amd64_edac.c 88 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *pci_ctl;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /* Per-node stuff */
  14. static struct ecc_settings **ecc_stngs;
  15. /*
  16. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  17. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  18. * or higher value'.
  19. *
  20. *FIXME: Produce a better mapping/linearisation.
  21. */
  22. static const struct scrubrate {
  23. u32 scrubval; /* bit pattern for scrub rate */
  24. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  25. } scrubrates[] = {
  26. { 0x01, 1600000000UL},
  27. { 0x02, 800000000UL},
  28. { 0x03, 400000000UL},
  29. { 0x04, 200000000UL},
  30. { 0x05, 100000000UL},
  31. { 0x06, 50000000UL},
  32. { 0x07, 25000000UL},
  33. { 0x08, 12284069UL},
  34. { 0x09, 6274509UL},
  35. { 0x0A, 3121951UL},
  36. { 0x0B, 1560975UL},
  37. { 0x0C, 781440UL},
  38. { 0x0D, 390720UL},
  39. { 0x0E, 195300UL},
  40. { 0x0F, 97650UL},
  41. { 0x10, 48854UL},
  42. { 0x11, 24427UL},
  43. { 0x12, 12213UL},
  44. { 0x13, 6101UL},
  45. { 0x14, 3051UL},
  46. { 0x15, 1523UL},
  47. { 0x16, 761UL},
  48. { 0x00, 0UL}, /* scrubbing off */
  49. };
  50. int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  51. u32 *val, const char *func)
  52. {
  53. int err = 0;
  54. err = pci_read_config_dword(pdev, offset, val);
  55. if (err)
  56. amd64_warn("%s: error reading F%dx%03x.\n",
  57. func, PCI_FUNC(pdev->devfn), offset);
  58. return err;
  59. }
  60. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  61. u32 val, const char *func)
  62. {
  63. int err = 0;
  64. err = pci_write_config_dword(pdev, offset, val);
  65. if (err)
  66. amd64_warn("%s: error writing to F%dx%03x.\n",
  67. func, PCI_FUNC(pdev->devfn), offset);
  68. return err;
  69. }
  70. /*
  71. * Select DCT to which PCI cfg accesses are routed
  72. */
  73. static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
  74. {
  75. u32 reg = 0;
  76. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  77. reg &= (pvt->model == 0x30) ? ~3 : ~1;
  78. reg |= dct;
  79. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  80. }
  81. /*
  82. *
  83. * Depending on the family, F2 DCT reads need special handling:
  84. *
  85. * K8: has a single DCT only and no address offsets >= 0x100
  86. *
  87. * F10h: each DCT has its own set of regs
  88. * DCT0 -> F2x040..
  89. * DCT1 -> F2x140..
  90. *
  91. * F16h: has only 1 DCT
  92. *
  93. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  94. */
  95. static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
  96. int offset, u32 *val)
  97. {
  98. switch (pvt->fam) {
  99. case 0xf:
  100. if (dct || offset >= 0x100)
  101. return -EINVAL;
  102. break;
  103. case 0x10:
  104. if (dct) {
  105. /*
  106. * Note: If ganging is enabled, barring the regs
  107. * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
  108. * return 0. (cf. Section 2.8.1 F10h BKDG)
  109. */
  110. if (dct_ganging_enabled(pvt))
  111. return 0;
  112. offset += 0x100;
  113. }
  114. break;
  115. case 0x15:
  116. /*
  117. * F15h: F2x1xx addresses do not map explicitly to DCT1.
  118. * We should select which DCT we access using F1x10C[DctCfgSel]
  119. */
  120. dct = (dct && pvt->model == 0x30) ? 3 : dct;
  121. f15h_select_dct(pvt, dct);
  122. break;
  123. case 0x16:
  124. if (dct)
  125. return -EINVAL;
  126. break;
  127. default:
  128. break;
  129. }
  130. return amd64_read_pci_cfg(pvt->F2, offset, val);
  131. }
  132. /*
  133. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  134. * hardware and can involve L2 cache, dcache as well as the main memory. With
  135. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  136. * functionality.
  137. *
  138. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  139. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  140. * bytes/sec for the setting.
  141. *
  142. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  143. * other archs, we might not have access to the caches directly.
  144. */
  145. static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
  146. {
  147. /*
  148. * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
  149. * are shifted down by 0x5, so scrubval 0x5 is written to the register
  150. * as 0x0, scrubval 0x6 as 0x1, etc.
  151. */
  152. if (scrubval >= 0x5 && scrubval <= 0x14) {
  153. scrubval -= 0x5;
  154. pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
  155. pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
  156. } else {
  157. pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
  158. }
  159. }
  160. /*
  161. * Scan the scrub rate mapping table for a close or matching bandwidth value to
  162. * issue. If requested is too big, then use last maximum value found.
  163. */
  164. static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
  165. {
  166. u32 scrubval;
  167. int i;
  168. /*
  169. * map the configured rate (new_bw) to a value specific to the AMD64
  170. * memory controller and apply to register. Search for the first
  171. * bandwidth entry that is greater or equal than the setting requested
  172. * and program that. If at last entry, turn off DRAM scrubbing.
  173. *
  174. * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
  175. * by falling back to the last element in scrubrates[].
  176. */
  177. for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
  178. /*
  179. * skip scrub rates which aren't recommended
  180. * (see F10 BKDG, F3x58)
  181. */
  182. if (scrubrates[i].scrubval < min_rate)
  183. continue;
  184. if (scrubrates[i].bandwidth <= new_bw)
  185. break;
  186. }
  187. scrubval = scrubrates[i].scrubval;
  188. if (pvt->fam == 0x17) {
  189. __f17h_set_scrubval(pvt, scrubval);
  190. } else if (pvt->fam == 0x15 && pvt->model == 0x60) {
  191. f15h_select_dct(pvt, 0);
  192. pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
  193. f15h_select_dct(pvt, 1);
  194. pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
  195. } else {
  196. pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
  197. }
  198. if (scrubval)
  199. return scrubrates[i].bandwidth;
  200. return 0;
  201. }
  202. static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  203. {
  204. struct amd64_pvt *pvt = mci->pvt_info;
  205. u32 min_scrubrate = 0x5;
  206. if (pvt->fam == 0xf)
  207. min_scrubrate = 0x0;
  208. if (pvt->fam == 0x15) {
  209. /* Erratum #505 */
  210. if (pvt->model < 0x10)
  211. f15h_select_dct(pvt, 0);
  212. if (pvt->model == 0x60)
  213. min_scrubrate = 0x6;
  214. }
  215. return __set_scrub_rate(pvt, bw, min_scrubrate);
  216. }
  217. static int get_scrub_rate(struct mem_ctl_info *mci)
  218. {
  219. struct amd64_pvt *pvt = mci->pvt_info;
  220. int i, retval = -EINVAL;
  221. u32 scrubval = 0;
  222. switch (pvt->fam) {
  223. case 0x15:
  224. /* Erratum #505 */
  225. if (pvt->model < 0x10)
  226. f15h_select_dct(pvt, 0);
  227. if (pvt->model == 0x60)
  228. amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
  229. break;
  230. case 0x17:
  231. amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
  232. if (scrubval & BIT(0)) {
  233. amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
  234. scrubval &= 0xF;
  235. scrubval += 0x5;
  236. } else {
  237. scrubval = 0;
  238. }
  239. break;
  240. default:
  241. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  242. break;
  243. }
  244. scrubval = scrubval & 0x001F;
  245. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  246. if (scrubrates[i].scrubval == scrubval) {
  247. retval = scrubrates[i].bandwidth;
  248. break;
  249. }
  250. }
  251. return retval;
  252. }
  253. /*
  254. * returns true if the SysAddr given by sys_addr matches the
  255. * DRAM base/limit associated with node_id
  256. */
  257. static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
  258. {
  259. u64 addr;
  260. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  261. * all ones if the most significant implemented address bit is 1.
  262. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  263. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  264. * Application Programming.
  265. */
  266. addr = sys_addr & 0x000000ffffffffffull;
  267. return ((addr >= get_dram_base(pvt, nid)) &&
  268. (addr <= get_dram_limit(pvt, nid)));
  269. }
  270. /*
  271. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  272. * mem_ctl_info structure for the node that the SysAddr maps to.
  273. *
  274. * On failure, return NULL.
  275. */
  276. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  277. u64 sys_addr)
  278. {
  279. struct amd64_pvt *pvt;
  280. u8 node_id;
  281. u32 intlv_en, bits;
  282. /*
  283. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  284. * 3.4.4.2) registers to map the SysAddr to a node ID.
  285. */
  286. pvt = mci->pvt_info;
  287. /*
  288. * The value of this field should be the same for all DRAM Base
  289. * registers. Therefore we arbitrarily choose to read it from the
  290. * register for node 0.
  291. */
  292. intlv_en = dram_intlv_en(pvt, 0);
  293. if (intlv_en == 0) {
  294. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  295. if (base_limit_match(pvt, sys_addr, node_id))
  296. goto found;
  297. }
  298. goto err_no_match;
  299. }
  300. if (unlikely((intlv_en != 0x01) &&
  301. (intlv_en != 0x03) &&
  302. (intlv_en != 0x07))) {
  303. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  304. return NULL;
  305. }
  306. bits = (((u32) sys_addr) >> 12) & intlv_en;
  307. for (node_id = 0; ; ) {
  308. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  309. break; /* intlv_sel field matches */
  310. if (++node_id >= DRAM_RANGES)
  311. goto err_no_match;
  312. }
  313. /* sanity test for sys_addr */
  314. if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
  315. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  316. "range for node %d with node interleaving enabled.\n",
  317. __func__, sys_addr, node_id);
  318. return NULL;
  319. }
  320. found:
  321. return edac_mc_find((int)node_id);
  322. err_no_match:
  323. edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
  324. (unsigned long)sys_addr);
  325. return NULL;
  326. }
  327. /*
  328. * compute the CS base address of the @csrow on the DRAM controller @dct.
  329. * For details see F2x[5C:40] in the processor's BKDG
  330. */
  331. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  332. u64 *base, u64 *mask)
  333. {
  334. u64 csbase, csmask, base_bits, mask_bits;
  335. u8 addr_shift;
  336. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  337. csbase = pvt->csels[dct].csbases[csrow];
  338. csmask = pvt->csels[dct].csmasks[csrow];
  339. base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
  340. mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
  341. addr_shift = 4;
  342. /*
  343. * F16h and F15h, models 30h and later need two addr_shift values:
  344. * 8 for high and 6 for low (cf. F16h BKDG).
  345. */
  346. } else if (pvt->fam == 0x16 ||
  347. (pvt->fam == 0x15 && pvt->model >= 0x30)) {
  348. csbase = pvt->csels[dct].csbases[csrow];
  349. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  350. *base = (csbase & GENMASK_ULL(15, 5)) << 6;
  351. *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
  352. *mask = ~0ULL;
  353. /* poke holes for the csmask */
  354. *mask &= ~((GENMASK_ULL(15, 5) << 6) |
  355. (GENMASK_ULL(30, 19) << 8));
  356. *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
  357. *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
  358. return;
  359. } else {
  360. csbase = pvt->csels[dct].csbases[csrow];
  361. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  362. addr_shift = 8;
  363. if (pvt->fam == 0x15)
  364. base_bits = mask_bits =
  365. GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
  366. else
  367. base_bits = mask_bits =
  368. GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
  369. }
  370. *base = (csbase & base_bits) << addr_shift;
  371. *mask = ~0ULL;
  372. /* poke holes for the csmask */
  373. *mask &= ~(mask_bits << addr_shift);
  374. /* OR them in */
  375. *mask |= (csmask & mask_bits) << addr_shift;
  376. }
  377. #define for_each_chip_select(i, dct, pvt) \
  378. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  379. #define chip_select_base(i, dct, pvt) \
  380. pvt->csels[dct].csbases[i]
  381. #define for_each_chip_select_mask(i, dct, pvt) \
  382. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  383. /*
  384. * @input_addr is an InputAddr associated with the node given by mci. Return the
  385. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  386. */
  387. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  388. {
  389. struct amd64_pvt *pvt;
  390. int csrow;
  391. u64 base, mask;
  392. pvt = mci->pvt_info;
  393. for_each_chip_select(csrow, 0, pvt) {
  394. if (!csrow_enabled(csrow, 0, pvt))
  395. continue;
  396. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  397. mask = ~mask;
  398. if ((input_addr & mask) == (base & mask)) {
  399. edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
  400. (unsigned long)input_addr, csrow,
  401. pvt->mc_node_id);
  402. return csrow;
  403. }
  404. }
  405. edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  406. (unsigned long)input_addr, pvt->mc_node_id);
  407. return -1;
  408. }
  409. /*
  410. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  411. * for the node represented by mci. Info is passed back in *hole_base,
  412. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  413. * info is invalid. Info may be invalid for either of the following reasons:
  414. *
  415. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  416. * Address Register does not exist.
  417. *
  418. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  419. * indicating that its contents are not valid.
  420. *
  421. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  422. * complete 32-bit values despite the fact that the bitfields in the DHAR
  423. * only represent bits 31-24 of the base and offset values.
  424. */
  425. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  426. u64 *hole_offset, u64 *hole_size)
  427. {
  428. struct amd64_pvt *pvt = mci->pvt_info;
  429. /* only revE and later have the DRAM Hole Address Register */
  430. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
  431. edac_dbg(1, " revision %d for node %d does not support DHAR\n",
  432. pvt->ext_model, pvt->mc_node_id);
  433. return 1;
  434. }
  435. /* valid for Fam10h and above */
  436. if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  437. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
  438. return 1;
  439. }
  440. if (!dhar_valid(pvt)) {
  441. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
  442. pvt->mc_node_id);
  443. return 1;
  444. }
  445. /* This node has Memory Hoisting */
  446. /* +------------------+--------------------+--------------------+-----
  447. * | memory | DRAM hole | relocated |
  448. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  449. * | | | DRAM hole |
  450. * | | | [0x100000000, |
  451. * | | | (0x100000000+ |
  452. * | | | (0xffffffff-x))] |
  453. * +------------------+--------------------+--------------------+-----
  454. *
  455. * Above is a diagram of physical memory showing the DRAM hole and the
  456. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  457. * starts at address x (the base address) and extends through address
  458. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  459. * addresses in the hole so that they start at 0x100000000.
  460. */
  461. *hole_base = dhar_base(pvt);
  462. *hole_size = (1ULL << 32) - *hole_base;
  463. *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
  464. : k8_dhar_offset(pvt);
  465. edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  466. pvt->mc_node_id, (unsigned long)*hole_base,
  467. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  468. return 0;
  469. }
  470. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  471. /*
  472. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  473. * assumed that sys_addr maps to the node given by mci.
  474. *
  475. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  476. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  477. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  478. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  479. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  480. * These parts of the documentation are unclear. I interpret them as follows:
  481. *
  482. * When node n receives a SysAddr, it processes the SysAddr as follows:
  483. *
  484. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  485. * Limit registers for node n. If the SysAddr is not within the range
  486. * specified by the base and limit values, then node n ignores the Sysaddr
  487. * (since it does not map to node n). Otherwise continue to step 2 below.
  488. *
  489. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  490. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  491. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  492. * hole. If not, skip to step 3 below. Else get the value of the
  493. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  494. * offset defined by this value from the SysAddr.
  495. *
  496. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  497. * Base register for node n. To obtain the DramAddr, subtract the base
  498. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  499. */
  500. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  501. {
  502. struct amd64_pvt *pvt = mci->pvt_info;
  503. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  504. int ret;
  505. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  506. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  507. &hole_size);
  508. if (!ret) {
  509. if ((sys_addr >= (1ULL << 32)) &&
  510. (sys_addr < ((1ULL << 32) + hole_size))) {
  511. /* use DHAR to translate SysAddr to DramAddr */
  512. dram_addr = sys_addr - hole_offset;
  513. edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  514. (unsigned long)sys_addr,
  515. (unsigned long)dram_addr);
  516. return dram_addr;
  517. }
  518. }
  519. /*
  520. * Translate the SysAddr to a DramAddr as shown near the start of
  521. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  522. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  523. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  524. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  525. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  526. * Programmer's Manual Volume 1 Application Programming.
  527. */
  528. dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
  529. edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  530. (unsigned long)sys_addr, (unsigned long)dram_addr);
  531. return dram_addr;
  532. }
  533. /*
  534. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  535. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  536. * for node interleaving.
  537. */
  538. static int num_node_interleave_bits(unsigned intlv_en)
  539. {
  540. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  541. int n;
  542. BUG_ON(intlv_en > 7);
  543. n = intlv_shift_table[intlv_en];
  544. return n;
  545. }
  546. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  547. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  548. {
  549. struct amd64_pvt *pvt;
  550. int intlv_shift;
  551. u64 input_addr;
  552. pvt = mci->pvt_info;
  553. /*
  554. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  555. * concerning translating a DramAddr to an InputAddr.
  556. */
  557. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  558. input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
  559. (dram_addr & 0xfff);
  560. edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  561. intlv_shift, (unsigned long)dram_addr,
  562. (unsigned long)input_addr);
  563. return input_addr;
  564. }
  565. /*
  566. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  567. * assumed that @sys_addr maps to the node given by mci.
  568. */
  569. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  570. {
  571. u64 input_addr;
  572. input_addr =
  573. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  574. edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
  575. (unsigned long)sys_addr, (unsigned long)input_addr);
  576. return input_addr;
  577. }
  578. /* Map the Error address to a PAGE and PAGE OFFSET. */
  579. static inline void error_address_to_page_and_offset(u64 error_address,
  580. struct err_info *err)
  581. {
  582. err->page = (u32) (error_address >> PAGE_SHIFT);
  583. err->offset = ((u32) error_address) & ~PAGE_MASK;
  584. }
  585. /*
  586. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  587. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  588. * of a node that detected an ECC memory error. mci represents the node that
  589. * the error address maps to (possibly different from the node that detected
  590. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  591. * error.
  592. */
  593. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  594. {
  595. int csrow;
  596. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  597. if (csrow == -1)
  598. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  599. "address 0x%lx\n", (unsigned long)sys_addr);
  600. return csrow;
  601. }
  602. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  603. /*
  604. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  605. * are ECC capable.
  606. */
  607. static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
  608. {
  609. unsigned long edac_cap = EDAC_FLAG_NONE;
  610. u8 bit;
  611. if (pvt->umc) {
  612. u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
  613. for (i = 0; i < NUM_UMCS; i++) {
  614. if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
  615. continue;
  616. umc_en_mask |= BIT(i);
  617. /* UMC Configuration bit 12 (DimmEccEn) */
  618. if (pvt->umc[i].umc_cfg & BIT(12))
  619. dimm_ecc_en_mask |= BIT(i);
  620. }
  621. if (umc_en_mask == dimm_ecc_en_mask)
  622. edac_cap = EDAC_FLAG_SECDED;
  623. } else {
  624. bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
  625. ? 19
  626. : 17;
  627. if (pvt->dclr0 & BIT(bit))
  628. edac_cap = EDAC_FLAG_SECDED;
  629. }
  630. return edac_cap;
  631. }
  632. static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
  633. static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
  634. {
  635. edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  636. if (pvt->dram_type == MEM_LRDDR3) {
  637. u32 dcsm = pvt->csels[chan].csmasks[0];
  638. /*
  639. * It's assumed all LRDIMMs in a DCT are going to be of
  640. * same 'type' until proven otherwise. So, use a cs
  641. * value of '0' here to get dcsm value.
  642. */
  643. edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
  644. }
  645. edac_dbg(1, "All DIMMs support ECC:%s\n",
  646. (dclr & BIT(19)) ? "yes" : "no");
  647. edac_dbg(1, " PAR/ERR parity: %s\n",
  648. (dclr & BIT(8)) ? "enabled" : "disabled");
  649. if (pvt->fam == 0x10)
  650. edac_dbg(1, " DCT 128bit mode width: %s\n",
  651. (dclr & BIT(11)) ? "128b" : "64b");
  652. edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  653. (dclr & BIT(12)) ? "yes" : "no",
  654. (dclr & BIT(13)) ? "yes" : "no",
  655. (dclr & BIT(14)) ? "yes" : "no",
  656. (dclr & BIT(15)) ? "yes" : "no");
  657. }
  658. static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
  659. {
  660. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  661. int dimm, size0, size1;
  662. edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);
  663. for (dimm = 0; dimm < 4; dimm++) {
  664. size0 = 0;
  665. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  666. size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, dimm);
  667. size1 = 0;
  668. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  669. size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, dimm);
  670. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  671. dimm * 2, size0,
  672. dimm * 2 + 1, size1);
  673. }
  674. }
  675. static void __dump_misc_regs_df(struct amd64_pvt *pvt)
  676. {
  677. struct amd64_umc *umc;
  678. u32 i, tmp, umc_base;
  679. for (i = 0; i < NUM_UMCS; i++) {
  680. umc_base = get_umc_base(i);
  681. umc = &pvt->umc[i];
  682. edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
  683. edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
  684. edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
  685. edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);
  686. amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
  687. edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);
  688. amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
  689. edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
  690. edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);
  691. edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
  692. i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
  693. (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
  694. edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
  695. i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
  696. edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
  697. i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
  698. edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
  699. i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");
  700. if (pvt->dram_type == MEM_LRDDR4) {
  701. amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
  702. edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
  703. i, 1 << ((tmp >> 4) & 0x3));
  704. }
  705. debug_display_dimm_sizes_df(pvt, i);
  706. }
  707. edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
  708. pvt->dhar, dhar_base(pvt));
  709. }
  710. /* Display and decode various NB registers for debug purposes. */
  711. static void __dump_misc_regs(struct amd64_pvt *pvt)
  712. {
  713. edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  714. edac_dbg(1, " NB two channel DRAM capable: %s\n",
  715. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  716. edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
  717. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  718. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  719. debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
  720. edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  721. edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
  722. pvt->dhar, dhar_base(pvt),
  723. (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
  724. : f10_dhar_offset(pvt));
  725. debug_display_dimm_sizes(pvt, 0);
  726. /* everything below this point is Fam10h and above */
  727. if (pvt->fam == 0xf)
  728. return;
  729. debug_display_dimm_sizes(pvt, 1);
  730. /* Only if NOT ganged does dclr1 have valid info */
  731. if (!dct_ganging_enabled(pvt))
  732. debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
  733. }
  734. /* Display and decode various NB registers for debug purposes. */
  735. static void dump_misc_regs(struct amd64_pvt *pvt)
  736. {
  737. if (pvt->umc)
  738. __dump_misc_regs_df(pvt);
  739. else
  740. __dump_misc_regs(pvt);
  741. edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  742. amd64_info("using %s syndromes.\n",
  743. ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
  744. }
  745. /*
  746. * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  747. */
  748. static void prep_chip_selects(struct amd64_pvt *pvt)
  749. {
  750. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  751. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  752. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  753. } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
  754. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
  755. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
  756. } else {
  757. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  758. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  759. }
  760. }
  761. /*
  762. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  763. */
  764. static void read_dct_base_mask(struct amd64_pvt *pvt)
  765. {
  766. int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
  767. prep_chip_selects(pvt);
  768. if (pvt->umc) {
  769. base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
  770. base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
  771. mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
  772. mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
  773. } else {
  774. base_reg0 = DCSB0;
  775. base_reg1 = DCSB1;
  776. mask_reg0 = DCSM0;
  777. mask_reg1 = DCSM1;
  778. }
  779. for_each_chip_select(cs, 0, pvt) {
  780. int reg0 = base_reg0 + (cs * 4);
  781. int reg1 = base_reg1 + (cs * 4);
  782. u32 *base0 = &pvt->csels[0].csbases[cs];
  783. u32 *base1 = &pvt->csels[1].csbases[cs];
  784. if (pvt->umc) {
  785. if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
  786. edac_dbg(0, " DCSB0[%d]=0x%08x reg: 0x%x\n",
  787. cs, *base0, reg0);
  788. if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
  789. edac_dbg(0, " DCSB1[%d]=0x%08x reg: 0x%x\n",
  790. cs, *base1, reg1);
  791. } else {
  792. if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
  793. edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
  794. cs, *base0, reg0);
  795. if (pvt->fam == 0xf)
  796. continue;
  797. if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
  798. edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
  799. cs, *base1, (pvt->fam == 0x10) ? reg1
  800. : reg0);
  801. }
  802. }
  803. for_each_chip_select_mask(cs, 0, pvt) {
  804. int reg0 = mask_reg0 + (cs * 4);
  805. int reg1 = mask_reg1 + (cs * 4);
  806. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  807. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  808. if (pvt->umc) {
  809. if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
  810. edac_dbg(0, " DCSM0[%d]=0x%08x reg: 0x%x\n",
  811. cs, *mask0, reg0);
  812. if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
  813. edac_dbg(0, " DCSM1[%d]=0x%08x reg: 0x%x\n",
  814. cs, *mask1, reg1);
  815. } else {
  816. if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
  817. edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
  818. cs, *mask0, reg0);
  819. if (pvt->fam == 0xf)
  820. continue;
  821. if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
  822. edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
  823. cs, *mask1, (pvt->fam == 0x10) ? reg1
  824. : reg0);
  825. }
  826. }
  827. }
  828. static void determine_memory_type(struct amd64_pvt *pvt)
  829. {
  830. u32 dram_ctrl, dcsm;
  831. switch (pvt->fam) {
  832. case 0xf:
  833. if (pvt->ext_model >= K8_REV_F)
  834. goto ddr3;
  835. pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  836. return;
  837. case 0x10:
  838. if (pvt->dchr0 & DDR3_MODE)
  839. goto ddr3;
  840. pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  841. return;
  842. case 0x15:
  843. if (pvt->model < 0x60)
  844. goto ddr3;
  845. /*
  846. * Model 0x60h needs special handling:
  847. *
  848. * We use a Chip Select value of '0' to obtain dcsm.
  849. * Theoretically, it is possible to populate LRDIMMs of different
  850. * 'Rank' value on a DCT. But this is not the common case. So,
  851. * it's reasonable to assume all DIMMs are going to be of same
  852. * 'type' until proven otherwise.
  853. */
  854. amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
  855. dcsm = pvt->csels[0].csmasks[0];
  856. if (((dram_ctrl >> 8) & 0x7) == 0x2)
  857. pvt->dram_type = MEM_DDR4;
  858. else if (pvt->dclr0 & BIT(16))
  859. pvt->dram_type = MEM_DDR3;
  860. else if (dcsm & 0x3)
  861. pvt->dram_type = MEM_LRDDR3;
  862. else
  863. pvt->dram_type = MEM_RDDR3;
  864. return;
  865. case 0x16:
  866. goto ddr3;
  867. case 0x17:
  868. if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
  869. pvt->dram_type = MEM_LRDDR4;
  870. else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
  871. pvt->dram_type = MEM_RDDR4;
  872. else
  873. pvt->dram_type = MEM_DDR4;
  874. return;
  875. default:
  876. WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
  877. pvt->dram_type = MEM_EMPTY;
  878. }
  879. return;
  880. ddr3:
  881. pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  882. }
  883. /* Get the number of DCT channels the memory controller is using. */
  884. static int k8_early_channel_count(struct amd64_pvt *pvt)
  885. {
  886. int flag;
  887. if (pvt->ext_model >= K8_REV_F)
  888. /* RevF (NPT) and later */
  889. flag = pvt->dclr0 & WIDTH_128;
  890. else
  891. /* RevE and earlier */
  892. flag = pvt->dclr0 & REVE_WIDTH_128;
  893. /* not used */
  894. pvt->dclr1 = 0;
  895. return (flag) ? 2 : 1;
  896. }
  897. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  898. static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
  899. {
  900. u16 mce_nid = amd_get_nb_id(m->extcpu);
  901. struct mem_ctl_info *mci;
  902. u8 start_bit = 1;
  903. u8 end_bit = 47;
  904. u64 addr;
  905. mci = edac_mc_find(mce_nid);
  906. if (!mci)
  907. return 0;
  908. pvt = mci->pvt_info;
  909. if (pvt->fam == 0xf) {
  910. start_bit = 3;
  911. end_bit = 39;
  912. }
  913. addr = m->addr & GENMASK_ULL(end_bit, start_bit);
  914. /*
  915. * Erratum 637 workaround
  916. */
  917. if (pvt->fam == 0x15) {
  918. u64 cc6_base, tmp_addr;
  919. u32 tmp;
  920. u8 intlv_en;
  921. if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
  922. return addr;
  923. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
  924. intlv_en = tmp >> 21 & 0x7;
  925. /* add [47:27] + 3 trailing bits */
  926. cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
  927. /* reverse and add DramIntlvEn */
  928. cc6_base |= intlv_en ^ 0x7;
  929. /* pin at [47:24] */
  930. cc6_base <<= 24;
  931. if (!intlv_en)
  932. return cc6_base | (addr & GENMASK_ULL(23, 0));
  933. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
  934. /* faster log2 */
  935. tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
  936. /* OR DramIntlvSel into bits [14:12] */
  937. tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
  938. /* add remaining [11:0] bits from original MC4_ADDR */
  939. tmp_addr |= addr & GENMASK_ULL(11, 0);
  940. return cc6_base | tmp_addr;
  941. }
  942. return addr;
  943. }
  944. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  945. unsigned int device,
  946. struct pci_dev *related)
  947. {
  948. struct pci_dev *dev = NULL;
  949. while ((dev = pci_get_device(vendor, device, dev))) {
  950. if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
  951. (dev->bus->number == related->bus->number) &&
  952. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  953. break;
  954. }
  955. return dev;
  956. }
  957. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  958. {
  959. struct amd_northbridge *nb;
  960. struct pci_dev *f1 = NULL;
  961. unsigned int pci_func;
  962. int off = range << 3;
  963. u32 llim;
  964. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  965. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  966. if (pvt->fam == 0xf)
  967. return;
  968. if (!dram_rw(pvt, range))
  969. return;
  970. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  971. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  972. /* F15h: factor in CC6 save area by reading dst node's limit reg */
  973. if (pvt->fam != 0x15)
  974. return;
  975. nb = node_to_amd_nb(dram_dst_node(pvt, range));
  976. if (WARN_ON(!nb))
  977. return;
  978. if (pvt->model == 0x60)
  979. pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
  980. else if (pvt->model == 0x30)
  981. pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
  982. else
  983. pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
  984. f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
  985. if (WARN_ON(!f1))
  986. return;
  987. amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
  988. pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
  989. /* {[39:27],111b} */
  990. pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
  991. pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
  992. /* [47:40] */
  993. pvt->ranges[range].lim.hi |= llim >> 13;
  994. pci_dev_put(f1);
  995. }
  996. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  997. struct err_info *err)
  998. {
  999. struct amd64_pvt *pvt = mci->pvt_info;
  1000. error_address_to_page_and_offset(sys_addr, err);
  1001. /*
  1002. * Find out which node the error address belongs to. This may be
  1003. * different from the node that detected the error.
  1004. */
  1005. err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1006. if (!err->src_mci) {
  1007. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  1008. (unsigned long)sys_addr);
  1009. err->err_code = ERR_NODE;
  1010. return;
  1011. }
  1012. /* Now map the sys_addr to a CSROW */
  1013. err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
  1014. if (err->csrow < 0) {
  1015. err->err_code = ERR_CSROW;
  1016. return;
  1017. }
  1018. /* CHIPKILL enabled */
  1019. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  1020. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  1021. if (err->channel < 0) {
  1022. /*
  1023. * Syndrome didn't map, so we don't know which of the
  1024. * 2 DIMMs is in error. So we need to ID 'both' of them
  1025. * as suspect.
  1026. */
  1027. amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
  1028. "possible error reporting race\n",
  1029. err->syndrome);
  1030. err->err_code = ERR_CHANNEL;
  1031. return;
  1032. }
  1033. } else {
  1034. /*
  1035. * non-chipkill ecc mode
  1036. *
  1037. * The k8 documentation is unclear about how to determine the
  1038. * channel number when using non-chipkill memory. This method
  1039. * was obtained from email communication with someone at AMD.
  1040. * (Wish the email was placed in this comment - norsk)
  1041. */
  1042. err->channel = ((sys_addr & BIT(3)) != 0);
  1043. }
  1044. }
  1045. static int ddr2_cs_size(unsigned i, bool dct_width)
  1046. {
  1047. unsigned shift = 0;
  1048. if (i <= 2)
  1049. shift = i;
  1050. else if (!(i & 0x1))
  1051. shift = i >> 1;
  1052. else
  1053. shift = (i + 1) >> 1;
  1054. return 128 << (shift + !!dct_width);
  1055. }
  1056. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1057. unsigned cs_mode, int cs_mask_nr)
  1058. {
  1059. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  1060. if (pvt->ext_model >= K8_REV_F) {
  1061. WARN_ON(cs_mode > 11);
  1062. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  1063. }
  1064. else if (pvt->ext_model >= K8_REV_D) {
  1065. unsigned diff;
  1066. WARN_ON(cs_mode > 10);
  1067. /*
  1068. * the below calculation, besides trying to win an obfuscated C
  1069. * contest, maps cs_mode values to DIMM chip select sizes. The
  1070. * mappings are:
  1071. *
  1072. * cs_mode CS size (mb)
  1073. * ======= ============
  1074. * 0 32
  1075. * 1 64
  1076. * 2 128
  1077. * 3 128
  1078. * 4 256
  1079. * 5 512
  1080. * 6 256
  1081. * 7 512
  1082. * 8 1024
  1083. * 9 1024
  1084. * 10 2048
  1085. *
  1086. * Basically, it calculates a value with which to shift the
  1087. * smallest CS size of 32MB.
  1088. *
  1089. * ddr[23]_cs_size have a similar purpose.
  1090. */
  1091. diff = cs_mode/3 + (unsigned)(cs_mode > 5);
  1092. return 32 << (cs_mode - diff);
  1093. }
  1094. else {
  1095. WARN_ON(cs_mode > 6);
  1096. return 32 << cs_mode;
  1097. }
  1098. }
  1099. /*
  1100. * Get the number of DCT channels in use.
  1101. *
  1102. * Return:
  1103. * number of Memory Channels in operation
  1104. * Pass back:
  1105. * contents of the DCL0_LOW register
  1106. */
  1107. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  1108. {
  1109. int i, j, channels = 0;
  1110. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  1111. if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
  1112. return 2;
  1113. /*
  1114. * Need to check if in unganged mode: In such, there are 2 channels,
  1115. * but they are not in 128 bit mode and thus the above 'dclr0' status
  1116. * bit will be OFF.
  1117. *
  1118. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  1119. * their CSEnable bit on. If so, then SINGLE DIMM case.
  1120. */
  1121. edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
  1122. /*
  1123. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  1124. * is more than just one DIMM present in unganged mode. Need to check
  1125. * both controllers since DIMMs can be placed in either one.
  1126. */
  1127. for (i = 0; i < 2; i++) {
  1128. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  1129. for (j = 0; j < 4; j++) {
  1130. if (DBAM_DIMM(j, dbam) > 0) {
  1131. channels++;
  1132. break;
  1133. }
  1134. }
  1135. }
  1136. if (channels > 2)
  1137. channels = 2;
  1138. amd64_info("MCT channel count: %d\n", channels);
  1139. return channels;
  1140. }
  1141. static int f17_early_channel_count(struct amd64_pvt *pvt)
  1142. {
  1143. int i, channels = 0;
  1144. /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
  1145. for (i = 0; i < NUM_UMCS; i++)
  1146. channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);
  1147. amd64_info("MCT channel count: %d\n", channels);
  1148. return channels;
  1149. }
  1150. static int ddr3_cs_size(unsigned i, bool dct_width)
  1151. {
  1152. unsigned shift = 0;
  1153. int cs_size = 0;
  1154. if (i == 0 || i == 3 || i == 4)
  1155. cs_size = -1;
  1156. else if (i <= 2)
  1157. shift = i;
  1158. else if (i == 12)
  1159. shift = 7;
  1160. else if (!(i & 0x1))
  1161. shift = i >> 1;
  1162. else
  1163. shift = (i + 1) >> 1;
  1164. if (cs_size != -1)
  1165. cs_size = (128 * (1 << !!dct_width)) << shift;
  1166. return cs_size;
  1167. }
  1168. static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
  1169. {
  1170. unsigned shift = 0;
  1171. int cs_size = 0;
  1172. if (i < 4 || i == 6)
  1173. cs_size = -1;
  1174. else if (i == 12)
  1175. shift = 7;
  1176. else if (!(i & 0x1))
  1177. shift = i >> 1;
  1178. else
  1179. shift = (i + 1) >> 1;
  1180. if (cs_size != -1)
  1181. cs_size = rank_multiply * (128 << shift);
  1182. return cs_size;
  1183. }
  1184. static int ddr4_cs_size(unsigned i)
  1185. {
  1186. int cs_size = 0;
  1187. if (i == 0)
  1188. cs_size = -1;
  1189. else if (i == 1)
  1190. cs_size = 1024;
  1191. else
  1192. /* Min cs_size = 1G */
  1193. cs_size = 1024 * (1 << (i >> 1));
  1194. return cs_size;
  1195. }
  1196. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1197. unsigned cs_mode, int cs_mask_nr)
  1198. {
  1199. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  1200. WARN_ON(cs_mode > 11);
  1201. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1202. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  1203. else
  1204. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  1205. }
  1206. /*
  1207. * F15h supports only 64bit DCT interfaces
  1208. */
  1209. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1210. unsigned cs_mode, int cs_mask_nr)
  1211. {
  1212. WARN_ON(cs_mode > 12);
  1213. return ddr3_cs_size(cs_mode, false);
  1214. }
  1215. /* F15h M60h supports DDR4 mapping as well.. */
  1216. static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1217. unsigned cs_mode, int cs_mask_nr)
  1218. {
  1219. int cs_size;
  1220. u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
  1221. WARN_ON(cs_mode > 12);
  1222. if (pvt->dram_type == MEM_DDR4) {
  1223. if (cs_mode > 9)
  1224. return -1;
  1225. cs_size = ddr4_cs_size(cs_mode);
  1226. } else if (pvt->dram_type == MEM_LRDDR3) {
  1227. unsigned rank_multiply = dcsm & 0xf;
  1228. if (rank_multiply == 3)
  1229. rank_multiply = 4;
  1230. cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
  1231. } else {
  1232. /* Minimum cs size is 512mb for F15hM60h*/
  1233. if (cs_mode == 0x1)
  1234. return -1;
  1235. cs_size = ddr3_cs_size(cs_mode, false);
  1236. }
  1237. return cs_size;
  1238. }
  1239. /*
  1240. * F16h and F15h model 30h have only limited cs_modes.
  1241. */
  1242. static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1243. unsigned cs_mode, int cs_mask_nr)
  1244. {
  1245. WARN_ON(cs_mode > 12);
  1246. if (cs_mode == 6 || cs_mode == 8 ||
  1247. cs_mode == 9 || cs_mode == 12)
  1248. return -1;
  1249. else
  1250. return ddr3_cs_size(cs_mode, false);
  1251. }
  1252. static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
  1253. unsigned int cs_mode, int csrow_nr)
  1254. {
  1255. u32 base_addr = pvt->csels[umc].csbases[csrow_nr];
  1256. /* Each mask is used for every two base addresses. */
  1257. u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];
  1258. /* Register [31:1] = Address [39:9]. Size is in kBs here. */
  1259. u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;
  1260. edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);
  1261. /* Return size in MBs. */
  1262. return size >> 10;
  1263. }
  1264. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  1265. {
  1266. if (pvt->fam == 0xf)
  1267. return;
  1268. if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  1269. edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  1270. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  1271. edac_dbg(0, " DCTs operate in %s mode\n",
  1272. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  1273. if (!dct_ganging_enabled(pvt))
  1274. edac_dbg(0, " Address range split per DCT: %s\n",
  1275. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1276. edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
  1277. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1278. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1279. edac_dbg(0, " channel interleave: %s, "
  1280. "interleave bits selector: 0x%x\n",
  1281. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1282. dct_sel_interleave_addr(pvt));
  1283. }
  1284. amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
  1285. }
  1286. /*
  1287. * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
  1288. * 2.10.12 Memory Interleaving Modes).
  1289. */
  1290. static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1291. u8 intlv_en, int num_dcts_intlv,
  1292. u32 dct_sel)
  1293. {
  1294. u8 channel = 0;
  1295. u8 select;
  1296. if (!(intlv_en))
  1297. return (u8)(dct_sel);
  1298. if (num_dcts_intlv == 2) {
  1299. select = (sys_addr >> 8) & 0x3;
  1300. channel = select ? 0x3 : 0;
  1301. } else if (num_dcts_intlv == 4) {
  1302. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1303. switch (intlv_addr) {
  1304. case 0x4:
  1305. channel = (sys_addr >> 8) & 0x3;
  1306. break;
  1307. case 0x5:
  1308. channel = (sys_addr >> 9) & 0x3;
  1309. break;
  1310. }
  1311. }
  1312. return channel;
  1313. }
  1314. /*
  1315. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1316. * Interleaving Modes.
  1317. */
  1318. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1319. bool hi_range_sel, u8 intlv_en)
  1320. {
  1321. u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  1322. if (dct_ganging_enabled(pvt))
  1323. return 0;
  1324. if (hi_range_sel)
  1325. return dct_sel_high;
  1326. /*
  1327. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1328. */
  1329. if (dct_interleave_enabled(pvt)) {
  1330. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1331. /* return DCT select function: 0=DCT0, 1=DCT1 */
  1332. if (!intlv_addr)
  1333. return sys_addr >> 6 & 1;
  1334. if (intlv_addr & 0x2) {
  1335. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  1336. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
  1337. return ((sys_addr >> shift) & 1) ^ temp;
  1338. }
  1339. if (intlv_addr & 0x4) {
  1340. u8 shift = intlv_addr & 0x1 ? 9 : 8;
  1341. return (sys_addr >> shift) & 1;
  1342. }
  1343. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1344. }
  1345. if (dct_high_range_enabled(pvt))
  1346. return ~dct_sel_high & 1;
  1347. return 0;
  1348. }
  1349. /* Convert the sys_addr to the normalized DCT address */
  1350. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
  1351. u64 sys_addr, bool hi_rng,
  1352. u32 dct_sel_base_addr)
  1353. {
  1354. u64 chan_off;
  1355. u64 dram_base = get_dram_base(pvt, range);
  1356. u64 hole_off = f10_dhar_offset(pvt);
  1357. u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1358. if (hi_rng) {
  1359. /*
  1360. * if
  1361. * base address of high range is below 4Gb
  1362. * (bits [47:27] at [31:11])
  1363. * DRAM address space on this DCT is hoisted above 4Gb &&
  1364. * sys_addr > 4Gb
  1365. *
  1366. * remove hole offset from sys_addr
  1367. * else
  1368. * remove high range offset from sys_addr
  1369. */
  1370. if ((!(dct_sel_base_addr >> 16) ||
  1371. dct_sel_base_addr < dhar_base(pvt)) &&
  1372. dhar_valid(pvt) &&
  1373. (sys_addr >= BIT_64(32)))
  1374. chan_off = hole_off;
  1375. else
  1376. chan_off = dct_sel_base_off;
  1377. } else {
  1378. /*
  1379. * if
  1380. * we have a valid hole &&
  1381. * sys_addr > 4Gb
  1382. *
  1383. * remove hole
  1384. * else
  1385. * remove dram base to normalize to DCT address
  1386. */
  1387. if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
  1388. chan_off = hole_off;
  1389. else
  1390. chan_off = dram_base;
  1391. }
  1392. return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
  1393. }
  1394. /*
  1395. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1396. * spare row
  1397. */
  1398. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1399. {
  1400. int tmp_cs;
  1401. if (online_spare_swap_done(pvt, dct) &&
  1402. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1403. for_each_chip_select(tmp_cs, dct, pvt) {
  1404. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1405. csrow = tmp_cs;
  1406. break;
  1407. }
  1408. }
  1409. }
  1410. return csrow;
  1411. }
  1412. /*
  1413. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1414. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1415. *
  1416. * Return:
  1417. * -EINVAL: NOT FOUND
  1418. * 0..csrow = Chip-Select Row
  1419. */
  1420. static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
  1421. {
  1422. struct mem_ctl_info *mci;
  1423. struct amd64_pvt *pvt;
  1424. u64 cs_base, cs_mask;
  1425. int cs_found = -EINVAL;
  1426. int csrow;
  1427. mci = edac_mc_find(nid);
  1428. if (!mci)
  1429. return cs_found;
  1430. pvt = mci->pvt_info;
  1431. edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1432. for_each_chip_select(csrow, dct, pvt) {
  1433. if (!csrow_enabled(csrow, dct, pvt))
  1434. continue;
  1435. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1436. edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1437. csrow, cs_base, cs_mask);
  1438. cs_mask = ~cs_mask;
  1439. edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
  1440. (in_addr & cs_mask), (cs_base & cs_mask));
  1441. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1442. if (pvt->fam == 0x15 && pvt->model >= 0x30) {
  1443. cs_found = csrow;
  1444. break;
  1445. }
  1446. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1447. edac_dbg(1, " MATCH csrow=%d\n", cs_found);
  1448. break;
  1449. }
  1450. }
  1451. return cs_found;
  1452. }
  1453. /*
  1454. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1455. * swapped with a region located at the bottom of memory so that the GPU can use
  1456. * the interleaved region and thus two channels.
  1457. */
  1458. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1459. {
  1460. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1461. if (pvt->fam == 0x10) {
  1462. /* only revC3 and revE have that feature */
  1463. if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
  1464. return sys_addr;
  1465. }
  1466. amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
  1467. if (!(swap_reg & 0x1))
  1468. return sys_addr;
  1469. swap_base = (swap_reg >> 3) & 0x7f;
  1470. swap_limit = (swap_reg >> 11) & 0x7f;
  1471. rgn_size = (swap_reg >> 20) & 0x7f;
  1472. tmp_addr = sys_addr >> 27;
  1473. if (!(sys_addr >> 34) &&
  1474. (((tmp_addr >= swap_base) &&
  1475. (tmp_addr <= swap_limit)) ||
  1476. (tmp_addr < rgn_size)))
  1477. return sys_addr ^ (u64)swap_base << 27;
  1478. return sys_addr;
  1479. }
  1480. /* For a given @dram_range, check if @sys_addr falls within it. */
  1481. static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1482. u64 sys_addr, int *chan_sel)
  1483. {
  1484. int cs_found = -EINVAL;
  1485. u64 chan_addr;
  1486. u32 dct_sel_base;
  1487. u8 channel;
  1488. bool high_range = false;
  1489. u8 node_id = dram_dst_node(pvt, range);
  1490. u8 intlv_en = dram_intlv_en(pvt, range);
  1491. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1492. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1493. range, sys_addr, get_dram_limit(pvt, range));
  1494. if (dhar_valid(pvt) &&
  1495. dhar_base(pvt) <= sys_addr &&
  1496. sys_addr < BIT_64(32)) {
  1497. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1498. sys_addr);
  1499. return -EINVAL;
  1500. }
  1501. if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1502. return -EINVAL;
  1503. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1504. dct_sel_base = dct_sel_baseaddr(pvt);
  1505. /*
  1506. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1507. * select between DCT0 and DCT1.
  1508. */
  1509. if (dct_high_range_enabled(pvt) &&
  1510. !dct_ganging_enabled(pvt) &&
  1511. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1512. high_range = true;
  1513. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1514. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1515. high_range, dct_sel_base);
  1516. /* Remove node interleaving, see F1x120 */
  1517. if (intlv_en)
  1518. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1519. (chan_addr & 0xfff);
  1520. /* remove channel interleave */
  1521. if (dct_interleave_enabled(pvt) &&
  1522. !dct_high_range_enabled(pvt) &&
  1523. !dct_ganging_enabled(pvt)) {
  1524. if (dct_sel_interleave_addr(pvt) != 1) {
  1525. if (dct_sel_interleave_addr(pvt) == 0x3)
  1526. /* hash 9 */
  1527. chan_addr = ((chan_addr >> 10) << 9) |
  1528. (chan_addr & 0x1ff);
  1529. else
  1530. /* A[6] or hash 6 */
  1531. chan_addr = ((chan_addr >> 7) << 6) |
  1532. (chan_addr & 0x3f);
  1533. } else
  1534. /* A[12] */
  1535. chan_addr = ((chan_addr >> 13) << 12) |
  1536. (chan_addr & 0xfff);
  1537. }
  1538. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1539. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1540. if (cs_found >= 0)
  1541. *chan_sel = channel;
  1542. return cs_found;
  1543. }
  1544. static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1545. u64 sys_addr, int *chan_sel)
  1546. {
  1547. int cs_found = -EINVAL;
  1548. int num_dcts_intlv = 0;
  1549. u64 chan_addr, chan_offset;
  1550. u64 dct_base, dct_limit;
  1551. u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
  1552. u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
  1553. u64 dhar_offset = f10_dhar_offset(pvt);
  1554. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1555. u8 node_id = dram_dst_node(pvt, range);
  1556. u8 intlv_en = dram_intlv_en(pvt, range);
  1557. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
  1558. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
  1559. dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
  1560. dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
  1561. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1562. range, sys_addr, get_dram_limit(pvt, range));
  1563. if (!(get_dram_base(pvt, range) <= sys_addr) &&
  1564. !(get_dram_limit(pvt, range) >= sys_addr))
  1565. return -EINVAL;
  1566. if (dhar_valid(pvt) &&
  1567. dhar_base(pvt) <= sys_addr &&
  1568. sys_addr < BIT_64(32)) {
  1569. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1570. sys_addr);
  1571. return -EINVAL;
  1572. }
  1573. /* Verify sys_addr is within DCT Range. */
  1574. dct_base = (u64) dct_sel_baseaddr(pvt);
  1575. dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
  1576. if (!(dct_cont_base_reg & BIT(0)) &&
  1577. !(dct_base <= (sys_addr >> 27) &&
  1578. dct_limit >= (sys_addr >> 27)))
  1579. return -EINVAL;
  1580. /* Verify number of dct's that participate in channel interleaving. */
  1581. num_dcts_intlv = (int) hweight8(intlv_en);
  1582. if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
  1583. return -EINVAL;
  1584. if (pvt->model >= 0x60)
  1585. channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
  1586. else
  1587. channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
  1588. num_dcts_intlv, dct_sel);
  1589. /* Verify we stay within the MAX number of channels allowed */
  1590. if (channel > 3)
  1591. return -EINVAL;
  1592. leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
  1593. /* Get normalized DCT addr */
  1594. if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
  1595. chan_offset = dhar_offset;
  1596. else
  1597. chan_offset = dct_base << 27;
  1598. chan_addr = sys_addr - chan_offset;
  1599. /* remove channel interleave */
  1600. if (num_dcts_intlv == 2) {
  1601. if (intlv_addr == 0x4)
  1602. chan_addr = ((chan_addr >> 9) << 8) |
  1603. (chan_addr & 0xff);
  1604. else if (intlv_addr == 0x5)
  1605. chan_addr = ((chan_addr >> 10) << 9) |
  1606. (chan_addr & 0x1ff);
  1607. else
  1608. return -EINVAL;
  1609. } else if (num_dcts_intlv == 4) {
  1610. if (intlv_addr == 0x4)
  1611. chan_addr = ((chan_addr >> 10) << 8) |
  1612. (chan_addr & 0xff);
  1613. else if (intlv_addr == 0x5)
  1614. chan_addr = ((chan_addr >> 11) << 9) |
  1615. (chan_addr & 0x1ff);
  1616. else
  1617. return -EINVAL;
  1618. }
  1619. if (dct_offset_en) {
  1620. amd64_read_pci_cfg(pvt->F1,
  1621. DRAM_CONT_HIGH_OFF + (int) channel * 4,
  1622. &tmp);
  1623. chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
  1624. }
  1625. f15h_select_dct(pvt, channel);
  1626. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1627. /*
  1628. * Find Chip select:
  1629. * if channel = 3, then alias it to 1. This is because, in F15 M30h,
  1630. * there is support for 4 DCT's, but only 2 are currently functional.
  1631. * They are DCT0 and DCT3. But we have read all registers of DCT3 into
  1632. * pvt->csels[1]. So we need to use '1' here to get correct info.
  1633. * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
  1634. */
  1635. alias_channel = (channel == 3) ? 1 : channel;
  1636. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
  1637. if (cs_found >= 0)
  1638. *chan_sel = alias_channel;
  1639. return cs_found;
  1640. }
  1641. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
  1642. u64 sys_addr,
  1643. int *chan_sel)
  1644. {
  1645. int cs_found = -EINVAL;
  1646. unsigned range;
  1647. for (range = 0; range < DRAM_RANGES; range++) {
  1648. if (!dram_rw(pvt, range))
  1649. continue;
  1650. if (pvt->fam == 0x15 && pvt->model >= 0x30)
  1651. cs_found = f15_m30h_match_to_this_node(pvt, range,
  1652. sys_addr,
  1653. chan_sel);
  1654. else if ((get_dram_base(pvt, range) <= sys_addr) &&
  1655. (get_dram_limit(pvt, range) >= sys_addr)) {
  1656. cs_found = f1x_match_to_this_node(pvt, range,
  1657. sys_addr, chan_sel);
  1658. if (cs_found >= 0)
  1659. break;
  1660. }
  1661. }
  1662. return cs_found;
  1663. }
  1664. /*
  1665. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1666. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1667. *
  1668. * The @sys_addr is usually an error address received from the hardware
  1669. * (MCX_ADDR).
  1670. */
  1671. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1672. struct err_info *err)
  1673. {
  1674. struct amd64_pvt *pvt = mci->pvt_info;
  1675. error_address_to_page_and_offset(sys_addr, err);
  1676. err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
  1677. if (err->csrow < 0) {
  1678. err->err_code = ERR_CSROW;
  1679. return;
  1680. }
  1681. /*
  1682. * We need the syndromes for channel detection only when we're
  1683. * ganged. Otherwise @chan should already contain the channel at
  1684. * this point.
  1685. */
  1686. if (dct_ganging_enabled(pvt))
  1687. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  1688. }
  1689. /*
  1690. * debug routine to display the memory sizes of all logical DIMMs and its
  1691. * CSROWs
  1692. */
  1693. static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
  1694. {
  1695. int dimm, size0, size1;
  1696. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1697. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1698. if (pvt->fam == 0xf) {
  1699. /* K8 families < revF not supported yet */
  1700. if (pvt->ext_model < K8_REV_F)
  1701. return;
  1702. else
  1703. WARN_ON(ctrl != 0);
  1704. }
  1705. if (pvt->fam == 0x10) {
  1706. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
  1707. : pvt->dbam0;
  1708. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
  1709. pvt->csels[1].csbases :
  1710. pvt->csels[0].csbases;
  1711. } else if (ctrl) {
  1712. dbam = pvt->dbam0;
  1713. dcsb = pvt->csels[1].csbases;
  1714. }
  1715. edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1716. ctrl, dbam);
  1717. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1718. /* Dump memory sizes for DIMM and its CSROWs */
  1719. for (dimm = 0; dimm < 4; dimm++) {
  1720. size0 = 0;
  1721. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1722. /*
  1723. * For F15m60h, we need multiplier for LRDIMM cs_size
  1724. * calculation. We pass dimm value to the dbam_to_cs
  1725. * mapper so we can find the multiplier from the
  1726. * corresponding DCSM.
  1727. */
  1728. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1729. DBAM_DIMM(dimm, dbam),
  1730. dimm);
  1731. size1 = 0;
  1732. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1733. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1734. DBAM_DIMM(dimm, dbam),
  1735. dimm);
  1736. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1737. dimm * 2, size0,
  1738. dimm * 2 + 1, size1);
  1739. }
  1740. }
  1741. static struct amd64_family_type family_types[] = {
  1742. [K8_CPUS] = {
  1743. .ctl_name = "K8",
  1744. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1745. .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  1746. .ops = {
  1747. .early_channel_count = k8_early_channel_count,
  1748. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1749. .dbam_to_cs = k8_dbam_to_chip_select,
  1750. }
  1751. },
  1752. [F10_CPUS] = {
  1753. .ctl_name = "F10h",
  1754. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1755. .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  1756. .ops = {
  1757. .early_channel_count = f1x_early_channel_count,
  1758. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1759. .dbam_to_cs = f10_dbam_to_chip_select,
  1760. }
  1761. },
  1762. [F15_CPUS] = {
  1763. .ctl_name = "F15h",
  1764. .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
  1765. .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
  1766. .ops = {
  1767. .early_channel_count = f1x_early_channel_count,
  1768. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1769. .dbam_to_cs = f15_dbam_to_chip_select,
  1770. }
  1771. },
  1772. [F15_M30H_CPUS] = {
  1773. .ctl_name = "F15h_M30h",
  1774. .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
  1775. .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
  1776. .ops = {
  1777. .early_channel_count = f1x_early_channel_count,
  1778. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1779. .dbam_to_cs = f16_dbam_to_chip_select,
  1780. }
  1781. },
  1782. [F15_M60H_CPUS] = {
  1783. .ctl_name = "F15h_M60h",
  1784. .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
  1785. .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
  1786. .ops = {
  1787. .early_channel_count = f1x_early_channel_count,
  1788. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1789. .dbam_to_cs = f15_m60h_dbam_to_chip_select,
  1790. }
  1791. },
  1792. [F16_CPUS] = {
  1793. .ctl_name = "F16h",
  1794. .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
  1795. .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
  1796. .ops = {
  1797. .early_channel_count = f1x_early_channel_count,
  1798. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1799. .dbam_to_cs = f16_dbam_to_chip_select,
  1800. }
  1801. },
  1802. [F16_M30H_CPUS] = {
  1803. .ctl_name = "F16h_M30h",
  1804. .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
  1805. .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
  1806. .ops = {
  1807. .early_channel_count = f1x_early_channel_count,
  1808. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1809. .dbam_to_cs = f16_dbam_to_chip_select,
  1810. }
  1811. },
  1812. [F17_CPUS] = {
  1813. .ctl_name = "F17h",
  1814. .f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
  1815. .f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
  1816. .ops = {
  1817. .early_channel_count = f17_early_channel_count,
  1818. .dbam_to_cs = f17_base_addr_to_cs_size,
  1819. }
  1820. },
  1821. };
  1822. /*
  1823. * These are tables of eigenvectors (one per line) which can be used for the
  1824. * construction of the syndrome tables. The modified syndrome search algorithm
  1825. * uses those to find the symbol in error and thus the DIMM.
  1826. *
  1827. * Algorithm courtesy of Ross LaFetra from AMD.
  1828. */
  1829. static const u16 x4_vectors[] = {
  1830. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1831. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1832. 0x0001, 0x0002, 0x0004, 0x0008,
  1833. 0x1013, 0x3032, 0x4044, 0x8088,
  1834. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1835. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1836. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1837. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1838. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1839. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1840. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1841. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1842. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1843. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1844. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1845. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1846. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1847. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1848. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1849. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1850. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1851. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1852. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1853. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1854. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1855. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1856. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1857. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1858. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1859. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1860. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1861. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1862. 0x4807, 0xc40e, 0x130c, 0x3208,
  1863. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1864. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1865. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1866. };
  1867. static const u16 x8_vectors[] = {
  1868. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1869. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1870. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1871. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1872. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1873. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1874. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1875. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1876. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1877. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1878. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1879. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1880. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1881. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1882. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1883. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1884. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1885. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1886. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1887. };
  1888. static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
  1889. unsigned v_dim)
  1890. {
  1891. unsigned int i, err_sym;
  1892. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1893. u16 s = syndrome;
  1894. unsigned v_idx = err_sym * v_dim;
  1895. unsigned v_end = (err_sym + 1) * v_dim;
  1896. /* walk over all 16 bits of the syndrome */
  1897. for (i = 1; i < (1U << 16); i <<= 1) {
  1898. /* if bit is set in that eigenvector... */
  1899. if (v_idx < v_end && vectors[v_idx] & i) {
  1900. u16 ev_comp = vectors[v_idx++];
  1901. /* ... and bit set in the modified syndrome, */
  1902. if (s & i) {
  1903. /* remove it. */
  1904. s ^= ev_comp;
  1905. if (!s)
  1906. return err_sym;
  1907. }
  1908. } else if (s & i)
  1909. /* can't get to zero, move to next symbol */
  1910. break;
  1911. }
  1912. }
  1913. edac_dbg(0, "syndrome(%x) not found\n", syndrome);
  1914. return -1;
  1915. }
  1916. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1917. {
  1918. if (sym_size == 4)
  1919. switch (err_sym) {
  1920. case 0x20:
  1921. case 0x21:
  1922. return 0;
  1923. break;
  1924. case 0x22:
  1925. case 0x23:
  1926. return 1;
  1927. break;
  1928. default:
  1929. return err_sym >> 4;
  1930. break;
  1931. }
  1932. /* x8 symbols */
  1933. else
  1934. switch (err_sym) {
  1935. /* imaginary bits not in a DIMM */
  1936. case 0x10:
  1937. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1938. err_sym);
  1939. return -1;
  1940. break;
  1941. case 0x11:
  1942. return 0;
  1943. break;
  1944. case 0x12:
  1945. return 1;
  1946. break;
  1947. default:
  1948. return err_sym >> 3;
  1949. break;
  1950. }
  1951. return -1;
  1952. }
  1953. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1954. {
  1955. struct amd64_pvt *pvt = mci->pvt_info;
  1956. int err_sym = -1;
  1957. if (pvt->ecc_sym_sz == 8)
  1958. err_sym = decode_syndrome(syndrome, x8_vectors,
  1959. ARRAY_SIZE(x8_vectors),
  1960. pvt->ecc_sym_sz);
  1961. else if (pvt->ecc_sym_sz == 4)
  1962. err_sym = decode_syndrome(syndrome, x4_vectors,
  1963. ARRAY_SIZE(x4_vectors),
  1964. pvt->ecc_sym_sz);
  1965. else {
  1966. amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
  1967. return err_sym;
  1968. }
  1969. return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
  1970. }
  1971. static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
  1972. u8 ecc_type)
  1973. {
  1974. enum hw_event_mc_err_type err_type;
  1975. const char *string;
  1976. if (ecc_type == 2)
  1977. err_type = HW_EVENT_ERR_CORRECTED;
  1978. else if (ecc_type == 1)
  1979. err_type = HW_EVENT_ERR_UNCORRECTED;
  1980. else if (ecc_type == 3)
  1981. err_type = HW_EVENT_ERR_DEFERRED;
  1982. else {
  1983. WARN(1, "Something is rotten in the state of Denmark.\n");
  1984. return;
  1985. }
  1986. switch (err->err_code) {
  1987. case DECODE_OK:
  1988. string = "";
  1989. break;
  1990. case ERR_NODE:
  1991. string = "Failed to map error addr to a node";
  1992. break;
  1993. case ERR_CSROW:
  1994. string = "Failed to map error addr to a csrow";
  1995. break;
  1996. case ERR_CHANNEL:
  1997. string = "Unknown syndrome - possible error reporting race";
  1998. break;
  1999. case ERR_SYND:
  2000. string = "MCA_SYND not valid - unknown syndrome and csrow";
  2001. break;
  2002. case ERR_NORM_ADDR:
  2003. string = "Cannot decode normalized address";
  2004. break;
  2005. default:
  2006. string = "WTF error";
  2007. break;
  2008. }
  2009. edac_mc_handle_error(err_type, mci, 1,
  2010. err->page, err->offset, err->syndrome,
  2011. err->csrow, err->channel, -1,
  2012. string, "");
  2013. }
  2014. static inline void decode_bus_error(int node_id, struct mce *m)
  2015. {
  2016. struct mem_ctl_info *mci;
  2017. struct amd64_pvt *pvt;
  2018. u8 ecc_type = (m->status >> 45) & 0x3;
  2019. u8 xec = XEC(m->status, 0x1f);
  2020. u16 ec = EC(m->status);
  2021. u64 sys_addr;
  2022. struct err_info err;
  2023. mci = edac_mc_find(node_id);
  2024. if (!mci)
  2025. return;
  2026. pvt = mci->pvt_info;
  2027. /* Bail out early if this was an 'observed' error */
  2028. if (PP(ec) == NBSL_PP_OBS)
  2029. return;
  2030. /* Do only ECC errors */
  2031. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  2032. return;
  2033. memset(&err, 0, sizeof(err));
  2034. sys_addr = get_error_address(pvt, m);
  2035. if (ecc_type == 2)
  2036. err.syndrome = extract_syndrome(m->status);
  2037. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
  2038. __log_ecc_error(mci, &err, ecc_type);
  2039. }
  2040. /*
  2041. * To find the UMC channel represented by this bank we need to match on its
  2042. * instance_id. The instance_id of a bank is held in the lower 32 bits of its
  2043. * IPID.
  2044. */
  2045. static int find_umc_channel(struct amd64_pvt *pvt, struct mce *m)
  2046. {
  2047. u32 umc_instance_id[] = {0x50f00, 0x150f00};
  2048. u32 instance_id = m->ipid & GENMASK(31, 0);
  2049. int i, channel = -1;
  2050. for (i = 0; i < ARRAY_SIZE(umc_instance_id); i++)
  2051. if (umc_instance_id[i] == instance_id)
  2052. channel = i;
  2053. return channel;
  2054. }
  2055. static void decode_umc_error(int node_id, struct mce *m)
  2056. {
  2057. u8 ecc_type = (m->status >> 45) & 0x3;
  2058. struct mem_ctl_info *mci;
  2059. struct amd64_pvt *pvt;
  2060. struct err_info err;
  2061. u64 sys_addr;
  2062. mci = edac_mc_find(node_id);
  2063. if (!mci)
  2064. return;
  2065. pvt = mci->pvt_info;
  2066. memset(&err, 0, sizeof(err));
  2067. if (m->status & MCI_STATUS_DEFERRED)
  2068. ecc_type = 3;
  2069. err.channel = find_umc_channel(pvt, m);
  2070. if (err.channel < 0) {
  2071. err.err_code = ERR_CHANNEL;
  2072. goto log_error;
  2073. }
  2074. if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
  2075. err.err_code = ERR_NORM_ADDR;
  2076. goto log_error;
  2077. }
  2078. error_address_to_page_and_offset(sys_addr, &err);
  2079. if (!(m->status & MCI_STATUS_SYNDV)) {
  2080. err.err_code = ERR_SYND;
  2081. goto log_error;
  2082. }
  2083. if (ecc_type == 2) {
  2084. u8 length = (m->synd >> 18) & 0x3f;
  2085. if (length)
  2086. err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
  2087. else
  2088. err.err_code = ERR_CHANNEL;
  2089. }
  2090. err.csrow = m->synd & 0x7;
  2091. log_error:
  2092. __log_ecc_error(mci, &err, ecc_type);
  2093. }
  2094. /*
  2095. * Use pvt->F3 which contains the F3 CPU PCI device to get the related
  2096. * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
  2097. * Reserve F0 and F6 on systems with a UMC.
  2098. */
  2099. static int
  2100. reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
  2101. {
  2102. if (pvt->umc) {
  2103. pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
  2104. if (!pvt->F0) {
  2105. amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
  2106. return -ENODEV;
  2107. }
  2108. pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
  2109. if (!pvt->F6) {
  2110. pci_dev_put(pvt->F0);
  2111. pvt->F0 = NULL;
  2112. amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
  2113. return -ENODEV;
  2114. }
  2115. edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
  2116. edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
  2117. edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));
  2118. return 0;
  2119. }
  2120. /* Reserve the ADDRESS MAP Device */
  2121. pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
  2122. if (!pvt->F1) {
  2123. amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
  2124. return -ENODEV;
  2125. }
  2126. /* Reserve the DCT Device */
  2127. pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
  2128. if (!pvt->F2) {
  2129. pci_dev_put(pvt->F1);
  2130. pvt->F1 = NULL;
  2131. amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
  2132. return -ENODEV;
  2133. }
  2134. edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
  2135. edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
  2136. edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
  2137. return 0;
  2138. }
  2139. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  2140. {
  2141. if (pvt->umc) {
  2142. pci_dev_put(pvt->F0);
  2143. pci_dev_put(pvt->F6);
  2144. } else {
  2145. pci_dev_put(pvt->F1);
  2146. pci_dev_put(pvt->F2);
  2147. }
  2148. }
  2149. static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
  2150. {
  2151. pvt->ecc_sym_sz = 4;
  2152. if (pvt->umc) {
  2153. u8 i;
  2154. for (i = 0; i < NUM_UMCS; i++) {
  2155. /* Check enabled channels only: */
  2156. if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) &&
  2157. (pvt->umc[i].ecc_ctrl & BIT(7))) {
  2158. pvt->ecc_sym_sz = 8;
  2159. break;
  2160. }
  2161. }
  2162. return;
  2163. }
  2164. if (pvt->fam >= 0x10) {
  2165. u32 tmp;
  2166. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  2167. /* F16h has only DCT0, so no need to read dbam1. */
  2168. if (pvt->fam != 0x16)
  2169. amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
  2170. /* F10h, revD and later can do x8 ECC too. */
  2171. if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
  2172. pvt->ecc_sym_sz = 8;
  2173. }
  2174. }
  2175. /*
  2176. * Retrieve the hardware registers of the memory controller.
  2177. */
  2178. static void __read_mc_regs_df(struct amd64_pvt *pvt)
  2179. {
  2180. u8 nid = pvt->mc_node_id;
  2181. struct amd64_umc *umc;
  2182. u32 i, umc_base;
  2183. /* Read registers from each UMC */
  2184. for (i = 0; i < NUM_UMCS; i++) {
  2185. umc_base = get_umc_base(i);
  2186. umc = &pvt->umc[i];
  2187. amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
  2188. amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
  2189. amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
  2190. amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
  2191. amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
  2192. }
  2193. }
  2194. /*
  2195. * Retrieve the hardware registers of the memory controller (this includes the
  2196. * 'Address Map' and 'Misc' device regs)
  2197. */
  2198. static void read_mc_regs(struct amd64_pvt *pvt)
  2199. {
  2200. unsigned int range;
  2201. u64 msr_val;
  2202. /*
  2203. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  2204. * those are Read-As-Zero.
  2205. */
  2206. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  2207. edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
  2208. /* Check first whether TOP_MEM2 is enabled: */
  2209. rdmsrl(MSR_K8_SYSCFG, msr_val);
  2210. if (msr_val & BIT(21)) {
  2211. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  2212. edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  2213. } else {
  2214. edac_dbg(0, " TOP_MEM2 disabled\n");
  2215. }
  2216. if (pvt->umc) {
  2217. __read_mc_regs_df(pvt);
  2218. amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);
  2219. goto skip;
  2220. }
  2221. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  2222. read_dram_ctl_register(pvt);
  2223. for (range = 0; range < DRAM_RANGES; range++) {
  2224. u8 rw;
  2225. /* read settings for this DRAM range */
  2226. read_dram_base_limit_regs(pvt, range);
  2227. rw = dram_rw(pvt, range);
  2228. if (!rw)
  2229. continue;
  2230. edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  2231. range,
  2232. get_dram_base(pvt, range),
  2233. get_dram_limit(pvt, range));
  2234. edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  2235. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  2236. (rw & 0x1) ? "R" : "-",
  2237. (rw & 0x2) ? "W" : "-",
  2238. dram_intlv_sel(pvt, range),
  2239. dram_dst_node(pvt, range));
  2240. }
  2241. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  2242. amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
  2243. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  2244. amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
  2245. amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
  2246. if (!dct_ganging_enabled(pvt)) {
  2247. amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
  2248. amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
  2249. }
  2250. skip:
  2251. read_dct_base_mask(pvt);
  2252. determine_memory_type(pvt);
  2253. edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
  2254. determine_ecc_sym_sz(pvt);
  2255. dump_misc_regs(pvt);
  2256. }
  2257. /*
  2258. * NOTE: CPU Revision Dependent code
  2259. *
  2260. * Input:
  2261. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  2262. * k8 private pointer to -->
  2263. * DRAM Bank Address mapping register
  2264. * node_id
  2265. * DCL register where dual_channel_active is
  2266. *
  2267. * The DBAM register consists of 4 sets of 4 bits each definitions:
  2268. *
  2269. * Bits: CSROWs
  2270. * 0-3 CSROWs 0 and 1
  2271. * 4-7 CSROWs 2 and 3
  2272. * 8-11 CSROWs 4 and 5
  2273. * 12-15 CSROWs 6 and 7
  2274. *
  2275. * Values range from: 0 to 15
  2276. * The meaning of the values depends on CPU revision and dual-channel state,
  2277. * see relevant BKDG more info.
  2278. *
  2279. * The memory controller provides for total of only 8 CSROWs in its current
  2280. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  2281. * single channel or two (2) DIMMs in dual channel mode.
  2282. *
  2283. * The following code logic collapses the various tables for CSROW based on CPU
  2284. * revision.
  2285. *
  2286. * Returns:
  2287. * The number of PAGE_SIZE pages on the specified CSROW number it
  2288. * encompasses
  2289. *
  2290. */
  2291. static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  2292. {
  2293. u32 cs_mode, nr_pages;
  2294. u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
  2295. /*
  2296. * The math on this doesn't look right on the surface because x/2*4 can
  2297. * be simplified to x*2 but this expression makes use of the fact that
  2298. * it is integral math where 1/2=0. This intermediate value becomes the
  2299. * number of bits to shift the DBAM register to extract the proper CSROW
  2300. * field.
  2301. */
  2302. cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
  2303. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
  2304. << (20 - PAGE_SHIFT);
  2305. edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
  2306. csrow_nr, dct, cs_mode);
  2307. edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
  2308. return nr_pages;
  2309. }
  2310. /*
  2311. * Initialize the array of csrow attribute instances, based on the values
  2312. * from pci config hardware registers.
  2313. */
  2314. static int init_csrows(struct mem_ctl_info *mci)
  2315. {
  2316. struct amd64_pvt *pvt = mci->pvt_info;
  2317. enum edac_type edac_mode = EDAC_NONE;
  2318. struct csrow_info *csrow;
  2319. struct dimm_info *dimm;
  2320. int i, j, empty = 1;
  2321. int nr_pages = 0;
  2322. u32 val;
  2323. if (!pvt->umc) {
  2324. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  2325. pvt->nbcfg = val;
  2326. edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  2327. pvt->mc_node_id, val,
  2328. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  2329. }
  2330. /*
  2331. * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
  2332. */
  2333. for_each_chip_select(i, 0, pvt) {
  2334. bool row_dct0 = !!csrow_enabled(i, 0, pvt);
  2335. bool row_dct1 = false;
  2336. if (pvt->fam != 0xf)
  2337. row_dct1 = !!csrow_enabled(i, 1, pvt);
  2338. if (!row_dct0 && !row_dct1)
  2339. continue;
  2340. csrow = mci->csrows[i];
  2341. empty = 0;
  2342. edac_dbg(1, "MC node: %d, csrow: %d\n",
  2343. pvt->mc_node_id, i);
  2344. if (row_dct0) {
  2345. nr_pages = get_csrow_nr_pages(pvt, 0, i);
  2346. csrow->channels[0]->dimm->nr_pages = nr_pages;
  2347. }
  2348. /* K8 has only one DCT */
  2349. if (pvt->fam != 0xf && row_dct1) {
  2350. int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
  2351. csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
  2352. nr_pages += row_dct1_pages;
  2353. }
  2354. edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
  2355. /* Determine DIMM ECC mode: */
  2356. if (pvt->umc) {
  2357. if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED)
  2358. edac_mode = EDAC_S4ECD4ED;
  2359. else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED)
  2360. edac_mode = EDAC_SECDED;
  2361. } else if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
  2362. edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
  2363. ? EDAC_S4ECD4ED
  2364. : EDAC_SECDED;
  2365. }
  2366. for (j = 0; j < pvt->channel_count; j++) {
  2367. dimm = csrow->channels[j]->dimm;
  2368. dimm->mtype = pvt->dram_type;
  2369. dimm->edac_mode = edac_mode;
  2370. }
  2371. }
  2372. return empty;
  2373. }
  2374. /* get all cores on this DCT */
  2375. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
  2376. {
  2377. int cpu;
  2378. for_each_online_cpu(cpu)
  2379. if (amd_get_nb_id(cpu) == nid)
  2380. cpumask_set_cpu(cpu, mask);
  2381. }
  2382. /* check MCG_CTL on all the cpus on this node */
  2383. static bool nb_mce_bank_enabled_on_node(u16 nid)
  2384. {
  2385. cpumask_var_t mask;
  2386. int cpu, nbe;
  2387. bool ret = false;
  2388. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  2389. amd64_warn("%s: Error allocating mask\n", __func__);
  2390. return false;
  2391. }
  2392. get_cpus_on_this_dct_cpumask(mask, nid);
  2393. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  2394. for_each_cpu(cpu, mask) {
  2395. struct msr *reg = per_cpu_ptr(msrs, cpu);
  2396. nbe = reg->l & MSR_MCGCTL_NBE;
  2397. edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  2398. cpu, reg->q,
  2399. (nbe ? "enabled" : "disabled"));
  2400. if (!nbe)
  2401. goto out;
  2402. }
  2403. ret = true;
  2404. out:
  2405. free_cpumask_var(mask);
  2406. return ret;
  2407. }
  2408. static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
  2409. {
  2410. cpumask_var_t cmask;
  2411. int cpu;
  2412. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  2413. amd64_warn("%s: error allocating mask\n", __func__);
  2414. return -ENOMEM;
  2415. }
  2416. get_cpus_on_this_dct_cpumask(cmask, nid);
  2417. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2418. for_each_cpu(cpu, cmask) {
  2419. struct msr *reg = per_cpu_ptr(msrs, cpu);
  2420. if (on) {
  2421. if (reg->l & MSR_MCGCTL_NBE)
  2422. s->flags.nb_mce_enable = 1;
  2423. reg->l |= MSR_MCGCTL_NBE;
  2424. } else {
  2425. /*
  2426. * Turn off NB MCE reporting only when it was off before
  2427. */
  2428. if (!s->flags.nb_mce_enable)
  2429. reg->l &= ~MSR_MCGCTL_NBE;
  2430. }
  2431. }
  2432. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2433. free_cpumask_var(cmask);
  2434. return 0;
  2435. }
  2436. static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  2437. struct pci_dev *F3)
  2438. {
  2439. bool ret = true;
  2440. u32 value, mask = 0x3; /* UECC/CECC enable */
  2441. if (toggle_ecc_err_reporting(s, nid, ON)) {
  2442. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  2443. return false;
  2444. }
  2445. amd64_read_pci_cfg(F3, NBCTL, &value);
  2446. s->old_nbctl = value & mask;
  2447. s->nbctl_valid = true;
  2448. value |= mask;
  2449. amd64_write_pci_cfg(F3, NBCTL, value);
  2450. amd64_read_pci_cfg(F3, NBCFG, &value);
  2451. edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  2452. nid, value, !!(value & NBCFG_ECC_ENABLE));
  2453. if (!(value & NBCFG_ECC_ENABLE)) {
  2454. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  2455. s->flags.nb_ecc_prev = 0;
  2456. /* Attempt to turn on DRAM ECC Enable */
  2457. value |= NBCFG_ECC_ENABLE;
  2458. amd64_write_pci_cfg(F3, NBCFG, value);
  2459. amd64_read_pci_cfg(F3, NBCFG, &value);
  2460. if (!(value & NBCFG_ECC_ENABLE)) {
  2461. amd64_warn("Hardware rejected DRAM ECC enable,"
  2462. "check memory DIMM configuration.\n");
  2463. ret = false;
  2464. } else {
  2465. amd64_info("Hardware accepted DRAM ECC Enable\n");
  2466. }
  2467. } else {
  2468. s->flags.nb_ecc_prev = 1;
  2469. }
  2470. edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  2471. nid, value, !!(value & NBCFG_ECC_ENABLE));
  2472. return ret;
  2473. }
  2474. static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  2475. struct pci_dev *F3)
  2476. {
  2477. u32 value, mask = 0x3; /* UECC/CECC enable */
  2478. if (!s->nbctl_valid)
  2479. return;
  2480. amd64_read_pci_cfg(F3, NBCTL, &value);
  2481. value &= ~mask;
  2482. value |= s->old_nbctl;
  2483. amd64_write_pci_cfg(F3, NBCTL, value);
  2484. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  2485. if (!s->flags.nb_ecc_prev) {
  2486. amd64_read_pci_cfg(F3, NBCFG, &value);
  2487. value &= ~NBCFG_ECC_ENABLE;
  2488. amd64_write_pci_cfg(F3, NBCFG, value);
  2489. }
  2490. /* restore the NB Enable MCGCTL bit */
  2491. if (toggle_ecc_err_reporting(s, nid, OFF))
  2492. amd64_warn("Error restoring NB MCGCTL settings!\n");
  2493. }
  2494. /*
  2495. * EDAC requires that the BIOS have ECC enabled before
  2496. * taking over the processing of ECC errors. A command line
  2497. * option allows to force-enable hardware ECC later in
  2498. * enable_ecc_error_reporting().
  2499. */
  2500. static const char *ecc_msg =
  2501. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  2502. " Either enable ECC checking or force module loading by setting "
  2503. "'ecc_enable_override'.\n"
  2504. " (Note that use of the override may cause unknown side effects.)\n";
  2505. static bool ecc_enabled(struct pci_dev *F3, u16 nid)
  2506. {
  2507. bool nb_mce_en = false;
  2508. u8 ecc_en = 0, i;
  2509. u32 value;
  2510. if (boot_cpu_data.x86 >= 0x17) {
  2511. u8 umc_en_mask = 0, ecc_en_mask = 0;
  2512. for (i = 0; i < NUM_UMCS; i++) {
  2513. u32 base = get_umc_base(i);
  2514. /* Only check enabled UMCs. */
  2515. if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
  2516. continue;
  2517. if (!(value & UMC_SDP_INIT))
  2518. continue;
  2519. umc_en_mask |= BIT(i);
  2520. if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
  2521. continue;
  2522. if (value & UMC_ECC_ENABLED)
  2523. ecc_en_mask |= BIT(i);
  2524. }
  2525. /* Check whether at least one UMC is enabled: */
  2526. if (umc_en_mask)
  2527. ecc_en = umc_en_mask == ecc_en_mask;
  2528. else
  2529. edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
  2530. /* Assume UMC MCA banks are enabled. */
  2531. nb_mce_en = true;
  2532. } else {
  2533. amd64_read_pci_cfg(F3, NBCFG, &value);
  2534. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  2535. nb_mce_en = nb_mce_bank_enabled_on_node(nid);
  2536. if (!nb_mce_en)
  2537. edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
  2538. MSR_IA32_MCG_CTL, nid);
  2539. }
  2540. amd64_info("Node %d: DRAM ECC %s.\n",
  2541. nid, (ecc_en ? "enabled" : "disabled"));
  2542. if (!ecc_en || !nb_mce_en) {
  2543. amd64_info("%s", ecc_msg);
  2544. return false;
  2545. }
  2546. return true;
  2547. }
  2548. static inline void
  2549. f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
  2550. {
  2551. u8 i, ecc_en = 1, cpk_en = 1;
  2552. for (i = 0; i < NUM_UMCS; i++) {
  2553. if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
  2554. ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
  2555. cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
  2556. }
  2557. }
  2558. /* Set chipkill only if ECC is enabled: */
  2559. if (ecc_en) {
  2560. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2561. if (cpk_en)
  2562. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2563. }
  2564. }
  2565. static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
  2566. struct amd64_family_type *fam)
  2567. {
  2568. struct amd64_pvt *pvt = mci->pvt_info;
  2569. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2570. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2571. if (pvt->umc) {
  2572. f17h_determine_edac_ctl_cap(mci, pvt);
  2573. } else {
  2574. if (pvt->nbcap & NBCAP_SECDED)
  2575. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2576. if (pvt->nbcap & NBCAP_CHIPKILL)
  2577. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2578. }
  2579. mci->edac_cap = determine_edac_cap(pvt);
  2580. mci->mod_name = EDAC_MOD_STR;
  2581. mci->mod_ver = EDAC_AMD64_VERSION;
  2582. mci->ctl_name = fam->ctl_name;
  2583. mci->dev_name = pci_name(pvt->F3);
  2584. mci->ctl_page_to_phys = NULL;
  2585. /* memory scrubber interface */
  2586. mci->set_sdram_scrub_rate = set_scrub_rate;
  2587. mci->get_sdram_scrub_rate = get_scrub_rate;
  2588. }
  2589. /*
  2590. * returns a pointer to the family descriptor on success, NULL otherwise.
  2591. */
  2592. static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
  2593. {
  2594. struct amd64_family_type *fam_type = NULL;
  2595. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2596. pvt->stepping = boot_cpu_data.x86_mask;
  2597. pvt->model = boot_cpu_data.x86_model;
  2598. pvt->fam = boot_cpu_data.x86;
  2599. switch (pvt->fam) {
  2600. case 0xf:
  2601. fam_type = &family_types[K8_CPUS];
  2602. pvt->ops = &family_types[K8_CPUS].ops;
  2603. break;
  2604. case 0x10:
  2605. fam_type = &family_types[F10_CPUS];
  2606. pvt->ops = &family_types[F10_CPUS].ops;
  2607. break;
  2608. case 0x15:
  2609. if (pvt->model == 0x30) {
  2610. fam_type = &family_types[F15_M30H_CPUS];
  2611. pvt->ops = &family_types[F15_M30H_CPUS].ops;
  2612. break;
  2613. } else if (pvt->model == 0x60) {
  2614. fam_type = &family_types[F15_M60H_CPUS];
  2615. pvt->ops = &family_types[F15_M60H_CPUS].ops;
  2616. break;
  2617. }
  2618. fam_type = &family_types[F15_CPUS];
  2619. pvt->ops = &family_types[F15_CPUS].ops;
  2620. break;
  2621. case 0x16:
  2622. if (pvt->model == 0x30) {
  2623. fam_type = &family_types[F16_M30H_CPUS];
  2624. pvt->ops = &family_types[F16_M30H_CPUS].ops;
  2625. break;
  2626. }
  2627. fam_type = &family_types[F16_CPUS];
  2628. pvt->ops = &family_types[F16_CPUS].ops;
  2629. break;
  2630. case 0x17:
  2631. fam_type = &family_types[F17_CPUS];
  2632. pvt->ops = &family_types[F17_CPUS].ops;
  2633. break;
  2634. default:
  2635. amd64_err("Unsupported family!\n");
  2636. return NULL;
  2637. }
  2638. amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
  2639. (pvt->fam == 0xf ?
  2640. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2641. : "revE or earlier ")
  2642. : ""), pvt->mc_node_id);
  2643. return fam_type;
  2644. }
  2645. static const struct attribute_group *amd64_edac_attr_groups[] = {
  2646. #ifdef CONFIG_EDAC_DEBUG
  2647. &amd64_edac_dbg_group,
  2648. #endif
  2649. #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
  2650. &amd64_edac_inj_group,
  2651. #endif
  2652. NULL
  2653. };
  2654. static int init_one_instance(unsigned int nid)
  2655. {
  2656. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2657. struct amd64_family_type *fam_type = NULL;
  2658. struct mem_ctl_info *mci = NULL;
  2659. struct edac_mc_layer layers[2];
  2660. struct amd64_pvt *pvt = NULL;
  2661. u16 pci_id1, pci_id2;
  2662. int err = 0, ret;
  2663. ret = -ENOMEM;
  2664. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2665. if (!pvt)
  2666. goto err_ret;
  2667. pvt->mc_node_id = nid;
  2668. pvt->F3 = F3;
  2669. ret = -EINVAL;
  2670. fam_type = per_family_init(pvt);
  2671. if (!fam_type)
  2672. goto err_free;
  2673. if (pvt->fam >= 0x17) {
  2674. pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL);
  2675. if (!pvt->umc) {
  2676. ret = -ENOMEM;
  2677. goto err_free;
  2678. }
  2679. pci_id1 = fam_type->f0_id;
  2680. pci_id2 = fam_type->f6_id;
  2681. } else {
  2682. pci_id1 = fam_type->f1_id;
  2683. pci_id2 = fam_type->f2_id;
  2684. }
  2685. err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
  2686. if (err)
  2687. goto err_post_init;
  2688. read_mc_regs(pvt);
  2689. /*
  2690. * We need to determine how many memory channels there are. Then use
  2691. * that information for calculating the size of the dynamic instance
  2692. * tables in the 'mci' structure.
  2693. */
  2694. ret = -EINVAL;
  2695. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2696. if (pvt->channel_count < 0)
  2697. goto err_siblings;
  2698. ret = -ENOMEM;
  2699. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  2700. layers[0].size = pvt->csels[0].b_cnt;
  2701. layers[0].is_virt_csrow = true;
  2702. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  2703. /*
  2704. * Always allocate two channels since we can have setups with DIMMs on
  2705. * only one channel. Also, this simplifies handling later for the price
  2706. * of a couple of KBs tops.
  2707. */
  2708. layers[1].size = 2;
  2709. layers[1].is_virt_csrow = false;
  2710. mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
  2711. if (!mci)
  2712. goto err_siblings;
  2713. mci->pvt_info = pvt;
  2714. mci->pdev = &pvt->F3->dev;
  2715. setup_mci_misc_attrs(mci, fam_type);
  2716. if (init_csrows(mci))
  2717. mci->edac_cap = EDAC_FLAG_NONE;
  2718. ret = -ENODEV;
  2719. if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
  2720. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2721. goto err_add_mc;
  2722. }
  2723. return 0;
  2724. err_add_mc:
  2725. edac_mc_free(mci);
  2726. err_siblings:
  2727. free_mc_sibling_devs(pvt);
  2728. err_post_init:
  2729. if (pvt->fam >= 0x17)
  2730. kfree(pvt->umc);
  2731. err_free:
  2732. kfree(pvt);
  2733. err_ret:
  2734. return ret;
  2735. }
  2736. static int probe_one_instance(unsigned int nid)
  2737. {
  2738. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2739. struct ecc_settings *s;
  2740. int ret;
  2741. ret = -ENOMEM;
  2742. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2743. if (!s)
  2744. goto err_out;
  2745. ecc_stngs[nid] = s;
  2746. if (!ecc_enabled(F3, nid)) {
  2747. ret = 0;
  2748. if (!ecc_enable_override)
  2749. goto err_enable;
  2750. if (boot_cpu_data.x86 >= 0x17) {
  2751. amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
  2752. goto err_enable;
  2753. } else
  2754. amd64_warn("Forcing ECC on!\n");
  2755. if (!enable_ecc_error_reporting(s, nid, F3))
  2756. goto err_enable;
  2757. }
  2758. ret = init_one_instance(nid);
  2759. if (ret < 0) {
  2760. amd64_err("Error probing instance: %d\n", nid);
  2761. if (boot_cpu_data.x86 < 0x17)
  2762. restore_ecc_error_reporting(s, nid, F3);
  2763. goto err_enable;
  2764. }
  2765. return ret;
  2766. err_enable:
  2767. kfree(s);
  2768. ecc_stngs[nid] = NULL;
  2769. err_out:
  2770. return ret;
  2771. }
  2772. static void remove_one_instance(unsigned int nid)
  2773. {
  2774. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2775. struct ecc_settings *s = ecc_stngs[nid];
  2776. struct mem_ctl_info *mci;
  2777. struct amd64_pvt *pvt;
  2778. mci = find_mci_by_dev(&F3->dev);
  2779. WARN_ON(!mci);
  2780. /* Remove from EDAC CORE tracking list */
  2781. mci = edac_mc_del_mc(&F3->dev);
  2782. if (!mci)
  2783. return;
  2784. pvt = mci->pvt_info;
  2785. restore_ecc_error_reporting(s, nid, F3);
  2786. free_mc_sibling_devs(pvt);
  2787. kfree(ecc_stngs[nid]);
  2788. ecc_stngs[nid] = NULL;
  2789. /* Free the EDAC CORE resources */
  2790. mci->pvt_info = NULL;
  2791. kfree(pvt);
  2792. edac_mc_free(mci);
  2793. }
  2794. static void setup_pci_device(void)
  2795. {
  2796. struct mem_ctl_info *mci;
  2797. struct amd64_pvt *pvt;
  2798. if (pci_ctl)
  2799. return;
  2800. mci = edac_mc_find(0);
  2801. if (!mci)
  2802. return;
  2803. pvt = mci->pvt_info;
  2804. if (pvt->umc)
  2805. pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
  2806. else
  2807. pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2808. if (!pci_ctl) {
  2809. pr_warn("%s(): Unable to create PCI control\n", __func__);
  2810. pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
  2811. }
  2812. }
  2813. static const struct x86_cpu_id amd64_cpuids[] = {
  2814. { X86_VENDOR_AMD, 0xF, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2815. { X86_VENDOR_AMD, 0x10, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2816. { X86_VENDOR_AMD, 0x15, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2817. { X86_VENDOR_AMD, 0x16, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2818. { X86_VENDOR_AMD, 0x17, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2819. { }
  2820. };
  2821. MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
  2822. static int __init amd64_edac_init(void)
  2823. {
  2824. int err = -ENODEV;
  2825. int i;
  2826. if (!x86_match_cpu(amd64_cpuids))
  2827. return -ENODEV;
  2828. if (amd_cache_northbridges() < 0)
  2829. return -ENODEV;
  2830. opstate_init();
  2831. err = -ENOMEM;
  2832. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2833. if (!ecc_stngs)
  2834. goto err_free;
  2835. msrs = msrs_alloc();
  2836. if (!msrs)
  2837. goto err_free;
  2838. for (i = 0; i < amd_nb_num(); i++) {
  2839. err = probe_one_instance(i);
  2840. if (err) {
  2841. /* unwind properly */
  2842. while (--i >= 0)
  2843. remove_one_instance(i);
  2844. goto err_pci;
  2845. }
  2846. }
  2847. if (!edac_has_mcs()) {
  2848. err = -ENODEV;
  2849. goto err_pci;
  2850. }
  2851. /* register stuff with EDAC MCE */
  2852. if (report_gart_errors)
  2853. amd_report_gart_errors(true);
  2854. if (boot_cpu_data.x86 >= 0x17)
  2855. amd_register_ecc_decoder(decode_umc_error);
  2856. else
  2857. amd_register_ecc_decoder(decode_bus_error);
  2858. setup_pci_device();
  2859. #ifdef CONFIG_X86_32
  2860. amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
  2861. #endif
  2862. printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
  2863. return 0;
  2864. err_pci:
  2865. msrs_free(msrs);
  2866. msrs = NULL;
  2867. err_free:
  2868. kfree(ecc_stngs);
  2869. ecc_stngs = NULL;
  2870. return err;
  2871. }
  2872. static void __exit amd64_edac_exit(void)
  2873. {
  2874. int i;
  2875. if (pci_ctl)
  2876. edac_pci_release_generic_ctl(pci_ctl);
  2877. /* unregister from EDAC MCE */
  2878. amd_report_gart_errors(false);
  2879. if (boot_cpu_data.x86 >= 0x17)
  2880. amd_unregister_ecc_decoder(decode_umc_error);
  2881. else
  2882. amd_unregister_ecc_decoder(decode_bus_error);
  2883. for (i = 0; i < amd_nb_num(); i++)
  2884. remove_one_instance(i);
  2885. kfree(ecc_stngs);
  2886. ecc_stngs = NULL;
  2887. msrs_free(msrs);
  2888. msrs = NULL;
  2889. }
  2890. module_init(amd64_edac_init);
  2891. module_exit(amd64_edac_exit);
  2892. MODULE_LICENSE("GPL");
  2893. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2894. "Dave Peterson, Thayne Harbaugh");
  2895. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2896. EDAC_AMD64_VERSION);
  2897. module_param(edac_op_state, int, 0444);
  2898. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");