vc4_dsi.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725
  1. /*
  2. * Copyright (C) 2016 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License version 2 as published by
  6. * the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /**
  17. * DOC: VC4 DSI0/DSI1 module
  18. *
  19. * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
  20. * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  21. * controller.
  22. *
  23. * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  24. * while the compute module brings both DSI0 and DSI1 out.
  25. *
  26. * This driver has been tested for DSI1 video-mode display only
  27. * currently, with most of the information necessary for DSI0
  28. * hopefully present.
  29. */
  30. #include "drm_atomic_helper.h"
  31. #include "drm_crtc_helper.h"
  32. #include "drm_edid.h"
  33. #include "drm_mipi_dsi.h"
  34. #include "drm_panel.h"
  35. #include "linux/clk.h"
  36. #include "linux/clk-provider.h"
  37. #include "linux/completion.h"
  38. #include "linux/component.h"
  39. #include "linux/dmaengine.h"
  40. #include "linux/i2c.h"
  41. #include "linux/of_address.h"
  42. #include "linux/of_platform.h"
  43. #include "linux/pm_runtime.h"
  44. #include "vc4_drv.h"
  45. #include "vc4_regs.h"
  46. #define DSI_CMD_FIFO_DEPTH 16
  47. #define DSI_PIX_FIFO_DEPTH 256
  48. #define DSI_PIX_FIFO_WIDTH 4
  49. #define DSI0_CTRL 0x00
  50. /* Command packet control. */
  51. #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
  52. #define DSI1_TXPKT1C 0x04
  53. # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
  54. # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
  55. # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
  56. # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
  57. # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
  58. # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
  59. /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  60. # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
  61. /* Primary display where cmdfifo provides part of the payload and
  62. * pixelvalve the rest.
  63. */
  64. # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
  65. /* Secondary display where cmdfifo provides part of the payload and
  66. * pixfifo the rest.
  67. */
  68. # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
  69. # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
  70. # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
  71. # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
  72. # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
  73. /* Command only. Uses TXPKT1H and DISPLAY_NO */
  74. # define DSI_TXPKT1C_CMD_CTRL_TX 0
  75. /* Command with BTA for either ack or read data. */
  76. # define DSI_TXPKT1C_CMD_CTRL_RX 1
  77. /* Trigger according to TRIG_CMD */
  78. # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
  79. /* BTA alone for getting error status after a command, or a TE trigger
  80. * without a previous command.
  81. */
  82. # define DSI_TXPKT1C_CMD_CTRL_BTA 3
  83. # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
  84. # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
  85. # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
  86. # define DSI_TXPKT1C_CMD_EN BIT(0)
  87. /* Command packet header. */
  88. #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
  89. #define DSI1_TXPKT1H 0x08
  90. # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
  91. # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
  92. # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  93. # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
  94. # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
  95. # define DSI_TXPKT1H_BC_DT_SHIFT 0
  96. #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
  97. #define DSI1_RXPKT1H 0x14
  98. # define DSI_RXPKT1H_CRC_ERR BIT(31)
  99. # define DSI_RXPKT1H_DET_ERR BIT(30)
  100. # define DSI_RXPKT1H_ECC_ERR BIT(29)
  101. # define DSI_RXPKT1H_COR_ERR BIT(28)
  102. # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
  103. # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
  104. /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
  105. # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  106. # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
  107. /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
  108. # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
  109. # define DSI_RXPKT1H_SHORT_1_SHIFT 16
  110. # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
  111. # define DSI_RXPKT1H_SHORT_0_SHIFT 8
  112. # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
  113. # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
  114. #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
  115. #define DSI1_RXPKT2H 0x18
  116. # define DSI_RXPKT1H_DET_ERR BIT(30)
  117. # define DSI_RXPKT1H_ECC_ERR BIT(29)
  118. # define DSI_RXPKT1H_COR_ERR BIT(28)
  119. # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
  120. # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  121. # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
  122. # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
  123. # define DSI_RXPKT1H_DT_SHIFT 0
  124. #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
  125. #define DSI1_TXPKT_CMD_FIFO 0x1c
  126. #define DSI0_DISP0_CTRL 0x18
  127. # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
  128. # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
  129. # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
  130. # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
  131. # define DSI_DISP0_LP_STOP_DISABLE 0
  132. # define DSI_DISP0_LP_STOP_PERLINE 1
  133. # define DSI_DISP0_LP_STOP_PERFRAME 2
  134. /* Transmit RGB pixels and null packets only during HACTIVE, instead
  135. * of going to LP-STOP.
  136. */
  137. # define DSI_DISP_HACTIVE_NULL BIT(10)
  138. /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
  139. # define DSI_DISP_VBLP_CTRL BIT(9)
  140. /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
  141. # define DSI_DISP_HFP_CTRL BIT(8)
  142. /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
  143. # define DSI_DISP_HBP_CTRL BIT(7)
  144. # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
  145. # define DSI_DISP0_CHANNEL_SHIFT 5
  146. /* Enables end events for HSYNC/VSYNC, not just start events. */
  147. # define DSI_DISP0_ST_END BIT(4)
  148. # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
  149. # define DSI_DISP0_PFORMAT_SHIFT 2
  150. # define DSI_PFORMAT_RGB565 0
  151. # define DSI_PFORMAT_RGB666_PACKED 1
  152. # define DSI_PFORMAT_RGB666 2
  153. # define DSI_PFORMAT_RGB888 3
  154. /* Default is VIDEO mode. */
  155. # define DSI_DISP0_COMMAND_MODE BIT(1)
  156. # define DSI_DISP0_ENABLE BIT(0)
  157. #define DSI0_DISP1_CTRL 0x1c
  158. #define DSI1_DISP1_CTRL 0x2c
  159. /* Format of the data written to TXPKT_PIX_FIFO. */
  160. # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
  161. # define DSI_DISP1_PFORMAT_SHIFT 1
  162. # define DSI_DISP1_PFORMAT_16BIT 0
  163. # define DSI_DISP1_PFORMAT_24BIT 1
  164. # define DSI_DISP1_PFORMAT_32BIT_LE 2
  165. # define DSI_DISP1_PFORMAT_32BIT_BE 3
  166. /* DISP1 is always command mode. */
  167. # define DSI_DISP1_ENABLE BIT(0)
  168. #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
  169. #define DSI0_INT_STAT 0x24
  170. #define DSI0_INT_EN 0x28
  171. # define DSI1_INT_PHY_D3_ULPS BIT(30)
  172. # define DSI1_INT_PHY_D3_STOP BIT(29)
  173. # define DSI1_INT_PHY_D2_ULPS BIT(28)
  174. # define DSI1_INT_PHY_D2_STOP BIT(27)
  175. # define DSI1_INT_PHY_D1_ULPS BIT(26)
  176. # define DSI1_INT_PHY_D1_STOP BIT(25)
  177. # define DSI1_INT_PHY_D0_ULPS BIT(24)
  178. # define DSI1_INT_PHY_D0_STOP BIT(23)
  179. # define DSI1_INT_FIFO_ERR BIT(22)
  180. # define DSI1_INT_PHY_DIR_RTF BIT(21)
  181. # define DSI1_INT_PHY_RXLPDT BIT(20)
  182. # define DSI1_INT_PHY_RXTRIG BIT(19)
  183. # define DSI1_INT_PHY_D0_LPDT BIT(18)
  184. # define DSI1_INT_PHY_DIR_FTR BIT(17)
  185. /* Signaled when the clock lane enters the given state. */
  186. # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
  187. # define DSI1_INT_PHY_CLOCK_HS BIT(15)
  188. # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
  189. /* Signaled on timeouts */
  190. # define DSI1_INT_PR_TO BIT(13)
  191. # define DSI1_INT_TA_TO BIT(12)
  192. # define DSI1_INT_LPRX_TO BIT(11)
  193. # define DSI1_INT_HSTX_TO BIT(10)
  194. /* Contention on a line when trying to drive the line low */
  195. # define DSI1_INT_ERR_CONT_LP1 BIT(9)
  196. # define DSI1_INT_ERR_CONT_LP0 BIT(8)
  197. /* Control error: incorrect line state sequence on data lane 0. */
  198. # define DSI1_INT_ERR_CONTROL BIT(7)
  199. /* LPDT synchronization error (bits received not a multiple of 8. */
  200. # define DSI1_INT_ERR_SYNC_ESC BIT(6)
  201. /* Signaled after receiving an error packet from the display in
  202. * response to a read.
  203. */
  204. # define DSI1_INT_RXPKT2 BIT(5)
  205. /* Signaled after receiving a packet. The header and optional short
  206. * response will be in RXPKT1H, and a long response will be in the
  207. * RXPKT_FIFO.
  208. */
  209. # define DSI1_INT_RXPKT1 BIT(4)
  210. # define DSI1_INT_TXPKT2_DONE BIT(3)
  211. # define DSI1_INT_TXPKT2_END BIT(2)
  212. /* Signaled after all repeats of TXPKT1 are transferred. */
  213. # define DSI1_INT_TXPKT1_DONE BIT(1)
  214. /* Signaled after each TXPKT1 repeat is scheduled. */
  215. # define DSI1_INT_TXPKT1_END BIT(0)
  216. #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
  217. DSI1_INT_ERR_CONTROL | \
  218. DSI1_INT_ERR_CONT_LP0 | \
  219. DSI1_INT_ERR_CONT_LP1 | \
  220. DSI1_INT_HSTX_TO | \
  221. DSI1_INT_LPRX_TO | \
  222. DSI1_INT_TA_TO | \
  223. DSI1_INT_PR_TO)
  224. #define DSI0_STAT 0x2c
  225. #define DSI0_HSTX_TO_CNT 0x30
  226. #define DSI0_LPRX_TO_CNT 0x34
  227. #define DSI0_TA_TO_CNT 0x38
  228. #define DSI0_PR_TO_CNT 0x3c
  229. #define DSI0_PHYC 0x40
  230. # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
  231. # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
  232. # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
  233. # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
  234. # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
  235. # define DSI1_PHYC_CLANE_ULPS BIT(17)
  236. # define DSI1_PHYC_CLANE_ENABLE BIT(16)
  237. # define DSI_PHYC_DLANE3_ULPS BIT(13)
  238. # define DSI_PHYC_DLANE3_ENABLE BIT(12)
  239. # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
  240. # define DSI0_PHYC_CLANE_ULPS BIT(9)
  241. # define DSI_PHYC_DLANE2_ULPS BIT(9)
  242. # define DSI0_PHYC_CLANE_ENABLE BIT(8)
  243. # define DSI_PHYC_DLANE2_ENABLE BIT(8)
  244. # define DSI_PHYC_DLANE1_ULPS BIT(5)
  245. # define DSI_PHYC_DLANE1_ENABLE BIT(4)
  246. # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
  247. # define DSI_PHYC_DLANE0_ULPS BIT(1)
  248. # define DSI_PHYC_DLANE0_ENABLE BIT(0)
  249. #define DSI0_HS_CLT0 0x44
  250. #define DSI0_HS_CLT1 0x48
  251. #define DSI0_HS_CLT2 0x4c
  252. #define DSI0_HS_DLT3 0x50
  253. #define DSI0_HS_DLT4 0x54
  254. #define DSI0_HS_DLT5 0x58
  255. #define DSI0_HS_DLT6 0x5c
  256. #define DSI0_HS_DLT7 0x60
  257. #define DSI0_PHY_AFEC0 0x64
  258. # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
  259. # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
  260. # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
  261. # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
  262. # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
  263. # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
  264. # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
  265. # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
  266. # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
  267. # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
  268. # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
  269. # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
  270. # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
  271. # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
  272. # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
  273. # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
  274. # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
  275. # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
  276. # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
  277. # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
  278. # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
  279. # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
  280. # define DSI1_PHY_AFEC0_RESET BIT(13)
  281. # define DSI1_PHY_AFEC0_PD BIT(12)
  282. # define DSI0_PHY_AFEC0_RESET BIT(11)
  283. # define DSI1_PHY_AFEC0_PD_BG BIT(11)
  284. # define DSI0_PHY_AFEC0_PD BIT(10)
  285. # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
  286. # define DSI0_PHY_AFEC0_PD_BG BIT(9)
  287. # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
  288. # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
  289. # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
  290. # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
  291. # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
  292. # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
  293. # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
  294. #define DSI0_PHY_AFEC1 0x68
  295. # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
  296. # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
  297. # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
  298. # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
  299. # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
  300. # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
  301. #define DSI0_TST_SEL 0x6c
  302. #define DSI0_TST_MON 0x70
  303. #define DSI0_ID 0x74
  304. # define DSI_ID_VALUE 0x00647369
  305. #define DSI1_CTRL 0x00
  306. # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
  307. # define DSI_CTRL_HS_CLKC_SHIFT 14
  308. # define DSI_CTRL_HS_CLKC_BYTE 0
  309. # define DSI_CTRL_HS_CLKC_DDR2 1
  310. # define DSI_CTRL_HS_CLKC_DDR 2
  311. # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
  312. # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
  313. # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
  314. # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
  315. # define DSI_CTRL_CAL_BYTE BIT(9)
  316. # define DSI_CTRL_INV_BYTE BIT(8)
  317. # define DSI_CTRL_CLR_LDF BIT(7)
  318. # define DSI0_CTRL_CLR_PBCF BIT(6)
  319. # define DSI1_CTRL_CLR_RXF BIT(6)
  320. # define DSI0_CTRL_CLR_CPBCF BIT(5)
  321. # define DSI1_CTRL_CLR_PDF BIT(5)
  322. # define DSI0_CTRL_CLR_PDF BIT(4)
  323. # define DSI1_CTRL_CLR_CDF BIT(4)
  324. # define DSI0_CTRL_CLR_CDF BIT(3)
  325. # define DSI0_CTRL_CTRL2 BIT(2)
  326. # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
  327. # define DSI0_CTRL_CTRL1 BIT(1)
  328. # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
  329. # define DSI0_CTRL_CTRL0 BIT(0)
  330. # define DSI1_CTRL_EN BIT(0)
  331. # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
  332. DSI0_CTRL_CLR_PBCF | \
  333. DSI0_CTRL_CLR_CPBCF | \
  334. DSI0_CTRL_CLR_PDF | \
  335. DSI0_CTRL_CLR_CDF)
  336. # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
  337. DSI1_CTRL_CLR_RXF | \
  338. DSI1_CTRL_CLR_PDF | \
  339. DSI1_CTRL_CLR_CDF)
  340. #define DSI1_TXPKT2C 0x0c
  341. #define DSI1_TXPKT2H 0x10
  342. #define DSI1_TXPKT_PIX_FIFO 0x20
  343. #define DSI1_RXPKT_FIFO 0x24
  344. #define DSI1_DISP0_CTRL 0x28
  345. #define DSI1_INT_STAT 0x30
  346. #define DSI1_INT_EN 0x34
  347. /* State reporting bits. These mostly behave like INT_STAT, where
  348. * writing a 1 clears the bit.
  349. */
  350. #define DSI1_STAT 0x38
  351. # define DSI1_STAT_PHY_D3_ULPS BIT(31)
  352. # define DSI1_STAT_PHY_D3_STOP BIT(30)
  353. # define DSI1_STAT_PHY_D2_ULPS BIT(29)
  354. # define DSI1_STAT_PHY_D2_STOP BIT(28)
  355. # define DSI1_STAT_PHY_D1_ULPS BIT(27)
  356. # define DSI1_STAT_PHY_D1_STOP BIT(26)
  357. # define DSI1_STAT_PHY_D0_ULPS BIT(25)
  358. # define DSI1_STAT_PHY_D0_STOP BIT(24)
  359. # define DSI1_STAT_FIFO_ERR BIT(23)
  360. # define DSI1_STAT_PHY_RXLPDT BIT(22)
  361. # define DSI1_STAT_PHY_RXTRIG BIT(21)
  362. # define DSI1_STAT_PHY_D0_LPDT BIT(20)
  363. /* Set when in forward direction */
  364. # define DSI1_STAT_PHY_DIR BIT(19)
  365. # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
  366. # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
  367. # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
  368. # define DSI1_STAT_PR_TO BIT(15)
  369. # define DSI1_STAT_TA_TO BIT(14)
  370. # define DSI1_STAT_LPRX_TO BIT(13)
  371. # define DSI1_STAT_HSTX_TO BIT(12)
  372. # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
  373. # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
  374. # define DSI1_STAT_ERR_CONTROL BIT(9)
  375. # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
  376. # define DSI1_STAT_RXPKT2 BIT(7)
  377. # define DSI1_STAT_RXPKT1 BIT(6)
  378. # define DSI1_STAT_TXPKT2_BUSY BIT(5)
  379. # define DSI1_STAT_TXPKT2_DONE BIT(4)
  380. # define DSI1_STAT_TXPKT2_END BIT(3)
  381. # define DSI1_STAT_TXPKT1_BUSY BIT(2)
  382. # define DSI1_STAT_TXPKT1_DONE BIT(1)
  383. # define DSI1_STAT_TXPKT1_END BIT(0)
  384. #define DSI1_HSTX_TO_CNT 0x3c
  385. #define DSI1_LPRX_TO_CNT 0x40
  386. #define DSI1_TA_TO_CNT 0x44
  387. #define DSI1_PR_TO_CNT 0x48
  388. #define DSI1_PHYC 0x4c
  389. #define DSI1_HS_CLT0 0x50
  390. # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
  391. # define DSI_HS_CLT0_CZERO_SHIFT 18
  392. # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
  393. # define DSI_HS_CLT0_CPRE_SHIFT 9
  394. # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
  395. # define DSI_HS_CLT0_CPREP_SHIFT 0
  396. #define DSI1_HS_CLT1 0x54
  397. # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
  398. # define DSI_HS_CLT1_CTRAIL_SHIFT 9
  399. # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
  400. # define DSI_HS_CLT1_CPOST_SHIFT 0
  401. #define DSI1_HS_CLT2 0x58
  402. # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
  403. # define DSI_HS_CLT2_WUP_SHIFT 0
  404. #define DSI1_HS_DLT3 0x5c
  405. # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
  406. # define DSI_HS_DLT3_EXIT_SHIFT 18
  407. # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
  408. # define DSI_HS_DLT3_ZERO_SHIFT 9
  409. # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
  410. # define DSI_HS_DLT3_PRE_SHIFT 0
  411. #define DSI1_HS_DLT4 0x60
  412. # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
  413. # define DSI_HS_DLT4_ANLAT_SHIFT 18
  414. # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
  415. # define DSI_HS_DLT4_TRAIL_SHIFT 9
  416. # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
  417. # define DSI_HS_DLT4_LPX_SHIFT 0
  418. #define DSI1_HS_DLT5 0x64
  419. # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
  420. # define DSI_HS_DLT5_INIT_SHIFT 0
  421. #define DSI1_HS_DLT6 0x68
  422. # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
  423. # define DSI_HS_DLT6_TA_GET_SHIFT 24
  424. # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
  425. # define DSI_HS_DLT6_TA_SURE_SHIFT 16
  426. # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
  427. # define DSI_HS_DLT6_TA_GO_SHIFT 8
  428. # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
  429. # define DSI_HS_DLT6_LP_LPX_SHIFT 0
  430. #define DSI1_HS_DLT7 0x6c
  431. # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
  432. # define DSI_HS_DLT7_LP_WUP_SHIFT 0
  433. #define DSI1_PHY_AFEC0 0x70
  434. #define DSI1_PHY_AFEC1 0x74
  435. # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
  436. # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
  437. # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
  438. # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
  439. # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
  440. # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
  441. # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
  442. # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
  443. # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
  444. # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
  445. #define DSI1_TST_SEL 0x78
  446. #define DSI1_TST_MON 0x7c
  447. #define DSI1_PHY_TST1 0x80
  448. #define DSI1_PHY_TST2 0x84
  449. #define DSI1_PHY_FIFO_STAT 0x88
  450. /* Actually, all registers in the range that aren't otherwise claimed
  451. * will return the ID.
  452. */
  453. #define DSI1_ID 0x8c
  454. /* General DSI hardware state. */
  455. struct vc4_dsi {
  456. struct platform_device *pdev;
  457. struct mipi_dsi_host dsi_host;
  458. struct drm_encoder *encoder;
  459. struct drm_connector *connector;
  460. struct drm_panel *panel;
  461. void __iomem *regs;
  462. struct dma_chan *reg_dma_chan;
  463. dma_addr_t reg_dma_paddr;
  464. u32 *reg_dma_mem;
  465. dma_addr_t reg_paddr;
  466. /* Whether we're on bcm2835's DSI0 or DSI1. */
  467. int port;
  468. /* DSI channel for the panel we're connected to. */
  469. u32 channel;
  470. u32 lanes;
  471. enum mipi_dsi_pixel_format format;
  472. u32 mode_flags;
  473. /* Input clock from CPRMAN to the digital PHY, for the DSI
  474. * escape clock.
  475. */
  476. struct clk *escape_clock;
  477. /* Input clock to the analog PHY, used to generate the DSI bit
  478. * clock.
  479. */
  480. struct clk *pll_phy_clock;
  481. /* HS Clocks generated within the DSI analog PHY. */
  482. struct clk_fixed_factor phy_clocks[3];
  483. struct clk_hw_onecell_data *clk_onecell;
  484. /* Pixel clock output to the pixelvalve, generated from the HS
  485. * clock.
  486. */
  487. struct clk *pixel_clock;
  488. struct completion xfer_completion;
  489. int xfer_result;
  490. };
  491. #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
  492. static inline void
  493. dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
  494. {
  495. struct dma_chan *chan = dsi->reg_dma_chan;
  496. struct dma_async_tx_descriptor *tx;
  497. dma_cookie_t cookie;
  498. int ret;
  499. /* DSI0 should be able to write normally. */
  500. if (!chan) {
  501. writel(val, dsi->regs + offset);
  502. return;
  503. }
  504. *dsi->reg_dma_mem = val;
  505. tx = chan->device->device_prep_dma_memcpy(chan,
  506. dsi->reg_paddr + offset,
  507. dsi->reg_dma_paddr,
  508. 4, 0);
  509. if (!tx) {
  510. DRM_ERROR("Failed to set up DMA register write\n");
  511. return;
  512. }
  513. cookie = tx->tx_submit(tx);
  514. ret = dma_submit_error(cookie);
  515. if (ret) {
  516. DRM_ERROR("Failed to submit DMA: %d\n", ret);
  517. return;
  518. }
  519. ret = dma_sync_wait(chan, cookie);
  520. if (ret)
  521. DRM_ERROR("Failed to wait for DMA: %d\n", ret);
  522. }
  523. #define DSI_READ(offset) readl(dsi->regs + (offset))
  524. #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
  525. #define DSI_PORT_READ(offset) \
  526. DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
  527. #define DSI_PORT_WRITE(offset, val) \
  528. DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
  529. #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
  530. /* VC4 DSI encoder KMS struct */
  531. struct vc4_dsi_encoder {
  532. struct vc4_encoder base;
  533. struct vc4_dsi *dsi;
  534. };
  535. static inline struct vc4_dsi_encoder *
  536. to_vc4_dsi_encoder(struct drm_encoder *encoder)
  537. {
  538. return container_of(encoder, struct vc4_dsi_encoder, base.base);
  539. }
  540. /* VC4 DSI connector KMS struct */
  541. struct vc4_dsi_connector {
  542. struct drm_connector base;
  543. struct vc4_dsi *dsi;
  544. };
  545. static inline struct vc4_dsi_connector *
  546. to_vc4_dsi_connector(struct drm_connector *connector)
  547. {
  548. return container_of(connector, struct vc4_dsi_connector, base);
  549. }
  550. #define DSI_REG(reg) { reg, #reg }
  551. static const struct {
  552. u32 reg;
  553. const char *name;
  554. } dsi0_regs[] = {
  555. DSI_REG(DSI0_CTRL),
  556. DSI_REG(DSI0_STAT),
  557. DSI_REG(DSI0_HSTX_TO_CNT),
  558. DSI_REG(DSI0_LPRX_TO_CNT),
  559. DSI_REG(DSI0_TA_TO_CNT),
  560. DSI_REG(DSI0_PR_TO_CNT),
  561. DSI_REG(DSI0_DISP0_CTRL),
  562. DSI_REG(DSI0_DISP1_CTRL),
  563. DSI_REG(DSI0_INT_STAT),
  564. DSI_REG(DSI0_INT_EN),
  565. DSI_REG(DSI0_PHYC),
  566. DSI_REG(DSI0_HS_CLT0),
  567. DSI_REG(DSI0_HS_CLT1),
  568. DSI_REG(DSI0_HS_CLT2),
  569. DSI_REG(DSI0_HS_DLT3),
  570. DSI_REG(DSI0_HS_DLT4),
  571. DSI_REG(DSI0_HS_DLT5),
  572. DSI_REG(DSI0_HS_DLT6),
  573. DSI_REG(DSI0_HS_DLT7),
  574. DSI_REG(DSI0_PHY_AFEC0),
  575. DSI_REG(DSI0_PHY_AFEC1),
  576. DSI_REG(DSI0_ID),
  577. };
  578. static const struct {
  579. u32 reg;
  580. const char *name;
  581. } dsi1_regs[] = {
  582. DSI_REG(DSI1_CTRL),
  583. DSI_REG(DSI1_STAT),
  584. DSI_REG(DSI1_HSTX_TO_CNT),
  585. DSI_REG(DSI1_LPRX_TO_CNT),
  586. DSI_REG(DSI1_TA_TO_CNT),
  587. DSI_REG(DSI1_PR_TO_CNT),
  588. DSI_REG(DSI1_DISP0_CTRL),
  589. DSI_REG(DSI1_DISP1_CTRL),
  590. DSI_REG(DSI1_INT_STAT),
  591. DSI_REG(DSI1_INT_EN),
  592. DSI_REG(DSI1_PHYC),
  593. DSI_REG(DSI1_HS_CLT0),
  594. DSI_REG(DSI1_HS_CLT1),
  595. DSI_REG(DSI1_HS_CLT2),
  596. DSI_REG(DSI1_HS_DLT3),
  597. DSI_REG(DSI1_HS_DLT4),
  598. DSI_REG(DSI1_HS_DLT5),
  599. DSI_REG(DSI1_HS_DLT6),
  600. DSI_REG(DSI1_HS_DLT7),
  601. DSI_REG(DSI1_PHY_AFEC0),
  602. DSI_REG(DSI1_PHY_AFEC1),
  603. DSI_REG(DSI1_ID),
  604. };
  605. static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
  606. {
  607. int i;
  608. if (dsi->port == 0) {
  609. for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
  610. DRM_INFO("0x%04x (%s): 0x%08x\n",
  611. dsi0_regs[i].reg, dsi0_regs[i].name,
  612. DSI_READ(dsi0_regs[i].reg));
  613. }
  614. } else {
  615. for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
  616. DRM_INFO("0x%04x (%s): 0x%08x\n",
  617. dsi1_regs[i].reg, dsi1_regs[i].name,
  618. DSI_READ(dsi1_regs[i].reg));
  619. }
  620. }
  621. }
  622. #ifdef CONFIG_DEBUG_FS
  623. int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
  624. {
  625. struct drm_info_node *node = (struct drm_info_node *)m->private;
  626. struct drm_device *drm = node->minor->dev;
  627. struct vc4_dev *vc4 = to_vc4_dev(drm);
  628. int dsi_index = (uintptr_t)node->info_ent->data;
  629. struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
  630. int i;
  631. if (!dsi)
  632. return 0;
  633. if (dsi->port == 0) {
  634. for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
  635. seq_printf(m, "0x%04x (%s): 0x%08x\n",
  636. dsi0_regs[i].reg, dsi0_regs[i].name,
  637. DSI_READ(dsi0_regs[i].reg));
  638. }
  639. } else {
  640. for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
  641. seq_printf(m, "0x%04x (%s): 0x%08x\n",
  642. dsi1_regs[i].reg, dsi1_regs[i].name,
  643. DSI_READ(dsi1_regs[i].reg));
  644. }
  645. }
  646. return 0;
  647. }
  648. #endif
  649. static enum drm_connector_status
  650. vc4_dsi_connector_detect(struct drm_connector *connector, bool force)
  651. {
  652. struct vc4_dsi_connector *vc4_connector =
  653. to_vc4_dsi_connector(connector);
  654. struct vc4_dsi *dsi = vc4_connector->dsi;
  655. if (dsi->panel)
  656. return connector_status_connected;
  657. else
  658. return connector_status_disconnected;
  659. }
  660. static void vc4_dsi_connector_destroy(struct drm_connector *connector)
  661. {
  662. drm_connector_unregister(connector);
  663. drm_connector_cleanup(connector);
  664. }
  665. static int vc4_dsi_connector_get_modes(struct drm_connector *connector)
  666. {
  667. struct vc4_dsi_connector *vc4_connector =
  668. to_vc4_dsi_connector(connector);
  669. struct vc4_dsi *dsi = vc4_connector->dsi;
  670. if (dsi->panel)
  671. return drm_panel_get_modes(dsi->panel);
  672. return 0;
  673. }
  674. static const struct drm_connector_funcs vc4_dsi_connector_funcs = {
  675. .dpms = drm_atomic_helper_connector_dpms,
  676. .detect = vc4_dsi_connector_detect,
  677. .fill_modes = drm_helper_probe_single_connector_modes,
  678. .destroy = vc4_dsi_connector_destroy,
  679. .reset = drm_atomic_helper_connector_reset,
  680. .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
  681. .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
  682. };
  683. static const struct drm_connector_helper_funcs vc4_dsi_connector_helper_funcs = {
  684. .get_modes = vc4_dsi_connector_get_modes,
  685. };
  686. static struct drm_connector *vc4_dsi_connector_init(struct drm_device *dev,
  687. struct vc4_dsi *dsi)
  688. {
  689. struct drm_connector *connector = NULL;
  690. struct vc4_dsi_connector *dsi_connector;
  691. int ret = 0;
  692. dsi_connector = devm_kzalloc(dev->dev, sizeof(*dsi_connector),
  693. GFP_KERNEL);
  694. if (!dsi_connector) {
  695. ret = -ENOMEM;
  696. goto fail;
  697. }
  698. connector = &dsi_connector->base;
  699. dsi_connector->dsi = dsi;
  700. drm_connector_init(dev, connector, &vc4_dsi_connector_funcs,
  701. DRM_MODE_CONNECTOR_DSI);
  702. drm_connector_helper_add(connector, &vc4_dsi_connector_helper_funcs);
  703. connector->polled = 0;
  704. connector->interlace_allowed = 0;
  705. connector->doublescan_allowed = 0;
  706. drm_mode_connector_attach_encoder(connector, dsi->encoder);
  707. return connector;
  708. fail:
  709. if (connector)
  710. vc4_dsi_connector_destroy(connector);
  711. return ERR_PTR(ret);
  712. }
  713. static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
  714. {
  715. drm_encoder_cleanup(encoder);
  716. }
  717. static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
  718. .destroy = vc4_dsi_encoder_destroy,
  719. };
  720. static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
  721. {
  722. u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
  723. if (latch)
  724. afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
  725. else
  726. afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
  727. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  728. }
  729. /* Enters or exits Ultra Low Power State. */
  730. static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
  731. {
  732. bool continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
  733. u32 phyc_ulps = ((continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
  734. DSI_PHYC_DLANE0_ULPS |
  735. (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
  736. (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
  737. (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
  738. u32 stat_ulps = ((continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
  739. DSI1_STAT_PHY_D0_ULPS |
  740. (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
  741. (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
  742. (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
  743. u32 stat_stop = ((continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
  744. DSI1_STAT_PHY_D0_STOP |
  745. (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
  746. (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
  747. (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
  748. int ret;
  749. DSI_PORT_WRITE(STAT, stat_ulps);
  750. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
  751. ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
  752. if (ret) {
  753. dev_warn(&dsi->pdev->dev,
  754. "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
  755. DSI_PORT_READ(STAT));
  756. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  757. vc4_dsi_latch_ulps(dsi, false);
  758. return;
  759. }
  760. /* The DSI module can't be disabled while the module is
  761. * generating ULPS state. So, to be able to disable the
  762. * module, we have the AFE latch the ULPS state and continue
  763. * on to having the module enter STOP.
  764. */
  765. vc4_dsi_latch_ulps(dsi, ulps);
  766. DSI_PORT_WRITE(STAT, stat_stop);
  767. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  768. ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
  769. if (ret) {
  770. dev_warn(&dsi->pdev->dev,
  771. "Timeout waiting for DSI STOP entry: STAT 0x%08x",
  772. DSI_PORT_READ(STAT));
  773. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  774. return;
  775. }
  776. }
  777. static u32
  778. dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
  779. {
  780. /* The HS timings have to be rounded up to a multiple of 8
  781. * because we're using the byte clock.
  782. */
  783. return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
  784. }
  785. /* ESC always runs at 100Mhz. */
  786. #define ESC_TIME_NS 10
  787. static u32
  788. dsi_esc_timing(u32 ns)
  789. {
  790. return DIV_ROUND_UP(ns, ESC_TIME_NS);
  791. }
  792. static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
  793. {
  794. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  795. struct vc4_dsi *dsi = vc4_encoder->dsi;
  796. struct device *dev = &dsi->pdev->dev;
  797. drm_panel_disable(dsi->panel);
  798. vc4_dsi_ulps(dsi, true);
  799. drm_panel_unprepare(dsi->panel);
  800. clk_disable_unprepare(dsi->pll_phy_clock);
  801. clk_disable_unprepare(dsi->escape_clock);
  802. clk_disable_unprepare(dsi->pixel_clock);
  803. pm_runtime_put(dev);
  804. }
  805. static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
  806. {
  807. struct drm_display_mode *mode = &encoder->crtc->mode;
  808. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  809. struct vc4_dsi *dsi = vc4_encoder->dsi;
  810. struct device *dev = &dsi->pdev->dev;
  811. u32 format = 0, divider = 0;
  812. bool debug_dump_regs = false;
  813. unsigned long hs_clock;
  814. u32 ui_ns;
  815. /* Minimum LP state duration in escape clock cycles. */
  816. u32 lpx = dsi_esc_timing(60);
  817. unsigned long pixel_clock_hz = mode->clock * 1000;
  818. unsigned long dsip_clock;
  819. unsigned long phy_clock;
  820. int ret;
  821. ret = pm_runtime_get_sync(dev);
  822. if (ret) {
  823. DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
  824. return;
  825. }
  826. ret = drm_panel_prepare(dsi->panel);
  827. if (ret) {
  828. DRM_ERROR("Panel failed to prepare\n");
  829. return;
  830. }
  831. if (debug_dump_regs) {
  832. DRM_INFO("DSI regs before:\n");
  833. vc4_dsi_dump_regs(dsi);
  834. }
  835. switch (dsi->format) {
  836. case MIPI_DSI_FMT_RGB888:
  837. format = DSI_PFORMAT_RGB888;
  838. divider = 24 / dsi->lanes;
  839. break;
  840. case MIPI_DSI_FMT_RGB666:
  841. format = DSI_PFORMAT_RGB666;
  842. divider = 24 / dsi->lanes;
  843. break;
  844. case MIPI_DSI_FMT_RGB666_PACKED:
  845. format = DSI_PFORMAT_RGB666_PACKED;
  846. divider = 18 / dsi->lanes;
  847. break;
  848. case MIPI_DSI_FMT_RGB565:
  849. format = DSI_PFORMAT_RGB565;
  850. divider = 16 / dsi->lanes;
  851. break;
  852. }
  853. phy_clock = pixel_clock_hz * divider;
  854. ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
  855. if (ret) {
  856. dev_err(&dsi->pdev->dev,
  857. "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
  858. }
  859. /* Reset the DSI and all its fifos. */
  860. DSI_PORT_WRITE(CTRL,
  861. DSI_CTRL_SOFT_RESET_CFG |
  862. DSI_PORT_BIT(CTRL_RESET_FIFOS));
  863. DSI_PORT_WRITE(CTRL,
  864. DSI_CTRL_HSDT_EOT_DISABLE |
  865. DSI_CTRL_RX_LPDT_EOT_DISABLE);
  866. /* Clear all stat bits so we see what has happened during enable. */
  867. DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
  868. /* Set AFE CTR00/CTR1 to release powerdown of analog. */
  869. if (dsi->port == 0) {
  870. u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
  871. VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
  872. if (dsi->lanes < 2)
  873. afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
  874. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
  875. afec0 |= DSI0_PHY_AFEC0_RESET;
  876. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  877. DSI_PORT_WRITE(PHY_AFEC1,
  878. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
  879. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
  880. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
  881. } else {
  882. u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
  883. VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
  884. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
  885. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
  886. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
  887. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
  888. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
  889. if (dsi->lanes < 4)
  890. afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
  891. if (dsi->lanes < 3)
  892. afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
  893. if (dsi->lanes < 2)
  894. afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
  895. afec0 |= DSI1_PHY_AFEC0_RESET;
  896. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  897. DSI_PORT_WRITE(PHY_AFEC1, 0);
  898. /* AFEC reset hold time */
  899. mdelay(1);
  900. }
  901. ret = clk_prepare_enable(dsi->escape_clock);
  902. if (ret) {
  903. DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
  904. return;
  905. }
  906. ret = clk_prepare_enable(dsi->pll_phy_clock);
  907. if (ret) {
  908. DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
  909. return;
  910. }
  911. hs_clock = clk_get_rate(dsi->pll_phy_clock);
  912. /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
  913. * not the pixel clock rate. DSIxP take from the APHY's byte,
  914. * DDR2, or DDR4 clock (we use byte) and feed into the PV at
  915. * that rate. Separately, a value derived from PIX_CLK_DIV
  916. * and HS_CLKC is fed into the PV to divide down to the actual
  917. * pixel clock for pushing pixels into DSI.
  918. */
  919. dsip_clock = phy_clock / 8;
  920. ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
  921. if (ret) {
  922. dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
  923. dsip_clock, ret);
  924. }
  925. ret = clk_prepare_enable(dsi->pixel_clock);
  926. if (ret) {
  927. DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
  928. return;
  929. }
  930. /* How many ns one DSI unit interval is. Note that the clock
  931. * is DDR, so there's an extra divide by 2.
  932. */
  933. ui_ns = DIV_ROUND_UP(500000000, hs_clock);
  934. DSI_PORT_WRITE(HS_CLT0,
  935. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
  936. DSI_HS_CLT0_CZERO) |
  937. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
  938. DSI_HS_CLT0_CPRE) |
  939. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
  940. DSI_HS_CLT0_CPREP));
  941. DSI_PORT_WRITE(HS_CLT1,
  942. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
  943. DSI_HS_CLT1_CTRAIL) |
  944. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
  945. DSI_HS_CLT1_CPOST));
  946. DSI_PORT_WRITE(HS_CLT2,
  947. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
  948. DSI_HS_CLT2_WUP));
  949. DSI_PORT_WRITE(HS_DLT3,
  950. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
  951. DSI_HS_DLT3_EXIT) |
  952. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
  953. DSI_HS_DLT3_ZERO) |
  954. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
  955. DSI_HS_DLT3_PRE));
  956. DSI_PORT_WRITE(HS_DLT4,
  957. VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
  958. DSI_HS_DLT4_LPX) |
  959. VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
  960. dsi_hs_timing(ui_ns, 60, 4)),
  961. DSI_HS_DLT4_TRAIL) |
  962. VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
  963. DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000, 5000),
  964. DSI_HS_DLT5_INIT));
  965. DSI_PORT_WRITE(HS_DLT6,
  966. VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
  967. VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
  968. VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
  969. VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
  970. DSI_PORT_WRITE(HS_DLT7,
  971. VC4_SET_FIELD(dsi_esc_timing(1000000),
  972. DSI_HS_DLT7_LP_WUP));
  973. DSI_PORT_WRITE(PHYC,
  974. DSI_PHYC_DLANE0_ENABLE |
  975. (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
  976. (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
  977. (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
  978. DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
  979. ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
  980. 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
  981. (dsi->port == 0 ?
  982. VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
  983. VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
  984. DSI_PORT_WRITE(CTRL,
  985. DSI_PORT_READ(CTRL) |
  986. DSI_CTRL_CAL_BYTE);
  987. /* HS timeout in HS clock cycles: disabled. */
  988. DSI_PORT_WRITE(HSTX_TO_CNT, 0);
  989. /* LP receive timeout in HS clocks. */
  990. DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
  991. /* Bus turnaround timeout */
  992. DSI_PORT_WRITE(TA_TO_CNT, 100000);
  993. /* Display reset sequence timeout */
  994. DSI_PORT_WRITE(PR_TO_CNT, 100000);
  995. if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
  996. DSI_PORT_WRITE(DISP0_CTRL,
  997. VC4_SET_FIELD(divider, DSI_DISP0_PIX_CLK_DIV) |
  998. VC4_SET_FIELD(format, DSI_DISP0_PFORMAT) |
  999. VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
  1000. DSI_DISP0_LP_STOP_CTRL) |
  1001. DSI_DISP0_ST_END |
  1002. DSI_DISP0_ENABLE);
  1003. } else {
  1004. DSI_PORT_WRITE(DISP0_CTRL,
  1005. DSI_DISP0_COMMAND_MODE |
  1006. DSI_DISP0_ENABLE);
  1007. }
  1008. /* Set up DISP1 for transferring long command payloads through
  1009. * the pixfifo.
  1010. */
  1011. DSI_PORT_WRITE(DISP1_CTRL,
  1012. VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
  1013. DSI_DISP1_PFORMAT) |
  1014. DSI_DISP1_ENABLE);
  1015. /* Ungate the block. */
  1016. if (dsi->port == 0)
  1017. DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
  1018. else
  1019. DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
  1020. /* Bring AFE out of reset. */
  1021. if (dsi->port == 0) {
  1022. } else {
  1023. DSI_PORT_WRITE(PHY_AFEC0,
  1024. DSI_PORT_READ(PHY_AFEC0) &
  1025. ~DSI1_PHY_AFEC0_RESET);
  1026. }
  1027. vc4_dsi_ulps(dsi, false);
  1028. if (debug_dump_regs) {
  1029. DRM_INFO("DSI regs after:\n");
  1030. vc4_dsi_dump_regs(dsi);
  1031. }
  1032. ret = drm_panel_enable(dsi->panel);
  1033. if (ret) {
  1034. DRM_ERROR("Panel failed to enable\n");
  1035. drm_panel_unprepare(dsi->panel);
  1036. return;
  1037. }
  1038. }
  1039. static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
  1040. const struct mipi_dsi_msg *msg)
  1041. {
  1042. struct vc4_dsi *dsi = host_to_dsi(host);
  1043. struct mipi_dsi_packet packet;
  1044. u32 pkth = 0, pktc = 0;
  1045. int i, ret;
  1046. bool is_long = mipi_dsi_packet_format_is_long(msg->type);
  1047. u32 cmd_fifo_len = 0, pix_fifo_len = 0;
  1048. mipi_dsi_create_packet(&packet, msg);
  1049. pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
  1050. pkth |= VC4_SET_FIELD(packet.header[1] |
  1051. (packet.header[2] << 8),
  1052. DSI_TXPKT1H_BC_PARAM);
  1053. if (is_long) {
  1054. /* Divide data across the various FIFOs we have available.
  1055. * The command FIFO takes byte-oriented data, but is of
  1056. * limited size. The pixel FIFO (never actually used for
  1057. * pixel data in reality) is word oriented, and substantially
  1058. * larger. So, we use the pixel FIFO for most of the data,
  1059. * sending the residual bytes in the command FIFO at the start.
  1060. *
  1061. * With this arrangement, the command FIFO will never get full.
  1062. */
  1063. if (packet.payload_length <= 16) {
  1064. cmd_fifo_len = packet.payload_length;
  1065. pix_fifo_len = 0;
  1066. } else {
  1067. cmd_fifo_len = (packet.payload_length %
  1068. DSI_PIX_FIFO_WIDTH);
  1069. pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
  1070. DSI_PIX_FIFO_WIDTH);
  1071. }
  1072. WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
  1073. pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
  1074. }
  1075. if (msg->rx_len) {
  1076. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
  1077. DSI_TXPKT1C_CMD_CTRL);
  1078. } else {
  1079. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
  1080. DSI_TXPKT1C_CMD_CTRL);
  1081. }
  1082. for (i = 0; i < cmd_fifo_len; i++)
  1083. DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
  1084. for (i = 0; i < pix_fifo_len; i++) {
  1085. const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
  1086. DSI_PORT_WRITE(TXPKT_PIX_FIFO,
  1087. pix[0] |
  1088. pix[1] << 8 |
  1089. pix[2] << 16 |
  1090. pix[3] << 24);
  1091. }
  1092. if (msg->flags & MIPI_DSI_MSG_USE_LPM)
  1093. pktc |= DSI_TXPKT1C_CMD_MODE_LP;
  1094. if (is_long)
  1095. pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
  1096. /* Send one copy of the packet. Larger repeats are used for pixel
  1097. * data in command mode.
  1098. */
  1099. pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
  1100. pktc |= DSI_TXPKT1C_CMD_EN;
  1101. if (pix_fifo_len) {
  1102. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
  1103. DSI_TXPKT1C_DISPLAY_NO);
  1104. } else {
  1105. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
  1106. DSI_TXPKT1C_DISPLAY_NO);
  1107. }
  1108. /* Enable the appropriate interrupt for the transfer completion. */
  1109. dsi->xfer_result = 0;
  1110. reinit_completion(&dsi->xfer_completion);
  1111. DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
  1112. if (msg->rx_len) {
  1113. DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
  1114. DSI1_INT_PHY_DIR_RTF));
  1115. } else {
  1116. DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
  1117. DSI1_INT_TXPKT1_DONE));
  1118. }
  1119. /* Send the packet. */
  1120. DSI_PORT_WRITE(TXPKT1H, pkth);
  1121. DSI_PORT_WRITE(TXPKT1C, pktc);
  1122. if (!wait_for_completion_timeout(&dsi->xfer_completion,
  1123. msecs_to_jiffies(1000))) {
  1124. dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
  1125. dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
  1126. DSI_PORT_READ(INT_STAT));
  1127. ret = -ETIMEDOUT;
  1128. } else {
  1129. ret = dsi->xfer_result;
  1130. }
  1131. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1132. if (ret)
  1133. goto reset_fifo_and_return;
  1134. if (ret == 0 && msg->rx_len) {
  1135. u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
  1136. u8 *msg_rx = msg->rx_buf;
  1137. if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
  1138. u32 rxlen = VC4_GET_FIELD(rxpkt1h,
  1139. DSI_RXPKT1H_BC_PARAM);
  1140. if (rxlen != msg->rx_len) {
  1141. DRM_ERROR("DSI returned %db, expecting %db\n",
  1142. rxlen, (int)msg->rx_len);
  1143. ret = -ENXIO;
  1144. goto reset_fifo_and_return;
  1145. }
  1146. for (i = 0; i < msg->rx_len; i++)
  1147. msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
  1148. } else {
  1149. /* FINISHME: Handle AWER */
  1150. msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
  1151. DSI_RXPKT1H_SHORT_0);
  1152. if (msg->rx_len > 1) {
  1153. msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
  1154. DSI_RXPKT1H_SHORT_1);
  1155. }
  1156. }
  1157. }
  1158. return ret;
  1159. reset_fifo_and_return:
  1160. DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
  1161. DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
  1162. udelay(1);
  1163. DSI_PORT_WRITE(CTRL,
  1164. DSI_PORT_READ(CTRL) |
  1165. DSI_PORT_BIT(CTRL_RESET_FIFOS));
  1166. DSI_PORT_WRITE(TXPKT1C, 0);
  1167. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1168. return ret;
  1169. }
  1170. static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
  1171. struct mipi_dsi_device *device)
  1172. {
  1173. struct vc4_dsi *dsi = host_to_dsi(host);
  1174. int ret = 0;
  1175. dsi->lanes = device->lanes;
  1176. dsi->channel = device->channel;
  1177. dsi->format = device->format;
  1178. dsi->mode_flags = device->mode_flags;
  1179. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
  1180. dev_err(&dsi->pdev->dev,
  1181. "Only VIDEO mode panels supported currently.\n");
  1182. return 0;
  1183. }
  1184. dsi->panel = of_drm_find_panel(device->dev.of_node);
  1185. if (!dsi->panel)
  1186. return 0;
  1187. ret = drm_panel_attach(dsi->panel, dsi->connector);
  1188. if (ret != 0)
  1189. return ret;
  1190. drm_helper_hpd_irq_event(dsi->connector->dev);
  1191. return 0;
  1192. }
  1193. static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
  1194. struct mipi_dsi_device *device)
  1195. {
  1196. struct vc4_dsi *dsi = host_to_dsi(host);
  1197. if (dsi->panel) {
  1198. int ret = drm_panel_detach(dsi->panel);
  1199. if (ret)
  1200. return ret;
  1201. dsi->panel = NULL;
  1202. drm_helper_hpd_irq_event(dsi->connector->dev);
  1203. }
  1204. return 0;
  1205. }
  1206. static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
  1207. .attach = vc4_dsi_host_attach,
  1208. .detach = vc4_dsi_host_detach,
  1209. .transfer = vc4_dsi_host_transfer,
  1210. };
  1211. static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
  1212. .disable = vc4_dsi_encoder_disable,
  1213. .enable = vc4_dsi_encoder_enable,
  1214. };
  1215. static const struct of_device_id vc4_dsi_dt_match[] = {
  1216. { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
  1217. {}
  1218. };
  1219. static void dsi_handle_error(struct vc4_dsi *dsi,
  1220. irqreturn_t *ret, u32 stat, u32 bit,
  1221. const char *type)
  1222. {
  1223. if (!(stat & bit))
  1224. return;
  1225. DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
  1226. *ret = IRQ_HANDLED;
  1227. }
  1228. static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
  1229. {
  1230. struct vc4_dsi *dsi = data;
  1231. u32 stat = DSI_PORT_READ(INT_STAT);
  1232. irqreturn_t ret = IRQ_NONE;
  1233. DSI_PORT_WRITE(INT_STAT, stat);
  1234. dsi_handle_error(dsi, &ret, stat,
  1235. DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
  1236. dsi_handle_error(dsi, &ret, stat,
  1237. DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
  1238. dsi_handle_error(dsi, &ret, stat,
  1239. DSI1_INT_ERR_CONT_LP0, "LP0 contention");
  1240. dsi_handle_error(dsi, &ret, stat,
  1241. DSI1_INT_ERR_CONT_LP1, "LP1 contention");
  1242. dsi_handle_error(dsi, &ret, stat,
  1243. DSI1_INT_HSTX_TO, "HSTX timeout");
  1244. dsi_handle_error(dsi, &ret, stat,
  1245. DSI1_INT_LPRX_TO, "LPRX timeout");
  1246. dsi_handle_error(dsi, &ret, stat,
  1247. DSI1_INT_TA_TO, "turnaround timeout");
  1248. dsi_handle_error(dsi, &ret, stat,
  1249. DSI1_INT_PR_TO, "peripheral reset timeout");
  1250. if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
  1251. complete(&dsi->xfer_completion);
  1252. ret = IRQ_HANDLED;
  1253. } else if (stat & DSI1_INT_HSTX_TO) {
  1254. complete(&dsi->xfer_completion);
  1255. dsi->xfer_result = -ETIMEDOUT;
  1256. ret = IRQ_HANDLED;
  1257. }
  1258. return ret;
  1259. }
  1260. /**
  1261. * Exposes clocks generated by the analog PHY that are consumed by
  1262. * CPRMAN (clk-bcm2835.c).
  1263. */
  1264. static int
  1265. vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
  1266. {
  1267. struct device *dev = &dsi->pdev->dev;
  1268. const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
  1269. static const struct {
  1270. const char *dsi0_name, *dsi1_name;
  1271. int div;
  1272. } phy_clocks[] = {
  1273. { "dsi0_byte", "dsi1_byte", 8 },
  1274. { "dsi0_ddr2", "dsi1_ddr2", 4 },
  1275. { "dsi0_ddr", "dsi1_ddr", 2 },
  1276. };
  1277. int i;
  1278. dsi->clk_onecell = devm_kzalloc(dev,
  1279. sizeof(*dsi->clk_onecell) +
  1280. ARRAY_SIZE(phy_clocks) *
  1281. sizeof(struct clk_hw *),
  1282. GFP_KERNEL);
  1283. if (!dsi->clk_onecell)
  1284. return -ENOMEM;
  1285. dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
  1286. for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
  1287. struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
  1288. struct clk_init_data init;
  1289. int ret;
  1290. /* We just use core fixed factor clock ops for the PHY
  1291. * clocks. The clocks are actually gated by the
  1292. * PHY_AFEC0_DDRCLK_EN bits, which we should be
  1293. * setting if we use the DDR/DDR2 clocks. However,
  1294. * vc4_dsi_encoder_enable() is setting up both AFEC0,
  1295. * setting both our parent DSI PLL's rate and this
  1296. * clock's rate, so it knows if DDR/DDR2 are going to
  1297. * be used and could enable the gates itself.
  1298. */
  1299. fix->mult = 1;
  1300. fix->div = phy_clocks[i].div;
  1301. fix->hw.init = &init;
  1302. memset(&init, 0, sizeof(init));
  1303. init.parent_names = &parent_name;
  1304. init.num_parents = 1;
  1305. if (dsi->port == 1)
  1306. init.name = phy_clocks[i].dsi1_name;
  1307. else
  1308. init.name = phy_clocks[i].dsi0_name;
  1309. init.ops = &clk_fixed_factor_ops;
  1310. ret = devm_clk_hw_register(dev, &fix->hw);
  1311. if (ret)
  1312. return ret;
  1313. dsi->clk_onecell->hws[i] = &fix->hw;
  1314. }
  1315. return of_clk_add_hw_provider(dev->of_node,
  1316. of_clk_hw_onecell_get,
  1317. dsi->clk_onecell);
  1318. }
  1319. static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
  1320. {
  1321. struct platform_device *pdev = to_platform_device(dev);
  1322. struct drm_device *drm = dev_get_drvdata(master);
  1323. struct vc4_dev *vc4 = to_vc4_dev(drm);
  1324. struct vc4_dsi *dsi;
  1325. struct vc4_dsi_encoder *vc4_dsi_encoder;
  1326. const struct of_device_id *match;
  1327. dma_cap_mask_t dma_mask;
  1328. int ret;
  1329. dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
  1330. if (!dsi)
  1331. return -ENOMEM;
  1332. match = of_match_device(vc4_dsi_dt_match, dev);
  1333. if (!match)
  1334. return -ENODEV;
  1335. dsi->port = (uintptr_t)match->data;
  1336. vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
  1337. GFP_KERNEL);
  1338. if (!vc4_dsi_encoder)
  1339. return -ENOMEM;
  1340. vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
  1341. vc4_dsi_encoder->dsi = dsi;
  1342. dsi->encoder = &vc4_dsi_encoder->base.base;
  1343. dsi->pdev = pdev;
  1344. dsi->regs = vc4_ioremap_regs(pdev, 0);
  1345. if (IS_ERR(dsi->regs))
  1346. return PTR_ERR(dsi->regs);
  1347. if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
  1348. dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
  1349. DSI_PORT_READ(ID), DSI_ID_VALUE);
  1350. return -ENODEV;
  1351. }
  1352. /* DSI1 has a broken AXI slave that doesn't respond to writes
  1353. * from the ARM. It does handle writes from the DMA engine,
  1354. * so set up a channel for talking to it.
  1355. */
  1356. if (dsi->port == 1) {
  1357. dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
  1358. &dsi->reg_dma_paddr,
  1359. GFP_KERNEL);
  1360. if (!dsi->reg_dma_mem) {
  1361. DRM_ERROR("Failed to get DMA memory\n");
  1362. return -ENOMEM;
  1363. }
  1364. dma_cap_zero(dma_mask);
  1365. dma_cap_set(DMA_MEMCPY, dma_mask);
  1366. dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
  1367. if (IS_ERR(dsi->reg_dma_chan)) {
  1368. ret = PTR_ERR(dsi->reg_dma_chan);
  1369. if (ret != -EPROBE_DEFER)
  1370. DRM_ERROR("Failed to get DMA channel: %d\n",
  1371. ret);
  1372. return ret;
  1373. }
  1374. /* Get the physical address of the device's registers. The
  1375. * struct resource for the regs gives us the bus address
  1376. * instead.
  1377. */
  1378. dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
  1379. 0, NULL, NULL));
  1380. }
  1381. init_completion(&dsi->xfer_completion);
  1382. /* At startup enable error-reporting interrupts and nothing else. */
  1383. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1384. /* Clear any existing interrupt state. */
  1385. DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
  1386. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  1387. vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
  1388. if (ret) {
  1389. if (ret != -EPROBE_DEFER)
  1390. dev_err(dev, "Failed to get interrupt: %d\n", ret);
  1391. return ret;
  1392. }
  1393. dsi->escape_clock = devm_clk_get(dev, "escape");
  1394. if (IS_ERR(dsi->escape_clock)) {
  1395. ret = PTR_ERR(dsi->escape_clock);
  1396. if (ret != -EPROBE_DEFER)
  1397. dev_err(dev, "Failed to get escape clock: %d\n", ret);
  1398. return ret;
  1399. }
  1400. dsi->pll_phy_clock = devm_clk_get(dev, "phy");
  1401. if (IS_ERR(dsi->pll_phy_clock)) {
  1402. ret = PTR_ERR(dsi->pll_phy_clock);
  1403. if (ret != -EPROBE_DEFER)
  1404. dev_err(dev, "Failed to get phy clock: %d\n", ret);
  1405. return ret;
  1406. }
  1407. dsi->pixel_clock = devm_clk_get(dev, "pixel");
  1408. if (IS_ERR(dsi->pixel_clock)) {
  1409. ret = PTR_ERR(dsi->pixel_clock);
  1410. if (ret != -EPROBE_DEFER)
  1411. dev_err(dev, "Failed to get pixel clock: %d\n", ret);
  1412. return ret;
  1413. }
  1414. /* The esc clock rate is supposed to always be 100Mhz. */
  1415. ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
  1416. if (ret) {
  1417. dev_err(dev, "Failed to set esc clock: %d\n", ret);
  1418. return ret;
  1419. }
  1420. ret = vc4_dsi_init_phy_clocks(dsi);
  1421. if (ret)
  1422. return ret;
  1423. if (dsi->port == 1)
  1424. vc4->dsi1 = dsi;
  1425. drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
  1426. DRM_MODE_ENCODER_DSI, NULL);
  1427. drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
  1428. dsi->connector = vc4_dsi_connector_init(drm, dsi);
  1429. if (IS_ERR(dsi->connector)) {
  1430. ret = PTR_ERR(dsi->connector);
  1431. goto err_destroy_encoder;
  1432. }
  1433. dsi->dsi_host.ops = &vc4_dsi_host_ops;
  1434. dsi->dsi_host.dev = dev;
  1435. mipi_dsi_host_register(&dsi->dsi_host);
  1436. dev_set_drvdata(dev, dsi);
  1437. pm_runtime_enable(dev);
  1438. return 0;
  1439. err_destroy_encoder:
  1440. vc4_dsi_encoder_destroy(dsi->encoder);
  1441. return ret;
  1442. }
  1443. static void vc4_dsi_unbind(struct device *dev, struct device *master,
  1444. void *data)
  1445. {
  1446. struct drm_device *drm = dev_get_drvdata(master);
  1447. struct vc4_dev *vc4 = to_vc4_dev(drm);
  1448. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1449. pm_runtime_disable(dev);
  1450. vc4_dsi_connector_destroy(dsi->connector);
  1451. vc4_dsi_encoder_destroy(dsi->encoder);
  1452. mipi_dsi_host_unregister(&dsi->dsi_host);
  1453. clk_disable_unprepare(dsi->pll_phy_clock);
  1454. clk_disable_unprepare(dsi->escape_clock);
  1455. if (dsi->port == 1)
  1456. vc4->dsi1 = NULL;
  1457. }
  1458. static const struct component_ops vc4_dsi_ops = {
  1459. .bind = vc4_dsi_bind,
  1460. .unbind = vc4_dsi_unbind,
  1461. };
  1462. static int vc4_dsi_dev_probe(struct platform_device *pdev)
  1463. {
  1464. return component_add(&pdev->dev, &vc4_dsi_ops);
  1465. }
  1466. static int vc4_dsi_dev_remove(struct platform_device *pdev)
  1467. {
  1468. component_del(&pdev->dev, &vc4_dsi_ops);
  1469. return 0;
  1470. }
  1471. struct platform_driver vc4_dsi_driver = {
  1472. .probe = vc4_dsi_dev_probe,
  1473. .remove = vc4_dsi_dev_remove,
  1474. .driver = {
  1475. .name = "vc4_dsi",
  1476. .of_match_table = vc4_dsi_dt_match,
  1477. },
  1478. };