vc4_crtc.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092
  1. /*
  2. * Copyright (C) 2015 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. /**
  9. * DOC: VC4 CRTC module
  10. *
  11. * In VC4, the Pixel Valve is what most closely corresponds to the
  12. * DRM's concept of a CRTC. The PV generates video timings from the
  13. * output's clock plus its configuration. It pulls scaled pixels from
  14. * the HVS at that timing, and feeds it to the encoder.
  15. *
  16. * However, the DRM CRTC also collects the configuration of all the
  17. * DRM planes attached to it. As a result, this file also manages
  18. * setup of the VC4 HVS's display elements on the CRTC.
  19. *
  20. * The 2835 has 3 different pixel valves. pv0 in the audio power
  21. * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
  22. * image domain can feed either HDMI or the SDTV controller. The
  23. * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  24. * SDTV, etc.) according to which output type is chosen in the mux.
  25. *
  26. * For power management, the pixel valve's registers are all clocked
  27. * by the AXI clock, while the timings and FIFOs make use of the
  28. * output-specific clock. Since the encoders also directly consume
  29. * the CPRMAN clocks, and know what timings they need, they are the
  30. * ones that set the clock.
  31. */
  32. #include "drm_atomic.h"
  33. #include "drm_atomic_helper.h"
  34. #include "drm_crtc_helper.h"
  35. #include "linux/clk.h"
  36. #include "drm_fb_cma_helper.h"
  37. #include "linux/component.h"
  38. #include "linux/of_device.h"
  39. #include "vc4_drv.h"
  40. #include "vc4_regs.h"
  41. struct vc4_crtc {
  42. struct drm_crtc base;
  43. const struct vc4_crtc_data *data;
  44. void __iomem *regs;
  45. /* Timestamp at start of vblank irq - unaffected by lock delays. */
  46. ktime_t t_vblank;
  47. /* Which HVS channel we're using for our CRTC. */
  48. int channel;
  49. u8 lut_r[256];
  50. u8 lut_g[256];
  51. u8 lut_b[256];
  52. /* Size in pixels of the COB memory allocated to this CRTC. */
  53. u32 cob_size;
  54. struct drm_pending_vblank_event *event;
  55. };
  56. struct vc4_crtc_state {
  57. struct drm_crtc_state base;
  58. /* Dlist area for this CRTC configuration. */
  59. struct drm_mm_node mm;
  60. };
  61. static inline struct vc4_crtc *
  62. to_vc4_crtc(struct drm_crtc *crtc)
  63. {
  64. return (struct vc4_crtc *)crtc;
  65. }
  66. static inline struct vc4_crtc_state *
  67. to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  68. {
  69. return (struct vc4_crtc_state *)crtc_state;
  70. }
  71. struct vc4_crtc_data {
  72. /* Which channel of the HVS this pixelvalve sources from. */
  73. int hvs_channel;
  74. enum vc4_encoder_type encoder_types[4];
  75. };
  76. #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  77. #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  78. #define CRTC_REG(reg) { reg, #reg }
  79. static const struct {
  80. u32 reg;
  81. const char *name;
  82. } crtc_regs[] = {
  83. CRTC_REG(PV_CONTROL),
  84. CRTC_REG(PV_V_CONTROL),
  85. CRTC_REG(PV_VSYNCD_EVEN),
  86. CRTC_REG(PV_HORZA),
  87. CRTC_REG(PV_HORZB),
  88. CRTC_REG(PV_VERTA),
  89. CRTC_REG(PV_VERTB),
  90. CRTC_REG(PV_VERTA_EVEN),
  91. CRTC_REG(PV_VERTB_EVEN),
  92. CRTC_REG(PV_INTEN),
  93. CRTC_REG(PV_INTSTAT),
  94. CRTC_REG(PV_STAT),
  95. CRTC_REG(PV_HACT_ACT),
  96. };
  97. static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
  98. {
  99. int i;
  100. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  101. DRM_INFO("0x%04x (%s): 0x%08x\n",
  102. crtc_regs[i].reg, crtc_regs[i].name,
  103. CRTC_READ(crtc_regs[i].reg));
  104. }
  105. }
  106. #ifdef CONFIG_DEBUG_FS
  107. int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
  108. {
  109. struct drm_info_node *node = (struct drm_info_node *)m->private;
  110. struct drm_device *dev = node->minor->dev;
  111. int crtc_index = (uintptr_t)node->info_ent->data;
  112. struct drm_crtc *crtc;
  113. struct vc4_crtc *vc4_crtc;
  114. int i;
  115. i = 0;
  116. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  117. if (i == crtc_index)
  118. break;
  119. i++;
  120. }
  121. if (!crtc)
  122. return 0;
  123. vc4_crtc = to_vc4_crtc(crtc);
  124. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  125. seq_printf(m, "%s (0x%04x): 0x%08x\n",
  126. crtc_regs[i].name, crtc_regs[i].reg,
  127. CRTC_READ(crtc_regs[i].reg));
  128. }
  129. return 0;
  130. }
  131. #endif
  132. int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  133. unsigned int flags, int *vpos, int *hpos,
  134. ktime_t *stime, ktime_t *etime,
  135. const struct drm_display_mode *mode)
  136. {
  137. struct vc4_dev *vc4 = to_vc4_dev(dev);
  138. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  139. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  140. u32 val;
  141. int fifo_lines;
  142. int vblank_lines;
  143. int ret = 0;
  144. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  145. /* Get optional system timestamp before query. */
  146. if (stime)
  147. *stime = ktime_get();
  148. /*
  149. * Read vertical scanline which is currently composed for our
  150. * pixelvalve by the HVS, and also the scaler status.
  151. */
  152. val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
  153. /* Get optional system timestamp after query. */
  154. if (etime)
  155. *etime = ktime_get();
  156. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  157. /* Vertical position of hvs composed scanline. */
  158. *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
  159. *hpos = 0;
  160. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  161. *vpos /= 2;
  162. /* Use hpos to correct for field offset in interlaced mode. */
  163. if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
  164. *hpos += mode->crtc_htotal / 2;
  165. }
  166. /* This is the offset we need for translating hvs -> pv scanout pos. */
  167. fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
  168. if (fifo_lines > 0)
  169. ret |= DRM_SCANOUTPOS_VALID;
  170. /* HVS more than fifo_lines into frame for compositing? */
  171. if (*vpos > fifo_lines) {
  172. /*
  173. * We are in active scanout and can get some meaningful results
  174. * from HVS. The actual PV scanout can not trail behind more
  175. * than fifo_lines as that is the fifo's capacity. Assume that
  176. * in active scanout the HVS and PV work in lockstep wrt. HVS
  177. * refilling the fifo and PV consuming from the fifo, ie.
  178. * whenever the PV consumes and frees up a scanline in the
  179. * fifo, the HVS will immediately refill it, therefore
  180. * incrementing vpos. Therefore we choose HVS read position -
  181. * fifo size in scanlines as a estimate of the real scanout
  182. * position of the PV.
  183. */
  184. *vpos -= fifo_lines + 1;
  185. ret |= DRM_SCANOUTPOS_ACCURATE;
  186. return ret;
  187. }
  188. /*
  189. * Less: This happens when we are in vblank and the HVS, after getting
  190. * the VSTART restart signal from the PV, just started refilling its
  191. * fifo with new lines from the top-most lines of the new framebuffers.
  192. * The PV does not scan out in vblank, so does not remove lines from
  193. * the fifo, so the fifo will be full quickly and the HVS has to pause.
  194. * We can't get meaningful readings wrt. scanline position of the PV
  195. * and need to make things up in a approximative but consistent way.
  196. */
  197. ret |= DRM_SCANOUTPOS_IN_VBLANK;
  198. vblank_lines = mode->vtotal - mode->vdisplay;
  199. if (flags & DRM_CALLED_FROM_VBLIRQ) {
  200. /*
  201. * Assume the irq handler got called close to first
  202. * line of vblank, so PV has about a full vblank
  203. * scanlines to go, and as a base timestamp use the
  204. * one taken at entry into vblank irq handler, so it
  205. * is not affected by random delays due to lock
  206. * contention on event_lock or vblank_time lock in
  207. * the core.
  208. */
  209. *vpos = -vblank_lines;
  210. if (stime)
  211. *stime = vc4_crtc->t_vblank;
  212. if (etime)
  213. *etime = vc4_crtc->t_vblank;
  214. /*
  215. * If the HVS fifo is not yet full then we know for certain
  216. * we are at the very beginning of vblank, as the hvs just
  217. * started refilling, and the stime and etime timestamps
  218. * truly correspond to start of vblank.
  219. */
  220. if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
  221. ret |= DRM_SCANOUTPOS_ACCURATE;
  222. } else {
  223. /*
  224. * No clue where we are inside vblank. Return a vpos of zero,
  225. * which will cause calling code to just return the etime
  226. * timestamp uncorrected. At least this is no worse than the
  227. * standard fallback.
  228. */
  229. *vpos = 0;
  230. }
  231. return ret;
  232. }
  233. int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
  234. int *max_error, struct timeval *vblank_time,
  235. unsigned flags)
  236. {
  237. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  238. struct drm_crtc_state *state = crtc->state;
  239. /* Helper routine in DRM core does all the work: */
  240. return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
  241. vblank_time, flags,
  242. &state->adjusted_mode);
  243. }
  244. static void vc4_crtc_destroy(struct drm_crtc *crtc)
  245. {
  246. drm_crtc_cleanup(crtc);
  247. }
  248. static void
  249. vc4_crtc_lut_load(struct drm_crtc *crtc)
  250. {
  251. struct drm_device *dev = crtc->dev;
  252. struct vc4_dev *vc4 = to_vc4_dev(dev);
  253. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  254. u32 i;
  255. /* The LUT memory is laid out with each HVS channel in order,
  256. * each of which takes 256 writes for R, 256 for G, then 256
  257. * for B.
  258. */
  259. HVS_WRITE(SCALER_GAMADDR,
  260. SCALER_GAMADDR_AUTOINC |
  261. (vc4_crtc->channel * 3 * crtc->gamma_size));
  262. for (i = 0; i < crtc->gamma_size; i++)
  263. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
  264. for (i = 0; i < crtc->gamma_size; i++)
  265. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
  266. for (i = 0; i < crtc->gamma_size; i++)
  267. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
  268. }
  269. static int
  270. vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
  271. uint32_t size)
  272. {
  273. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  274. u32 i;
  275. for (i = 0; i < size; i++) {
  276. vc4_crtc->lut_r[i] = r[i] >> 8;
  277. vc4_crtc->lut_g[i] = g[i] >> 8;
  278. vc4_crtc->lut_b[i] = b[i] >> 8;
  279. }
  280. vc4_crtc_lut_load(crtc);
  281. return 0;
  282. }
  283. static u32 vc4_get_fifo_full_level(u32 format)
  284. {
  285. static const u32 fifo_len_bytes = 64;
  286. static const u32 hvs_latency_pix = 6;
  287. switch (format) {
  288. case PV_CONTROL_FORMAT_DSIV_16:
  289. case PV_CONTROL_FORMAT_DSIC_16:
  290. return fifo_len_bytes - 2 * hvs_latency_pix;
  291. case PV_CONTROL_FORMAT_DSIV_18:
  292. return fifo_len_bytes - 14;
  293. case PV_CONTROL_FORMAT_24:
  294. case PV_CONTROL_FORMAT_DSIV_24:
  295. default:
  296. return fifo_len_bytes - 3 * hvs_latency_pix;
  297. }
  298. }
  299. /*
  300. * Returns the encoder attached to the CRTC.
  301. *
  302. * VC4 can only scan out to one encoder at a time, while the DRM core
  303. * allows drivers to push pixels to more than one encoder from the
  304. * same CRTC.
  305. */
  306. static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
  307. {
  308. struct drm_connector *connector;
  309. drm_for_each_connector(connector, crtc->dev) {
  310. if (connector->state->crtc == crtc) {
  311. return connector->encoder;
  312. }
  313. }
  314. return NULL;
  315. }
  316. static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
  317. {
  318. struct drm_device *dev = crtc->dev;
  319. struct vc4_dev *vc4 = to_vc4_dev(dev);
  320. struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
  321. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  322. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  323. struct drm_crtc_state *state = crtc->state;
  324. struct drm_display_mode *mode = &state->adjusted_mode;
  325. bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
  326. u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
  327. bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
  328. vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
  329. u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
  330. bool debug_dump_regs = false;
  331. if (debug_dump_regs) {
  332. DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
  333. vc4_crtc_dump_regs(vc4_crtc);
  334. }
  335. /* Reset the PV fifo. */
  336. CRTC_WRITE(PV_CONTROL, 0);
  337. CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
  338. CRTC_WRITE(PV_CONTROL, 0);
  339. CRTC_WRITE(PV_HORZA,
  340. VC4_SET_FIELD((mode->htotal -
  341. mode->hsync_end) * pixel_rep,
  342. PV_HORZA_HBP) |
  343. VC4_SET_FIELD((mode->hsync_end -
  344. mode->hsync_start) * pixel_rep,
  345. PV_HORZA_HSYNC));
  346. CRTC_WRITE(PV_HORZB,
  347. VC4_SET_FIELD((mode->hsync_start -
  348. mode->hdisplay) * pixel_rep,
  349. PV_HORZB_HFP) |
  350. VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
  351. CRTC_WRITE(PV_VERTA,
  352. VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
  353. PV_VERTA_VBP) |
  354. VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
  355. PV_VERTA_VSYNC));
  356. CRTC_WRITE(PV_VERTB,
  357. VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
  358. PV_VERTB_VFP) |
  359. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  360. if (interlace) {
  361. CRTC_WRITE(PV_VERTA_EVEN,
  362. VC4_SET_FIELD(mode->crtc_vtotal -
  363. mode->crtc_vsync_end - 1,
  364. PV_VERTA_VBP) |
  365. VC4_SET_FIELD(mode->crtc_vsync_end -
  366. mode->crtc_vsync_start,
  367. PV_VERTA_VSYNC));
  368. CRTC_WRITE(PV_VERTB_EVEN,
  369. VC4_SET_FIELD(mode->crtc_vsync_start -
  370. mode->crtc_vdisplay,
  371. PV_VERTB_VFP) |
  372. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  373. /* We set up first field even mode for HDMI. VEC's
  374. * NTSC mode would want first field odd instead, once
  375. * we support it (to do so, set ODD_FIRST and put the
  376. * delay in VSYNCD_EVEN instead).
  377. */
  378. CRTC_WRITE(PV_V_CONTROL,
  379. PV_VCONTROL_CONTINUOUS |
  380. (is_dsi ? PV_VCONTROL_DSI : 0) |
  381. PV_VCONTROL_INTERLACE |
  382. VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
  383. PV_VCONTROL_ODD_DELAY));
  384. CRTC_WRITE(PV_VSYNCD_EVEN, 0);
  385. } else {
  386. CRTC_WRITE(PV_V_CONTROL,
  387. PV_VCONTROL_CONTINUOUS |
  388. (is_dsi ? PV_VCONTROL_DSI : 0));
  389. }
  390. CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
  391. CRTC_WRITE(PV_CONTROL,
  392. VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
  393. VC4_SET_FIELD(vc4_get_fifo_full_level(format),
  394. PV_CONTROL_FIFO_LEVEL) |
  395. VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
  396. PV_CONTROL_CLR_AT_START |
  397. PV_CONTROL_TRIGGER_UNDERFLOW |
  398. PV_CONTROL_WAIT_HSTART |
  399. VC4_SET_FIELD(vc4_encoder->clock_select,
  400. PV_CONTROL_CLK_SELECT) |
  401. PV_CONTROL_FIFO_CLR |
  402. PV_CONTROL_EN);
  403. HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
  404. SCALER_DISPBKGND_AUTOHS |
  405. SCALER_DISPBKGND_GAMMA |
  406. (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
  407. /* Reload the LUT, since the SRAMs would have been disabled if
  408. * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
  409. */
  410. vc4_crtc_lut_load(crtc);
  411. if (debug_dump_regs) {
  412. DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
  413. vc4_crtc_dump_regs(vc4_crtc);
  414. }
  415. }
  416. static void require_hvs_enabled(struct drm_device *dev)
  417. {
  418. struct vc4_dev *vc4 = to_vc4_dev(dev);
  419. WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
  420. SCALER_DISPCTRL_ENABLE);
  421. }
  422. static void vc4_crtc_disable(struct drm_crtc *crtc)
  423. {
  424. struct drm_device *dev = crtc->dev;
  425. struct vc4_dev *vc4 = to_vc4_dev(dev);
  426. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  427. u32 chan = vc4_crtc->channel;
  428. int ret;
  429. require_hvs_enabled(dev);
  430. /* Disable vblank irq handling before crtc is disabled. */
  431. drm_crtc_vblank_off(crtc);
  432. CRTC_WRITE(PV_V_CONTROL,
  433. CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
  434. ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
  435. WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
  436. if (HVS_READ(SCALER_DISPCTRLX(chan)) &
  437. SCALER_DISPCTRLX_ENABLE) {
  438. HVS_WRITE(SCALER_DISPCTRLX(chan),
  439. SCALER_DISPCTRLX_RESET);
  440. /* While the docs say that reset is self-clearing, it
  441. * seems it doesn't actually.
  442. */
  443. HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
  444. }
  445. /* Once we leave, the scaler should be disabled and its fifo empty. */
  446. WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
  447. WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
  448. SCALER_DISPSTATX_MODE) !=
  449. SCALER_DISPSTATX_MODE_DISABLED);
  450. WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
  451. (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
  452. SCALER_DISPSTATX_EMPTY);
  453. }
  454. static void vc4_crtc_enable(struct drm_crtc *crtc)
  455. {
  456. struct drm_device *dev = crtc->dev;
  457. struct vc4_dev *vc4 = to_vc4_dev(dev);
  458. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  459. struct drm_crtc_state *state = crtc->state;
  460. struct drm_display_mode *mode = &state->adjusted_mode;
  461. require_hvs_enabled(dev);
  462. /* Turn on the scaler, which will wait for vstart to start
  463. * compositing.
  464. */
  465. HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
  466. VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
  467. VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
  468. SCALER_DISPCTRLX_ENABLE);
  469. /* Turn on the pixel valve, which will emit the vstart signal. */
  470. CRTC_WRITE(PV_V_CONTROL,
  471. CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
  472. /* Enable vblank irq handling after crtc is started. */
  473. drm_crtc_vblank_on(crtc);
  474. }
  475. static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
  476. const struct drm_display_mode *mode,
  477. struct drm_display_mode *adjusted_mode)
  478. {
  479. /* Do not allow doublescan modes from user space */
  480. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
  481. DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
  482. crtc->base.id);
  483. return false;
  484. }
  485. return true;
  486. }
  487. static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
  488. struct drm_crtc_state *state)
  489. {
  490. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  491. struct drm_device *dev = crtc->dev;
  492. struct vc4_dev *vc4 = to_vc4_dev(dev);
  493. struct drm_plane *plane;
  494. unsigned long flags;
  495. const struct drm_plane_state *plane_state;
  496. u32 dlist_count = 0;
  497. int ret;
  498. /* The pixelvalve can only feed one encoder (and encoders are
  499. * 1:1 with connectors.)
  500. */
  501. if (hweight32(state->connector_mask) > 1)
  502. return -EINVAL;
  503. drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
  504. dlist_count += vc4_plane_dlist_size(plane_state);
  505. dlist_count++; /* Account for SCALER_CTL0_END. */
  506. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  507. ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
  508. dlist_count);
  509. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  510. if (ret)
  511. return ret;
  512. return 0;
  513. }
  514. static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
  515. struct drm_crtc_state *old_state)
  516. {
  517. struct drm_device *dev = crtc->dev;
  518. struct vc4_dev *vc4 = to_vc4_dev(dev);
  519. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  520. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  521. struct drm_plane *plane;
  522. bool debug_dump_regs = false;
  523. u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
  524. u32 __iomem *dlist_next = dlist_start;
  525. if (debug_dump_regs) {
  526. DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
  527. vc4_hvs_dump_state(dev);
  528. }
  529. /* Copy all the active planes' dlist contents to the hardware dlist. */
  530. drm_atomic_crtc_for_each_plane(plane, crtc) {
  531. dlist_next += vc4_plane_write_dlist(plane, dlist_next);
  532. }
  533. writel(SCALER_CTL0_END, dlist_next);
  534. dlist_next++;
  535. WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
  536. if (crtc->state->event) {
  537. unsigned long flags;
  538. crtc->state->event->pipe = drm_crtc_index(crtc);
  539. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  540. spin_lock_irqsave(&dev->event_lock, flags);
  541. vc4_crtc->event = crtc->state->event;
  542. crtc->state->event = NULL;
  543. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  544. vc4_state->mm.start);
  545. spin_unlock_irqrestore(&dev->event_lock, flags);
  546. } else {
  547. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  548. vc4_state->mm.start);
  549. }
  550. if (debug_dump_regs) {
  551. DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
  552. vc4_hvs_dump_state(dev);
  553. }
  554. }
  555. int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
  556. {
  557. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  558. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  559. CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
  560. return 0;
  561. }
  562. void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
  563. {
  564. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  565. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  566. CRTC_WRITE(PV_INTEN, 0);
  567. }
  568. /* Must be called with the event lock held */
  569. bool vc4_event_pending(struct drm_crtc *crtc)
  570. {
  571. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  572. return !!vc4_crtc->event;
  573. }
  574. static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
  575. {
  576. struct drm_crtc *crtc = &vc4_crtc->base;
  577. struct drm_device *dev = crtc->dev;
  578. struct vc4_dev *vc4 = to_vc4_dev(dev);
  579. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  580. u32 chan = vc4_crtc->channel;
  581. unsigned long flags;
  582. spin_lock_irqsave(&dev->event_lock, flags);
  583. if (vc4_crtc->event &&
  584. (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
  585. drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
  586. vc4_crtc->event = NULL;
  587. drm_crtc_vblank_put(crtc);
  588. }
  589. spin_unlock_irqrestore(&dev->event_lock, flags);
  590. }
  591. static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
  592. {
  593. struct vc4_crtc *vc4_crtc = data;
  594. u32 stat = CRTC_READ(PV_INTSTAT);
  595. irqreturn_t ret = IRQ_NONE;
  596. if (stat & PV_INT_VFP_START) {
  597. vc4_crtc->t_vblank = ktime_get();
  598. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  599. drm_crtc_handle_vblank(&vc4_crtc->base);
  600. vc4_crtc_handle_page_flip(vc4_crtc);
  601. ret = IRQ_HANDLED;
  602. }
  603. return ret;
  604. }
  605. struct vc4_async_flip_state {
  606. struct drm_crtc *crtc;
  607. struct drm_framebuffer *fb;
  608. struct drm_pending_vblank_event *event;
  609. struct vc4_seqno_cb cb;
  610. };
  611. /* Called when the V3D execution for the BO being flipped to is done, so that
  612. * we can actually update the plane's address to point to it.
  613. */
  614. static void
  615. vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
  616. {
  617. struct vc4_async_flip_state *flip_state =
  618. container_of(cb, struct vc4_async_flip_state, cb);
  619. struct drm_crtc *crtc = flip_state->crtc;
  620. struct drm_device *dev = crtc->dev;
  621. struct vc4_dev *vc4 = to_vc4_dev(dev);
  622. struct drm_plane *plane = crtc->primary;
  623. vc4_plane_async_set_fb(plane, flip_state->fb);
  624. if (flip_state->event) {
  625. unsigned long flags;
  626. spin_lock_irqsave(&dev->event_lock, flags);
  627. drm_crtc_send_vblank_event(crtc, flip_state->event);
  628. spin_unlock_irqrestore(&dev->event_lock, flags);
  629. }
  630. drm_crtc_vblank_put(crtc);
  631. drm_framebuffer_unreference(flip_state->fb);
  632. kfree(flip_state);
  633. up(&vc4->async_modeset);
  634. }
  635. /* Implements async (non-vblank-synced) page flips.
  636. *
  637. * The page flip ioctl needs to return immediately, so we grab the
  638. * modeset semaphore on the pipe, and queue the address update for
  639. * when V3D is done with the BO being flipped to.
  640. */
  641. static int vc4_async_page_flip(struct drm_crtc *crtc,
  642. struct drm_framebuffer *fb,
  643. struct drm_pending_vblank_event *event,
  644. uint32_t flags)
  645. {
  646. struct drm_device *dev = crtc->dev;
  647. struct vc4_dev *vc4 = to_vc4_dev(dev);
  648. struct drm_plane *plane = crtc->primary;
  649. int ret = 0;
  650. struct vc4_async_flip_state *flip_state;
  651. struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
  652. struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
  653. flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
  654. if (!flip_state)
  655. return -ENOMEM;
  656. drm_framebuffer_reference(fb);
  657. flip_state->fb = fb;
  658. flip_state->crtc = crtc;
  659. flip_state->event = event;
  660. /* Make sure all other async modesetes have landed. */
  661. ret = down_interruptible(&vc4->async_modeset);
  662. if (ret) {
  663. drm_framebuffer_unreference(fb);
  664. kfree(flip_state);
  665. return ret;
  666. }
  667. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  668. /* Immediately update the plane's legacy fb pointer, so that later
  669. * modeset prep sees the state that will be present when the semaphore
  670. * is released.
  671. */
  672. drm_atomic_set_fb_for_plane(plane->state, fb);
  673. plane->fb = fb;
  674. vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
  675. vc4_async_page_flip_complete);
  676. /* Driver takes ownership of state on successful async commit. */
  677. return 0;
  678. }
  679. static int vc4_page_flip(struct drm_crtc *crtc,
  680. struct drm_framebuffer *fb,
  681. struct drm_pending_vblank_event *event,
  682. uint32_t flags)
  683. {
  684. if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
  685. return vc4_async_page_flip(crtc, fb, event, flags);
  686. else
  687. return drm_atomic_helper_page_flip(crtc, fb, event, flags);
  688. }
  689. static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
  690. {
  691. struct vc4_crtc_state *vc4_state;
  692. vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
  693. if (!vc4_state)
  694. return NULL;
  695. __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
  696. return &vc4_state->base;
  697. }
  698. static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
  699. struct drm_crtc_state *state)
  700. {
  701. struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
  702. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  703. if (vc4_state->mm.allocated) {
  704. unsigned long flags;
  705. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  706. drm_mm_remove_node(&vc4_state->mm);
  707. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  708. }
  709. drm_atomic_helper_crtc_destroy_state(crtc, state);
  710. }
  711. static void
  712. vc4_crtc_reset(struct drm_crtc *crtc)
  713. {
  714. if (crtc->state)
  715. __drm_atomic_helper_crtc_destroy_state(crtc->state);
  716. crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
  717. if (crtc->state)
  718. crtc->state->crtc = crtc;
  719. }
  720. static const struct drm_crtc_funcs vc4_crtc_funcs = {
  721. .set_config = drm_atomic_helper_set_config,
  722. .destroy = vc4_crtc_destroy,
  723. .page_flip = vc4_page_flip,
  724. .set_property = NULL,
  725. .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
  726. .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
  727. .reset = vc4_crtc_reset,
  728. .atomic_duplicate_state = vc4_crtc_duplicate_state,
  729. .atomic_destroy_state = vc4_crtc_destroy_state,
  730. .gamma_set = vc4_crtc_gamma_set,
  731. };
  732. static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
  733. .mode_set_nofb = vc4_crtc_mode_set_nofb,
  734. .disable = vc4_crtc_disable,
  735. .enable = vc4_crtc_enable,
  736. .mode_fixup = vc4_crtc_mode_fixup,
  737. .atomic_check = vc4_crtc_atomic_check,
  738. .atomic_flush = vc4_crtc_atomic_flush,
  739. };
  740. static const struct vc4_crtc_data pv0_data = {
  741. .hvs_channel = 0,
  742. .encoder_types = {
  743. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
  744. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
  745. },
  746. };
  747. static const struct vc4_crtc_data pv1_data = {
  748. .hvs_channel = 2,
  749. .encoder_types = {
  750. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
  751. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
  752. },
  753. };
  754. static const struct vc4_crtc_data pv2_data = {
  755. .hvs_channel = 1,
  756. .encoder_types = {
  757. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
  758. [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
  759. },
  760. };
  761. static const struct of_device_id vc4_crtc_dt_match[] = {
  762. { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
  763. { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
  764. { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
  765. {}
  766. };
  767. static void vc4_set_crtc_possible_masks(struct drm_device *drm,
  768. struct drm_crtc *crtc)
  769. {
  770. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  771. const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
  772. const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
  773. struct drm_encoder *encoder;
  774. drm_for_each_encoder(encoder, drm) {
  775. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  776. int i;
  777. for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
  778. if (vc4_encoder->type == encoder_types[i]) {
  779. vc4_encoder->clock_select = i;
  780. encoder->possible_crtcs |= drm_crtc_mask(crtc);
  781. break;
  782. }
  783. }
  784. }
  785. }
  786. static void
  787. vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
  788. {
  789. struct drm_device *drm = vc4_crtc->base.dev;
  790. struct vc4_dev *vc4 = to_vc4_dev(drm);
  791. u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
  792. /* Top/base are supposed to be 4-pixel aligned, but the
  793. * Raspberry Pi firmware fills the low bits (which are
  794. * presumably ignored).
  795. */
  796. u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  797. u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  798. vc4_crtc->cob_size = top - base + 4;
  799. }
  800. static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
  801. {
  802. struct platform_device *pdev = to_platform_device(dev);
  803. struct drm_device *drm = dev_get_drvdata(master);
  804. struct vc4_crtc *vc4_crtc;
  805. struct drm_crtc *crtc;
  806. struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
  807. const struct of_device_id *match;
  808. int ret, i;
  809. vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
  810. if (!vc4_crtc)
  811. return -ENOMEM;
  812. crtc = &vc4_crtc->base;
  813. match = of_match_device(vc4_crtc_dt_match, dev);
  814. if (!match)
  815. return -ENODEV;
  816. vc4_crtc->data = match->data;
  817. vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
  818. if (IS_ERR(vc4_crtc->regs))
  819. return PTR_ERR(vc4_crtc->regs);
  820. /* For now, we create just the primary and the legacy cursor
  821. * planes. We should be able to stack more planes on easily,
  822. * but to do that we would need to compute the bandwidth
  823. * requirement of the plane configuration, and reject ones
  824. * that will take too much.
  825. */
  826. primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
  827. if (IS_ERR(primary_plane)) {
  828. dev_err(dev, "failed to construct primary plane\n");
  829. ret = PTR_ERR(primary_plane);
  830. goto err;
  831. }
  832. drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
  833. &vc4_crtc_funcs, NULL);
  834. drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
  835. primary_plane->crtc = crtc;
  836. vc4_crtc->channel = vc4_crtc->data->hvs_channel;
  837. drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
  838. /* Set up some arbitrary number of planes. We're not limited
  839. * by a set number of physical registers, just the space in
  840. * the HVS (16k) and how small an plane can be (28 bytes).
  841. * However, each plane we set up takes up some memory, and
  842. * increases the cost of looping over planes, which atomic
  843. * modesetting does quite a bit. As a result, we pick a
  844. * modest number of planes to expose, that should hopefully
  845. * still cover any sane usecase.
  846. */
  847. for (i = 0; i < 8; i++) {
  848. struct drm_plane *plane =
  849. vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
  850. if (IS_ERR(plane))
  851. continue;
  852. plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  853. }
  854. /* Set up the legacy cursor after overlay initialization,
  855. * since we overlay planes on the CRTC in the order they were
  856. * initialized.
  857. */
  858. cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
  859. if (!IS_ERR(cursor_plane)) {
  860. cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  861. cursor_plane->crtc = crtc;
  862. crtc->cursor = cursor_plane;
  863. }
  864. vc4_crtc_get_cob_allocation(vc4_crtc);
  865. CRTC_WRITE(PV_INTEN, 0);
  866. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  867. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  868. vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
  869. if (ret)
  870. goto err_destroy_planes;
  871. vc4_set_crtc_possible_masks(drm, crtc);
  872. for (i = 0; i < crtc->gamma_size; i++) {
  873. vc4_crtc->lut_r[i] = i;
  874. vc4_crtc->lut_g[i] = i;
  875. vc4_crtc->lut_b[i] = i;
  876. }
  877. platform_set_drvdata(pdev, vc4_crtc);
  878. return 0;
  879. err_destroy_planes:
  880. list_for_each_entry_safe(destroy_plane, temp,
  881. &drm->mode_config.plane_list, head) {
  882. if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
  883. destroy_plane->funcs->destroy(destroy_plane);
  884. }
  885. err:
  886. return ret;
  887. }
  888. static void vc4_crtc_unbind(struct device *dev, struct device *master,
  889. void *data)
  890. {
  891. struct platform_device *pdev = to_platform_device(dev);
  892. struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
  893. vc4_crtc_destroy(&vc4_crtc->base);
  894. CRTC_WRITE(PV_INTEN, 0);
  895. platform_set_drvdata(pdev, NULL);
  896. }
  897. static const struct component_ops vc4_crtc_ops = {
  898. .bind = vc4_crtc_bind,
  899. .unbind = vc4_crtc_unbind,
  900. };
  901. static int vc4_crtc_dev_probe(struct platform_device *pdev)
  902. {
  903. return component_add(&pdev->dev, &vc4_crtc_ops);
  904. }
  905. static int vc4_crtc_dev_remove(struct platform_device *pdev)
  906. {
  907. component_del(&pdev->dev, &vc4_crtc_ops);
  908. return 0;
  909. }
  910. struct platform_driver vc4_crtc_driver = {
  911. .probe = vc4_crtc_dev_probe,
  912. .remove = vc4_crtc_dev_remove,
  913. .driver = {
  914. .name = "vc4_crtc",
  915. .of_match_table = vc4_crtc_dt_match,
  916. },
  917. };