edac_mc.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205
  1. /*
  2. * edac_mc kernel module
  3. * (C) 2005, 2006 Linux Networx (http://lnxi.com)
  4. * This file may be distributed under the terms of the
  5. * GNU General Public License.
  6. *
  7. * Written by Thayne Harbaugh
  8. * Based on work by Dan Hollis <goemon at anime dot net> and others.
  9. * http://www.anime.net/~goemon/linux-ecc/
  10. *
  11. * Modified by Dave Peterson and Doug Thompson
  12. *
  13. */
  14. #include <linux/module.h>
  15. #include <linux/proc_fs.h>
  16. #include <linux/kernel.h>
  17. #include <linux/types.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/sysctl.h>
  21. #include <linux/highmem.h>
  22. #include <linux/timer.h>
  23. #include <linux/slab.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/list.h>
  27. #include <linux/ctype.h>
  28. #include <linux/edac.h>
  29. #include <linux/bitops.h>
  30. #include <linux/uaccess.h>
  31. #include <asm/page.h>
  32. #include "edac_mc.h"
  33. #include "edac_module.h"
  34. #include <ras/ras_event.h>
  35. #ifdef CONFIG_EDAC_ATOMIC_SCRUB
  36. #include <asm/edac.h>
  37. #else
  38. #define edac_atomic_scrub(va, size) do { } while (0)
  39. #endif
  40. /* lock to memory controller's control array */
  41. static DEFINE_MUTEX(mem_ctls_mutex);
  42. static LIST_HEAD(mc_devices);
  43. /*
  44. * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
  45. * apei/ghes and i7core_edac to be used at the same time.
  46. */
  47. static void const *edac_mc_owner;
  48. static struct bus_type mc_bus[EDAC_MAX_MCS];
  49. unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
  50. unsigned len)
  51. {
  52. struct mem_ctl_info *mci = dimm->mci;
  53. int i, n, count = 0;
  54. char *p = buf;
  55. for (i = 0; i < mci->n_layers; i++) {
  56. n = snprintf(p, len, "%s %d ",
  57. edac_layer_name[mci->layers[i].type],
  58. dimm->location[i]);
  59. p += n;
  60. len -= n;
  61. count += n;
  62. if (!len)
  63. break;
  64. }
  65. return count;
  66. }
  67. #ifdef CONFIG_EDAC_DEBUG
  68. static void edac_mc_dump_channel(struct rank_info *chan)
  69. {
  70. edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
  71. edac_dbg(4, " channel = %p\n", chan);
  72. edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
  73. edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
  74. }
  75. static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
  76. {
  77. char location[80];
  78. edac_dimm_info_location(dimm, location, sizeof(location));
  79. edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
  80. dimm->mci->csbased ? "rank" : "dimm",
  81. number, location, dimm->csrow, dimm->cschannel);
  82. edac_dbg(4, " dimm = %p\n", dimm);
  83. edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
  84. edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
  85. edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
  86. edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
  87. }
  88. static void edac_mc_dump_csrow(struct csrow_info *csrow)
  89. {
  90. edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
  91. edac_dbg(4, " csrow = %p\n", csrow);
  92. edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
  93. edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
  94. edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
  95. edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
  96. edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
  97. edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
  98. }
  99. static void edac_mc_dump_mci(struct mem_ctl_info *mci)
  100. {
  101. edac_dbg(3, "\tmci = %p\n", mci);
  102. edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
  103. edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
  104. edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
  105. edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
  106. edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
  107. mci->nr_csrows, mci->csrows);
  108. edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
  109. mci->tot_dimms, mci->dimms);
  110. edac_dbg(3, "\tdev = %p\n", mci->pdev);
  111. edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
  112. mci->mod_name, mci->ctl_name);
  113. edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
  114. }
  115. #endif /* CONFIG_EDAC_DEBUG */
  116. const char * const edac_mem_types[] = {
  117. [MEM_EMPTY] = "Empty csrow",
  118. [MEM_RESERVED] = "Reserved csrow type",
  119. [MEM_UNKNOWN] = "Unknown csrow type",
  120. [MEM_FPM] = "Fast page mode RAM",
  121. [MEM_EDO] = "Extended data out RAM",
  122. [MEM_BEDO] = "Burst Extended data out RAM",
  123. [MEM_SDR] = "Single data rate SDRAM",
  124. [MEM_RDR] = "Registered single data rate SDRAM",
  125. [MEM_DDR] = "Double data rate SDRAM",
  126. [MEM_RDDR] = "Registered Double data rate SDRAM",
  127. [MEM_RMBS] = "Rambus DRAM",
  128. [MEM_DDR2] = "Unbuffered DDR2 RAM",
  129. [MEM_FB_DDR2] = "Fully buffered DDR2",
  130. [MEM_RDDR2] = "Registered DDR2 RAM",
  131. [MEM_XDR] = "Rambus XDR",
  132. [MEM_DDR3] = "Unbuffered DDR3 RAM",
  133. [MEM_RDDR3] = "Registered DDR3 RAM",
  134. [MEM_LRDDR3] = "Load-Reduced DDR3 RAM",
  135. [MEM_DDR4] = "Unbuffered DDR4 RAM",
  136. [MEM_RDDR4] = "Registered DDR4 RAM",
  137. };
  138. EXPORT_SYMBOL_GPL(edac_mem_types);
  139. /**
  140. * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
  141. * @p: pointer to a pointer with the memory offset to be used. At
  142. * return, this will be incremented to point to the next offset
  143. * @size: Size of the data structure to be reserved
  144. * @n_elems: Number of elements that should be reserved
  145. *
  146. * If 'size' is a constant, the compiler will optimize this whole function
  147. * down to either a no-op or the addition of a constant to the value of '*p'.
  148. *
  149. * The 'p' pointer is absolutely needed to keep the proper advancing
  150. * further in memory to the proper offsets when allocating the struct along
  151. * with its embedded structs, as edac_device_alloc_ctl_info() does it
  152. * above, for example.
  153. *
  154. * At return, the pointer 'p' will be incremented to be used on a next call
  155. * to this function.
  156. */
  157. void *edac_align_ptr(void **p, unsigned size, int n_elems)
  158. {
  159. unsigned align, r;
  160. void *ptr = *p;
  161. *p += size * n_elems;
  162. /*
  163. * 'p' can possibly be an unaligned item X such that sizeof(X) is
  164. * 'size'. Adjust 'p' so that its alignment is at least as
  165. * stringent as what the compiler would provide for X and return
  166. * the aligned result.
  167. * Here we assume that the alignment of a "long long" is the most
  168. * stringent alignment that the compiler will ever provide by default.
  169. * As far as I know, this is a reasonable assumption.
  170. */
  171. if (size > sizeof(long))
  172. align = sizeof(long long);
  173. else if (size > sizeof(int))
  174. align = sizeof(long);
  175. else if (size > sizeof(short))
  176. align = sizeof(int);
  177. else if (size > sizeof(char))
  178. align = sizeof(short);
  179. else
  180. return (char *)ptr;
  181. r = (unsigned long)p % align;
  182. if (r == 0)
  183. return (char *)ptr;
  184. *p += align - r;
  185. return (void *)(((unsigned long)ptr) + align - r);
  186. }
  187. static void _edac_mc_free(struct mem_ctl_info *mci)
  188. {
  189. int i, chn, row;
  190. struct csrow_info *csr;
  191. const unsigned int tot_dimms = mci->tot_dimms;
  192. const unsigned int tot_channels = mci->num_cschannel;
  193. const unsigned int tot_csrows = mci->nr_csrows;
  194. if (mci->dimms) {
  195. for (i = 0; i < tot_dimms; i++)
  196. kfree(mci->dimms[i]);
  197. kfree(mci->dimms);
  198. }
  199. if (mci->csrows) {
  200. for (row = 0; row < tot_csrows; row++) {
  201. csr = mci->csrows[row];
  202. if (csr) {
  203. if (csr->channels) {
  204. for (chn = 0; chn < tot_channels; chn++)
  205. kfree(csr->channels[chn]);
  206. kfree(csr->channels);
  207. }
  208. kfree(csr);
  209. }
  210. }
  211. kfree(mci->csrows);
  212. }
  213. kfree(mci);
  214. }
  215. struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
  216. unsigned n_layers,
  217. struct edac_mc_layer *layers,
  218. unsigned sz_pvt)
  219. {
  220. struct mem_ctl_info *mci;
  221. struct edac_mc_layer *layer;
  222. struct csrow_info *csr;
  223. struct rank_info *chan;
  224. struct dimm_info *dimm;
  225. u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
  226. unsigned pos[EDAC_MAX_LAYERS];
  227. unsigned size, tot_dimms = 1, count = 1;
  228. unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
  229. void *pvt, *p, *ptr = NULL;
  230. int i, j, row, chn, n, len, off;
  231. bool per_rank = false;
  232. BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
  233. /*
  234. * Calculate the total amount of dimms and csrows/cschannels while
  235. * in the old API emulation mode
  236. */
  237. for (i = 0; i < n_layers; i++) {
  238. tot_dimms *= layers[i].size;
  239. if (layers[i].is_virt_csrow)
  240. tot_csrows *= layers[i].size;
  241. else
  242. tot_channels *= layers[i].size;
  243. if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
  244. per_rank = true;
  245. }
  246. /* Figure out the offsets of the various items from the start of an mc
  247. * structure. We want the alignment of each item to be at least as
  248. * stringent as what the compiler would provide if we could simply
  249. * hardcode everything into a single struct.
  250. */
  251. mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
  252. layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
  253. for (i = 0; i < n_layers; i++) {
  254. count *= layers[i].size;
  255. edac_dbg(4, "errcount layer %d size %d\n", i, count);
  256. ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
  257. ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
  258. tot_errcount += 2 * count;
  259. }
  260. edac_dbg(4, "allocating %d error counters\n", tot_errcount);
  261. pvt = edac_align_ptr(&ptr, sz_pvt, 1);
  262. size = ((unsigned long)pvt) + sz_pvt;
  263. edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
  264. size,
  265. tot_dimms,
  266. per_rank ? "ranks" : "dimms",
  267. tot_csrows * tot_channels);
  268. mci = kzalloc(size, GFP_KERNEL);
  269. if (mci == NULL)
  270. return NULL;
  271. /* Adjust pointers so they point within the memory we just allocated
  272. * rather than an imaginary chunk of memory located at address 0.
  273. */
  274. layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
  275. for (i = 0; i < n_layers; i++) {
  276. mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
  277. mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
  278. }
  279. pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
  280. /* setup index and various internal pointers */
  281. mci->mc_idx = mc_num;
  282. mci->tot_dimms = tot_dimms;
  283. mci->pvt_info = pvt;
  284. mci->n_layers = n_layers;
  285. mci->layers = layer;
  286. memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
  287. mci->nr_csrows = tot_csrows;
  288. mci->num_cschannel = tot_channels;
  289. mci->csbased = per_rank;
  290. /*
  291. * Alocate and fill the csrow/channels structs
  292. */
  293. mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
  294. if (!mci->csrows)
  295. goto error;
  296. for (row = 0; row < tot_csrows; row++) {
  297. csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
  298. if (!csr)
  299. goto error;
  300. mci->csrows[row] = csr;
  301. csr->csrow_idx = row;
  302. csr->mci = mci;
  303. csr->nr_channels = tot_channels;
  304. csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
  305. GFP_KERNEL);
  306. if (!csr->channels)
  307. goto error;
  308. for (chn = 0; chn < tot_channels; chn++) {
  309. chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
  310. if (!chan)
  311. goto error;
  312. csr->channels[chn] = chan;
  313. chan->chan_idx = chn;
  314. chan->csrow = csr;
  315. }
  316. }
  317. /*
  318. * Allocate and fill the dimm structs
  319. */
  320. mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
  321. if (!mci->dimms)
  322. goto error;
  323. memset(&pos, 0, sizeof(pos));
  324. row = 0;
  325. chn = 0;
  326. for (i = 0; i < tot_dimms; i++) {
  327. chan = mci->csrows[row]->channels[chn];
  328. off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
  329. if (off < 0 || off >= tot_dimms) {
  330. edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
  331. goto error;
  332. }
  333. dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
  334. if (!dimm)
  335. goto error;
  336. mci->dimms[off] = dimm;
  337. dimm->mci = mci;
  338. /*
  339. * Copy DIMM location and initialize it.
  340. */
  341. len = sizeof(dimm->label);
  342. p = dimm->label;
  343. n = snprintf(p, len, "mc#%u", mc_num);
  344. p += n;
  345. len -= n;
  346. for (j = 0; j < n_layers; j++) {
  347. n = snprintf(p, len, "%s#%u",
  348. edac_layer_name[layers[j].type],
  349. pos[j]);
  350. p += n;
  351. len -= n;
  352. dimm->location[j] = pos[j];
  353. if (len <= 0)
  354. break;
  355. }
  356. /* Link it to the csrows old API data */
  357. chan->dimm = dimm;
  358. dimm->csrow = row;
  359. dimm->cschannel = chn;
  360. /* Increment csrow location */
  361. if (layers[0].is_virt_csrow) {
  362. chn++;
  363. if (chn == tot_channels) {
  364. chn = 0;
  365. row++;
  366. }
  367. } else {
  368. row++;
  369. if (row == tot_csrows) {
  370. row = 0;
  371. chn++;
  372. }
  373. }
  374. /* Increment dimm location */
  375. for (j = n_layers - 1; j >= 0; j--) {
  376. pos[j]++;
  377. if (pos[j] < layers[j].size)
  378. break;
  379. pos[j] = 0;
  380. }
  381. }
  382. mci->op_state = OP_ALLOC;
  383. return mci;
  384. error:
  385. _edac_mc_free(mci);
  386. return NULL;
  387. }
  388. EXPORT_SYMBOL_GPL(edac_mc_alloc);
  389. void edac_mc_free(struct mem_ctl_info *mci)
  390. {
  391. edac_dbg(1, "\n");
  392. /* If we're not yet registered with sysfs free only what was allocated
  393. * in edac_mc_alloc().
  394. */
  395. if (!device_is_registered(&mci->dev)) {
  396. _edac_mc_free(mci);
  397. return;
  398. }
  399. /* the mci instance is freed here, when the sysfs object is dropped */
  400. edac_unregister_sysfs(mci);
  401. }
  402. EXPORT_SYMBOL_GPL(edac_mc_free);
  403. bool edac_has_mcs(void)
  404. {
  405. bool ret;
  406. mutex_lock(&mem_ctls_mutex);
  407. ret = list_empty(&mc_devices);
  408. mutex_unlock(&mem_ctls_mutex);
  409. return !ret;
  410. }
  411. EXPORT_SYMBOL_GPL(edac_has_mcs);
  412. /* Caller must hold mem_ctls_mutex */
  413. static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
  414. {
  415. struct mem_ctl_info *mci;
  416. struct list_head *item;
  417. edac_dbg(3, "\n");
  418. list_for_each(item, &mc_devices) {
  419. mci = list_entry(item, struct mem_ctl_info, link);
  420. if (mci->pdev == dev)
  421. return mci;
  422. }
  423. return NULL;
  424. }
  425. /**
  426. * find_mci_by_dev
  427. *
  428. * scan list of controllers looking for the one that manages
  429. * the 'dev' device
  430. * @dev: pointer to a struct device related with the MCI
  431. */
  432. struct mem_ctl_info *find_mci_by_dev(struct device *dev)
  433. {
  434. struct mem_ctl_info *ret;
  435. mutex_lock(&mem_ctls_mutex);
  436. ret = __find_mci_by_dev(dev);
  437. mutex_unlock(&mem_ctls_mutex);
  438. return ret;
  439. }
  440. EXPORT_SYMBOL_GPL(find_mci_by_dev);
  441. /*
  442. * handler for EDAC to check if NMI type handler has asserted interrupt
  443. */
  444. static int edac_mc_assert_error_check_and_clear(void)
  445. {
  446. int old_state;
  447. if (edac_op_state == EDAC_OPSTATE_POLL)
  448. return 1;
  449. old_state = edac_err_assert;
  450. edac_err_assert = 0;
  451. return old_state;
  452. }
  453. /*
  454. * edac_mc_workq_function
  455. * performs the operation scheduled by a workq request
  456. */
  457. static void edac_mc_workq_function(struct work_struct *work_req)
  458. {
  459. struct delayed_work *d_work = to_delayed_work(work_req);
  460. struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
  461. mutex_lock(&mem_ctls_mutex);
  462. if (mci->op_state != OP_RUNNING_POLL) {
  463. mutex_unlock(&mem_ctls_mutex);
  464. return;
  465. }
  466. if (edac_mc_assert_error_check_and_clear())
  467. mci->edac_check(mci);
  468. mutex_unlock(&mem_ctls_mutex);
  469. /* Queue ourselves again. */
  470. edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
  471. }
  472. /*
  473. * edac_mc_reset_delay_period(unsigned long value)
  474. *
  475. * user space has updated our poll period value, need to
  476. * reset our workq delays
  477. */
  478. void edac_mc_reset_delay_period(unsigned long value)
  479. {
  480. struct mem_ctl_info *mci;
  481. struct list_head *item;
  482. mutex_lock(&mem_ctls_mutex);
  483. list_for_each(item, &mc_devices) {
  484. mci = list_entry(item, struct mem_ctl_info, link);
  485. if (mci->op_state == OP_RUNNING_POLL)
  486. edac_mod_work(&mci->work, value);
  487. }
  488. mutex_unlock(&mem_ctls_mutex);
  489. }
  490. /* Return 0 on success, 1 on failure.
  491. * Before calling this function, caller must
  492. * assign a unique value to mci->mc_idx.
  493. *
  494. * locking model:
  495. *
  496. * called with the mem_ctls_mutex lock held
  497. */
  498. static int add_mc_to_global_list(struct mem_ctl_info *mci)
  499. {
  500. struct list_head *item, *insert_before;
  501. struct mem_ctl_info *p;
  502. insert_before = &mc_devices;
  503. p = __find_mci_by_dev(mci->pdev);
  504. if (unlikely(p != NULL))
  505. goto fail0;
  506. list_for_each(item, &mc_devices) {
  507. p = list_entry(item, struct mem_ctl_info, link);
  508. if (p->mc_idx >= mci->mc_idx) {
  509. if (unlikely(p->mc_idx == mci->mc_idx))
  510. goto fail1;
  511. insert_before = item;
  512. break;
  513. }
  514. }
  515. list_add_tail_rcu(&mci->link, insert_before);
  516. atomic_inc(&edac_handlers);
  517. return 0;
  518. fail0:
  519. edac_printk(KERN_WARNING, EDAC_MC,
  520. "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
  521. edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
  522. return 1;
  523. fail1:
  524. edac_printk(KERN_WARNING, EDAC_MC,
  525. "bug in low-level driver: attempt to assign\n"
  526. " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
  527. return 1;
  528. }
  529. static int del_mc_from_global_list(struct mem_ctl_info *mci)
  530. {
  531. int handlers = atomic_dec_return(&edac_handlers);
  532. list_del_rcu(&mci->link);
  533. /* these are for safe removal of devices from global list while
  534. * NMI handlers may be traversing list
  535. */
  536. synchronize_rcu();
  537. INIT_LIST_HEAD(&mci->link);
  538. return handlers;
  539. }
  540. struct mem_ctl_info *edac_mc_find(int idx)
  541. {
  542. struct mem_ctl_info *mci = NULL;
  543. struct list_head *item;
  544. mutex_lock(&mem_ctls_mutex);
  545. list_for_each(item, &mc_devices) {
  546. mci = list_entry(item, struct mem_ctl_info, link);
  547. if (mci->mc_idx >= idx) {
  548. if (mci->mc_idx == idx) {
  549. goto unlock;
  550. }
  551. break;
  552. }
  553. }
  554. unlock:
  555. mutex_unlock(&mem_ctls_mutex);
  556. return mci;
  557. }
  558. EXPORT_SYMBOL(edac_mc_find);
  559. /* FIXME - should a warning be printed if no error detection? correction? */
  560. int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
  561. const struct attribute_group **groups)
  562. {
  563. int ret = -EINVAL;
  564. edac_dbg(0, "\n");
  565. if (mci->mc_idx >= EDAC_MAX_MCS) {
  566. pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
  567. return -ENODEV;
  568. }
  569. #ifdef CONFIG_EDAC_DEBUG
  570. if (edac_debug_level >= 3)
  571. edac_mc_dump_mci(mci);
  572. if (edac_debug_level >= 4) {
  573. int i;
  574. for (i = 0; i < mci->nr_csrows; i++) {
  575. struct csrow_info *csrow = mci->csrows[i];
  576. u32 nr_pages = 0;
  577. int j;
  578. for (j = 0; j < csrow->nr_channels; j++)
  579. nr_pages += csrow->channels[j]->dimm->nr_pages;
  580. if (!nr_pages)
  581. continue;
  582. edac_mc_dump_csrow(csrow);
  583. for (j = 0; j < csrow->nr_channels; j++)
  584. if (csrow->channels[j]->dimm->nr_pages)
  585. edac_mc_dump_channel(csrow->channels[j]);
  586. }
  587. for (i = 0; i < mci->tot_dimms; i++)
  588. if (mci->dimms[i]->nr_pages)
  589. edac_mc_dump_dimm(mci->dimms[i], i);
  590. }
  591. #endif
  592. mutex_lock(&mem_ctls_mutex);
  593. if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
  594. ret = -EPERM;
  595. goto fail0;
  596. }
  597. if (add_mc_to_global_list(mci))
  598. goto fail0;
  599. /* set load time so that error rate can be tracked */
  600. mci->start_time = jiffies;
  601. mci->bus = &mc_bus[mci->mc_idx];
  602. if (edac_create_sysfs_mci_device(mci, groups)) {
  603. edac_mc_printk(mci, KERN_WARNING,
  604. "failed to create sysfs device\n");
  605. goto fail1;
  606. }
  607. if (mci->edac_check) {
  608. mci->op_state = OP_RUNNING_POLL;
  609. INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
  610. edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
  611. } else {
  612. mci->op_state = OP_RUNNING_INTERRUPT;
  613. }
  614. /* Report action taken */
  615. edac_mc_printk(mci, KERN_INFO,
  616. "Giving out device to module %s controller %s: DEV %s (%s)\n",
  617. mci->mod_name, mci->ctl_name, mci->dev_name,
  618. edac_op_state_to_string(mci->op_state));
  619. edac_mc_owner = mci->mod_name;
  620. mutex_unlock(&mem_ctls_mutex);
  621. return 0;
  622. fail1:
  623. del_mc_from_global_list(mci);
  624. fail0:
  625. mutex_unlock(&mem_ctls_mutex);
  626. return ret;
  627. }
  628. EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
  629. struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
  630. {
  631. struct mem_ctl_info *mci;
  632. edac_dbg(0, "\n");
  633. mutex_lock(&mem_ctls_mutex);
  634. /* find the requested mci struct in the global list */
  635. mci = __find_mci_by_dev(dev);
  636. if (mci == NULL) {
  637. mutex_unlock(&mem_ctls_mutex);
  638. return NULL;
  639. }
  640. /* mark MCI offline: */
  641. mci->op_state = OP_OFFLINE;
  642. if (!del_mc_from_global_list(mci))
  643. edac_mc_owner = NULL;
  644. mutex_unlock(&mem_ctls_mutex);
  645. if (mci->edac_check)
  646. edac_stop_work(&mci->work);
  647. /* remove from sysfs */
  648. edac_remove_sysfs_mci_device(mci);
  649. edac_printk(KERN_INFO, EDAC_MC,
  650. "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
  651. mci->mod_name, mci->ctl_name, edac_dev_name(mci));
  652. return mci;
  653. }
  654. EXPORT_SYMBOL_GPL(edac_mc_del_mc);
  655. static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
  656. u32 size)
  657. {
  658. struct page *pg;
  659. void *virt_addr;
  660. unsigned long flags = 0;
  661. edac_dbg(3, "\n");
  662. /* ECC error page was not in our memory. Ignore it. */
  663. if (!pfn_valid(page))
  664. return;
  665. /* Find the actual page structure then map it and fix */
  666. pg = pfn_to_page(page);
  667. if (PageHighMem(pg))
  668. local_irq_save(flags);
  669. virt_addr = kmap_atomic(pg);
  670. /* Perform architecture specific atomic scrub operation */
  671. edac_atomic_scrub(virt_addr + offset, size);
  672. /* Unmap and complete */
  673. kunmap_atomic(virt_addr);
  674. if (PageHighMem(pg))
  675. local_irq_restore(flags);
  676. }
  677. /* FIXME - should return -1 */
  678. int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
  679. {
  680. struct csrow_info **csrows = mci->csrows;
  681. int row, i, j, n;
  682. edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
  683. row = -1;
  684. for (i = 0; i < mci->nr_csrows; i++) {
  685. struct csrow_info *csrow = csrows[i];
  686. n = 0;
  687. for (j = 0; j < csrow->nr_channels; j++) {
  688. struct dimm_info *dimm = csrow->channels[j]->dimm;
  689. n += dimm->nr_pages;
  690. }
  691. if (n == 0)
  692. continue;
  693. edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
  694. mci->mc_idx,
  695. csrow->first_page, page, csrow->last_page,
  696. csrow->page_mask);
  697. if ((page >= csrow->first_page) &&
  698. (page <= csrow->last_page) &&
  699. ((page & csrow->page_mask) ==
  700. (csrow->first_page & csrow->page_mask))) {
  701. row = i;
  702. break;
  703. }
  704. }
  705. if (row == -1)
  706. edac_mc_printk(mci, KERN_ERR,
  707. "could not look up page error address %lx\n",
  708. (unsigned long)page);
  709. return row;
  710. }
  711. EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
  712. const char *edac_layer_name[] = {
  713. [EDAC_MC_LAYER_BRANCH] = "branch",
  714. [EDAC_MC_LAYER_CHANNEL] = "channel",
  715. [EDAC_MC_LAYER_SLOT] = "slot",
  716. [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
  717. [EDAC_MC_LAYER_ALL_MEM] = "memory",
  718. };
  719. EXPORT_SYMBOL_GPL(edac_layer_name);
  720. static void edac_inc_ce_error(struct mem_ctl_info *mci,
  721. bool enable_per_layer_report,
  722. const int pos[EDAC_MAX_LAYERS],
  723. const u16 count)
  724. {
  725. int i, index = 0;
  726. mci->ce_mc += count;
  727. if (!enable_per_layer_report) {
  728. mci->ce_noinfo_count += count;
  729. return;
  730. }
  731. for (i = 0; i < mci->n_layers; i++) {
  732. if (pos[i] < 0)
  733. break;
  734. index += pos[i];
  735. mci->ce_per_layer[i][index] += count;
  736. if (i < mci->n_layers - 1)
  737. index *= mci->layers[i + 1].size;
  738. }
  739. }
  740. static void edac_inc_ue_error(struct mem_ctl_info *mci,
  741. bool enable_per_layer_report,
  742. const int pos[EDAC_MAX_LAYERS],
  743. const u16 count)
  744. {
  745. int i, index = 0;
  746. mci->ue_mc += count;
  747. if (!enable_per_layer_report) {
  748. mci->ue_noinfo_count += count;
  749. return;
  750. }
  751. for (i = 0; i < mci->n_layers; i++) {
  752. if (pos[i] < 0)
  753. break;
  754. index += pos[i];
  755. mci->ue_per_layer[i][index] += count;
  756. if (i < mci->n_layers - 1)
  757. index *= mci->layers[i + 1].size;
  758. }
  759. }
  760. static void edac_ce_error(struct mem_ctl_info *mci,
  761. const u16 error_count,
  762. const int pos[EDAC_MAX_LAYERS],
  763. const char *msg,
  764. const char *location,
  765. const char *label,
  766. const char *detail,
  767. const char *other_detail,
  768. const bool enable_per_layer_report,
  769. const unsigned long page_frame_number,
  770. const unsigned long offset_in_page,
  771. long grain)
  772. {
  773. unsigned long remapped_page;
  774. char *msg_aux = "";
  775. if (*msg)
  776. msg_aux = " ";
  777. if (edac_mc_get_log_ce()) {
  778. if (other_detail && *other_detail)
  779. edac_mc_printk(mci, KERN_WARNING,
  780. "%d CE %s%son %s (%s %s - %s)\n",
  781. error_count, msg, msg_aux, label,
  782. location, detail, other_detail);
  783. else
  784. edac_mc_printk(mci, KERN_WARNING,
  785. "%d CE %s%son %s (%s %s)\n",
  786. error_count, msg, msg_aux, label,
  787. location, detail);
  788. }
  789. edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
  790. if (mci->scrub_mode == SCRUB_SW_SRC) {
  791. /*
  792. * Some memory controllers (called MCs below) can remap
  793. * memory so that it is still available at a different
  794. * address when PCI devices map into memory.
  795. * MC's that can't do this, lose the memory where PCI
  796. * devices are mapped. This mapping is MC-dependent
  797. * and so we call back into the MC driver for it to
  798. * map the MC page to a physical (CPU) page which can
  799. * then be mapped to a virtual page - which can then
  800. * be scrubbed.
  801. */
  802. remapped_page = mci->ctl_page_to_phys ?
  803. mci->ctl_page_to_phys(mci, page_frame_number) :
  804. page_frame_number;
  805. edac_mc_scrub_block(remapped_page,
  806. offset_in_page, grain);
  807. }
  808. }
  809. static void edac_ue_error(struct mem_ctl_info *mci,
  810. const u16 error_count,
  811. const int pos[EDAC_MAX_LAYERS],
  812. const char *msg,
  813. const char *location,
  814. const char *label,
  815. const char *detail,
  816. const char *other_detail,
  817. const bool enable_per_layer_report)
  818. {
  819. char *msg_aux = "";
  820. if (*msg)
  821. msg_aux = " ";
  822. if (edac_mc_get_log_ue()) {
  823. if (other_detail && *other_detail)
  824. edac_mc_printk(mci, KERN_WARNING,
  825. "%d UE %s%son %s (%s %s - %s)\n",
  826. error_count, msg, msg_aux, label,
  827. location, detail, other_detail);
  828. else
  829. edac_mc_printk(mci, KERN_WARNING,
  830. "%d UE %s%son %s (%s %s)\n",
  831. error_count, msg, msg_aux, label,
  832. location, detail);
  833. }
  834. if (edac_mc_get_panic_on_ue()) {
  835. if (other_detail && *other_detail)
  836. panic("UE %s%son %s (%s%s - %s)\n",
  837. msg, msg_aux, label, location, detail, other_detail);
  838. else
  839. panic("UE %s%son %s (%s%s)\n",
  840. msg, msg_aux, label, location, detail);
  841. }
  842. edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
  843. }
  844. void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
  845. struct mem_ctl_info *mci,
  846. struct edac_raw_error_desc *e)
  847. {
  848. char detail[80];
  849. int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
  850. /* Memory type dependent details about the error */
  851. if (type == HW_EVENT_ERR_CORRECTED) {
  852. snprintf(detail, sizeof(detail),
  853. "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
  854. e->page_frame_number, e->offset_in_page,
  855. e->grain, e->syndrome);
  856. edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
  857. detail, e->other_detail, e->enable_per_layer_report,
  858. e->page_frame_number, e->offset_in_page, e->grain);
  859. } else {
  860. snprintf(detail, sizeof(detail),
  861. "page:0x%lx offset:0x%lx grain:%ld",
  862. e->page_frame_number, e->offset_in_page, e->grain);
  863. edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
  864. detail, e->other_detail, e->enable_per_layer_report);
  865. }
  866. }
  867. EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
  868. void edac_mc_handle_error(const enum hw_event_mc_err_type type,
  869. struct mem_ctl_info *mci,
  870. const u16 error_count,
  871. const unsigned long page_frame_number,
  872. const unsigned long offset_in_page,
  873. const unsigned long syndrome,
  874. const int top_layer,
  875. const int mid_layer,
  876. const int low_layer,
  877. const char *msg,
  878. const char *other_detail)
  879. {
  880. char *p;
  881. int row = -1, chan = -1;
  882. int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
  883. int i, n_labels = 0;
  884. u8 grain_bits;
  885. struct edac_raw_error_desc *e = &mci->error_desc;
  886. edac_dbg(3, "MC%d\n", mci->mc_idx);
  887. /* Fills the error report buffer */
  888. memset(e, 0, sizeof (*e));
  889. e->error_count = error_count;
  890. e->top_layer = top_layer;
  891. e->mid_layer = mid_layer;
  892. e->low_layer = low_layer;
  893. e->page_frame_number = page_frame_number;
  894. e->offset_in_page = offset_in_page;
  895. e->syndrome = syndrome;
  896. e->msg = msg;
  897. e->other_detail = other_detail;
  898. /*
  899. * Check if the event report is consistent and if the memory
  900. * location is known. If it is known, enable_per_layer_report will be
  901. * true, the DIMM(s) label info will be filled and the per-layer
  902. * error counters will be incremented.
  903. */
  904. for (i = 0; i < mci->n_layers; i++) {
  905. if (pos[i] >= (int)mci->layers[i].size) {
  906. edac_mc_printk(mci, KERN_ERR,
  907. "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
  908. edac_layer_name[mci->layers[i].type],
  909. pos[i], mci->layers[i].size);
  910. /*
  911. * Instead of just returning it, let's use what's
  912. * known about the error. The increment routines and
  913. * the DIMM filter logic will do the right thing by
  914. * pointing the likely damaged DIMMs.
  915. */
  916. pos[i] = -1;
  917. }
  918. if (pos[i] >= 0)
  919. e->enable_per_layer_report = true;
  920. }
  921. /*
  922. * Get the dimm label/grain that applies to the match criteria.
  923. * As the error algorithm may not be able to point to just one memory
  924. * stick, the logic here will get all possible labels that could
  925. * pottentially be affected by the error.
  926. * On FB-DIMM memory controllers, for uncorrected errors, it is common
  927. * to have only the MC channel and the MC dimm (also called "branch")
  928. * but the channel is not known, as the memory is arranged in pairs,
  929. * where each memory belongs to a separate channel within the same
  930. * branch.
  931. */
  932. p = e->label;
  933. *p = '\0';
  934. for (i = 0; i < mci->tot_dimms; i++) {
  935. struct dimm_info *dimm = mci->dimms[i];
  936. if (top_layer >= 0 && top_layer != dimm->location[0])
  937. continue;
  938. if (mid_layer >= 0 && mid_layer != dimm->location[1])
  939. continue;
  940. if (low_layer >= 0 && low_layer != dimm->location[2])
  941. continue;
  942. /* get the max grain, over the error match range */
  943. if (dimm->grain > e->grain)
  944. e->grain = dimm->grain;
  945. /*
  946. * If the error is memory-controller wide, there's no need to
  947. * seek for the affected DIMMs because the whole
  948. * channel/memory controller/... may be affected.
  949. * Also, don't show errors for empty DIMM slots.
  950. */
  951. if (e->enable_per_layer_report && dimm->nr_pages) {
  952. if (n_labels >= EDAC_MAX_LABELS) {
  953. e->enable_per_layer_report = false;
  954. break;
  955. }
  956. n_labels++;
  957. if (p != e->label) {
  958. strcpy(p, OTHER_LABEL);
  959. p += strlen(OTHER_LABEL);
  960. }
  961. strcpy(p, dimm->label);
  962. p += strlen(p);
  963. *p = '\0';
  964. /*
  965. * get csrow/channel of the DIMM, in order to allow
  966. * incrementing the compat API counters
  967. */
  968. edac_dbg(4, "%s csrows map: (%d,%d)\n",
  969. mci->csbased ? "rank" : "dimm",
  970. dimm->csrow, dimm->cschannel);
  971. if (row == -1)
  972. row = dimm->csrow;
  973. else if (row >= 0 && row != dimm->csrow)
  974. row = -2;
  975. if (chan == -1)
  976. chan = dimm->cschannel;
  977. else if (chan >= 0 && chan != dimm->cschannel)
  978. chan = -2;
  979. }
  980. }
  981. if (!e->enable_per_layer_report) {
  982. strcpy(e->label, "any memory");
  983. } else {
  984. edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
  985. if (p == e->label)
  986. strcpy(e->label, "unknown memory");
  987. if (type == HW_EVENT_ERR_CORRECTED) {
  988. if (row >= 0) {
  989. mci->csrows[row]->ce_count += error_count;
  990. if (chan >= 0)
  991. mci->csrows[row]->channels[chan]->ce_count += error_count;
  992. }
  993. } else
  994. if (row >= 0)
  995. mci->csrows[row]->ue_count += error_count;
  996. }
  997. /* Fill the RAM location data */
  998. p = e->location;
  999. for (i = 0; i < mci->n_layers; i++) {
  1000. if (pos[i] < 0)
  1001. continue;
  1002. p += sprintf(p, "%s:%d ",
  1003. edac_layer_name[mci->layers[i].type],
  1004. pos[i]);
  1005. }
  1006. if (p > e->location)
  1007. *(p - 1) = '\0';
  1008. /* Report the error via the trace interface */
  1009. grain_bits = fls_long(e->grain) + 1;
  1010. trace_mc_event(type, e->msg, e->label, e->error_count,
  1011. mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
  1012. (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
  1013. grain_bits, e->syndrome, e->other_detail);
  1014. edac_raw_mc_handle_error(type, mci, e);
  1015. }
  1016. EXPORT_SYMBOL_GPL(edac_mc_handle_error);