cppi41.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203
  1. #include <linux/delay.h>
  2. #include <linux/dmaengine.h>
  3. #include <linux/dma-mapping.h>
  4. #include <linux/platform_device.h>
  5. #include <linux/module.h>
  6. #include <linux/of.h>
  7. #include <linux/slab.h>
  8. #include <linux/of_dma.h>
  9. #include <linux/of_irq.h>
  10. #include <linux/dmapool.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/of_address.h>
  13. #include <linux/pm_runtime.h>
  14. #include "dmaengine.h"
  15. #define DESC_TYPE 27
  16. #define DESC_TYPE_HOST 0x10
  17. #define DESC_TYPE_TEARD 0x13
  18. #define TD_DESC_IS_RX (1 << 16)
  19. #define TD_DESC_DMA_NUM 10
  20. #define DESC_LENGTH_BITS_NUM 21
  21. #define DESC_TYPE_USB (5 << 26)
  22. #define DESC_PD_COMPLETE (1 << 31)
  23. /* DMA engine */
  24. #define DMA_TDFDQ 4
  25. #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
  26. #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
  27. #define RXHPCRA0 4
  28. #define GCR_CHAN_ENABLE (1 << 31)
  29. #define GCR_TEARDOWN (1 << 30)
  30. #define GCR_STARV_RETRY (1 << 24)
  31. #define GCR_DESC_TYPE_HOST (1 << 14)
  32. /* DMA scheduler */
  33. #define DMA_SCHED_CTRL 0
  34. #define DMA_SCHED_CTRL_EN (1 << 31)
  35. #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
  36. #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
  37. #define SCHED_ENTRY0_IS_RX (1 << 7)
  38. #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
  39. #define SCHED_ENTRY1_IS_RX (1 << 15)
  40. #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
  41. #define SCHED_ENTRY2_IS_RX (1 << 23)
  42. #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
  43. #define SCHED_ENTRY3_IS_RX (1 << 31)
  44. /* Queue manager */
  45. /* 4 KiB of memory for descriptors, 2 for each endpoint */
  46. #define ALLOC_DECS_NUM 128
  47. #define DESCS_AREAS 1
  48. #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
  49. #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
  50. #define QMGR_LRAM0_BASE 0x80
  51. #define QMGR_LRAM_SIZE 0x84
  52. #define QMGR_LRAM1_BASE 0x88
  53. #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
  54. #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
  55. #define QMGR_MEMCTRL_IDX_SH 16
  56. #define QMGR_MEMCTRL_DESC_SH 8
  57. #define QMGR_NUM_PEND 5
  58. #define QMGR_PEND(x) (0x90 + (x) * 4)
  59. #define QMGR_PENDING_SLOT_Q(x) (x / 32)
  60. #define QMGR_PENDING_BIT_Q(x) (x % 32)
  61. #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
  62. #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
  63. #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
  64. #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
  65. /* Packet Descriptor */
  66. #define PD2_ZERO_LENGTH (1 << 19)
  67. struct cppi41_channel {
  68. struct dma_chan chan;
  69. struct dma_async_tx_descriptor txd;
  70. struct cppi41_dd *cdd;
  71. struct cppi41_desc *desc;
  72. dma_addr_t desc_phys;
  73. void __iomem *gcr_reg;
  74. int is_tx;
  75. u32 residue;
  76. unsigned int q_num;
  77. unsigned int q_comp_num;
  78. unsigned int port_num;
  79. unsigned td_retry;
  80. unsigned td_queued:1;
  81. unsigned td_seen:1;
  82. unsigned td_desc_seen:1;
  83. struct list_head node; /* Node for pending list */
  84. };
  85. struct cppi41_desc {
  86. u32 pd0;
  87. u32 pd1;
  88. u32 pd2;
  89. u32 pd3;
  90. u32 pd4;
  91. u32 pd5;
  92. u32 pd6;
  93. u32 pd7;
  94. } __aligned(32);
  95. struct chan_queues {
  96. u16 submit;
  97. u16 complete;
  98. };
  99. struct cppi41_dd {
  100. struct dma_device ddev;
  101. void *qmgr_scratch;
  102. dma_addr_t scratch_phys;
  103. struct cppi41_desc *cd;
  104. dma_addr_t descs_phys;
  105. u32 first_td_desc;
  106. struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
  107. void __iomem *usbss_mem;
  108. void __iomem *ctrl_mem;
  109. void __iomem *sched_mem;
  110. void __iomem *qmgr_mem;
  111. unsigned int irq;
  112. const struct chan_queues *queues_rx;
  113. const struct chan_queues *queues_tx;
  114. struct chan_queues td_queue;
  115. struct list_head pending; /* Pending queued transfers */
  116. spinlock_t lock; /* Lock for pending list */
  117. /* context for suspend/resume */
  118. unsigned int dma_tdfdq;
  119. bool is_suspended;
  120. };
  121. #define FIST_COMPLETION_QUEUE 93
  122. static struct chan_queues usb_queues_tx[] = {
  123. /* USB0 ENDP 1 */
  124. [ 0] = { .submit = 32, .complete = 93},
  125. [ 1] = { .submit = 34, .complete = 94},
  126. [ 2] = { .submit = 36, .complete = 95},
  127. [ 3] = { .submit = 38, .complete = 96},
  128. [ 4] = { .submit = 40, .complete = 97},
  129. [ 5] = { .submit = 42, .complete = 98},
  130. [ 6] = { .submit = 44, .complete = 99},
  131. [ 7] = { .submit = 46, .complete = 100},
  132. [ 8] = { .submit = 48, .complete = 101},
  133. [ 9] = { .submit = 50, .complete = 102},
  134. [10] = { .submit = 52, .complete = 103},
  135. [11] = { .submit = 54, .complete = 104},
  136. [12] = { .submit = 56, .complete = 105},
  137. [13] = { .submit = 58, .complete = 106},
  138. [14] = { .submit = 60, .complete = 107},
  139. /* USB1 ENDP1 */
  140. [15] = { .submit = 62, .complete = 125},
  141. [16] = { .submit = 64, .complete = 126},
  142. [17] = { .submit = 66, .complete = 127},
  143. [18] = { .submit = 68, .complete = 128},
  144. [19] = { .submit = 70, .complete = 129},
  145. [20] = { .submit = 72, .complete = 130},
  146. [21] = { .submit = 74, .complete = 131},
  147. [22] = { .submit = 76, .complete = 132},
  148. [23] = { .submit = 78, .complete = 133},
  149. [24] = { .submit = 80, .complete = 134},
  150. [25] = { .submit = 82, .complete = 135},
  151. [26] = { .submit = 84, .complete = 136},
  152. [27] = { .submit = 86, .complete = 137},
  153. [28] = { .submit = 88, .complete = 138},
  154. [29] = { .submit = 90, .complete = 139},
  155. };
  156. static const struct chan_queues usb_queues_rx[] = {
  157. /* USB0 ENDP 1 */
  158. [ 0] = { .submit = 1, .complete = 109},
  159. [ 1] = { .submit = 2, .complete = 110},
  160. [ 2] = { .submit = 3, .complete = 111},
  161. [ 3] = { .submit = 4, .complete = 112},
  162. [ 4] = { .submit = 5, .complete = 113},
  163. [ 5] = { .submit = 6, .complete = 114},
  164. [ 6] = { .submit = 7, .complete = 115},
  165. [ 7] = { .submit = 8, .complete = 116},
  166. [ 8] = { .submit = 9, .complete = 117},
  167. [ 9] = { .submit = 10, .complete = 118},
  168. [10] = { .submit = 11, .complete = 119},
  169. [11] = { .submit = 12, .complete = 120},
  170. [12] = { .submit = 13, .complete = 121},
  171. [13] = { .submit = 14, .complete = 122},
  172. [14] = { .submit = 15, .complete = 123},
  173. /* USB1 ENDP 1 */
  174. [15] = { .submit = 16, .complete = 141},
  175. [16] = { .submit = 17, .complete = 142},
  176. [17] = { .submit = 18, .complete = 143},
  177. [18] = { .submit = 19, .complete = 144},
  178. [19] = { .submit = 20, .complete = 145},
  179. [20] = { .submit = 21, .complete = 146},
  180. [21] = { .submit = 22, .complete = 147},
  181. [22] = { .submit = 23, .complete = 148},
  182. [23] = { .submit = 24, .complete = 149},
  183. [24] = { .submit = 25, .complete = 150},
  184. [25] = { .submit = 26, .complete = 151},
  185. [26] = { .submit = 27, .complete = 152},
  186. [27] = { .submit = 28, .complete = 153},
  187. [28] = { .submit = 29, .complete = 154},
  188. [29] = { .submit = 30, .complete = 155},
  189. };
  190. struct cppi_glue_infos {
  191. irqreturn_t (*isr)(int irq, void *data);
  192. const struct chan_queues *queues_rx;
  193. const struct chan_queues *queues_tx;
  194. struct chan_queues td_queue;
  195. };
  196. static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
  197. {
  198. return container_of(c, struct cppi41_channel, chan);
  199. }
  200. static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
  201. {
  202. struct cppi41_channel *c;
  203. u32 descs_size;
  204. u32 desc_num;
  205. descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
  206. if (!((desc >= cdd->descs_phys) &&
  207. (desc < (cdd->descs_phys + descs_size)))) {
  208. return NULL;
  209. }
  210. desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
  211. BUG_ON(desc_num >= ALLOC_DECS_NUM);
  212. c = cdd->chan_busy[desc_num];
  213. cdd->chan_busy[desc_num] = NULL;
  214. /* Usecount for chan_busy[], paired with push_desc_queue() */
  215. pm_runtime_put(cdd->ddev.dev);
  216. return c;
  217. }
  218. static void cppi_writel(u32 val, void *__iomem *mem)
  219. {
  220. __raw_writel(val, mem);
  221. }
  222. static u32 cppi_readl(void *__iomem *mem)
  223. {
  224. return __raw_readl(mem);
  225. }
  226. static u32 pd_trans_len(u32 val)
  227. {
  228. return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
  229. }
  230. static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
  231. {
  232. u32 desc;
  233. desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
  234. desc &= ~0x1f;
  235. return desc;
  236. }
  237. static irqreturn_t cppi41_irq(int irq, void *data)
  238. {
  239. struct cppi41_dd *cdd = data;
  240. struct cppi41_channel *c;
  241. int i;
  242. for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
  243. i++) {
  244. u32 val;
  245. u32 q_num;
  246. val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
  247. if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
  248. u32 mask;
  249. /* set corresponding bit for completetion Q 93 */
  250. mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
  251. /* not set all bits for queues less than Q 93 */
  252. mask--;
  253. /* now invert and keep only Q 93+ set */
  254. val &= ~mask;
  255. }
  256. if (val)
  257. __iormb();
  258. while (val) {
  259. u32 desc, len;
  260. /*
  261. * This should never trigger, see the comments in
  262. * push_desc_queue()
  263. */
  264. WARN_ON(cdd->is_suspended);
  265. q_num = __fls(val);
  266. val &= ~(1 << q_num);
  267. q_num += 32 * i;
  268. desc = cppi41_pop_desc(cdd, q_num);
  269. c = desc_to_chan(cdd, desc);
  270. if (WARN_ON(!c)) {
  271. pr_err("%s() q %d desc %08x\n", __func__,
  272. q_num, desc);
  273. continue;
  274. }
  275. if (c->desc->pd2 & PD2_ZERO_LENGTH)
  276. len = 0;
  277. else
  278. len = pd_trans_len(c->desc->pd0);
  279. c->residue = pd_trans_len(c->desc->pd6) - len;
  280. dma_cookie_complete(&c->txd);
  281. dmaengine_desc_get_callback_invoke(&c->txd, NULL);
  282. }
  283. }
  284. return IRQ_HANDLED;
  285. }
  286. static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
  287. {
  288. dma_cookie_t cookie;
  289. cookie = dma_cookie_assign(tx);
  290. return cookie;
  291. }
  292. static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
  293. {
  294. struct cppi41_channel *c = to_cpp41_chan(chan);
  295. struct cppi41_dd *cdd = c->cdd;
  296. int error;
  297. error = pm_runtime_get_sync(cdd->ddev.dev);
  298. if (error < 0) {
  299. dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
  300. __func__, error);
  301. pm_runtime_put_noidle(cdd->ddev.dev);
  302. return error;
  303. }
  304. dma_cookie_init(chan);
  305. dma_async_tx_descriptor_init(&c->txd, chan);
  306. c->txd.tx_submit = cppi41_tx_submit;
  307. if (!c->is_tx)
  308. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  309. pm_runtime_mark_last_busy(cdd->ddev.dev);
  310. pm_runtime_put_autosuspend(cdd->ddev.dev);
  311. return 0;
  312. }
  313. static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
  314. {
  315. struct cppi41_channel *c = to_cpp41_chan(chan);
  316. struct cppi41_dd *cdd = c->cdd;
  317. int error;
  318. error = pm_runtime_get_sync(cdd->ddev.dev);
  319. if (error < 0) {
  320. pm_runtime_put_noidle(cdd->ddev.dev);
  321. return;
  322. }
  323. WARN_ON(!list_empty(&cdd->pending));
  324. pm_runtime_mark_last_busy(cdd->ddev.dev);
  325. pm_runtime_put_autosuspend(cdd->ddev.dev);
  326. }
  327. static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
  328. dma_cookie_t cookie, struct dma_tx_state *txstate)
  329. {
  330. struct cppi41_channel *c = to_cpp41_chan(chan);
  331. enum dma_status ret;
  332. /* lock */
  333. ret = dma_cookie_status(chan, cookie, txstate);
  334. if (txstate && ret == DMA_COMPLETE)
  335. txstate->residue = c->residue;
  336. /* unlock */
  337. return ret;
  338. }
  339. static void push_desc_queue(struct cppi41_channel *c)
  340. {
  341. struct cppi41_dd *cdd = c->cdd;
  342. u32 desc_num;
  343. u32 desc_phys;
  344. u32 reg;
  345. c->residue = 0;
  346. reg = GCR_CHAN_ENABLE;
  347. if (!c->is_tx) {
  348. reg |= GCR_STARV_RETRY;
  349. reg |= GCR_DESC_TYPE_HOST;
  350. reg |= c->q_comp_num;
  351. }
  352. cppi_writel(reg, c->gcr_reg);
  353. /*
  354. * We don't use writel() but __raw_writel() so we have to make sure
  355. * that the DMA descriptor in coherent memory made to the main memory
  356. * before starting the dma engine.
  357. */
  358. __iowmb();
  359. /*
  360. * DMA transfers can take at least 200ms to complete with USB mass
  361. * storage connected. To prevent autosuspend timeouts, we must use
  362. * pm_runtime_get/put() when chan_busy[] is modified. This will get
  363. * cleared in desc_to_chan() or cppi41_stop_chan() depending on the
  364. * outcome of the transfer.
  365. */
  366. pm_runtime_get(cdd->ddev.dev);
  367. desc_phys = lower_32_bits(c->desc_phys);
  368. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  369. WARN_ON(cdd->chan_busy[desc_num]);
  370. cdd->chan_busy[desc_num] = c;
  371. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  372. reg |= desc_phys;
  373. cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
  374. }
  375. /*
  376. * Caller must hold cdd->lock to prevent push_desc_queue()
  377. * getting called out of order. We have both cppi41_dma_issue_pending()
  378. * and cppi41_runtime_resume() call this function.
  379. */
  380. static void cppi41_run_queue(struct cppi41_dd *cdd)
  381. {
  382. struct cppi41_channel *c, *_c;
  383. list_for_each_entry_safe(c, _c, &cdd->pending, node) {
  384. push_desc_queue(c);
  385. list_del(&c->node);
  386. }
  387. }
  388. static void cppi41_dma_issue_pending(struct dma_chan *chan)
  389. {
  390. struct cppi41_channel *c = to_cpp41_chan(chan);
  391. struct cppi41_dd *cdd = c->cdd;
  392. unsigned long flags;
  393. int error;
  394. error = pm_runtime_get(cdd->ddev.dev);
  395. if ((error != -EINPROGRESS) && error < 0) {
  396. pm_runtime_put_noidle(cdd->ddev.dev);
  397. dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
  398. error);
  399. return;
  400. }
  401. spin_lock_irqsave(&cdd->lock, flags);
  402. list_add_tail(&c->node, &cdd->pending);
  403. if (!cdd->is_suspended)
  404. cppi41_run_queue(cdd);
  405. spin_unlock_irqrestore(&cdd->lock, flags);
  406. pm_runtime_mark_last_busy(cdd->ddev.dev);
  407. pm_runtime_put_autosuspend(cdd->ddev.dev);
  408. }
  409. static u32 get_host_pd0(u32 length)
  410. {
  411. u32 reg;
  412. reg = DESC_TYPE_HOST << DESC_TYPE;
  413. reg |= length;
  414. return reg;
  415. }
  416. static u32 get_host_pd1(struct cppi41_channel *c)
  417. {
  418. u32 reg;
  419. reg = 0;
  420. return reg;
  421. }
  422. static u32 get_host_pd2(struct cppi41_channel *c)
  423. {
  424. u32 reg;
  425. reg = DESC_TYPE_USB;
  426. reg |= c->q_comp_num;
  427. return reg;
  428. }
  429. static u32 get_host_pd3(u32 length)
  430. {
  431. u32 reg;
  432. /* PD3 = packet size */
  433. reg = length;
  434. return reg;
  435. }
  436. static u32 get_host_pd6(u32 length)
  437. {
  438. u32 reg;
  439. /* PD6 buffer size */
  440. reg = DESC_PD_COMPLETE;
  441. reg |= length;
  442. return reg;
  443. }
  444. static u32 get_host_pd4_or_7(u32 addr)
  445. {
  446. u32 reg;
  447. reg = addr;
  448. return reg;
  449. }
  450. static u32 get_host_pd5(void)
  451. {
  452. u32 reg;
  453. reg = 0;
  454. return reg;
  455. }
  456. static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
  457. struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
  458. enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
  459. {
  460. struct cppi41_channel *c = to_cpp41_chan(chan);
  461. struct cppi41_desc *d;
  462. struct scatterlist *sg;
  463. unsigned int i;
  464. d = c->desc;
  465. for_each_sg(sgl, sg, sg_len, i) {
  466. u32 addr;
  467. u32 len;
  468. /* We need to use more than one desc once musb supports sg */
  469. addr = lower_32_bits(sg_dma_address(sg));
  470. len = sg_dma_len(sg);
  471. d->pd0 = get_host_pd0(len);
  472. d->pd1 = get_host_pd1(c);
  473. d->pd2 = get_host_pd2(c);
  474. d->pd3 = get_host_pd3(len);
  475. d->pd4 = get_host_pd4_or_7(addr);
  476. d->pd5 = get_host_pd5();
  477. d->pd6 = get_host_pd6(len);
  478. d->pd7 = get_host_pd4_or_7(addr);
  479. d++;
  480. }
  481. return &c->txd;
  482. }
  483. static void cppi41_compute_td_desc(struct cppi41_desc *d)
  484. {
  485. d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
  486. }
  487. static int cppi41_tear_down_chan(struct cppi41_channel *c)
  488. {
  489. struct dmaengine_result abort_result;
  490. struct cppi41_dd *cdd = c->cdd;
  491. struct cppi41_desc *td;
  492. u32 reg;
  493. u32 desc_phys;
  494. u32 td_desc_phys;
  495. td = cdd->cd;
  496. td += cdd->first_td_desc;
  497. td_desc_phys = cdd->descs_phys;
  498. td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
  499. if (!c->td_queued) {
  500. cppi41_compute_td_desc(td);
  501. __iowmb();
  502. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  503. reg |= td_desc_phys;
  504. cppi_writel(reg, cdd->qmgr_mem +
  505. QMGR_QUEUE_D(cdd->td_queue.submit));
  506. reg = GCR_CHAN_ENABLE;
  507. if (!c->is_tx) {
  508. reg |= GCR_STARV_RETRY;
  509. reg |= GCR_DESC_TYPE_HOST;
  510. reg |= c->q_comp_num;
  511. }
  512. reg |= GCR_TEARDOWN;
  513. cppi_writel(reg, c->gcr_reg);
  514. c->td_queued = 1;
  515. c->td_retry = 500;
  516. }
  517. if (!c->td_seen || !c->td_desc_seen) {
  518. desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
  519. if (!desc_phys)
  520. desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
  521. if (desc_phys == c->desc_phys) {
  522. c->td_desc_seen = 1;
  523. } else if (desc_phys == td_desc_phys) {
  524. u32 pd0;
  525. __iormb();
  526. pd0 = td->pd0;
  527. WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
  528. WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
  529. WARN_ON((pd0 & 0x1f) != c->port_num);
  530. c->td_seen = 1;
  531. } else if (desc_phys) {
  532. WARN_ON_ONCE(1);
  533. }
  534. }
  535. c->td_retry--;
  536. /*
  537. * If the TX descriptor / channel is in use, the caller needs to poke
  538. * his TD bit multiple times. After that he hardware releases the
  539. * transfer descriptor followed by TD descriptor. Waiting seems not to
  540. * cause any difference.
  541. * RX seems to be thrown out right away. However once the TearDown
  542. * descriptor gets through we are done. If we have seens the transfer
  543. * descriptor before the TD we fetch it from enqueue, it has to be
  544. * there waiting for us.
  545. */
  546. if (!c->td_seen && c->td_retry) {
  547. udelay(1);
  548. return -EAGAIN;
  549. }
  550. WARN_ON(!c->td_retry);
  551. if (!c->td_desc_seen) {
  552. desc_phys = cppi41_pop_desc(cdd, c->q_num);
  553. if (!desc_phys)
  554. desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
  555. WARN_ON(!desc_phys);
  556. }
  557. c->td_queued = 0;
  558. c->td_seen = 0;
  559. c->td_desc_seen = 0;
  560. cppi_writel(0, c->gcr_reg);
  561. /* Invoke the callback to do the necessary clean-up */
  562. abort_result.result = DMA_TRANS_ABORTED;
  563. dma_cookie_complete(&c->txd);
  564. dmaengine_desc_get_callback_invoke(&c->txd, &abort_result);
  565. return 0;
  566. }
  567. static int cppi41_stop_chan(struct dma_chan *chan)
  568. {
  569. struct cppi41_channel *c = to_cpp41_chan(chan);
  570. struct cppi41_dd *cdd = c->cdd;
  571. u32 desc_num;
  572. u32 desc_phys;
  573. int ret;
  574. desc_phys = lower_32_bits(c->desc_phys);
  575. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  576. if (!cdd->chan_busy[desc_num])
  577. return 0;
  578. ret = cppi41_tear_down_chan(c);
  579. if (ret)
  580. return ret;
  581. WARN_ON(!cdd->chan_busy[desc_num]);
  582. cdd->chan_busy[desc_num] = NULL;
  583. /* Usecount for chan_busy[], paired with push_desc_queue() */
  584. pm_runtime_put(cdd->ddev.dev);
  585. return 0;
  586. }
  587. static void cleanup_chans(struct cppi41_dd *cdd)
  588. {
  589. while (!list_empty(&cdd->ddev.channels)) {
  590. struct cppi41_channel *cchan;
  591. cchan = list_first_entry(&cdd->ddev.channels,
  592. struct cppi41_channel, chan.device_node);
  593. list_del(&cchan->chan.device_node);
  594. kfree(cchan);
  595. }
  596. }
  597. static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
  598. {
  599. struct cppi41_channel *cchan;
  600. int i;
  601. int ret;
  602. u32 n_chans;
  603. ret = of_property_read_u32(dev->of_node, "#dma-channels",
  604. &n_chans);
  605. if (ret)
  606. return ret;
  607. /*
  608. * The channels can only be used as TX or as RX. So we add twice
  609. * that much dma channels because USB can only do RX or TX.
  610. */
  611. n_chans *= 2;
  612. for (i = 0; i < n_chans; i++) {
  613. cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
  614. if (!cchan)
  615. goto err;
  616. cchan->cdd = cdd;
  617. if (i & 1) {
  618. cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
  619. cchan->is_tx = 1;
  620. } else {
  621. cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
  622. cchan->is_tx = 0;
  623. }
  624. cchan->port_num = i >> 1;
  625. cchan->desc = &cdd->cd[i];
  626. cchan->desc_phys = cdd->descs_phys;
  627. cchan->desc_phys += i * sizeof(struct cppi41_desc);
  628. cchan->chan.device = &cdd->ddev;
  629. list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
  630. }
  631. cdd->first_td_desc = n_chans;
  632. return 0;
  633. err:
  634. cleanup_chans(cdd);
  635. return -ENOMEM;
  636. }
  637. static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
  638. {
  639. unsigned int mem_decs;
  640. int i;
  641. mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
  642. for (i = 0; i < DESCS_AREAS; i++) {
  643. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
  644. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  645. dma_free_coherent(dev, mem_decs, cdd->cd,
  646. cdd->descs_phys);
  647. }
  648. }
  649. static void disable_sched(struct cppi41_dd *cdd)
  650. {
  651. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  652. }
  653. static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
  654. {
  655. disable_sched(cdd);
  656. purge_descs(dev, cdd);
  657. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  658. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  659. dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
  660. cdd->scratch_phys);
  661. }
  662. static int init_descs(struct device *dev, struct cppi41_dd *cdd)
  663. {
  664. unsigned int desc_size;
  665. unsigned int mem_decs;
  666. int i;
  667. u32 reg;
  668. u32 idx;
  669. BUILD_BUG_ON(sizeof(struct cppi41_desc) &
  670. (sizeof(struct cppi41_desc) - 1));
  671. BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
  672. BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
  673. desc_size = sizeof(struct cppi41_desc);
  674. mem_decs = ALLOC_DECS_NUM * desc_size;
  675. idx = 0;
  676. for (i = 0; i < DESCS_AREAS; i++) {
  677. reg = idx << QMGR_MEMCTRL_IDX_SH;
  678. reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
  679. reg |= ilog2(ALLOC_DECS_NUM) - 5;
  680. BUILD_BUG_ON(DESCS_AREAS != 1);
  681. cdd->cd = dma_alloc_coherent(dev, mem_decs,
  682. &cdd->descs_phys, GFP_KERNEL);
  683. if (!cdd->cd)
  684. return -ENOMEM;
  685. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  686. cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  687. idx += ALLOC_DECS_NUM;
  688. }
  689. return 0;
  690. }
  691. static void init_sched(struct cppi41_dd *cdd)
  692. {
  693. unsigned ch;
  694. unsigned word;
  695. u32 reg;
  696. word = 0;
  697. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  698. for (ch = 0; ch < 15 * 2; ch += 2) {
  699. reg = SCHED_ENTRY0_CHAN(ch);
  700. reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
  701. reg |= SCHED_ENTRY2_CHAN(ch + 1);
  702. reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
  703. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
  704. word++;
  705. }
  706. reg = 15 * 2 * 2 - 1;
  707. reg |= DMA_SCHED_CTRL_EN;
  708. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
  709. }
  710. static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
  711. {
  712. int ret;
  713. BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
  714. cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
  715. &cdd->scratch_phys, GFP_KERNEL);
  716. if (!cdd->qmgr_scratch)
  717. return -ENOMEM;
  718. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  719. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  720. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  721. ret = init_descs(dev, cdd);
  722. if (ret)
  723. goto err_td;
  724. cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
  725. init_sched(cdd);
  726. return 0;
  727. err_td:
  728. deinit_cppi41(dev, cdd);
  729. return ret;
  730. }
  731. static struct platform_driver cpp41_dma_driver;
  732. /*
  733. * The param format is:
  734. * X Y
  735. * X: Port
  736. * Y: 0 = RX else TX
  737. */
  738. #define INFO_PORT 0
  739. #define INFO_IS_TX 1
  740. static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
  741. {
  742. struct cppi41_channel *cchan;
  743. struct cppi41_dd *cdd;
  744. const struct chan_queues *queues;
  745. u32 *num = param;
  746. if (chan->device->dev->driver != &cpp41_dma_driver.driver)
  747. return false;
  748. cchan = to_cpp41_chan(chan);
  749. if (cchan->port_num != num[INFO_PORT])
  750. return false;
  751. if (cchan->is_tx && !num[INFO_IS_TX])
  752. return false;
  753. cdd = cchan->cdd;
  754. if (cchan->is_tx)
  755. queues = cdd->queues_tx;
  756. else
  757. queues = cdd->queues_rx;
  758. BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
  759. if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
  760. return false;
  761. cchan->q_num = queues[cchan->port_num].submit;
  762. cchan->q_comp_num = queues[cchan->port_num].complete;
  763. return true;
  764. }
  765. static struct of_dma_filter_info cpp41_dma_info = {
  766. .filter_fn = cpp41_dma_filter_fn,
  767. };
  768. static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
  769. struct of_dma *ofdma)
  770. {
  771. int count = dma_spec->args_count;
  772. struct of_dma_filter_info *info = ofdma->of_dma_data;
  773. if (!info || !info->filter_fn)
  774. return NULL;
  775. if (count != 2)
  776. return NULL;
  777. return dma_request_channel(info->dma_cap, info->filter_fn,
  778. &dma_spec->args[0]);
  779. }
  780. static const struct cppi_glue_infos usb_infos = {
  781. .isr = cppi41_irq,
  782. .queues_rx = usb_queues_rx,
  783. .queues_tx = usb_queues_tx,
  784. .td_queue = { .submit = 31, .complete = 0 },
  785. };
  786. static const struct of_device_id cppi41_dma_ids[] = {
  787. { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
  788. {},
  789. };
  790. MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
  791. static const struct cppi_glue_infos *get_glue_info(struct device *dev)
  792. {
  793. const struct of_device_id *of_id;
  794. of_id = of_match_node(cppi41_dma_ids, dev->of_node);
  795. if (!of_id)
  796. return NULL;
  797. return of_id->data;
  798. }
  799. #define CPPI41_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  800. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  801. BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
  802. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
  803. static int cppi41_dma_probe(struct platform_device *pdev)
  804. {
  805. struct cppi41_dd *cdd;
  806. struct device *dev = &pdev->dev;
  807. const struct cppi_glue_infos *glue_info;
  808. int irq;
  809. int ret;
  810. glue_info = get_glue_info(dev);
  811. if (!glue_info)
  812. return -EINVAL;
  813. cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
  814. if (!cdd)
  815. return -ENOMEM;
  816. dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
  817. cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
  818. cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
  819. cdd->ddev.device_tx_status = cppi41_dma_tx_status;
  820. cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
  821. cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
  822. cdd->ddev.device_terminate_all = cppi41_stop_chan;
  823. cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  824. cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
  825. cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
  826. cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  827. cdd->ddev.dev = dev;
  828. INIT_LIST_HEAD(&cdd->ddev.channels);
  829. cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
  830. cdd->usbss_mem = of_iomap(dev->of_node, 0);
  831. cdd->ctrl_mem = of_iomap(dev->of_node, 1);
  832. cdd->sched_mem = of_iomap(dev->of_node, 2);
  833. cdd->qmgr_mem = of_iomap(dev->of_node, 3);
  834. spin_lock_init(&cdd->lock);
  835. INIT_LIST_HEAD(&cdd->pending);
  836. platform_set_drvdata(pdev, cdd);
  837. if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
  838. !cdd->qmgr_mem)
  839. return -ENXIO;
  840. pm_runtime_enable(dev);
  841. pm_runtime_set_autosuspend_delay(dev, 100);
  842. pm_runtime_use_autosuspend(dev);
  843. ret = pm_runtime_get_sync(dev);
  844. if (ret < 0)
  845. goto err_get_sync;
  846. cdd->queues_rx = glue_info->queues_rx;
  847. cdd->queues_tx = glue_info->queues_tx;
  848. cdd->td_queue = glue_info->td_queue;
  849. ret = init_cppi41(dev, cdd);
  850. if (ret)
  851. goto err_init_cppi;
  852. ret = cppi41_add_chans(dev, cdd);
  853. if (ret)
  854. goto err_chans;
  855. irq = irq_of_parse_and_map(dev->of_node, 0);
  856. if (!irq) {
  857. ret = -EINVAL;
  858. goto err_irq;
  859. }
  860. ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
  861. dev_name(dev), cdd);
  862. if (ret)
  863. goto err_irq;
  864. cdd->irq = irq;
  865. ret = dma_async_device_register(&cdd->ddev);
  866. if (ret)
  867. goto err_dma_reg;
  868. ret = of_dma_controller_register(dev->of_node,
  869. cppi41_dma_xlate, &cpp41_dma_info);
  870. if (ret)
  871. goto err_of;
  872. pm_runtime_mark_last_busy(dev);
  873. pm_runtime_put_autosuspend(dev);
  874. return 0;
  875. err_of:
  876. dma_async_device_unregister(&cdd->ddev);
  877. err_dma_reg:
  878. err_irq:
  879. cleanup_chans(cdd);
  880. err_chans:
  881. deinit_cppi41(dev, cdd);
  882. err_init_cppi:
  883. pm_runtime_dont_use_autosuspend(dev);
  884. err_get_sync:
  885. pm_runtime_put_sync(dev);
  886. pm_runtime_disable(dev);
  887. iounmap(cdd->usbss_mem);
  888. iounmap(cdd->ctrl_mem);
  889. iounmap(cdd->sched_mem);
  890. iounmap(cdd->qmgr_mem);
  891. return ret;
  892. }
  893. static int cppi41_dma_remove(struct platform_device *pdev)
  894. {
  895. struct cppi41_dd *cdd = platform_get_drvdata(pdev);
  896. int error;
  897. error = pm_runtime_get_sync(&pdev->dev);
  898. if (error < 0)
  899. dev_err(&pdev->dev, "%s could not pm_runtime_get: %i\n",
  900. __func__, error);
  901. of_dma_controller_free(pdev->dev.of_node);
  902. dma_async_device_unregister(&cdd->ddev);
  903. devm_free_irq(&pdev->dev, cdd->irq, cdd);
  904. cleanup_chans(cdd);
  905. deinit_cppi41(&pdev->dev, cdd);
  906. iounmap(cdd->usbss_mem);
  907. iounmap(cdd->ctrl_mem);
  908. iounmap(cdd->sched_mem);
  909. iounmap(cdd->qmgr_mem);
  910. pm_runtime_dont_use_autosuspend(&pdev->dev);
  911. pm_runtime_put_sync(&pdev->dev);
  912. pm_runtime_disable(&pdev->dev);
  913. return 0;
  914. }
  915. static int __maybe_unused cppi41_suspend(struct device *dev)
  916. {
  917. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  918. cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
  919. disable_sched(cdd);
  920. return 0;
  921. }
  922. static int __maybe_unused cppi41_resume(struct device *dev)
  923. {
  924. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  925. struct cppi41_channel *c;
  926. int i;
  927. for (i = 0; i < DESCS_AREAS; i++)
  928. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  929. list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
  930. if (!c->is_tx)
  931. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  932. init_sched(cdd);
  933. cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
  934. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  935. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  936. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  937. return 0;
  938. }
  939. static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
  940. {
  941. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  942. unsigned long flags;
  943. spin_lock_irqsave(&cdd->lock, flags);
  944. cdd->is_suspended = true;
  945. WARN_ON(!list_empty(&cdd->pending));
  946. spin_unlock_irqrestore(&cdd->lock, flags);
  947. return 0;
  948. }
  949. static int __maybe_unused cppi41_runtime_resume(struct device *dev)
  950. {
  951. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  952. unsigned long flags;
  953. spin_lock_irqsave(&cdd->lock, flags);
  954. cdd->is_suspended = false;
  955. cppi41_run_queue(cdd);
  956. spin_unlock_irqrestore(&cdd->lock, flags);
  957. return 0;
  958. }
  959. static const struct dev_pm_ops cppi41_pm_ops = {
  960. SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
  961. SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
  962. cppi41_runtime_resume,
  963. NULL)
  964. };
  965. static struct platform_driver cpp41_dma_driver = {
  966. .probe = cppi41_dma_probe,
  967. .remove = cppi41_dma_remove,
  968. .driver = {
  969. .name = "cppi41-dma-engine",
  970. .pm = &cppi41_pm_ops,
  971. .of_match_table = of_match_ptr(cppi41_dma_ids),
  972. },
  973. };
  974. module_platform_driver(cpp41_dma_driver);
  975. MODULE_LICENSE("GPL");
  976. MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");