lm85.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643
  1. /*
  2. * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
  3. * monitoring
  4. * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
  5. * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
  6. * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
  7. * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
  8. * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
  9. *
  10. * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/init.h>
  28. #include <linux/slab.h>
  29. #include <linux/jiffies.h>
  30. #include <linux/i2c.h>
  31. #include <linux/hwmon.h>
  32. #include <linux/hwmon-vid.h>
  33. #include <linux/hwmon-sysfs.h>
  34. #include <linux/err.h>
  35. #include <linux/mutex.h>
  36. #include <linux/util_macros.h>
  37. /* Addresses to scan */
  38. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  39. enum chips {
  40. lm85,
  41. adm1027, adt7463, adt7468,
  42. emc6d100, emc6d102, emc6d103, emc6d103s
  43. };
  44. /* The LM85 registers */
  45. #define LM85_REG_IN(nr) (0x20 + (nr))
  46. #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
  47. #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
  48. #define LM85_REG_TEMP(nr) (0x25 + (nr))
  49. #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
  50. #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
  51. /* Fan speeds are LSB, MSB (2 bytes) */
  52. #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
  53. #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
  54. #define LM85_REG_PWM(nr) (0x30 + (nr))
  55. #define LM85_REG_COMPANY 0x3e
  56. #define LM85_REG_VERSTEP 0x3f
  57. #define ADT7468_REG_CFG5 0x7c
  58. #define ADT7468_OFF64 (1 << 0)
  59. #define ADT7468_HFPWM (1 << 1)
  60. #define IS_ADT7468_OFF64(data) \
  61. ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  62. #define IS_ADT7468_HFPWM(data) \
  63. ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  64. /* These are the recognized values for the above regs */
  65. #define LM85_COMPANY_NATIONAL 0x01
  66. #define LM85_COMPANY_ANALOG_DEV 0x41
  67. #define LM85_COMPANY_SMSC 0x5c
  68. #define LM85_VERSTEP_LM85C 0x60
  69. #define LM85_VERSTEP_LM85B 0x62
  70. #define LM85_VERSTEP_LM96000_1 0x68
  71. #define LM85_VERSTEP_LM96000_2 0x69
  72. #define LM85_VERSTEP_ADM1027 0x60
  73. #define LM85_VERSTEP_ADT7463 0x62
  74. #define LM85_VERSTEP_ADT7463C 0x6A
  75. #define LM85_VERSTEP_ADT7468_1 0x71
  76. #define LM85_VERSTEP_ADT7468_2 0x72
  77. #define LM85_VERSTEP_EMC6D100_A0 0x60
  78. #define LM85_VERSTEP_EMC6D100_A1 0x61
  79. #define LM85_VERSTEP_EMC6D102 0x65
  80. #define LM85_VERSTEP_EMC6D103_A0 0x68
  81. #define LM85_VERSTEP_EMC6D103_A1 0x69
  82. #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
  83. #define LM85_REG_CONFIG 0x40
  84. #define LM85_REG_ALARM1 0x41
  85. #define LM85_REG_ALARM2 0x42
  86. #define LM85_REG_VID 0x43
  87. /* Automated FAN control */
  88. #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
  89. #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
  90. #define LM85_REG_AFAN_SPIKE1 0x62
  91. #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
  92. #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
  93. #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
  94. #define LM85_REG_AFAN_HYST1 0x6d
  95. #define LM85_REG_AFAN_HYST2 0x6e
  96. #define ADM1027_REG_EXTEND_ADC1 0x76
  97. #define ADM1027_REG_EXTEND_ADC2 0x77
  98. #define EMC6D100_REG_ALARM3 0x7d
  99. /* IN5, IN6 and IN7 */
  100. #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
  101. #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
  102. #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
  103. #define EMC6D102_REG_EXTEND_ADC1 0x85
  104. #define EMC6D102_REG_EXTEND_ADC2 0x86
  105. #define EMC6D102_REG_EXTEND_ADC3 0x87
  106. #define EMC6D102_REG_EXTEND_ADC4 0x88
  107. /*
  108. * Conversions. Rounding and limit checking is only done on the TO_REG
  109. * variants. Note that you should be a bit careful with which arguments
  110. * these macros are called: arguments may be evaluated more than once.
  111. */
  112. /* IN are scaled according to built-in resistors */
  113. static const int lm85_scaling[] = { /* .001 Volts */
  114. 2500, 2250, 3300, 5000, 12000,
  115. 3300, 1500, 1800 /*EMC6D100*/
  116. };
  117. #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
  118. #define INS_TO_REG(n, val) \
  119. SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
  120. lm85_scaling[n], 192)
  121. #define INSEXT_FROM_REG(n, val, ext) \
  122. SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
  123. #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
  124. /* FAN speed is measured using 90kHz clock */
  125. static inline u16 FAN_TO_REG(unsigned long val)
  126. {
  127. if (!val)
  128. return 0xffff;
  129. return clamp_val(5400000 / val, 1, 0xfffe);
  130. }
  131. #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
  132. 5400000 / (val))
  133. /* Temperature is reported in .001 degC increments */
  134. #define TEMP_TO_REG(val) \
  135. DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
  136. #define TEMPEXT_FROM_REG(val, ext) \
  137. SCALE(((val) << 4) + (ext), 16, 1000)
  138. #define TEMP_FROM_REG(val) ((val) * 1000)
  139. #define PWM_TO_REG(val) clamp_val(val, 0, 255)
  140. #define PWM_FROM_REG(val) (val)
  141. /*
  142. * ZONEs have the following parameters:
  143. * Limit (low) temp, 1. degC
  144. * Hysteresis (below limit), 1. degC (0-15)
  145. * Range of speed control, .1 degC (2-80)
  146. * Critical (high) temp, 1. degC
  147. *
  148. * FAN PWMs have the following parameters:
  149. * Reference Zone, 1, 2, 3, etc.
  150. * Spinup time, .05 sec
  151. * PWM value at limit/low temp, 1 count
  152. * PWM Frequency, 1. Hz
  153. * PWM is Min or OFF below limit, flag
  154. * Invert PWM output, flag
  155. *
  156. * Some chips filter the temp, others the fan.
  157. * Filter constant (or disabled) .1 seconds
  158. */
  159. /* These are the zone temperature range encodings in .001 degree C */
  160. static const int lm85_range_map[] = {
  161. 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
  162. 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
  163. };
  164. static int RANGE_TO_REG(long range)
  165. {
  166. return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
  167. }
  168. #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
  169. /* These are the PWM frequency encodings */
  170. static const int lm85_freq_map[8] = { /* 1 Hz */
  171. 10, 15, 23, 30, 38, 47, 61, 94
  172. };
  173. static const int adm1027_freq_map[8] = { /* 1 Hz */
  174. 11, 15, 22, 29, 35, 44, 59, 88
  175. };
  176. #define FREQ_MAP_LEN 8
  177. static int FREQ_TO_REG(const int *map,
  178. unsigned int map_size, unsigned long freq)
  179. {
  180. return find_closest(freq, map, map_size);
  181. }
  182. static int FREQ_FROM_REG(const int *map, u8 reg)
  183. {
  184. return map[reg & 0x07];
  185. }
  186. /*
  187. * Since we can't use strings, I'm abusing these numbers
  188. * to stand in for the following meanings:
  189. * 1 -- PWM responds to Zone 1
  190. * 2 -- PWM responds to Zone 2
  191. * 3 -- PWM responds to Zone 3
  192. * 23 -- PWM responds to the higher temp of Zone 2 or 3
  193. * 123 -- PWM responds to highest of Zone 1, 2, or 3
  194. * 0 -- PWM is always at 0% (ie, off)
  195. * -1 -- PWM is always at 100%
  196. * -2 -- PWM responds to manual control
  197. */
  198. static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
  199. #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
  200. static int ZONE_TO_REG(int zone)
  201. {
  202. int i;
  203. for (i = 0; i <= 7; ++i)
  204. if (zone == lm85_zone_map[i])
  205. break;
  206. if (i > 7) /* Not found. */
  207. i = 3; /* Always 100% */
  208. return i << 5;
  209. }
  210. #define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
  211. #define HYST_FROM_REG(val) ((val) * 1000)
  212. /*
  213. * Chip sampling rates
  214. *
  215. * Some sensors are not updated more frequently than once per second
  216. * so it doesn't make sense to read them more often than that.
  217. * We cache the results and return the saved data if the driver
  218. * is called again before a second has elapsed.
  219. *
  220. * Also, there is significant configuration data for this chip
  221. * given the automatic PWM fan control that is possible. There
  222. * are about 47 bytes of config data to only 22 bytes of actual
  223. * readings. So, we keep the config data up to date in the cache
  224. * when it is written and only sample it once every 1 *minute*
  225. */
  226. #define LM85_DATA_INTERVAL (HZ + HZ / 2)
  227. #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
  228. /*
  229. * LM85 can automatically adjust fan speeds based on temperature
  230. * This structure encapsulates an entire Zone config. There are
  231. * three zones (one for each temperature input) on the lm85
  232. */
  233. struct lm85_zone {
  234. s8 limit; /* Low temp limit */
  235. u8 hyst; /* Low limit hysteresis. (0-15) */
  236. u8 range; /* Temp range, encoded */
  237. s8 critical; /* "All fans ON" temp limit */
  238. u8 max_desired; /*
  239. * Actual "max" temperature specified. Preserved
  240. * to prevent "drift" as other autofan control
  241. * values change.
  242. */
  243. };
  244. struct lm85_autofan {
  245. u8 config; /* Register value */
  246. u8 min_pwm; /* Minimum PWM value, encoded */
  247. u8 min_off; /* Min PWM or OFF below "limit", flag */
  248. };
  249. /*
  250. * For each registered chip, we need to keep some data in memory.
  251. * The structure is dynamically allocated.
  252. */
  253. struct lm85_data {
  254. struct i2c_client *client;
  255. const struct attribute_group *groups[6];
  256. const int *freq_map;
  257. enum chips type;
  258. bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
  259. struct mutex update_lock;
  260. int valid; /* !=0 if following fields are valid */
  261. unsigned long last_reading; /* In jiffies */
  262. unsigned long last_config; /* In jiffies */
  263. u8 in[8]; /* Register value */
  264. u8 in_max[8]; /* Register value */
  265. u8 in_min[8]; /* Register value */
  266. s8 temp[3]; /* Register value */
  267. s8 temp_min[3]; /* Register value */
  268. s8 temp_max[3]; /* Register value */
  269. u16 fan[4]; /* Register value */
  270. u16 fan_min[4]; /* Register value */
  271. u8 pwm[3]; /* Register value */
  272. u8 pwm_freq[3]; /* Register encoding */
  273. u8 temp_ext[3]; /* Decoded values */
  274. u8 in_ext[8]; /* Decoded values */
  275. u8 vid; /* Register value */
  276. u8 vrm; /* VRM version */
  277. u32 alarms; /* Register encoding, combined */
  278. u8 cfg5; /* Config Register 5 on ADT7468 */
  279. struct lm85_autofan autofan[3];
  280. struct lm85_zone zone[3];
  281. };
  282. static int lm85_read_value(struct i2c_client *client, u8 reg)
  283. {
  284. int res;
  285. /* What size location is it? */
  286. switch (reg) {
  287. case LM85_REG_FAN(0): /* Read WORD data */
  288. case LM85_REG_FAN(1):
  289. case LM85_REG_FAN(2):
  290. case LM85_REG_FAN(3):
  291. case LM85_REG_FAN_MIN(0):
  292. case LM85_REG_FAN_MIN(1):
  293. case LM85_REG_FAN_MIN(2):
  294. case LM85_REG_FAN_MIN(3):
  295. case LM85_REG_ALARM1: /* Read both bytes at once */
  296. res = i2c_smbus_read_byte_data(client, reg) & 0xff;
  297. res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
  298. break;
  299. default: /* Read BYTE data */
  300. res = i2c_smbus_read_byte_data(client, reg);
  301. break;
  302. }
  303. return res;
  304. }
  305. static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
  306. {
  307. switch (reg) {
  308. case LM85_REG_FAN(0): /* Write WORD data */
  309. case LM85_REG_FAN(1):
  310. case LM85_REG_FAN(2):
  311. case LM85_REG_FAN(3):
  312. case LM85_REG_FAN_MIN(0):
  313. case LM85_REG_FAN_MIN(1):
  314. case LM85_REG_FAN_MIN(2):
  315. case LM85_REG_FAN_MIN(3):
  316. /* NOTE: ALARM is read only, so not included here */
  317. i2c_smbus_write_byte_data(client, reg, value & 0xff);
  318. i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
  319. break;
  320. default: /* Write BYTE data */
  321. i2c_smbus_write_byte_data(client, reg, value);
  322. break;
  323. }
  324. }
  325. static struct lm85_data *lm85_update_device(struct device *dev)
  326. {
  327. struct lm85_data *data = dev_get_drvdata(dev);
  328. struct i2c_client *client = data->client;
  329. int i;
  330. mutex_lock(&data->update_lock);
  331. if (!data->valid ||
  332. time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
  333. /* Things that change quickly */
  334. dev_dbg(&client->dev, "Reading sensor values\n");
  335. /*
  336. * Have to read extended bits first to "freeze" the
  337. * more significant bits that are read later.
  338. * There are 2 additional resolution bits per channel and we
  339. * have room for 4, so we shift them to the left.
  340. */
  341. if (data->type == adm1027 || data->type == adt7463 ||
  342. data->type == adt7468) {
  343. int ext1 = lm85_read_value(client,
  344. ADM1027_REG_EXTEND_ADC1);
  345. int ext2 = lm85_read_value(client,
  346. ADM1027_REG_EXTEND_ADC2);
  347. int val = (ext1 << 8) + ext2;
  348. for (i = 0; i <= 4; i++)
  349. data->in_ext[i] =
  350. ((val >> (i * 2)) & 0x03) << 2;
  351. for (i = 0; i <= 2; i++)
  352. data->temp_ext[i] =
  353. (val >> ((i + 4) * 2)) & 0x0c;
  354. }
  355. data->vid = lm85_read_value(client, LM85_REG_VID);
  356. for (i = 0; i <= 3; ++i) {
  357. data->in[i] =
  358. lm85_read_value(client, LM85_REG_IN(i));
  359. data->fan[i] =
  360. lm85_read_value(client, LM85_REG_FAN(i));
  361. }
  362. if (!data->has_vid5)
  363. data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
  364. if (data->type == adt7468)
  365. data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
  366. for (i = 0; i <= 2; ++i) {
  367. data->temp[i] =
  368. lm85_read_value(client, LM85_REG_TEMP(i));
  369. data->pwm[i] =
  370. lm85_read_value(client, LM85_REG_PWM(i));
  371. if (IS_ADT7468_OFF64(data))
  372. data->temp[i] -= 64;
  373. }
  374. data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
  375. if (data->type == emc6d100) {
  376. /* Three more voltage sensors */
  377. for (i = 5; i <= 7; ++i) {
  378. data->in[i] = lm85_read_value(client,
  379. EMC6D100_REG_IN(i));
  380. }
  381. /* More alarm bits */
  382. data->alarms |= lm85_read_value(client,
  383. EMC6D100_REG_ALARM3) << 16;
  384. } else if (data->type == emc6d102 || data->type == emc6d103 ||
  385. data->type == emc6d103s) {
  386. /*
  387. * Have to read LSB bits after the MSB ones because
  388. * the reading of the MSB bits has frozen the
  389. * LSBs (backward from the ADM1027).
  390. */
  391. int ext1 = lm85_read_value(client,
  392. EMC6D102_REG_EXTEND_ADC1);
  393. int ext2 = lm85_read_value(client,
  394. EMC6D102_REG_EXTEND_ADC2);
  395. int ext3 = lm85_read_value(client,
  396. EMC6D102_REG_EXTEND_ADC3);
  397. int ext4 = lm85_read_value(client,
  398. EMC6D102_REG_EXTEND_ADC4);
  399. data->in_ext[0] = ext3 & 0x0f;
  400. data->in_ext[1] = ext4 & 0x0f;
  401. data->in_ext[2] = ext4 >> 4;
  402. data->in_ext[3] = ext3 >> 4;
  403. data->in_ext[4] = ext2 >> 4;
  404. data->temp_ext[0] = ext1 & 0x0f;
  405. data->temp_ext[1] = ext2 & 0x0f;
  406. data->temp_ext[2] = ext1 >> 4;
  407. }
  408. data->last_reading = jiffies;
  409. } /* last_reading */
  410. if (!data->valid ||
  411. time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
  412. /* Things that don't change often */
  413. dev_dbg(&client->dev, "Reading config values\n");
  414. for (i = 0; i <= 3; ++i) {
  415. data->in_min[i] =
  416. lm85_read_value(client, LM85_REG_IN_MIN(i));
  417. data->in_max[i] =
  418. lm85_read_value(client, LM85_REG_IN_MAX(i));
  419. data->fan_min[i] =
  420. lm85_read_value(client, LM85_REG_FAN_MIN(i));
  421. }
  422. if (!data->has_vid5) {
  423. data->in_min[4] = lm85_read_value(client,
  424. LM85_REG_IN_MIN(4));
  425. data->in_max[4] = lm85_read_value(client,
  426. LM85_REG_IN_MAX(4));
  427. }
  428. if (data->type == emc6d100) {
  429. for (i = 5; i <= 7; ++i) {
  430. data->in_min[i] = lm85_read_value(client,
  431. EMC6D100_REG_IN_MIN(i));
  432. data->in_max[i] = lm85_read_value(client,
  433. EMC6D100_REG_IN_MAX(i));
  434. }
  435. }
  436. for (i = 0; i <= 2; ++i) {
  437. int val;
  438. data->temp_min[i] =
  439. lm85_read_value(client, LM85_REG_TEMP_MIN(i));
  440. data->temp_max[i] =
  441. lm85_read_value(client, LM85_REG_TEMP_MAX(i));
  442. data->autofan[i].config =
  443. lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
  444. val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
  445. data->pwm_freq[i] = val & 0x07;
  446. data->zone[i].range = val >> 4;
  447. data->autofan[i].min_pwm =
  448. lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
  449. data->zone[i].limit =
  450. lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
  451. data->zone[i].critical =
  452. lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
  453. if (IS_ADT7468_OFF64(data)) {
  454. data->temp_min[i] -= 64;
  455. data->temp_max[i] -= 64;
  456. data->zone[i].limit -= 64;
  457. data->zone[i].critical -= 64;
  458. }
  459. }
  460. if (data->type != emc6d103s) {
  461. i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  462. data->autofan[0].min_off = (i & 0x20) != 0;
  463. data->autofan[1].min_off = (i & 0x40) != 0;
  464. data->autofan[2].min_off = (i & 0x80) != 0;
  465. i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
  466. data->zone[0].hyst = i >> 4;
  467. data->zone[1].hyst = i & 0x0f;
  468. i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
  469. data->zone[2].hyst = i >> 4;
  470. }
  471. data->last_config = jiffies;
  472. } /* last_config */
  473. data->valid = 1;
  474. mutex_unlock(&data->update_lock);
  475. return data;
  476. }
  477. /* 4 Fans */
  478. static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
  479. char *buf)
  480. {
  481. int nr = to_sensor_dev_attr(attr)->index;
  482. struct lm85_data *data = lm85_update_device(dev);
  483. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
  484. }
  485. static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
  486. char *buf)
  487. {
  488. int nr = to_sensor_dev_attr(attr)->index;
  489. struct lm85_data *data = lm85_update_device(dev);
  490. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
  491. }
  492. static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
  493. const char *buf, size_t count)
  494. {
  495. int nr = to_sensor_dev_attr(attr)->index;
  496. struct lm85_data *data = dev_get_drvdata(dev);
  497. struct i2c_client *client = data->client;
  498. unsigned long val;
  499. int err;
  500. err = kstrtoul(buf, 10, &val);
  501. if (err)
  502. return err;
  503. mutex_lock(&data->update_lock);
  504. data->fan_min[nr] = FAN_TO_REG(val);
  505. lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
  506. mutex_unlock(&data->update_lock);
  507. return count;
  508. }
  509. #define show_fan_offset(offset) \
  510. static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
  511. show_fan, NULL, offset - 1); \
  512. static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
  513. show_fan_min, set_fan_min, offset - 1)
  514. show_fan_offset(1);
  515. show_fan_offset(2);
  516. show_fan_offset(3);
  517. show_fan_offset(4);
  518. /* vid, vrm, alarms */
  519. static ssize_t cpu0_vid_show(struct device *dev,
  520. struct device_attribute *attr, char *buf)
  521. {
  522. struct lm85_data *data = lm85_update_device(dev);
  523. int vid;
  524. if (data->has_vid5) {
  525. /* 6-pin VID (VRM 10) */
  526. vid = vid_from_reg(data->vid & 0x3f, data->vrm);
  527. } else {
  528. /* 5-pin VID (VRM 9) */
  529. vid = vid_from_reg(data->vid & 0x1f, data->vrm);
  530. }
  531. return sprintf(buf, "%d\n", vid);
  532. }
  533. static DEVICE_ATTR_RO(cpu0_vid);
  534. static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
  535. char *buf)
  536. {
  537. struct lm85_data *data = dev_get_drvdata(dev);
  538. return sprintf(buf, "%ld\n", (long) data->vrm);
  539. }
  540. static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
  541. const char *buf, size_t count)
  542. {
  543. struct lm85_data *data = dev_get_drvdata(dev);
  544. unsigned long val;
  545. int err;
  546. err = kstrtoul(buf, 10, &val);
  547. if (err)
  548. return err;
  549. if (val > 255)
  550. return -EINVAL;
  551. data->vrm = val;
  552. return count;
  553. }
  554. static DEVICE_ATTR_RW(vrm);
  555. static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
  556. char *buf)
  557. {
  558. struct lm85_data *data = lm85_update_device(dev);
  559. return sprintf(buf, "%u\n", data->alarms);
  560. }
  561. static DEVICE_ATTR_RO(alarms);
  562. static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
  563. char *buf)
  564. {
  565. int nr = to_sensor_dev_attr(attr)->index;
  566. struct lm85_data *data = lm85_update_device(dev);
  567. return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
  568. }
  569. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  570. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  571. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  572. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  573. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
  574. static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
  575. static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
  576. static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
  577. static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
  578. static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
  579. static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
  580. static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
  581. static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
  582. static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
  583. static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
  584. static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
  585. static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
  586. /* pwm */
  587. static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
  588. char *buf)
  589. {
  590. int nr = to_sensor_dev_attr(attr)->index;
  591. struct lm85_data *data = lm85_update_device(dev);
  592. return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
  593. }
  594. static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
  595. const char *buf, size_t count)
  596. {
  597. int nr = to_sensor_dev_attr(attr)->index;
  598. struct lm85_data *data = dev_get_drvdata(dev);
  599. struct i2c_client *client = data->client;
  600. unsigned long val;
  601. int err;
  602. err = kstrtoul(buf, 10, &val);
  603. if (err)
  604. return err;
  605. mutex_lock(&data->update_lock);
  606. data->pwm[nr] = PWM_TO_REG(val);
  607. lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
  608. mutex_unlock(&data->update_lock);
  609. return count;
  610. }
  611. static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
  612. *attr, char *buf)
  613. {
  614. int nr = to_sensor_dev_attr(attr)->index;
  615. struct lm85_data *data = lm85_update_device(dev);
  616. int pwm_zone, enable;
  617. pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
  618. switch (pwm_zone) {
  619. case -1: /* PWM is always at 100% */
  620. enable = 0;
  621. break;
  622. case 0: /* PWM is always at 0% */
  623. case -2: /* PWM responds to manual control */
  624. enable = 1;
  625. break;
  626. default: /* PWM in automatic mode */
  627. enable = 2;
  628. }
  629. return sprintf(buf, "%d\n", enable);
  630. }
  631. static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
  632. *attr, const char *buf, size_t count)
  633. {
  634. int nr = to_sensor_dev_attr(attr)->index;
  635. struct lm85_data *data = dev_get_drvdata(dev);
  636. struct i2c_client *client = data->client;
  637. u8 config;
  638. unsigned long val;
  639. int err;
  640. err = kstrtoul(buf, 10, &val);
  641. if (err)
  642. return err;
  643. switch (val) {
  644. case 0:
  645. config = 3;
  646. break;
  647. case 1:
  648. config = 7;
  649. break;
  650. case 2:
  651. /*
  652. * Here we have to choose arbitrarily one of the 5 possible
  653. * configurations; I go for the safest
  654. */
  655. config = 6;
  656. break;
  657. default:
  658. return -EINVAL;
  659. }
  660. mutex_lock(&data->update_lock);
  661. data->autofan[nr].config = lm85_read_value(client,
  662. LM85_REG_AFAN_CONFIG(nr));
  663. data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
  664. | (config << 5);
  665. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  666. data->autofan[nr].config);
  667. mutex_unlock(&data->update_lock);
  668. return count;
  669. }
  670. static ssize_t show_pwm_freq(struct device *dev,
  671. struct device_attribute *attr, char *buf)
  672. {
  673. int nr = to_sensor_dev_attr(attr)->index;
  674. struct lm85_data *data = lm85_update_device(dev);
  675. int freq;
  676. if (IS_ADT7468_HFPWM(data))
  677. freq = 22500;
  678. else
  679. freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
  680. return sprintf(buf, "%d\n", freq);
  681. }
  682. static ssize_t set_pwm_freq(struct device *dev,
  683. struct device_attribute *attr, const char *buf, size_t count)
  684. {
  685. int nr = to_sensor_dev_attr(attr)->index;
  686. struct lm85_data *data = dev_get_drvdata(dev);
  687. struct i2c_client *client = data->client;
  688. unsigned long val;
  689. int err;
  690. err = kstrtoul(buf, 10, &val);
  691. if (err)
  692. return err;
  693. mutex_lock(&data->update_lock);
  694. /*
  695. * The ADT7468 has a special high-frequency PWM output mode,
  696. * where all PWM outputs are driven by a 22.5 kHz clock.
  697. * This might confuse the user, but there's not much we can do.
  698. */
  699. if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
  700. data->cfg5 &= ~ADT7468_HFPWM;
  701. lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
  702. } else { /* Low freq. mode */
  703. data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
  704. FREQ_MAP_LEN, val);
  705. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  706. (data->zone[nr].range << 4)
  707. | data->pwm_freq[nr]);
  708. if (data->type == adt7468) {
  709. data->cfg5 |= ADT7468_HFPWM;
  710. lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
  711. }
  712. }
  713. mutex_unlock(&data->update_lock);
  714. return count;
  715. }
  716. #define show_pwm_reg(offset) \
  717. static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
  718. show_pwm, set_pwm, offset - 1); \
  719. static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
  720. show_pwm_enable, set_pwm_enable, offset - 1); \
  721. static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
  722. show_pwm_freq, set_pwm_freq, offset - 1)
  723. show_pwm_reg(1);
  724. show_pwm_reg(2);
  725. show_pwm_reg(3);
  726. /* Voltages */
  727. static ssize_t show_in(struct device *dev, struct device_attribute *attr,
  728. char *buf)
  729. {
  730. int nr = to_sensor_dev_attr(attr)->index;
  731. struct lm85_data *data = lm85_update_device(dev);
  732. return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
  733. data->in_ext[nr]));
  734. }
  735. static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
  736. char *buf)
  737. {
  738. int nr = to_sensor_dev_attr(attr)->index;
  739. struct lm85_data *data = lm85_update_device(dev);
  740. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
  741. }
  742. static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
  743. const char *buf, size_t count)
  744. {
  745. int nr = to_sensor_dev_attr(attr)->index;
  746. struct lm85_data *data = dev_get_drvdata(dev);
  747. struct i2c_client *client = data->client;
  748. long val;
  749. int err;
  750. err = kstrtol(buf, 10, &val);
  751. if (err)
  752. return err;
  753. mutex_lock(&data->update_lock);
  754. data->in_min[nr] = INS_TO_REG(nr, val);
  755. lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
  756. mutex_unlock(&data->update_lock);
  757. return count;
  758. }
  759. static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
  760. char *buf)
  761. {
  762. int nr = to_sensor_dev_attr(attr)->index;
  763. struct lm85_data *data = lm85_update_device(dev);
  764. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
  765. }
  766. static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
  767. const char *buf, size_t count)
  768. {
  769. int nr = to_sensor_dev_attr(attr)->index;
  770. struct lm85_data *data = dev_get_drvdata(dev);
  771. struct i2c_client *client = data->client;
  772. long val;
  773. int err;
  774. err = kstrtol(buf, 10, &val);
  775. if (err)
  776. return err;
  777. mutex_lock(&data->update_lock);
  778. data->in_max[nr] = INS_TO_REG(nr, val);
  779. lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
  780. mutex_unlock(&data->update_lock);
  781. return count;
  782. }
  783. #define show_in_reg(offset) \
  784. static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
  785. show_in, NULL, offset); \
  786. static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
  787. show_in_min, set_in_min, offset); \
  788. static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
  789. show_in_max, set_in_max, offset)
  790. show_in_reg(0);
  791. show_in_reg(1);
  792. show_in_reg(2);
  793. show_in_reg(3);
  794. show_in_reg(4);
  795. show_in_reg(5);
  796. show_in_reg(6);
  797. show_in_reg(7);
  798. /* Temps */
  799. static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
  800. char *buf)
  801. {
  802. int nr = to_sensor_dev_attr(attr)->index;
  803. struct lm85_data *data = lm85_update_device(dev);
  804. return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
  805. data->temp_ext[nr]));
  806. }
  807. static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
  808. char *buf)
  809. {
  810. int nr = to_sensor_dev_attr(attr)->index;
  811. struct lm85_data *data = lm85_update_device(dev);
  812. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
  813. }
  814. static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
  815. const char *buf, size_t count)
  816. {
  817. int nr = to_sensor_dev_attr(attr)->index;
  818. struct lm85_data *data = dev_get_drvdata(dev);
  819. struct i2c_client *client = data->client;
  820. long val;
  821. int err;
  822. err = kstrtol(buf, 10, &val);
  823. if (err)
  824. return err;
  825. if (IS_ADT7468_OFF64(data))
  826. val += 64;
  827. mutex_lock(&data->update_lock);
  828. data->temp_min[nr] = TEMP_TO_REG(val);
  829. lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
  830. mutex_unlock(&data->update_lock);
  831. return count;
  832. }
  833. static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
  834. char *buf)
  835. {
  836. int nr = to_sensor_dev_attr(attr)->index;
  837. struct lm85_data *data = lm85_update_device(dev);
  838. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
  839. }
  840. static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
  841. const char *buf, size_t count)
  842. {
  843. int nr = to_sensor_dev_attr(attr)->index;
  844. struct lm85_data *data = dev_get_drvdata(dev);
  845. struct i2c_client *client = data->client;
  846. long val;
  847. int err;
  848. err = kstrtol(buf, 10, &val);
  849. if (err)
  850. return err;
  851. if (IS_ADT7468_OFF64(data))
  852. val += 64;
  853. mutex_lock(&data->update_lock);
  854. data->temp_max[nr] = TEMP_TO_REG(val);
  855. lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
  856. mutex_unlock(&data->update_lock);
  857. return count;
  858. }
  859. #define show_temp_reg(offset) \
  860. static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
  861. show_temp, NULL, offset - 1); \
  862. static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
  863. show_temp_min, set_temp_min, offset - 1); \
  864. static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
  865. show_temp_max, set_temp_max, offset - 1);
  866. show_temp_reg(1);
  867. show_temp_reg(2);
  868. show_temp_reg(3);
  869. /* Automatic PWM control */
  870. static ssize_t show_pwm_auto_channels(struct device *dev,
  871. struct device_attribute *attr, char *buf)
  872. {
  873. int nr = to_sensor_dev_attr(attr)->index;
  874. struct lm85_data *data = lm85_update_device(dev);
  875. return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
  876. }
  877. static ssize_t set_pwm_auto_channels(struct device *dev,
  878. struct device_attribute *attr, const char *buf, size_t count)
  879. {
  880. int nr = to_sensor_dev_attr(attr)->index;
  881. struct lm85_data *data = dev_get_drvdata(dev);
  882. struct i2c_client *client = data->client;
  883. long val;
  884. int err;
  885. err = kstrtol(buf, 10, &val);
  886. if (err)
  887. return err;
  888. mutex_lock(&data->update_lock);
  889. data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
  890. | ZONE_TO_REG(val);
  891. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  892. data->autofan[nr].config);
  893. mutex_unlock(&data->update_lock);
  894. return count;
  895. }
  896. static ssize_t show_pwm_auto_pwm_min(struct device *dev,
  897. struct device_attribute *attr, char *buf)
  898. {
  899. int nr = to_sensor_dev_attr(attr)->index;
  900. struct lm85_data *data = lm85_update_device(dev);
  901. return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
  902. }
  903. static ssize_t set_pwm_auto_pwm_min(struct device *dev,
  904. struct device_attribute *attr, const char *buf, size_t count)
  905. {
  906. int nr = to_sensor_dev_attr(attr)->index;
  907. struct lm85_data *data = dev_get_drvdata(dev);
  908. struct i2c_client *client = data->client;
  909. unsigned long val;
  910. int err;
  911. err = kstrtoul(buf, 10, &val);
  912. if (err)
  913. return err;
  914. mutex_lock(&data->update_lock);
  915. data->autofan[nr].min_pwm = PWM_TO_REG(val);
  916. lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
  917. data->autofan[nr].min_pwm);
  918. mutex_unlock(&data->update_lock);
  919. return count;
  920. }
  921. static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
  922. struct device_attribute *attr, char *buf)
  923. {
  924. int nr = to_sensor_dev_attr(attr)->index;
  925. struct lm85_data *data = lm85_update_device(dev);
  926. return sprintf(buf, "%d\n", data->autofan[nr].min_off);
  927. }
  928. static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
  929. struct device_attribute *attr, const char *buf, size_t count)
  930. {
  931. int nr = to_sensor_dev_attr(attr)->index;
  932. struct lm85_data *data = dev_get_drvdata(dev);
  933. struct i2c_client *client = data->client;
  934. u8 tmp;
  935. long val;
  936. int err;
  937. err = kstrtol(buf, 10, &val);
  938. if (err)
  939. return err;
  940. mutex_lock(&data->update_lock);
  941. data->autofan[nr].min_off = val;
  942. tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  943. tmp &= ~(0x20 << nr);
  944. if (data->autofan[nr].min_off)
  945. tmp |= 0x20 << nr;
  946. lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
  947. mutex_unlock(&data->update_lock);
  948. return count;
  949. }
  950. #define pwm_auto(offset) \
  951. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
  952. S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
  953. set_pwm_auto_channels, offset - 1); \
  954. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
  955. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
  956. set_pwm_auto_pwm_min, offset - 1); \
  957. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
  958. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
  959. set_pwm_auto_pwm_minctl, offset - 1)
  960. pwm_auto(1);
  961. pwm_auto(2);
  962. pwm_auto(3);
  963. /* Temperature settings for automatic PWM control */
  964. static ssize_t show_temp_auto_temp_off(struct device *dev,
  965. struct device_attribute *attr, char *buf)
  966. {
  967. int nr = to_sensor_dev_attr(attr)->index;
  968. struct lm85_data *data = lm85_update_device(dev);
  969. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
  970. HYST_FROM_REG(data->zone[nr].hyst));
  971. }
  972. static ssize_t set_temp_auto_temp_off(struct device *dev,
  973. struct device_attribute *attr, const char *buf, size_t count)
  974. {
  975. int nr = to_sensor_dev_attr(attr)->index;
  976. struct lm85_data *data = dev_get_drvdata(dev);
  977. struct i2c_client *client = data->client;
  978. int min;
  979. long val;
  980. int err;
  981. err = kstrtol(buf, 10, &val);
  982. if (err)
  983. return err;
  984. mutex_lock(&data->update_lock);
  985. min = TEMP_FROM_REG(data->zone[nr].limit);
  986. data->zone[nr].hyst = HYST_TO_REG(min - val);
  987. if (nr == 0 || nr == 1) {
  988. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  989. (data->zone[0].hyst << 4)
  990. | data->zone[1].hyst);
  991. } else {
  992. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  993. (data->zone[2].hyst << 4));
  994. }
  995. mutex_unlock(&data->update_lock);
  996. return count;
  997. }
  998. static ssize_t show_temp_auto_temp_min(struct device *dev,
  999. struct device_attribute *attr, char *buf)
  1000. {
  1001. int nr = to_sensor_dev_attr(attr)->index;
  1002. struct lm85_data *data = lm85_update_device(dev);
  1003. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
  1004. }
  1005. static ssize_t set_temp_auto_temp_min(struct device *dev,
  1006. struct device_attribute *attr, const char *buf, size_t count)
  1007. {
  1008. int nr = to_sensor_dev_attr(attr)->index;
  1009. struct lm85_data *data = dev_get_drvdata(dev);
  1010. struct i2c_client *client = data->client;
  1011. long val;
  1012. int err;
  1013. err = kstrtol(buf, 10, &val);
  1014. if (err)
  1015. return err;
  1016. mutex_lock(&data->update_lock);
  1017. data->zone[nr].limit = TEMP_TO_REG(val);
  1018. lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
  1019. data->zone[nr].limit);
  1020. /* Update temp_auto_max and temp_auto_range */
  1021. data->zone[nr].range = RANGE_TO_REG(
  1022. TEMP_FROM_REG(data->zone[nr].max_desired) -
  1023. TEMP_FROM_REG(data->zone[nr].limit));
  1024. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  1025. ((data->zone[nr].range & 0x0f) << 4)
  1026. | (data->pwm_freq[nr] & 0x07));
  1027. mutex_unlock(&data->update_lock);
  1028. return count;
  1029. }
  1030. static ssize_t show_temp_auto_temp_max(struct device *dev,
  1031. struct device_attribute *attr, char *buf)
  1032. {
  1033. int nr = to_sensor_dev_attr(attr)->index;
  1034. struct lm85_data *data = lm85_update_device(dev);
  1035. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
  1036. RANGE_FROM_REG(data->zone[nr].range));
  1037. }
  1038. static ssize_t set_temp_auto_temp_max(struct device *dev,
  1039. struct device_attribute *attr, const char *buf, size_t count)
  1040. {
  1041. int nr = to_sensor_dev_attr(attr)->index;
  1042. struct lm85_data *data = dev_get_drvdata(dev);
  1043. struct i2c_client *client = data->client;
  1044. int min;
  1045. long val;
  1046. int err;
  1047. err = kstrtol(buf, 10, &val);
  1048. if (err)
  1049. return err;
  1050. mutex_lock(&data->update_lock);
  1051. min = TEMP_FROM_REG(data->zone[nr].limit);
  1052. data->zone[nr].max_desired = TEMP_TO_REG(val);
  1053. data->zone[nr].range = RANGE_TO_REG(
  1054. val - min);
  1055. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  1056. ((data->zone[nr].range & 0x0f) << 4)
  1057. | (data->pwm_freq[nr] & 0x07));
  1058. mutex_unlock(&data->update_lock);
  1059. return count;
  1060. }
  1061. static ssize_t show_temp_auto_temp_crit(struct device *dev,
  1062. struct device_attribute *attr, char *buf)
  1063. {
  1064. int nr = to_sensor_dev_attr(attr)->index;
  1065. struct lm85_data *data = lm85_update_device(dev);
  1066. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
  1067. }
  1068. static ssize_t set_temp_auto_temp_crit(struct device *dev,
  1069. struct device_attribute *attr, const char *buf, size_t count)
  1070. {
  1071. int nr = to_sensor_dev_attr(attr)->index;
  1072. struct lm85_data *data = dev_get_drvdata(dev);
  1073. struct i2c_client *client = data->client;
  1074. long val;
  1075. int err;
  1076. err = kstrtol(buf, 10, &val);
  1077. if (err)
  1078. return err;
  1079. mutex_lock(&data->update_lock);
  1080. data->zone[nr].critical = TEMP_TO_REG(val);
  1081. lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
  1082. data->zone[nr].critical);
  1083. mutex_unlock(&data->update_lock);
  1084. return count;
  1085. }
  1086. #define temp_auto(offset) \
  1087. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
  1088. S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
  1089. set_temp_auto_temp_off, offset - 1); \
  1090. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
  1091. S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
  1092. set_temp_auto_temp_min, offset - 1); \
  1093. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
  1094. S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
  1095. set_temp_auto_temp_max, offset - 1); \
  1096. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
  1097. S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
  1098. set_temp_auto_temp_crit, offset - 1);
  1099. temp_auto(1);
  1100. temp_auto(2);
  1101. temp_auto(3);
  1102. static struct attribute *lm85_attributes[] = {
  1103. &sensor_dev_attr_fan1_input.dev_attr.attr,
  1104. &sensor_dev_attr_fan2_input.dev_attr.attr,
  1105. &sensor_dev_attr_fan3_input.dev_attr.attr,
  1106. &sensor_dev_attr_fan4_input.dev_attr.attr,
  1107. &sensor_dev_attr_fan1_min.dev_attr.attr,
  1108. &sensor_dev_attr_fan2_min.dev_attr.attr,
  1109. &sensor_dev_attr_fan3_min.dev_attr.attr,
  1110. &sensor_dev_attr_fan4_min.dev_attr.attr,
  1111. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  1112. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  1113. &sensor_dev_attr_fan3_alarm.dev_attr.attr,
  1114. &sensor_dev_attr_fan4_alarm.dev_attr.attr,
  1115. &sensor_dev_attr_pwm1.dev_attr.attr,
  1116. &sensor_dev_attr_pwm2.dev_attr.attr,
  1117. &sensor_dev_attr_pwm3.dev_attr.attr,
  1118. &sensor_dev_attr_pwm1_enable.dev_attr.attr,
  1119. &sensor_dev_attr_pwm2_enable.dev_attr.attr,
  1120. &sensor_dev_attr_pwm3_enable.dev_attr.attr,
  1121. &sensor_dev_attr_pwm1_freq.dev_attr.attr,
  1122. &sensor_dev_attr_pwm2_freq.dev_attr.attr,
  1123. &sensor_dev_attr_pwm3_freq.dev_attr.attr,
  1124. &sensor_dev_attr_in0_input.dev_attr.attr,
  1125. &sensor_dev_attr_in1_input.dev_attr.attr,
  1126. &sensor_dev_attr_in2_input.dev_attr.attr,
  1127. &sensor_dev_attr_in3_input.dev_attr.attr,
  1128. &sensor_dev_attr_in0_min.dev_attr.attr,
  1129. &sensor_dev_attr_in1_min.dev_attr.attr,
  1130. &sensor_dev_attr_in2_min.dev_attr.attr,
  1131. &sensor_dev_attr_in3_min.dev_attr.attr,
  1132. &sensor_dev_attr_in0_max.dev_attr.attr,
  1133. &sensor_dev_attr_in1_max.dev_attr.attr,
  1134. &sensor_dev_attr_in2_max.dev_attr.attr,
  1135. &sensor_dev_attr_in3_max.dev_attr.attr,
  1136. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  1137. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  1138. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  1139. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  1140. &sensor_dev_attr_temp1_input.dev_attr.attr,
  1141. &sensor_dev_attr_temp2_input.dev_attr.attr,
  1142. &sensor_dev_attr_temp3_input.dev_attr.attr,
  1143. &sensor_dev_attr_temp1_min.dev_attr.attr,
  1144. &sensor_dev_attr_temp2_min.dev_attr.attr,
  1145. &sensor_dev_attr_temp3_min.dev_attr.attr,
  1146. &sensor_dev_attr_temp1_max.dev_attr.attr,
  1147. &sensor_dev_attr_temp2_max.dev_attr.attr,
  1148. &sensor_dev_attr_temp3_max.dev_attr.attr,
  1149. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  1150. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  1151. &sensor_dev_attr_temp3_alarm.dev_attr.attr,
  1152. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  1153. &sensor_dev_attr_temp3_fault.dev_attr.attr,
  1154. &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
  1155. &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
  1156. &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
  1157. &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
  1158. &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
  1159. &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
  1160. &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
  1161. &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
  1162. &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
  1163. &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
  1164. &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
  1165. &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
  1166. &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
  1167. &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
  1168. &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
  1169. &dev_attr_vrm.attr,
  1170. &dev_attr_cpu0_vid.attr,
  1171. &dev_attr_alarms.attr,
  1172. NULL
  1173. };
  1174. static const struct attribute_group lm85_group = {
  1175. .attrs = lm85_attributes,
  1176. };
  1177. static struct attribute *lm85_attributes_minctl[] = {
  1178. &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
  1179. &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
  1180. &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
  1181. NULL
  1182. };
  1183. static const struct attribute_group lm85_group_minctl = {
  1184. .attrs = lm85_attributes_minctl,
  1185. };
  1186. static struct attribute *lm85_attributes_temp_off[] = {
  1187. &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
  1188. &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
  1189. &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
  1190. NULL
  1191. };
  1192. static const struct attribute_group lm85_group_temp_off = {
  1193. .attrs = lm85_attributes_temp_off,
  1194. };
  1195. static struct attribute *lm85_attributes_in4[] = {
  1196. &sensor_dev_attr_in4_input.dev_attr.attr,
  1197. &sensor_dev_attr_in4_min.dev_attr.attr,
  1198. &sensor_dev_attr_in4_max.dev_attr.attr,
  1199. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  1200. NULL
  1201. };
  1202. static const struct attribute_group lm85_group_in4 = {
  1203. .attrs = lm85_attributes_in4,
  1204. };
  1205. static struct attribute *lm85_attributes_in567[] = {
  1206. &sensor_dev_attr_in5_input.dev_attr.attr,
  1207. &sensor_dev_attr_in6_input.dev_attr.attr,
  1208. &sensor_dev_attr_in7_input.dev_attr.attr,
  1209. &sensor_dev_attr_in5_min.dev_attr.attr,
  1210. &sensor_dev_attr_in6_min.dev_attr.attr,
  1211. &sensor_dev_attr_in7_min.dev_attr.attr,
  1212. &sensor_dev_attr_in5_max.dev_attr.attr,
  1213. &sensor_dev_attr_in6_max.dev_attr.attr,
  1214. &sensor_dev_attr_in7_max.dev_attr.attr,
  1215. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  1216. &sensor_dev_attr_in6_alarm.dev_attr.attr,
  1217. &sensor_dev_attr_in7_alarm.dev_attr.attr,
  1218. NULL
  1219. };
  1220. static const struct attribute_group lm85_group_in567 = {
  1221. .attrs = lm85_attributes_in567,
  1222. };
  1223. static void lm85_init_client(struct i2c_client *client)
  1224. {
  1225. int value;
  1226. /* Start monitoring if needed */
  1227. value = lm85_read_value(client, LM85_REG_CONFIG);
  1228. if (!(value & 0x01)) {
  1229. dev_info(&client->dev, "Starting monitoring\n");
  1230. lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
  1231. }
  1232. /* Warn about unusual configuration bits */
  1233. if (value & 0x02)
  1234. dev_warn(&client->dev, "Device configuration is locked\n");
  1235. if (!(value & 0x04))
  1236. dev_warn(&client->dev, "Device is not ready\n");
  1237. }
  1238. static int lm85_is_fake(struct i2c_client *client)
  1239. {
  1240. /*
  1241. * Differenciate between real LM96000 and Winbond WPCD377I. The latter
  1242. * emulate the former except that it has no hardware monitoring function
  1243. * so the readings are always 0.
  1244. */
  1245. int i;
  1246. u8 in_temp, fan;
  1247. for (i = 0; i < 8; i++) {
  1248. in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
  1249. fan = i2c_smbus_read_byte_data(client, 0x28 + i);
  1250. if (in_temp != 0x00 || fan != 0xff)
  1251. return 0;
  1252. }
  1253. return 1;
  1254. }
  1255. /* Return 0 if detection is successful, -ENODEV otherwise */
  1256. static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
  1257. {
  1258. struct i2c_adapter *adapter = client->adapter;
  1259. int address = client->addr;
  1260. const char *type_name = NULL;
  1261. int company, verstep;
  1262. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
  1263. /* We need to be able to do byte I/O */
  1264. return -ENODEV;
  1265. }
  1266. /* Determine the chip type */
  1267. company = lm85_read_value(client, LM85_REG_COMPANY);
  1268. verstep = lm85_read_value(client, LM85_REG_VERSTEP);
  1269. dev_dbg(&adapter->dev,
  1270. "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
  1271. address, company, verstep);
  1272. if (company == LM85_COMPANY_NATIONAL) {
  1273. switch (verstep) {
  1274. case LM85_VERSTEP_LM85C:
  1275. type_name = "lm85c";
  1276. break;
  1277. case LM85_VERSTEP_LM85B:
  1278. type_name = "lm85b";
  1279. break;
  1280. case LM85_VERSTEP_LM96000_1:
  1281. case LM85_VERSTEP_LM96000_2:
  1282. /* Check for Winbond WPCD377I */
  1283. if (lm85_is_fake(client)) {
  1284. dev_dbg(&adapter->dev,
  1285. "Found Winbond WPCD377I, ignoring\n");
  1286. return -ENODEV;
  1287. }
  1288. type_name = "lm85";
  1289. break;
  1290. }
  1291. } else if (company == LM85_COMPANY_ANALOG_DEV) {
  1292. switch (verstep) {
  1293. case LM85_VERSTEP_ADM1027:
  1294. type_name = "adm1027";
  1295. break;
  1296. case LM85_VERSTEP_ADT7463:
  1297. case LM85_VERSTEP_ADT7463C:
  1298. type_name = "adt7463";
  1299. break;
  1300. case LM85_VERSTEP_ADT7468_1:
  1301. case LM85_VERSTEP_ADT7468_2:
  1302. type_name = "adt7468";
  1303. break;
  1304. }
  1305. } else if (company == LM85_COMPANY_SMSC) {
  1306. switch (verstep) {
  1307. case LM85_VERSTEP_EMC6D100_A0:
  1308. case LM85_VERSTEP_EMC6D100_A1:
  1309. /* Note: we can't tell a '100 from a '101 */
  1310. type_name = "emc6d100";
  1311. break;
  1312. case LM85_VERSTEP_EMC6D102:
  1313. type_name = "emc6d102";
  1314. break;
  1315. case LM85_VERSTEP_EMC6D103_A0:
  1316. case LM85_VERSTEP_EMC6D103_A1:
  1317. type_name = "emc6d103";
  1318. break;
  1319. case LM85_VERSTEP_EMC6D103S:
  1320. type_name = "emc6d103s";
  1321. break;
  1322. }
  1323. }
  1324. if (!type_name)
  1325. return -ENODEV;
  1326. strlcpy(info->type, type_name, I2C_NAME_SIZE);
  1327. return 0;
  1328. }
  1329. static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
  1330. {
  1331. struct device *dev = &client->dev;
  1332. struct device *hwmon_dev;
  1333. struct lm85_data *data;
  1334. int idx = 0;
  1335. data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
  1336. if (!data)
  1337. return -ENOMEM;
  1338. data->client = client;
  1339. data->type = id->driver_data;
  1340. mutex_init(&data->update_lock);
  1341. /* Fill in the chip specific driver values */
  1342. switch (data->type) {
  1343. case adm1027:
  1344. case adt7463:
  1345. case adt7468:
  1346. case emc6d100:
  1347. case emc6d102:
  1348. case emc6d103:
  1349. case emc6d103s:
  1350. data->freq_map = adm1027_freq_map;
  1351. break;
  1352. default:
  1353. data->freq_map = lm85_freq_map;
  1354. }
  1355. /* Set the VRM version */
  1356. data->vrm = vid_which_vrm();
  1357. /* Initialize the LM85 chip */
  1358. lm85_init_client(client);
  1359. /* sysfs hooks */
  1360. data->groups[idx++] = &lm85_group;
  1361. /* minctl and temp_off exist on all chips except emc6d103s */
  1362. if (data->type != emc6d103s) {
  1363. data->groups[idx++] = &lm85_group_minctl;
  1364. data->groups[idx++] = &lm85_group_temp_off;
  1365. }
  1366. /*
  1367. * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
  1368. * as a sixth digital VID input rather than an analog input.
  1369. */
  1370. if (data->type == adt7463 || data->type == adt7468) {
  1371. u8 vid = lm85_read_value(client, LM85_REG_VID);
  1372. if (vid & 0x80)
  1373. data->has_vid5 = true;
  1374. }
  1375. if (!data->has_vid5)
  1376. data->groups[idx++] = &lm85_group_in4;
  1377. /* The EMC6D100 has 3 additional voltage inputs */
  1378. if (data->type == emc6d100)
  1379. data->groups[idx++] = &lm85_group_in567;
  1380. hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
  1381. data, data->groups);
  1382. return PTR_ERR_OR_ZERO(hwmon_dev);
  1383. }
  1384. static const struct i2c_device_id lm85_id[] = {
  1385. { "adm1027", adm1027 },
  1386. { "adt7463", adt7463 },
  1387. { "adt7468", adt7468 },
  1388. { "lm85", lm85 },
  1389. { "lm85b", lm85 },
  1390. { "lm85c", lm85 },
  1391. { "emc6d100", emc6d100 },
  1392. { "emc6d101", emc6d100 },
  1393. { "emc6d102", emc6d102 },
  1394. { "emc6d103", emc6d103 },
  1395. { "emc6d103s", emc6d103s },
  1396. { }
  1397. };
  1398. MODULE_DEVICE_TABLE(i2c, lm85_id);
  1399. static struct i2c_driver lm85_driver = {
  1400. .class = I2C_CLASS_HWMON,
  1401. .driver = {
  1402. .name = "lm85",
  1403. },
  1404. .probe = lm85_probe,
  1405. .id_table = lm85_id,
  1406. .detect = lm85_detect,
  1407. .address_list = normal_i2c,
  1408. };
  1409. module_i2c_driver(lm85_driver);
  1410. MODULE_LICENSE("GPL");
  1411. MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
  1412. "Margit Schubert-While <margitsw@t-online.de>, "
  1413. "Justin Thiessen <jthiessen@penguincomputing.com>");
  1414. MODULE_DESCRIPTION("LM85-B, LM85-C driver");