s5p-sss.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for Samsung S5PV210 HW acceleration.
  5. *
  6. * Copyright (C) 2011 NetUP Inc. All rights reserved.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as published
  10. * by the Free Software Foundation.
  11. *
  12. */
  13. #include <linux/clk.h>
  14. #include <linux/crypto.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/err.h>
  17. #include <linux/errno.h>
  18. #include <linux/init.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/io.h>
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/of.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/scatterlist.h>
  26. #include <crypto/ctr.h>
  27. #include <crypto/aes.h>
  28. #include <crypto/algapi.h>
  29. #include <crypto/scatterwalk.h>
  30. #define _SBF(s, v) ((v) << (s))
  31. /* Feed control registers */
  32. #define SSS_REG_FCINTSTAT 0x0000
  33. #define SSS_FCINTSTAT_BRDMAINT BIT(3)
  34. #define SSS_FCINTSTAT_BTDMAINT BIT(2)
  35. #define SSS_FCINTSTAT_HRDMAINT BIT(1)
  36. #define SSS_FCINTSTAT_PKDMAINT BIT(0)
  37. #define SSS_REG_FCINTENSET 0x0004
  38. #define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
  39. #define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
  40. #define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
  41. #define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
  42. #define SSS_REG_FCINTENCLR 0x0008
  43. #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
  44. #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
  45. #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
  46. #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
  47. #define SSS_REG_FCINTPEND 0x000C
  48. #define SSS_FCINTPEND_BRDMAINTP BIT(3)
  49. #define SSS_FCINTPEND_BTDMAINTP BIT(2)
  50. #define SSS_FCINTPEND_HRDMAINTP BIT(1)
  51. #define SSS_FCINTPEND_PKDMAINTP BIT(0)
  52. #define SSS_REG_FCFIFOSTAT 0x0010
  53. #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
  54. #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
  55. #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
  56. #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
  57. #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
  58. #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
  59. #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
  60. #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
  61. #define SSS_REG_FCFIFOCTRL 0x0014
  62. #define SSS_FCFIFOCTRL_DESSEL BIT(2)
  63. #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
  64. #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
  65. #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
  66. #define SSS_REG_FCBRDMAS 0x0020
  67. #define SSS_REG_FCBRDMAL 0x0024
  68. #define SSS_REG_FCBRDMAC 0x0028
  69. #define SSS_FCBRDMAC_BYTESWAP BIT(1)
  70. #define SSS_FCBRDMAC_FLUSH BIT(0)
  71. #define SSS_REG_FCBTDMAS 0x0030
  72. #define SSS_REG_FCBTDMAL 0x0034
  73. #define SSS_REG_FCBTDMAC 0x0038
  74. #define SSS_FCBTDMAC_BYTESWAP BIT(1)
  75. #define SSS_FCBTDMAC_FLUSH BIT(0)
  76. #define SSS_REG_FCHRDMAS 0x0040
  77. #define SSS_REG_FCHRDMAL 0x0044
  78. #define SSS_REG_FCHRDMAC 0x0048
  79. #define SSS_FCHRDMAC_BYTESWAP BIT(1)
  80. #define SSS_FCHRDMAC_FLUSH BIT(0)
  81. #define SSS_REG_FCPKDMAS 0x0050
  82. #define SSS_REG_FCPKDMAL 0x0054
  83. #define SSS_REG_FCPKDMAC 0x0058
  84. #define SSS_FCPKDMAC_BYTESWAP BIT(3)
  85. #define SSS_FCPKDMAC_DESCEND BIT(2)
  86. #define SSS_FCPKDMAC_TRANSMIT BIT(1)
  87. #define SSS_FCPKDMAC_FLUSH BIT(0)
  88. #define SSS_REG_FCPKDMAO 0x005C
  89. /* AES registers */
  90. #define SSS_REG_AES_CONTROL 0x00
  91. #define SSS_AES_BYTESWAP_DI BIT(11)
  92. #define SSS_AES_BYTESWAP_DO BIT(10)
  93. #define SSS_AES_BYTESWAP_IV BIT(9)
  94. #define SSS_AES_BYTESWAP_CNT BIT(8)
  95. #define SSS_AES_BYTESWAP_KEY BIT(7)
  96. #define SSS_AES_KEY_CHANGE_MODE BIT(6)
  97. #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
  98. #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
  99. #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
  100. #define SSS_AES_FIFO_MODE BIT(3)
  101. #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
  102. #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
  103. #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
  104. #define SSS_AES_MODE_DECRYPT BIT(0)
  105. #define SSS_REG_AES_STATUS 0x04
  106. #define SSS_AES_BUSY BIT(2)
  107. #define SSS_AES_INPUT_READY BIT(1)
  108. #define SSS_AES_OUTPUT_READY BIT(0)
  109. #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
  110. #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
  111. #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
  112. #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
  113. #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
  114. #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
  115. #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
  116. #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
  117. #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
  118. #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
  119. SSS_AES_REG(dev, reg))
  120. /* HW engine modes */
  121. #define FLAGS_AES_DECRYPT BIT(0)
  122. #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
  123. #define FLAGS_AES_CBC _SBF(1, 0x01)
  124. #define FLAGS_AES_CTR _SBF(1, 0x02)
  125. #define AES_KEY_LEN 16
  126. #define CRYPTO_QUEUE_LEN 1
  127. /**
  128. * struct samsung_aes_variant - platform specific SSS driver data
  129. * @aes_offset: AES register offset from SSS module's base.
  130. *
  131. * Specifies platform specific configuration of SSS module.
  132. * Note: A structure for driver specific platform data is used for future
  133. * expansion of its usage.
  134. */
  135. struct samsung_aes_variant {
  136. unsigned int aes_offset;
  137. };
  138. struct s5p_aes_reqctx {
  139. unsigned long mode;
  140. };
  141. struct s5p_aes_ctx {
  142. struct s5p_aes_dev *dev;
  143. uint8_t aes_key[AES_MAX_KEY_SIZE];
  144. uint8_t nonce[CTR_RFC3686_NONCE_SIZE];
  145. int keylen;
  146. };
  147. struct s5p_aes_dev {
  148. struct device *dev;
  149. struct clk *clk;
  150. void __iomem *ioaddr;
  151. void __iomem *aes_ioaddr;
  152. int irq_fc;
  153. struct ablkcipher_request *req;
  154. struct s5p_aes_ctx *ctx;
  155. struct scatterlist *sg_src;
  156. struct scatterlist *sg_dst;
  157. /* In case of unaligned access: */
  158. struct scatterlist *sg_src_cpy;
  159. struct scatterlist *sg_dst_cpy;
  160. struct tasklet_struct tasklet;
  161. struct crypto_queue queue;
  162. bool busy;
  163. spinlock_t lock;
  164. struct samsung_aes_variant *variant;
  165. };
  166. static struct s5p_aes_dev *s5p_dev;
  167. static const struct samsung_aes_variant s5p_aes_data = {
  168. .aes_offset = 0x4000,
  169. };
  170. static const struct samsung_aes_variant exynos_aes_data = {
  171. .aes_offset = 0x200,
  172. };
  173. static const struct of_device_id s5p_sss_dt_match[] = {
  174. {
  175. .compatible = "samsung,s5pv210-secss",
  176. .data = &s5p_aes_data,
  177. },
  178. {
  179. .compatible = "samsung,exynos4210-secss",
  180. .data = &exynos_aes_data,
  181. },
  182. { },
  183. };
  184. MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
  185. static inline struct samsung_aes_variant *find_s5p_sss_version
  186. (struct platform_device *pdev)
  187. {
  188. if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
  189. const struct of_device_id *match;
  190. match = of_match_node(s5p_sss_dt_match,
  191. pdev->dev.of_node);
  192. return (struct samsung_aes_variant *)match->data;
  193. }
  194. return (struct samsung_aes_variant *)
  195. platform_get_device_id(pdev)->driver_data;
  196. }
  197. static void s5p_set_dma_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
  198. {
  199. SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
  200. SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
  201. }
  202. static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
  203. {
  204. SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
  205. SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
  206. }
  207. static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
  208. {
  209. int len;
  210. if (!*sg)
  211. return;
  212. len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
  213. free_pages((unsigned long)sg_virt(*sg), get_order(len));
  214. kfree(*sg);
  215. *sg = NULL;
  216. }
  217. static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
  218. unsigned int nbytes, int out)
  219. {
  220. struct scatter_walk walk;
  221. if (!nbytes)
  222. return;
  223. scatterwalk_start(&walk, sg);
  224. scatterwalk_copychunks(buf, &walk, nbytes, out);
  225. scatterwalk_done(&walk, out, 0);
  226. }
  227. static void s5p_sg_done(struct s5p_aes_dev *dev)
  228. {
  229. if (dev->sg_dst_cpy) {
  230. dev_dbg(dev->dev,
  231. "Copying %d bytes of output data back to original place\n",
  232. dev->req->nbytes);
  233. s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
  234. dev->req->nbytes, 1);
  235. }
  236. s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
  237. s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
  238. }
  239. /* Calls the completion. Cannot be called with dev->lock hold. */
  240. static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
  241. {
  242. dev->req->base.complete(&dev->req->base, err);
  243. dev->busy = false;
  244. }
  245. static void s5p_unset_outdata(struct s5p_aes_dev *dev)
  246. {
  247. dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
  248. }
  249. static void s5p_unset_indata(struct s5p_aes_dev *dev)
  250. {
  251. dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
  252. }
  253. static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
  254. struct scatterlist **dst)
  255. {
  256. void *pages;
  257. int len;
  258. *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
  259. if (!*dst)
  260. return -ENOMEM;
  261. len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
  262. pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
  263. if (!pages) {
  264. kfree(*dst);
  265. *dst = NULL;
  266. return -ENOMEM;
  267. }
  268. s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
  269. sg_init_table(*dst, 1);
  270. sg_set_buf(*dst, pages, len);
  271. return 0;
  272. }
  273. static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
  274. {
  275. int err;
  276. if (!sg->length) {
  277. err = -EINVAL;
  278. goto exit;
  279. }
  280. err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
  281. if (!err) {
  282. err = -ENOMEM;
  283. goto exit;
  284. }
  285. dev->sg_dst = sg;
  286. err = 0;
  287. exit:
  288. return err;
  289. }
  290. static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
  291. {
  292. int err;
  293. if (!sg->length) {
  294. err = -EINVAL;
  295. goto exit;
  296. }
  297. err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
  298. if (!err) {
  299. err = -ENOMEM;
  300. goto exit;
  301. }
  302. dev->sg_src = sg;
  303. err = 0;
  304. exit:
  305. return err;
  306. }
  307. /*
  308. * Returns -ERRNO on error (mapping of new data failed).
  309. * On success returns:
  310. * - 0 if there is no more data,
  311. * - 1 if new transmitting (output) data is ready and its address+length
  312. * have to be written to device (by calling s5p_set_dma_outdata()).
  313. */
  314. static int s5p_aes_tx(struct s5p_aes_dev *dev)
  315. {
  316. int ret = 0;
  317. s5p_unset_outdata(dev);
  318. if (!sg_is_last(dev->sg_dst)) {
  319. ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
  320. if (!ret)
  321. ret = 1;
  322. }
  323. return ret;
  324. }
  325. /*
  326. * Returns -ERRNO on error (mapping of new data failed).
  327. * On success returns:
  328. * - 0 if there is no more data,
  329. * - 1 if new receiving (input) data is ready and its address+length
  330. * have to be written to device (by calling s5p_set_dma_indata()).
  331. */
  332. static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
  333. {
  334. int ret = 0;
  335. s5p_unset_indata(dev);
  336. if (!sg_is_last(dev->sg_src)) {
  337. ret = s5p_set_indata(dev, sg_next(dev->sg_src));
  338. if (!ret)
  339. ret = 1;
  340. }
  341. return ret;
  342. }
  343. static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
  344. {
  345. struct platform_device *pdev = dev_id;
  346. struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
  347. int err_dma_tx = 0;
  348. int err_dma_rx = 0;
  349. bool tx_end = false;
  350. unsigned long flags;
  351. uint32_t status;
  352. int err;
  353. spin_lock_irqsave(&dev->lock, flags);
  354. /*
  355. * Handle rx or tx interrupt. If there is still data (scatterlist did not
  356. * reach end), then map next scatterlist entry.
  357. * In case of such mapping error, s5p_aes_complete() should be called.
  358. *
  359. * If there is no more data in tx scatter list, call s5p_aes_complete()
  360. * and schedule new tasklet.
  361. */
  362. status = SSS_READ(dev, FCINTSTAT);
  363. if (status & SSS_FCINTSTAT_BRDMAINT)
  364. err_dma_rx = s5p_aes_rx(dev);
  365. if (status & SSS_FCINTSTAT_BTDMAINT) {
  366. if (sg_is_last(dev->sg_dst))
  367. tx_end = true;
  368. err_dma_tx = s5p_aes_tx(dev);
  369. }
  370. SSS_WRITE(dev, FCINTPEND, status);
  371. if (err_dma_rx < 0) {
  372. err = err_dma_rx;
  373. goto error;
  374. }
  375. if (err_dma_tx < 0) {
  376. err = err_dma_tx;
  377. goto error;
  378. }
  379. if (tx_end) {
  380. s5p_sg_done(dev);
  381. spin_unlock_irqrestore(&dev->lock, flags);
  382. s5p_aes_complete(dev, 0);
  383. dev->busy = true;
  384. tasklet_schedule(&dev->tasklet);
  385. } else {
  386. /*
  387. * Writing length of DMA block (either receiving or
  388. * transmitting) will start the operation immediately, so this
  389. * should be done at the end (even after clearing pending
  390. * interrupts to not miss the interrupt).
  391. */
  392. if (err_dma_tx == 1)
  393. s5p_set_dma_outdata(dev, dev->sg_dst);
  394. if (err_dma_rx == 1)
  395. s5p_set_dma_indata(dev, dev->sg_src);
  396. spin_unlock_irqrestore(&dev->lock, flags);
  397. }
  398. return IRQ_HANDLED;
  399. error:
  400. s5p_sg_done(dev);
  401. spin_unlock_irqrestore(&dev->lock, flags);
  402. s5p_aes_complete(dev, err);
  403. return IRQ_HANDLED;
  404. }
  405. static void s5p_set_aes(struct s5p_aes_dev *dev,
  406. uint8_t *key, uint8_t *iv, unsigned int keylen)
  407. {
  408. void __iomem *keystart;
  409. if (iv)
  410. memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
  411. if (keylen == AES_KEYSIZE_256)
  412. keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
  413. else if (keylen == AES_KEYSIZE_192)
  414. keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
  415. else
  416. keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
  417. memcpy_toio(keystart, key, keylen);
  418. }
  419. static bool s5p_is_sg_aligned(struct scatterlist *sg)
  420. {
  421. while (sg) {
  422. if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
  423. return false;
  424. sg = sg_next(sg);
  425. }
  426. return true;
  427. }
  428. static int s5p_set_indata_start(struct s5p_aes_dev *dev,
  429. struct ablkcipher_request *req)
  430. {
  431. struct scatterlist *sg;
  432. int err;
  433. dev->sg_src_cpy = NULL;
  434. sg = req->src;
  435. if (!s5p_is_sg_aligned(sg)) {
  436. dev_dbg(dev->dev,
  437. "At least one unaligned source scatter list, making a copy\n");
  438. err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
  439. if (err)
  440. return err;
  441. sg = dev->sg_src_cpy;
  442. }
  443. err = s5p_set_indata(dev, sg);
  444. if (err) {
  445. s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
  446. return err;
  447. }
  448. return 0;
  449. }
  450. static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
  451. struct ablkcipher_request *req)
  452. {
  453. struct scatterlist *sg;
  454. int err;
  455. dev->sg_dst_cpy = NULL;
  456. sg = req->dst;
  457. if (!s5p_is_sg_aligned(sg)) {
  458. dev_dbg(dev->dev,
  459. "At least one unaligned dest scatter list, making a copy\n");
  460. err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
  461. if (err)
  462. return err;
  463. sg = dev->sg_dst_cpy;
  464. }
  465. err = s5p_set_outdata(dev, sg);
  466. if (err) {
  467. s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
  468. return err;
  469. }
  470. return 0;
  471. }
  472. static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
  473. {
  474. struct ablkcipher_request *req = dev->req;
  475. uint32_t aes_control;
  476. unsigned long flags;
  477. int err;
  478. aes_control = SSS_AES_KEY_CHANGE_MODE;
  479. if (mode & FLAGS_AES_DECRYPT)
  480. aes_control |= SSS_AES_MODE_DECRYPT;
  481. if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC)
  482. aes_control |= SSS_AES_CHAIN_MODE_CBC;
  483. else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR)
  484. aes_control |= SSS_AES_CHAIN_MODE_CTR;
  485. if (dev->ctx->keylen == AES_KEYSIZE_192)
  486. aes_control |= SSS_AES_KEY_SIZE_192;
  487. else if (dev->ctx->keylen == AES_KEYSIZE_256)
  488. aes_control |= SSS_AES_KEY_SIZE_256;
  489. aes_control |= SSS_AES_FIFO_MODE;
  490. /* as a variant it is possible to use byte swapping on DMA side */
  491. aes_control |= SSS_AES_BYTESWAP_DI
  492. | SSS_AES_BYTESWAP_DO
  493. | SSS_AES_BYTESWAP_IV
  494. | SSS_AES_BYTESWAP_KEY
  495. | SSS_AES_BYTESWAP_CNT;
  496. spin_lock_irqsave(&dev->lock, flags);
  497. SSS_WRITE(dev, FCINTENCLR,
  498. SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
  499. SSS_WRITE(dev, FCFIFOCTRL, 0x00);
  500. err = s5p_set_indata_start(dev, req);
  501. if (err)
  502. goto indata_error;
  503. err = s5p_set_outdata_start(dev, req);
  504. if (err)
  505. goto outdata_error;
  506. SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
  507. s5p_set_aes(dev, dev->ctx->aes_key, req->info, dev->ctx->keylen);
  508. s5p_set_dma_indata(dev, dev->sg_src);
  509. s5p_set_dma_outdata(dev, dev->sg_dst);
  510. SSS_WRITE(dev, FCINTENSET,
  511. SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
  512. spin_unlock_irqrestore(&dev->lock, flags);
  513. return;
  514. outdata_error:
  515. s5p_unset_indata(dev);
  516. indata_error:
  517. s5p_sg_done(dev);
  518. spin_unlock_irqrestore(&dev->lock, flags);
  519. s5p_aes_complete(dev, err);
  520. }
  521. static void s5p_tasklet_cb(unsigned long data)
  522. {
  523. struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
  524. struct crypto_async_request *async_req, *backlog;
  525. struct s5p_aes_reqctx *reqctx;
  526. unsigned long flags;
  527. spin_lock_irqsave(&dev->lock, flags);
  528. backlog = crypto_get_backlog(&dev->queue);
  529. async_req = crypto_dequeue_request(&dev->queue);
  530. if (!async_req) {
  531. dev->busy = false;
  532. spin_unlock_irqrestore(&dev->lock, flags);
  533. return;
  534. }
  535. spin_unlock_irqrestore(&dev->lock, flags);
  536. if (backlog)
  537. backlog->complete(backlog, -EINPROGRESS);
  538. dev->req = ablkcipher_request_cast(async_req);
  539. dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
  540. reqctx = ablkcipher_request_ctx(dev->req);
  541. s5p_aes_crypt_start(dev, reqctx->mode);
  542. }
  543. static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
  544. struct ablkcipher_request *req)
  545. {
  546. unsigned long flags;
  547. int err;
  548. spin_lock_irqsave(&dev->lock, flags);
  549. err = ablkcipher_enqueue_request(&dev->queue, req);
  550. if (dev->busy) {
  551. spin_unlock_irqrestore(&dev->lock, flags);
  552. goto exit;
  553. }
  554. dev->busy = true;
  555. spin_unlock_irqrestore(&dev->lock, flags);
  556. tasklet_schedule(&dev->tasklet);
  557. exit:
  558. return err;
  559. }
  560. static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  561. {
  562. struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
  563. struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
  564. struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  565. struct s5p_aes_dev *dev = ctx->dev;
  566. if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
  567. dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
  568. return -EINVAL;
  569. }
  570. reqctx->mode = mode;
  571. return s5p_aes_handle_req(dev, req);
  572. }
  573. static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
  574. const uint8_t *key, unsigned int keylen)
  575. {
  576. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  577. struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  578. if (keylen != AES_KEYSIZE_128 &&
  579. keylen != AES_KEYSIZE_192 &&
  580. keylen != AES_KEYSIZE_256)
  581. return -EINVAL;
  582. memcpy(ctx->aes_key, key, keylen);
  583. ctx->keylen = keylen;
  584. return 0;
  585. }
  586. static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
  587. {
  588. return s5p_aes_crypt(req, 0);
  589. }
  590. static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
  591. {
  592. return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
  593. }
  594. static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
  595. {
  596. return s5p_aes_crypt(req, FLAGS_AES_CBC);
  597. }
  598. static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
  599. {
  600. return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
  601. }
  602. static int s5p_aes_cra_init(struct crypto_tfm *tfm)
  603. {
  604. struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  605. ctx->dev = s5p_dev;
  606. tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
  607. return 0;
  608. }
  609. static struct crypto_alg algs[] = {
  610. {
  611. .cra_name = "ecb(aes)",
  612. .cra_driver_name = "ecb-aes-s5p",
  613. .cra_priority = 100,
  614. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  615. CRYPTO_ALG_ASYNC |
  616. CRYPTO_ALG_KERN_DRIVER_ONLY,
  617. .cra_blocksize = AES_BLOCK_SIZE,
  618. .cra_ctxsize = sizeof(struct s5p_aes_ctx),
  619. .cra_alignmask = 0x0f,
  620. .cra_type = &crypto_ablkcipher_type,
  621. .cra_module = THIS_MODULE,
  622. .cra_init = s5p_aes_cra_init,
  623. .cra_u.ablkcipher = {
  624. .min_keysize = AES_MIN_KEY_SIZE,
  625. .max_keysize = AES_MAX_KEY_SIZE,
  626. .setkey = s5p_aes_setkey,
  627. .encrypt = s5p_aes_ecb_encrypt,
  628. .decrypt = s5p_aes_ecb_decrypt,
  629. }
  630. },
  631. {
  632. .cra_name = "cbc(aes)",
  633. .cra_driver_name = "cbc-aes-s5p",
  634. .cra_priority = 100,
  635. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  636. CRYPTO_ALG_ASYNC |
  637. CRYPTO_ALG_KERN_DRIVER_ONLY,
  638. .cra_blocksize = AES_BLOCK_SIZE,
  639. .cra_ctxsize = sizeof(struct s5p_aes_ctx),
  640. .cra_alignmask = 0x0f,
  641. .cra_type = &crypto_ablkcipher_type,
  642. .cra_module = THIS_MODULE,
  643. .cra_init = s5p_aes_cra_init,
  644. .cra_u.ablkcipher = {
  645. .min_keysize = AES_MIN_KEY_SIZE,
  646. .max_keysize = AES_MAX_KEY_SIZE,
  647. .ivsize = AES_BLOCK_SIZE,
  648. .setkey = s5p_aes_setkey,
  649. .encrypt = s5p_aes_cbc_encrypt,
  650. .decrypt = s5p_aes_cbc_decrypt,
  651. }
  652. },
  653. };
  654. static int s5p_aes_probe(struct platform_device *pdev)
  655. {
  656. struct device *dev = &pdev->dev;
  657. int i, j, err = -ENODEV;
  658. struct samsung_aes_variant *variant;
  659. struct s5p_aes_dev *pdata;
  660. struct resource *res;
  661. if (s5p_dev)
  662. return -EEXIST;
  663. pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
  664. if (!pdata)
  665. return -ENOMEM;
  666. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  667. pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
  668. if (IS_ERR(pdata->ioaddr))
  669. return PTR_ERR(pdata->ioaddr);
  670. variant = find_s5p_sss_version(pdev);
  671. pdata->clk = devm_clk_get(dev, "secss");
  672. if (IS_ERR(pdata->clk)) {
  673. dev_err(dev, "failed to find secss clock source\n");
  674. return -ENOENT;
  675. }
  676. err = clk_prepare_enable(pdata->clk);
  677. if (err < 0) {
  678. dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
  679. return err;
  680. }
  681. spin_lock_init(&pdata->lock);
  682. pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
  683. pdata->irq_fc = platform_get_irq(pdev, 0);
  684. if (pdata->irq_fc < 0) {
  685. err = pdata->irq_fc;
  686. dev_warn(dev, "feed control interrupt is not available.\n");
  687. goto err_irq;
  688. }
  689. err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
  690. s5p_aes_interrupt, IRQF_ONESHOT,
  691. pdev->name, pdev);
  692. if (err < 0) {
  693. dev_warn(dev, "feed control interrupt is not available.\n");
  694. goto err_irq;
  695. }
  696. pdata->busy = false;
  697. pdata->variant = variant;
  698. pdata->dev = dev;
  699. platform_set_drvdata(pdev, pdata);
  700. s5p_dev = pdata;
  701. tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
  702. crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
  703. for (i = 0; i < ARRAY_SIZE(algs); i++) {
  704. err = crypto_register_alg(&algs[i]);
  705. if (err)
  706. goto err_algs;
  707. }
  708. dev_info(dev, "s5p-sss driver registered\n");
  709. return 0;
  710. err_algs:
  711. dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name, err);
  712. for (j = 0; j < i; j++)
  713. crypto_unregister_alg(&algs[j]);
  714. tasklet_kill(&pdata->tasklet);
  715. err_irq:
  716. clk_disable_unprepare(pdata->clk);
  717. s5p_dev = NULL;
  718. return err;
  719. }
  720. static int s5p_aes_remove(struct platform_device *pdev)
  721. {
  722. struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
  723. int i;
  724. if (!pdata)
  725. return -ENODEV;
  726. for (i = 0; i < ARRAY_SIZE(algs); i++)
  727. crypto_unregister_alg(&algs[i]);
  728. tasklet_kill(&pdata->tasklet);
  729. clk_disable_unprepare(pdata->clk);
  730. s5p_dev = NULL;
  731. return 0;
  732. }
  733. static struct platform_driver s5p_aes_crypto = {
  734. .probe = s5p_aes_probe,
  735. .remove = s5p_aes_remove,
  736. .driver = {
  737. .name = "s5p-secss",
  738. .of_match_table = s5p_sss_dt_match,
  739. },
  740. };
  741. module_platform_driver(s5p_aes_crypto);
  742. MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
  743. MODULE_LICENSE("GPL v2");
  744. MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");