i915_gem_fence_reg.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726
  1. /*
  2. * Copyright © 2008-2015 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. */
  23. #include <drm/drmP.h>
  24. #include <drm/i915_drm.h>
  25. #include "i915_drv.h"
  26. /**
  27. * DOC: fence register handling
  28. *
  29. * Important to avoid confusions: "fences" in the i915 driver are not execution
  30. * fences used to track command completion but hardware detiler objects which
  31. * wrap a given range of the global GTT. Each platform has only a fairly limited
  32. * set of these objects.
  33. *
  34. * Fences are used to detile GTT memory mappings. They're also connected to the
  35. * hardware frontbuffer render tracking and hence interact with frontbuffer
  36. * compression. Furthermore on older platforms fences are required for tiled
  37. * objects used by the display engine. They can also be used by the render
  38. * engine - they're required for blitter commands and are optional for render
  39. * commands. But on gen4+ both display (with the exception of fbc) and rendering
  40. * have their own tiling state bits and don't need fences.
  41. *
  42. * Also note that fences only support X and Y tiling and hence can't be used for
  43. * the fancier new tiling formats like W, Ys and Yf.
  44. *
  45. * Finally note that because fences are such a restricted resource they're
  46. * dynamically associated with objects. Furthermore fence state is committed to
  47. * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
  48. * explicitly call i915_gem_object_get_fence() to synchronize fencing status
  49. * for cpu access. Also note that some code wants an unfenced view, for those
  50. * cases the fence can be removed forcefully with i915_gem_object_put_fence().
  51. *
  52. * Internally these functions will synchronize with userspace access by removing
  53. * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
  54. */
  55. #define pipelined 0
  56. static void i965_write_fence_reg(struct drm_i915_fence_reg *fence,
  57. struct i915_vma *vma)
  58. {
  59. i915_reg_t fence_reg_lo, fence_reg_hi;
  60. int fence_pitch_shift;
  61. u64 val;
  62. if (INTEL_INFO(fence->i915)->gen >= 6) {
  63. fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
  64. fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
  65. fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
  66. } else {
  67. fence_reg_lo = FENCE_REG_965_LO(fence->id);
  68. fence_reg_hi = FENCE_REG_965_HI(fence->id);
  69. fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
  70. }
  71. val = 0;
  72. if (vma) {
  73. unsigned int stride = i915_gem_object_get_stride(vma->obj);
  74. GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
  75. GEM_BUG_ON(!IS_ALIGNED(vma->node.start, I965_FENCE_PAGE));
  76. GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I965_FENCE_PAGE));
  77. GEM_BUG_ON(!IS_ALIGNED(stride, 128));
  78. val = (vma->node.start + vma->fence_size - I965_FENCE_PAGE) << 32;
  79. val |= vma->node.start;
  80. val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
  81. if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
  82. val |= BIT(I965_FENCE_TILING_Y_SHIFT);
  83. val |= I965_FENCE_REG_VALID;
  84. }
  85. if (!pipelined) {
  86. struct drm_i915_private *dev_priv = fence->i915;
  87. /* To w/a incoherency with non-atomic 64-bit register updates,
  88. * we split the 64-bit update into two 32-bit writes. In order
  89. * for a partial fence not to be evaluated between writes, we
  90. * precede the update with write to turn off the fence register,
  91. * and only enable the fence as the last step.
  92. *
  93. * For extra levels of paranoia, we make sure each step lands
  94. * before applying the next step.
  95. */
  96. I915_WRITE(fence_reg_lo, 0);
  97. POSTING_READ(fence_reg_lo);
  98. I915_WRITE(fence_reg_hi, upper_32_bits(val));
  99. I915_WRITE(fence_reg_lo, lower_32_bits(val));
  100. POSTING_READ(fence_reg_lo);
  101. }
  102. }
  103. static void i915_write_fence_reg(struct drm_i915_fence_reg *fence,
  104. struct i915_vma *vma)
  105. {
  106. u32 val;
  107. val = 0;
  108. if (vma) {
  109. unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
  110. bool is_y_tiled = tiling == I915_TILING_Y;
  111. unsigned int stride = i915_gem_object_get_stride(vma->obj);
  112. GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
  113. GEM_BUG_ON(vma->node.start & ~I915_FENCE_START_MASK);
  114. GEM_BUG_ON(!is_power_of_2(vma->fence_size));
  115. GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
  116. if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence->i915))
  117. stride /= 128;
  118. else
  119. stride /= 512;
  120. GEM_BUG_ON(!is_power_of_2(stride));
  121. val = vma->node.start;
  122. if (is_y_tiled)
  123. val |= BIT(I830_FENCE_TILING_Y_SHIFT);
  124. val |= I915_FENCE_SIZE_BITS(vma->fence_size);
  125. val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
  126. val |= I830_FENCE_REG_VALID;
  127. }
  128. if (!pipelined) {
  129. struct drm_i915_private *dev_priv = fence->i915;
  130. i915_reg_t reg = FENCE_REG(fence->id);
  131. I915_WRITE(reg, val);
  132. POSTING_READ(reg);
  133. }
  134. }
  135. static void i830_write_fence_reg(struct drm_i915_fence_reg *fence,
  136. struct i915_vma *vma)
  137. {
  138. u32 val;
  139. val = 0;
  140. if (vma) {
  141. unsigned int stride = i915_gem_object_get_stride(vma->obj);
  142. GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
  143. GEM_BUG_ON(vma->node.start & ~I830_FENCE_START_MASK);
  144. GEM_BUG_ON(!is_power_of_2(vma->fence_size));
  145. GEM_BUG_ON(!is_power_of_2(stride / 128));
  146. GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
  147. val = vma->node.start;
  148. if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
  149. val |= BIT(I830_FENCE_TILING_Y_SHIFT);
  150. val |= I830_FENCE_SIZE_BITS(vma->fence_size);
  151. val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
  152. val |= I830_FENCE_REG_VALID;
  153. }
  154. if (!pipelined) {
  155. struct drm_i915_private *dev_priv = fence->i915;
  156. i915_reg_t reg = FENCE_REG(fence->id);
  157. I915_WRITE(reg, val);
  158. POSTING_READ(reg);
  159. }
  160. }
  161. static void fence_write(struct drm_i915_fence_reg *fence,
  162. struct i915_vma *vma)
  163. {
  164. /* Previous access through the fence register is marshalled by
  165. * the mb() inside the fault handlers (i915_gem_release_mmaps)
  166. * and explicitly managed for internal users.
  167. */
  168. if (IS_GEN2(fence->i915))
  169. i830_write_fence_reg(fence, vma);
  170. else if (IS_GEN3(fence->i915))
  171. i915_write_fence_reg(fence, vma);
  172. else
  173. i965_write_fence_reg(fence, vma);
  174. /* Access through the fenced region afterwards is
  175. * ordered by the posting reads whilst writing the registers.
  176. */
  177. fence->dirty = false;
  178. }
  179. static int fence_update(struct drm_i915_fence_reg *fence,
  180. struct i915_vma *vma)
  181. {
  182. int ret;
  183. if (vma) {
  184. if (!i915_vma_is_map_and_fenceable(vma))
  185. return -EINVAL;
  186. if (WARN(!i915_gem_object_get_stride(vma->obj) ||
  187. !i915_gem_object_get_tiling(vma->obj),
  188. "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
  189. i915_gem_object_get_stride(vma->obj),
  190. i915_gem_object_get_tiling(vma->obj)))
  191. return -EINVAL;
  192. ret = i915_gem_active_retire(&vma->last_fence,
  193. &vma->obj->base.dev->struct_mutex);
  194. if (ret)
  195. return ret;
  196. }
  197. if (fence->vma) {
  198. ret = i915_gem_active_retire(&fence->vma->last_fence,
  199. &fence->vma->obj->base.dev->struct_mutex);
  200. if (ret)
  201. return ret;
  202. }
  203. if (fence->vma && fence->vma != vma) {
  204. /* Ensure that all userspace CPU access is completed before
  205. * stealing the fence.
  206. */
  207. i915_gem_release_mmap(fence->vma->obj);
  208. fence->vma->fence = NULL;
  209. fence->vma = NULL;
  210. list_move(&fence->link, &fence->i915->mm.fence_list);
  211. }
  212. fence_write(fence, vma);
  213. if (vma) {
  214. if (fence->vma != vma) {
  215. vma->fence = fence;
  216. fence->vma = vma;
  217. }
  218. list_move_tail(&fence->link, &fence->i915->mm.fence_list);
  219. }
  220. return 0;
  221. }
  222. /**
  223. * i915_vma_put_fence - force-remove fence for a VMA
  224. * @vma: vma to map linearly (not through a fence reg)
  225. *
  226. * This function force-removes any fence from the given object, which is useful
  227. * if the kernel wants to do untiled GTT access.
  228. *
  229. * Returns:
  230. *
  231. * 0 on success, negative error code on failure.
  232. */
  233. int
  234. i915_vma_put_fence(struct i915_vma *vma)
  235. {
  236. struct drm_i915_fence_reg *fence = vma->fence;
  237. assert_rpm_wakelock_held(vma->vm->i915);
  238. if (!fence)
  239. return 0;
  240. if (fence->pin_count)
  241. return -EBUSY;
  242. return fence_update(fence, NULL);
  243. }
  244. static struct drm_i915_fence_reg *fence_find(struct drm_i915_private *dev_priv)
  245. {
  246. struct drm_i915_fence_reg *fence;
  247. list_for_each_entry(fence, &dev_priv->mm.fence_list, link) {
  248. if (fence->pin_count)
  249. continue;
  250. return fence;
  251. }
  252. /* Wait for completion of pending flips which consume fences */
  253. if (intel_has_pending_fb_unpin(dev_priv))
  254. return ERR_PTR(-EAGAIN);
  255. return ERR_PTR(-EDEADLK);
  256. }
  257. /**
  258. * i915_vma_get_fence - set up fencing for a vma
  259. * @vma: vma to map through a fence reg
  260. *
  261. * When mapping objects through the GTT, userspace wants to be able to write
  262. * to them without having to worry about swizzling if the object is tiled.
  263. * This function walks the fence regs looking for a free one for @obj,
  264. * stealing one if it can't find any.
  265. *
  266. * It then sets up the reg based on the object's properties: address, pitch
  267. * and tiling format.
  268. *
  269. * For an untiled surface, this removes any existing fence.
  270. *
  271. * Returns:
  272. *
  273. * 0 on success, negative error code on failure.
  274. */
  275. int
  276. i915_vma_get_fence(struct i915_vma *vma)
  277. {
  278. struct drm_i915_fence_reg *fence;
  279. struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
  280. /* Note that we revoke fences on runtime suspend. Therefore the user
  281. * must keep the device awake whilst using the fence.
  282. */
  283. assert_rpm_wakelock_held(vma->vm->i915);
  284. /* Just update our place in the LRU if our fence is getting reused. */
  285. if (vma->fence) {
  286. fence = vma->fence;
  287. if (!fence->dirty) {
  288. list_move_tail(&fence->link,
  289. &fence->i915->mm.fence_list);
  290. return 0;
  291. }
  292. } else if (set) {
  293. fence = fence_find(vma->vm->i915);
  294. if (IS_ERR(fence))
  295. return PTR_ERR(fence);
  296. } else
  297. return 0;
  298. return fence_update(fence, set);
  299. }
  300. /**
  301. * i915_gem_revoke_fences - revoke fence state
  302. * @dev_priv: i915 device private
  303. *
  304. * Removes all GTT mmappings via the fence registers. This forces any user
  305. * of the fence to reacquire that fence before continuing with their access.
  306. * One use is during GPU reset where the fence register is lost and we need to
  307. * revoke concurrent userspace access via GTT mmaps until the hardware has been
  308. * reset and the fence registers have been restored.
  309. */
  310. void i915_gem_revoke_fences(struct drm_i915_private *dev_priv)
  311. {
  312. int i;
  313. lockdep_assert_held(&dev_priv->drm.struct_mutex);
  314. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  315. struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
  316. if (fence->vma)
  317. i915_gem_release_mmap(fence->vma->obj);
  318. }
  319. }
  320. /**
  321. * i915_gem_restore_fences - restore fence state
  322. * @dev_priv: i915 device private
  323. *
  324. * Restore the hw fence state to match the software tracking again, to be called
  325. * after a gpu reset and on resume. Note that on runtime suspend we only cancel
  326. * the fences, to be reacquired by the user later.
  327. */
  328. void i915_gem_restore_fences(struct drm_i915_private *dev_priv)
  329. {
  330. int i;
  331. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  332. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  333. struct i915_vma *vma = reg->vma;
  334. /*
  335. * Commit delayed tiling changes if we have an object still
  336. * attached to the fence, otherwise just clear the fence.
  337. */
  338. if (vma && !i915_gem_object_is_tiled(vma->obj)) {
  339. GEM_BUG_ON(!reg->dirty);
  340. GEM_BUG_ON(!list_empty(&vma->obj->userfault_link));
  341. list_move(&reg->link, &dev_priv->mm.fence_list);
  342. vma->fence = NULL;
  343. vma = NULL;
  344. }
  345. fence_write(reg, vma);
  346. reg->vma = vma;
  347. }
  348. }
  349. /**
  350. * DOC: tiling swizzling details
  351. *
  352. * The idea behind tiling is to increase cache hit rates by rearranging
  353. * pixel data so that a group of pixel accesses are in the same cacheline.
  354. * Performance improvement from doing this on the back/depth buffer are on
  355. * the order of 30%.
  356. *
  357. * Intel architectures make this somewhat more complicated, though, by
  358. * adjustments made to addressing of data when the memory is in interleaved
  359. * mode (matched pairs of DIMMS) to improve memory bandwidth.
  360. * For interleaved memory, the CPU sends every sequential 64 bytes
  361. * to an alternate memory channel so it can get the bandwidth from both.
  362. *
  363. * The GPU also rearranges its accesses for increased bandwidth to interleaved
  364. * memory, and it matches what the CPU does for non-tiled. However, when tiled
  365. * it does it a little differently, since one walks addresses not just in the
  366. * X direction but also Y. So, along with alternating channels when bit
  367. * 6 of the address flips, it also alternates when other bits flip -- Bits 9
  368. * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
  369. * are common to both the 915 and 965-class hardware.
  370. *
  371. * The CPU also sometimes XORs in higher bits as well, to improve
  372. * bandwidth doing strided access like we do so frequently in graphics. This
  373. * is called "Channel XOR Randomization" in the MCH documentation. The result
  374. * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
  375. * decode.
  376. *
  377. * All of this bit 6 XORing has an effect on our memory management,
  378. * as we need to make sure that the 3d driver can correctly address object
  379. * contents.
  380. *
  381. * If we don't have interleaved memory, all tiling is safe and no swizzling is
  382. * required.
  383. *
  384. * When bit 17 is XORed in, we simply refuse to tile at all. Bit
  385. * 17 is not just a page offset, so as we page an object out and back in,
  386. * individual pages in it will have different bit 17 addresses, resulting in
  387. * each 64 bytes being swapped with its neighbor!
  388. *
  389. * Otherwise, if interleaved, we have to tell the 3d driver what the address
  390. * swizzling it needs to do is, since it's writing with the CPU to the pages
  391. * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
  392. * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
  393. * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
  394. * to match what the GPU expects.
  395. */
  396. /**
  397. * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
  398. * @dev_priv: i915 device private
  399. *
  400. * Detects bit 6 swizzling of address lookup between IGD access and CPU
  401. * access through main memory.
  402. */
  403. void
  404. i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv)
  405. {
  406. uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
  407. uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
  408. if (INTEL_GEN(dev_priv) >= 8 || IS_VALLEYVIEW(dev_priv)) {
  409. /*
  410. * On BDW+, swizzling is not used. We leave the CPU memory
  411. * controller in charge of optimizing memory accesses without
  412. * the extra address manipulation GPU side.
  413. *
  414. * VLV and CHV don't have GPU swizzling.
  415. */
  416. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  417. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  418. } else if (INTEL_GEN(dev_priv) >= 6) {
  419. if (dev_priv->preserve_bios_swizzle) {
  420. if (I915_READ(DISP_ARB_CTL) &
  421. DISP_TILE_SURFACE_SWIZZLING) {
  422. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  423. swizzle_y = I915_BIT_6_SWIZZLE_9;
  424. } else {
  425. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  426. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  427. }
  428. } else {
  429. uint32_t dimm_c0, dimm_c1;
  430. dimm_c0 = I915_READ(MAD_DIMM_C0);
  431. dimm_c1 = I915_READ(MAD_DIMM_C1);
  432. dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
  433. dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
  434. /* Enable swizzling when the channels are populated
  435. * with identically sized dimms. We don't need to check
  436. * the 3rd channel because no cpu with gpu attached
  437. * ships in that configuration. Also, swizzling only
  438. * makes sense for 2 channels anyway. */
  439. if (dimm_c0 == dimm_c1) {
  440. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  441. swizzle_y = I915_BIT_6_SWIZZLE_9;
  442. } else {
  443. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  444. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  445. }
  446. }
  447. } else if (IS_GEN5(dev_priv)) {
  448. /* On Ironlake whatever DRAM config, GPU always do
  449. * same swizzling setup.
  450. */
  451. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  452. swizzle_y = I915_BIT_6_SWIZZLE_9;
  453. } else if (IS_GEN2(dev_priv)) {
  454. /* As far as we know, the 865 doesn't have these bit 6
  455. * swizzling issues.
  456. */
  457. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  458. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  459. } else if (IS_MOBILE(dev_priv) ||
  460. IS_I915G(dev_priv) || IS_I945G(dev_priv)) {
  461. uint32_t dcc;
  462. /* On 9xx chipsets, channel interleave by the CPU is
  463. * determined by DCC. For single-channel, neither the CPU
  464. * nor the GPU do swizzling. For dual channel interleaved,
  465. * the GPU's interleave is bit 9 and 10 for X tiled, and bit
  466. * 9 for Y tiled. The CPU's interleave is independent, and
  467. * can be based on either bit 11 (haven't seen this yet) or
  468. * bit 17 (common).
  469. */
  470. dcc = I915_READ(DCC);
  471. switch (dcc & DCC_ADDRESSING_MODE_MASK) {
  472. case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
  473. case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
  474. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  475. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  476. break;
  477. case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
  478. if (dcc & DCC_CHANNEL_XOR_DISABLE) {
  479. /* This is the base swizzling by the GPU for
  480. * tiled buffers.
  481. */
  482. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  483. swizzle_y = I915_BIT_6_SWIZZLE_9;
  484. } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
  485. /* Bit 11 swizzling by the CPU in addition. */
  486. swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
  487. swizzle_y = I915_BIT_6_SWIZZLE_9_11;
  488. } else {
  489. /* Bit 17 swizzling by the CPU in addition. */
  490. swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
  491. swizzle_y = I915_BIT_6_SWIZZLE_9_17;
  492. }
  493. break;
  494. }
  495. /* check for L-shaped memory aka modified enhanced addressing */
  496. if (IS_GEN4(dev_priv) &&
  497. !(I915_READ(DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
  498. swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
  499. swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
  500. }
  501. if (dcc == 0xffffffff) {
  502. DRM_ERROR("Couldn't read from MCHBAR. "
  503. "Disabling tiling.\n");
  504. swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
  505. swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
  506. }
  507. } else {
  508. /* The 965, G33, and newer, have a very flexible memory
  509. * configuration. It will enable dual-channel mode
  510. * (interleaving) on as much memory as it can, and the GPU
  511. * will additionally sometimes enable different bit 6
  512. * swizzling for tiled objects from the CPU.
  513. *
  514. * Here's what I found on the G965:
  515. * slot fill memory size swizzling
  516. * 0A 0B 1A 1B 1-ch 2-ch
  517. * 512 0 0 0 512 0 O
  518. * 512 0 512 0 16 1008 X
  519. * 512 0 0 512 16 1008 X
  520. * 0 512 0 512 16 1008 X
  521. * 1024 1024 1024 0 2048 1024 O
  522. *
  523. * We could probably detect this based on either the DRB
  524. * matching, which was the case for the swizzling required in
  525. * the table above, or from the 1-ch value being less than
  526. * the minimum size of a rank.
  527. *
  528. * Reports indicate that the swizzling actually
  529. * varies depending upon page placement inside the
  530. * channels, i.e. we see swizzled pages where the
  531. * banks of memory are paired and unswizzled on the
  532. * uneven portion, so leave that as unknown.
  533. */
  534. if (I915_READ16(C0DRB3) == I915_READ16(C1DRB3)) {
  535. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  536. swizzle_y = I915_BIT_6_SWIZZLE_9;
  537. }
  538. }
  539. if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
  540. swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
  541. /* Userspace likes to explode if it sees unknown swizzling,
  542. * so lie. We will finish the lie when reporting through
  543. * the get-tiling-ioctl by reporting the physical swizzle
  544. * mode as unknown instead.
  545. *
  546. * As we don't strictly know what the swizzling is, it may be
  547. * bit17 dependent, and so we need to also prevent the pages
  548. * from being moved.
  549. */
  550. dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
  551. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  552. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  553. }
  554. dev_priv->mm.bit_6_swizzle_x = swizzle_x;
  555. dev_priv->mm.bit_6_swizzle_y = swizzle_y;
  556. }
  557. /*
  558. * Swap every 64 bytes of this page around, to account for it having a new
  559. * bit 17 of its physical address and therefore being interpreted differently
  560. * by the GPU.
  561. */
  562. static void
  563. i915_gem_swizzle_page(struct page *page)
  564. {
  565. char temp[64];
  566. char *vaddr;
  567. int i;
  568. vaddr = kmap(page);
  569. for (i = 0; i < PAGE_SIZE; i += 128) {
  570. memcpy(temp, &vaddr[i], 64);
  571. memcpy(&vaddr[i], &vaddr[i + 64], 64);
  572. memcpy(&vaddr[i + 64], temp, 64);
  573. }
  574. kunmap(page);
  575. }
  576. /**
  577. * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
  578. * @obj: i915 GEM buffer object
  579. * @pages: the scattergather list of physical pages
  580. *
  581. * This function fixes up the swizzling in case any page frame number for this
  582. * object has changed in bit 17 since that state has been saved with
  583. * i915_gem_object_save_bit_17_swizzle().
  584. *
  585. * This is called when pinning backing storage again, since the kernel is free
  586. * to move unpinned backing storage around (either by directly moving pages or
  587. * by swapping them out and back in again).
  588. */
  589. void
  590. i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
  591. struct sg_table *pages)
  592. {
  593. struct sgt_iter sgt_iter;
  594. struct page *page;
  595. int i;
  596. if (obj->bit_17 == NULL)
  597. return;
  598. i = 0;
  599. for_each_sgt_page(page, sgt_iter, pages) {
  600. char new_bit_17 = page_to_phys(page) >> 17;
  601. if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
  602. i915_gem_swizzle_page(page);
  603. set_page_dirty(page);
  604. }
  605. i++;
  606. }
  607. }
  608. /**
  609. * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
  610. * @obj: i915 GEM buffer object
  611. * @pages: the scattergather list of physical pages
  612. *
  613. * This function saves the bit 17 of each page frame number so that swizzling
  614. * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
  615. * be called before the backing storage can be unpinned.
  616. */
  617. void
  618. i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
  619. struct sg_table *pages)
  620. {
  621. const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
  622. struct sgt_iter sgt_iter;
  623. struct page *page;
  624. int i;
  625. if (obj->bit_17 == NULL) {
  626. obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
  627. sizeof(long), GFP_KERNEL);
  628. if (obj->bit_17 == NULL) {
  629. DRM_ERROR("Failed to allocate memory for bit 17 "
  630. "record\n");
  631. return;
  632. }
  633. }
  634. i = 0;
  635. for_each_sgt_page(page, sgt_iter, pages) {
  636. if (page_to_phys(page) & (1 << 17))
  637. __set_bit(i, obj->bit_17);
  638. else
  639. __clear_bit(i, obj->bit_17);
  640. i++;
  641. }
  642. }