");
  411. i2c->state = -ENXIO;
  412. goto stop;
  413. } else if (int_status & HSI2C_INT_TIMEOUT) {
  414. dev_dbg(i2c->dev, "Accessing device timed out\n");
  415. i2c->state = -ETIMEDOUT;
  416. goto stop;
  417. }
  418. trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
  419. if ((trans_status & HSI2C_MASTER_ST_MASK) == HSI2C_MASTER_ST_LOSE) {
  420. i2c->state = -EAGAIN;
  421. goto stop;
  422. }
  423. } else if (int_status & HSI2C_INT_I2C) {
  424. trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
  425. if (trans_status & HSI2C_NO_DEV_ACK) {
  426. dev_dbg(i2c->dev, "No ACK from device\n");
  427. i2c->state = -ENXIO;
  428. goto stop;
  429. } else if (trans_status & HSI2C_NO_DEV) {
  430. dev_dbg(i2c->dev, "No device\n");
  431. i2c->state = -ENXIO;
  432. goto stop;
  433. } else if (trans_status & HSI2C_TRANS_ABORT) {
  434. dev_dbg(i2c->dev, "Deal with arbitration lose\n");
  435. i2c->state = -EAGAIN;
  436. goto stop;
  437. } else if (trans_status & HSI2C_TIMEOUT_AUTO) {
  438. dev_dbg(i2c->dev, "Accessing device timed out\n");
  439. i2c->state = -ETIMEDOUT;
  440. goto stop;
  441. } else if (trans_status & HSI2C_TRANS_DONE) {
  442. i2c->trans_done = 1;
  443. i2c->state = 0;
  444. }
  445. }
  446. if ((i2c->msg->flags & I2C_M_RD) && (int_status &
  447. (HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) {
  448. fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
  449. fifo_level = HSI2C_RX_FIFO_LVL(fifo_status);
  450. len = min(fifo_level, i2c->msg->len - i2c->msg_ptr);
  451. while (len > 0) {
  452. byte = (unsigned char)
  453. readl(i2c->regs + HSI2C_RX_DATA);
  454. i2c->msg->buf[i2c->msg_ptr++] = byte;
  455. len--;
  456. }
  457. i2c->state = 0;
  458. } else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) {
  459. fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
  460. fifo_level = HSI2C_TX_FIFO_LVL(fifo_status);
  461. len = i2c->variant->fifo_depth - fifo_level;
  462. if (len > (i2c->msg->len - i2c->msg_ptr)) {
  463. u32 int_en = readl(i2c->regs + HSI2C_INT_ENABLE);
  464. int_en &= ~HSI2C_INT_TX_ALMOSTEMPTY_EN;
  465. writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
  466. len = i2c->msg->len - i2c->msg_ptr;
  467. }
  468. while (len > 0) {
  469. byte = i2c->msg->buf[i2c->msg_ptr++];
  470. writel(byte, i2c->regs + HSI2C_TX_DATA);
  471. len--;
  472. }
  473. i2c->state = 0;
  474. }
  475. stop:
  476. if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
  477. (i2c->state < 0)) {
  478. writel(0, i2c->regs + HSI2C_INT_ENABLE);
  479. exynos5_i2c_clr_pend_irq(i2c);
  480. complete(&i2c->msg_complete);
  481. }
  482. spin_unlock(&i2c->lock);
  483. return IRQ_HANDLED;
  484. }
  485. /*
  486. * exynos5_i2c_wait_bus_idle
  487. *
  488. * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being
  489. * cleared.
  490. *
  491. * Returns -EBUSY if the bus cannot be bought to idle
  492. */
  493. static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c)
  494. {
  495. unsigned long stop_time;
  496. u32 trans_status;
  497. /* wait for 100 milli seconds for the bus to be idle */
  498. stop_time = jiffies + msecs_to_jiffies(100) + 1;
  499. do {
  500. trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
  501. if (!(trans_status & HSI2C_MASTER_BUSY))
  502. return 0;
  503. usleep_range(50, 200);
  504. } while (time_before(jiffies, stop_time));
  505. return -EBUSY;
  506. }
  507. /*
  508. * exynos5_i2c_message_start: Configures the bus and starts the xfer
  509. * i2c: struct exynos5_i2c pointer for the current bus
  510. * stop: Enables stop after transfer if set. Set for last transfer of
  511. * in the list of messages.
  512. *
  513. * Configures the bus for read/write function
  514. * Sets chip address to talk to, message length to be sent.
  515. * Enables appropriate interrupts and sends start xfer command.
  516. */
  517. static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop)
  518. {
  519. u32 i2c_ctl;
  520. u32 int_en = 0;
  521. u32 i2c_auto_conf = 0;
  522. u32 fifo_ctl;
  523. unsigned long flags;
  524. unsigned short trig_lvl;
  525. if (i2c->variant->hw == HSI2C_EXYNOS7)
  526. int_en |= HSI2C_INT_I2C_TRANS;
  527. else
  528. int_en |= HSI2C_INT_I2C;
  529. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  530. i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON);
  531. fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN;
  532. if (i2c->msg->flags & I2C_M_RD) {
  533. i2c_ctl |= HSI2C_RXCHON;
  534. i2c_auto_conf |= HSI2C_READ_WRITE;
  535. trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
  536. (i2c->variant->fifo_depth * 3 / 4) : i2c->msg->len;
  537. fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(trig_lvl);
  538. int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN |
  539. HSI2C_INT_TRAILING_EN);
  540. } else {
  541. i2c_ctl |= HSI2C_TXCHON;
  542. trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
  543. (i2c->variant->fifo_depth * 1 / 4) : i2c->msg->len;
  544. fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(trig_lvl);
  545. int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN;
  546. }
  547. writel(HSI2C_SLV_ADDR_MAS(i2c->msg->addr), i2c->regs + HSI2C_ADDR);
  548. writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL);
  549. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  550. /*
  551. * Enable interrupts before starting the transfer so that we don't
  552. * miss any INT_I2C interrupts.
  553. */
  554. spin_lock_irqsave(&i2c->lock, flags);
  555. writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
  556. if (stop == 1)
  557. i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS;
  558. i2c_auto_conf |= i2c->msg->len;
  559. i2c_auto_conf |= HSI2C_MASTER_RUN;
  560. writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF);
  561. spin_unlock_irqrestore(&i2c->lock, flags);
  562. }
  563. static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c,
  564. struct i2c_msg *msgs, int stop)
  565. {
  566. unsigned long timeout;
  567. int ret;
  568. i2c->msg = msgs;
  569. i2c->msg_ptr = 0;
  570. i2c->trans_done = 0;
  571. reinit_completion(&i2c->msg_complete);
  572. exynos5_i2c_message_start(i2c, stop);
  573. timeout = wait_for_completion_timeout(&i2c->msg_complete,
  574. EXYNOS5_I2C_TIMEOUT);
  575. if (timeout == 0)
  576. ret = -ETIMEDOUT;
  577. else
  578. ret = i2c->state;
  579. /*
  580. * If this is the last message to be transfered (stop == 1)
  581. * Then check if the bus can be brought back to idle.
  582. */
  583. if (ret == 0 && stop)
  584. ret = exynos5_i2c_wait_bus_idle(i2c);
  585. if (ret < 0) {
  586. exynos5_i2c_reset(i2c);
  587. if (ret == -ETIMEDOUT)
  588. dev_warn(i2c->dev, "%s timeout\n",
  589. (msgs->flags & I2C_M_RD) ? "rx" : "tx");
  590. }
  591. /* Return the state as in interrupt routine */
  592. return ret;
  593. }
  594. static int exynos5_i2c_xfer(struct i2c_adapter *adap,
  595. struct i2c_msg *msgs, int num)
  596. {
  597. struct exynos5_i2c *i2c = adap->algo_data;
  598. int i = 0, ret = 0, stop = 0;
  599. if (i2c->suspended) {
  600. dev_err(i2c->dev, "HS-I2C is not initialized.\n");
  601. return -EIO;
  602. }
  603. ret = clk_enable(i2c->clk);
  604. if (ret)
  605. return ret;
  606. for (i = 0; i < num; i++, msgs++) {
  607. stop = (i == num - 1);
  608. ret = exynos5_i2c_xfer_msg(i2c, msgs, stop);
  609. if (ret < 0)
  610. goto out;
  611. }
  612. if (i == num) {
  613. ret = num;
  614. } else {
  615. /* Only one message, cannot access the device */
  616. if (i == 1)
  617. ret = -EREMOTEIO;
  618. else
  619. ret = i;
  620. dev_warn(i2c->dev, "xfer message failed\n");
  621. }
  622. out:
  623. clk_disable(i2c->clk);
  624. return ret;
  625. }
  626. static u32 exynos5_i2c_func(struct i2c_adapter *adap)
  627. {
  628. return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
  629. }
  630. static const struct i2c_algorithm exynos5_i2c_algorithm = {
  631. .master_xfer = exynos5_i2c_xfer,
  632. .functionality = exynos5_i2c_func,
  633. };
  634. static int exynos5_i2c_probe(struct platform_device *pdev)
  635. {
  636. struct device_node *np = pdev->dev.of_node;
  637. struct exynos5_i2c *i2c;
  638. struct resource *mem;
  639. unsigned int op_clock;
  640. int ret;
  641. i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL);
  642. if (!i2c)
  643. return -ENOMEM;
  644. if (of_property_read_u32(np, "clock-frequency", &op_clock)) {
  645. i2c->speed_mode = HSI2C_FAST_SPD;
  646. i2c->fs_clock = HSI2C_FS_TX_CLOCK;
  647. } else {
  648. if (op_clock >= HSI2C_HS_TX_CLOCK) {
  649. i2c->speed_mode = HSI2C_HIGH_SPD;
  650. i2c->fs_clock = HSI2C_FS_TX_CLOCK;
  651. i2c->hs_clock = op_clock;
  652. } else {
  653. i2c->speed_mode = HSI2C_FAST_SPD;
  654. i2c->fs_clock = op_clock;
  655. }
  656. }
  657. strlcpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name));
  658. i2c->adap.owner = THIS_MODULE;
  659. i2c->adap.algo = &exynos5_i2c_algorithm;
  660. i2c->adap.retries = 3;
  661. i2c->dev = &pdev->dev;
  662. i2c->clk = devm_clk_get(&pdev->dev, "hsi2c");
  663. if (IS_ERR(i2c->clk)) {
  664. dev_err(&pdev->dev, "cannot get clock\n");
  665. return -ENOENT;
  666. }
  667. ret = clk_prepare_enable(i2c->clk);
  668. if (ret)
  669. return ret;
  670. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  671. i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
  672. if (IS_ERR(i2c->regs)) {
  673. ret = PTR_ERR(i2c->regs);
  674. goto err_clk;
  675. }
  676. i2c->adap.dev.of_node = np;
  677. i2c->adap.algo_data = i2c;
  678. i2c->adap.dev.parent = &pdev->dev;
  679. /* Clear pending interrupts from u-boot or misc causes */
  680. exynos5_i2c_clr_pend_irq(i2c);
  681. spin_lock_init(&i2c->lock);
  682. init_completion(&i2c->msg_complete);
  683. i2c->irq = ret = platform_get_irq(pdev, 0);
  684. if (ret <= 0) {
  685. dev_err(&pdev->dev, "cannot find HS-I2C IRQ\n");
  686. ret = -EINVAL;
  687. goto err_clk;
  688. }
  689. ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq,
  690. IRQF_NO_SUSPEND | IRQF_ONESHOT,
  691. dev_name(&pdev->dev), i2c);
  692. if (ret != 0) {
  693. dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq);
  694. goto err_clk;
  695. }
  696. /* Need to check the variant before setting up. */
  697. i2c->variant = exynos5_i2c_get_variant(pdev);
  698. ret = exynos5_hsi2c_clock_setup(i2c);
  699. if (ret)
  700. goto err_clk;
  701. exynos5_i2c_reset(i2c);
  702. ret = i2c_add_adapter(&i2c->adap);
  703. if (ret < 0)
  704. goto err_clk;
  705. platform_set_drvdata(pdev, i2c);
  706. clk_disable(i2c->clk);
  707. return 0;
  708. err_clk:
  709. clk_disable_unprepare(i2c->clk);
  710. return ret;
  711. }
  712. static int exynos5_i2c_remove(struct platform_device *pdev)
  713. {
  714. struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
  715. i2c_del_adapter(&i2c->adap);
  716. clk_unprepare(i2c->clk);
  717. return 0;
  718. }
  719. #ifdef CONFIG_PM_SLEEP
  720. static int exynos5_i2c_suspend_noirq(struct device *dev)
  721. {
  722. struct platform_device *pdev = to_platform_device(dev);
  723. struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
  724. i2c->suspended = 1;
  725. clk_unprepare(i2c->clk);
  726. return 0;
  727. }
  728. static int exynos5_i2c_resume_noirq(struct device *dev)
  729. {
  730. struct platform_device *pdev = to_platform_device(dev);
  731. struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
  732. int ret = 0;
  733. ret = clk_prepare_enable(i2c->clk);
  734. if (ret)
  735. return ret;
  736. ret = exynos5_hsi2c_clock_setup(i2c);
  737. if (ret) {
  738. clk_disable_unprepare(i2c->clk);
  739. return ret;
  740. }
  741. exynos5_i2c_init(i2c);
  742. clk_disable(i2c->clk);
  743. i2c->suspended = 0;
  744. return 0;
  745. }
  746. #endif
  747. static const struct dev_pm_ops exynos5_i2c_dev_pm_ops = {
  748. SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(exynos5_i2c_suspend_noirq,
  749. exynos5_i2c_resume_noirq)
  750. };
  751. static struct platform_driver exynos5_i2c_driver = {
  752. .probe = exynos5_i2c_probe,
  753. .remove = exynos5_i2c_remove,
  754. .driver = {
  755. .name = "exynos5-hsi2c",
  756. .pm = &exynos5_i2c_dev_pm_ops,
  757. .of_match_table = exynos5_i2c_match,
  758. },
  759. };
  760. module_platform_driver(exynos5_i2c_driver);
  761. MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver");
  762. MODULE_AUTHOR("Naveen Krishna Chatradhi, <ch.naveen@samsung.com>");
  763. MODULE_AUTHOR("Taekgyun Ko, <taeggyun.ko@samsung.com>");
  764. MODULE_LICENSE("GPL v2");