kfd_mqd_manager_cik.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/printk.h>
  24. #include <linux/slab.h>
  25. #include <linux/mm_types.h>
  26. #include "kfd_priv.h"
  27. #include "kfd_mqd_manager.h"
  28. #include "cik_regs.h"
  29. #include "cik_structs.h"
  30. #include "oss/oss_2_4_sh_mask.h"
  31. static inline struct cik_mqd *get_mqd(void *mqd)
  32. {
  33. return (struct cik_mqd *)mqd;
  34. }
  35. static int init_mqd(struct mqd_manager *mm, void **mqd,
  36. struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
  37. struct queue_properties *q)
  38. {
  39. uint64_t addr;
  40. struct cik_mqd *m;
  41. int retval;
  42. BUG_ON(!mm || !q || !mqd);
  43. pr_debug("kfd: In func %s\n", __func__);
  44. retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd),
  45. mqd_mem_obj);
  46. if (retval != 0)
  47. return -ENOMEM;
  48. m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
  49. addr = (*mqd_mem_obj)->gpu_addr;
  50. memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
  51. m->header = 0xC0310800;
  52. m->compute_pipelinestat_enable = 1;
  53. m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
  54. m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
  55. m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
  56. m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
  57. /*
  58. * Make sure to use the last queue state saved on mqd when the cp
  59. * reassigns the queue, so when queue is switched on/off (e.g over
  60. * subscription or quantum timeout) the context will be consistent
  61. */
  62. m->cp_hqd_persistent_state =
  63. DEFAULT_CP_HQD_PERSISTENT_STATE | PRELOAD_REQ;
  64. m->cp_mqd_control = MQD_CONTROL_PRIV_STATE_EN;
  65. m->cp_mqd_base_addr_lo = lower_32_bits(addr);
  66. m->cp_mqd_base_addr_hi = upper_32_bits(addr);
  67. m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE | IB_ATC_EN;
  68. /* Although WinKFD writes this, I suspect it should not be necessary */
  69. m->cp_hqd_ib_control = IB_ATC_EN | DEFAULT_MIN_IB_AVAIL_SIZE;
  70. m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
  71. QUANTUM_DURATION(10);
  72. /*
  73. * Pipe Priority
  74. * Identifies the pipe relative priority when this queue is connected
  75. * to the pipeline. The pipe priority is against the GFX pipe and HP3D.
  76. * In KFD we are using a fixed pipe priority set to CS_MEDIUM.
  77. * 0 = CS_LOW (typically below GFX)
  78. * 1 = CS_MEDIUM (typically between HP3D and GFX
  79. * 2 = CS_HIGH (typically above HP3D)
  80. */
  81. m->cp_hqd_pipe_priority = 1;
  82. m->cp_hqd_queue_priority = 15;
  83. if (q->format == KFD_QUEUE_FORMAT_AQL)
  84. m->cp_hqd_iq_rptr = AQL_ENABLE;
  85. *mqd = m;
  86. if (gart_addr != NULL)
  87. *gart_addr = addr;
  88. retval = mm->update_mqd(mm, m, q);
  89. return retval;
  90. }
  91. static int init_mqd_sdma(struct mqd_manager *mm, void **mqd,
  92. struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
  93. struct queue_properties *q)
  94. {
  95. int retval;
  96. struct cik_sdma_rlc_registers *m;
  97. BUG_ON(!mm || !mqd || !mqd_mem_obj);
  98. retval = kfd_gtt_sa_allocate(mm->dev,
  99. sizeof(struct cik_sdma_rlc_registers),
  100. mqd_mem_obj);
  101. if (retval != 0)
  102. return -ENOMEM;
  103. m = (struct cik_sdma_rlc_registers *) (*mqd_mem_obj)->cpu_ptr;
  104. memset(m, 0, sizeof(struct cik_sdma_rlc_registers));
  105. *mqd = m;
  106. if (gart_addr != NULL)
  107. *gart_addr = (*mqd_mem_obj)->gpu_addr;
  108. retval = mm->update_mqd(mm, m, q);
  109. return retval;
  110. }
  111. static void uninit_mqd(struct mqd_manager *mm, void *mqd,
  112. struct kfd_mem_obj *mqd_mem_obj)
  113. {
  114. BUG_ON(!mm || !mqd);
  115. kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
  116. }
  117. static void uninit_mqd_sdma(struct mqd_manager *mm, void *mqd,
  118. struct kfd_mem_obj *mqd_mem_obj)
  119. {
  120. BUG_ON(!mm || !mqd);
  121. kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
  122. }
  123. static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id,
  124. uint32_t queue_id, uint32_t __user *wptr)
  125. {
  126. return mm->dev->kfd2kgd->hqd_load
  127. (mm->dev->kgd, mqd, pipe_id, queue_id, wptr);
  128. }
  129. static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
  130. uint32_t pipe_id, uint32_t queue_id,
  131. uint32_t __user *wptr)
  132. {
  133. return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd);
  134. }
  135. static int update_mqd(struct mqd_manager *mm, void *mqd,
  136. struct queue_properties *q)
  137. {
  138. struct cik_mqd *m;
  139. BUG_ON(!mm || !q || !mqd);
  140. pr_debug("kfd: In func %s\n", __func__);
  141. m = get_mqd(mqd);
  142. m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
  143. DEFAULT_MIN_AVAIL_SIZE | PQ_ATC_EN;
  144. /*
  145. * Calculating queue size which is log base 2 of actual queue size -1
  146. * dwords and another -1 for ffs
  147. */
  148. m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int))
  149. - 1 - 1;
  150. m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
  151. m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
  152. m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
  153. m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
  154. m->cp_hqd_pq_doorbell_control = DOORBELL_EN |
  155. DOORBELL_OFFSET(q->doorbell_off);
  156. m->cp_hqd_vmid = q->vmid;
  157. if (q->format == KFD_QUEUE_FORMAT_AQL) {
  158. m->cp_hqd_pq_control |= NO_UPDATE_RPTR;
  159. }
  160. m->cp_hqd_active = 0;
  161. q->is_active = false;
  162. if (q->queue_size > 0 &&
  163. q->queue_address != 0 &&
  164. q->queue_percent > 0) {
  165. m->cp_hqd_active = 1;
  166. q->is_active = true;
  167. }
  168. return 0;
  169. }
  170. static int update_mqd_sdma(struct mqd_manager *mm, void *mqd,
  171. struct queue_properties *q)
  172. {
  173. struct cik_sdma_rlc_registers *m;
  174. BUG_ON(!mm || !mqd || !q);
  175. m = get_sdma_mqd(mqd);
  176. m->sdma_rlc_rb_cntl = ffs(q->queue_size / sizeof(unsigned int)) <<
  177. SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
  178. q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
  179. 1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
  180. 6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
  181. m->sdma_rlc_rb_base = lower_32_bits(q->queue_address >> 8);
  182. m->sdma_rlc_rb_base_hi = upper_32_bits(q->queue_address >> 8);
  183. m->sdma_rlc_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
  184. m->sdma_rlc_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
  185. m->sdma_rlc_doorbell = q->doorbell_off <<
  186. SDMA0_RLC0_DOORBELL__OFFSET__SHIFT |
  187. 1 << SDMA0_RLC0_DOORBELL__ENABLE__SHIFT;
  188. m->sdma_rlc_virtual_addr = q->sdma_vm_addr;
  189. m->sdma_engine_id = q->sdma_engine_id;
  190. m->sdma_queue_id = q->sdma_queue_id;
  191. q->is_active = false;
  192. if (q->queue_size > 0 &&
  193. q->queue_address != 0 &&
  194. q->queue_percent > 0) {
  195. m->sdma_rlc_rb_cntl |=
  196. 1 << SDMA0_RLC0_RB_CNTL__RB_ENABLE__SHIFT;
  197. q->is_active = true;
  198. }
  199. return 0;
  200. }
  201. static int destroy_mqd(struct mqd_manager *mm, void *mqd,
  202. enum kfd_preempt_type type,
  203. unsigned int timeout, uint32_t pipe_id,
  204. uint32_t queue_id)
  205. {
  206. return mm->dev->kfd2kgd->hqd_destroy(mm->dev->kgd, type, timeout,
  207. pipe_id, queue_id);
  208. }
  209. /*
  210. * preempt type here is ignored because there is only one way
  211. * to preempt sdma queue
  212. */
  213. static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
  214. enum kfd_preempt_type type,
  215. unsigned int timeout, uint32_t pipe_id,
  216. uint32_t queue_id)
  217. {
  218. return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
  219. }
  220. static bool is_occupied(struct mqd_manager *mm, void *mqd,
  221. uint64_t queue_address, uint32_t pipe_id,
  222. uint32_t queue_id)
  223. {
  224. return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->kgd, queue_address,
  225. pipe_id, queue_id);
  226. }
  227. static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
  228. uint64_t queue_address, uint32_t pipe_id,
  229. uint32_t queue_id)
  230. {
  231. return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
  232. }
  233. /*
  234. * HIQ MQD Implementation, concrete implementation for HIQ MQD implementation.
  235. * The HIQ queue in Kaveri is using the same MQD structure as all the user mode
  236. * queues but with different initial values.
  237. */
  238. static int init_mqd_hiq(struct mqd_manager *mm, void **mqd,
  239. struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
  240. struct queue_properties *q)
  241. {
  242. uint64_t addr;
  243. struct cik_mqd *m;
  244. int retval;
  245. BUG_ON(!mm || !q || !mqd || !mqd_mem_obj);
  246. pr_debug("kfd: In func %s\n", __func__);
  247. retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd),
  248. mqd_mem_obj);
  249. if (retval != 0)
  250. return -ENOMEM;
  251. m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
  252. addr = (*mqd_mem_obj)->gpu_addr;
  253. memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
  254. m->header = 0xC0310800;
  255. m->compute_pipelinestat_enable = 1;
  256. m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
  257. m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
  258. m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
  259. m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
  260. m->cp_hqd_persistent_state = DEFAULT_CP_HQD_PERSISTENT_STATE |
  261. PRELOAD_REQ;
  262. m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
  263. QUANTUM_DURATION(10);
  264. m->cp_mqd_control = MQD_CONTROL_PRIV_STATE_EN;
  265. m->cp_mqd_base_addr_lo = lower_32_bits(addr);
  266. m->cp_mqd_base_addr_hi = upper_32_bits(addr);
  267. m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE;
  268. /*
  269. * Pipe Priority
  270. * Identifies the pipe relative priority when this queue is connected
  271. * to the pipeline. The pipe priority is against the GFX pipe and HP3D.
  272. * In KFD we are using a fixed pipe priority set to CS_MEDIUM.
  273. * 0 = CS_LOW (typically below GFX)
  274. * 1 = CS_MEDIUM (typically between HP3D and GFX
  275. * 2 = CS_HIGH (typically above HP3D)
  276. */
  277. m->cp_hqd_pipe_priority = 1;
  278. m->cp_hqd_queue_priority = 15;
  279. *mqd = m;
  280. if (gart_addr)
  281. *gart_addr = addr;
  282. retval = mm->update_mqd(mm, m, q);
  283. return retval;
  284. }
  285. static int update_mqd_hiq(struct mqd_manager *mm, void *mqd,
  286. struct queue_properties *q)
  287. {
  288. struct cik_mqd *m;
  289. BUG_ON(!mm || !q || !mqd);
  290. pr_debug("kfd: In func %s\n", __func__);
  291. m = get_mqd(mqd);
  292. m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
  293. DEFAULT_MIN_AVAIL_SIZE |
  294. PRIV_STATE |
  295. KMD_QUEUE;
  296. /*
  297. * Calculating queue size which is log base 2 of actual queue
  298. * size -1 dwords
  299. */
  300. m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int))
  301. - 1 - 1;
  302. m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
  303. m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
  304. m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
  305. m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
  306. m->cp_hqd_pq_doorbell_control = DOORBELL_EN |
  307. DOORBELL_OFFSET(q->doorbell_off);
  308. m->cp_hqd_vmid = q->vmid;
  309. m->cp_hqd_active = 0;
  310. q->is_active = false;
  311. if (q->queue_size > 0 &&
  312. q->queue_address != 0 &&
  313. q->queue_percent > 0) {
  314. m->cp_hqd_active = 1;
  315. q->is_active = true;
  316. }
  317. return 0;
  318. }
  319. struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  320. {
  321. struct cik_sdma_rlc_registers *m;
  322. BUG_ON(!mqd);
  323. m = (struct cik_sdma_rlc_registers *)mqd;
  324. return m;
  325. }
  326. struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
  327. struct kfd_dev *dev)
  328. {
  329. struct mqd_manager *mqd;
  330. BUG_ON(!dev);
  331. BUG_ON(type >= KFD_MQD_TYPE_MAX);
  332. pr_debug("kfd: In func %s\n", __func__);
  333. mqd = kzalloc(sizeof(struct mqd_manager), GFP_KERNEL);
  334. if (!mqd)
  335. return NULL;
  336. mqd->dev = dev;
  337. switch (type) {
  338. case KFD_MQD_TYPE_CP:
  339. case KFD_MQD_TYPE_COMPUTE:
  340. mqd->init_mqd = init_mqd;
  341. mqd->uninit_mqd = uninit_mqd;
  342. mqd->load_mqd = load_mqd;
  343. mqd->update_mqd = update_mqd;
  344. mqd->destroy_mqd = destroy_mqd;
  345. mqd->is_occupied = is_occupied;
  346. break;
  347. case KFD_MQD_TYPE_HIQ:
  348. mqd->init_mqd = init_mqd_hiq;
  349. mqd->uninit_mqd = uninit_mqd;
  350. mqd->load_mqd = load_mqd;
  351. mqd->update_mqd = update_mqd_hiq;
  352. mqd->destroy_mqd = destroy_mqd;
  353. mqd->is_occupied = is_occupied;
  354. break;
  355. case KFD_MQD_TYPE_SDMA:
  356. mqd->init_mqd = init_mqd_sdma;
  357. mqd->uninit_mqd = uninit_mqd_sdma;
  358. mqd->load_mqd = load_mqd_sdma;
  359. mqd->update_mqd = update_mqd_sdma;
  360. mqd->destroy_mqd = destroy_mqd_sdma;
  361. mqd->is_occupied = is_occupied_sdma;
  362. break;
  363. default:
  364. kfree(mqd);
  365. return NULL;
  366. }
  367. return mqd;
  368. }