mtk-sha.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Driver for EIP97 SHA1/SHA2(HMAC) acceleration.
  5. *
  6. * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. * Some ideas are from atmel-sha.c and omap-sham.c drivers.
  13. */
  14. #include <crypto/sha.h>
  15. #include "mtk-platform.h"
  16. #define SHA_ALIGN_MSK (sizeof(u32) - 1)
  17. #define SHA_QUEUE_SIZE 512
  18. #define SHA_TMP_BUF_SIZE 512
  19. #define SHA_BUF_SIZE ((u32)PAGE_SIZE)
  20. #define SHA_OP_UPDATE 1
  21. #define SHA_OP_FINAL 2
  22. #define SHA_DATA_LEN_MSK cpu_to_le32(GENMASK(16, 0))
  23. /* SHA command token */
  24. #define SHA_CT_SIZE 5
  25. #define SHA_CT_CTRL_HDR cpu_to_le32(0x02220000)
  26. #define SHA_CMD0 cpu_to_le32(0x03020000)
  27. #define SHA_CMD1 cpu_to_le32(0x21060000)
  28. #define SHA_CMD2 cpu_to_le32(0xe0e63802)
  29. /* SHA transform information */
  30. #define SHA_TFM_HASH cpu_to_le32(0x2 << 0)
  31. #define SHA_TFM_INNER_DIG cpu_to_le32(0x1 << 21)
  32. #define SHA_TFM_SIZE(x) cpu_to_le32((x) << 8)
  33. #define SHA_TFM_START cpu_to_le32(0x1 << 4)
  34. #define SHA_TFM_CONTINUE cpu_to_le32(0x1 << 5)
  35. #define SHA_TFM_HASH_STORE cpu_to_le32(0x1 << 19)
  36. #define SHA_TFM_SHA1 cpu_to_le32(0x2 << 23)
  37. #define SHA_TFM_SHA256 cpu_to_le32(0x3 << 23)
  38. #define SHA_TFM_SHA224 cpu_to_le32(0x4 << 23)
  39. #define SHA_TFM_SHA512 cpu_to_le32(0x5 << 23)
  40. #define SHA_TFM_SHA384 cpu_to_le32(0x6 << 23)
  41. #define SHA_TFM_DIGEST(x) cpu_to_le32(((x) & GENMASK(3, 0)) << 24)
  42. /* SHA flags */
  43. #define SHA_FLAGS_BUSY BIT(0)
  44. #define SHA_FLAGS_FINAL BIT(1)
  45. #define SHA_FLAGS_FINUP BIT(2)
  46. #define SHA_FLAGS_SG BIT(3)
  47. #define SHA_FLAGS_ALGO_MSK GENMASK(8, 4)
  48. #define SHA_FLAGS_SHA1 BIT(4)
  49. #define SHA_FLAGS_SHA224 BIT(5)
  50. #define SHA_FLAGS_SHA256 BIT(6)
  51. #define SHA_FLAGS_SHA384 BIT(7)
  52. #define SHA_FLAGS_SHA512 BIT(8)
  53. #define SHA_FLAGS_HMAC BIT(9)
  54. #define SHA_FLAGS_PAD BIT(10)
  55. /**
  56. * mtk_sha_ct is a set of hardware instructions(command token)
  57. * that are used to control engine's processing flow of SHA,
  58. * and it contains the first two words of transform state.
  59. */
  60. struct mtk_sha_ct {
  61. __le32 ctrl[2];
  62. __le32 cmd[3];
  63. };
  64. /**
  65. * mtk_sha_tfm is used to define SHA transform state
  66. * and store result digest that produced by engine.
  67. */
  68. struct mtk_sha_tfm {
  69. __le32 ctrl[2];
  70. __le32 digest[SIZE_IN_WORDS(SHA512_DIGEST_SIZE)];
  71. };
  72. /**
  73. * mtk_sha_info consists of command token and transform state
  74. * of SHA, its role is similar to mtk_aes_info.
  75. */
  76. struct mtk_sha_info {
  77. struct mtk_sha_ct ct;
  78. struct mtk_sha_tfm tfm;
  79. };
  80. struct mtk_sha_reqctx {
  81. struct mtk_sha_info info;
  82. unsigned long flags;
  83. unsigned long op;
  84. u64 digcnt;
  85. bool start;
  86. size_t bufcnt;
  87. dma_addr_t dma_addr;
  88. __le32 ct_hdr;
  89. u32 ct_size;
  90. dma_addr_t ct_dma;
  91. dma_addr_t tfm_dma;
  92. /* Walk state */
  93. struct scatterlist *sg;
  94. u32 offset; /* Offset in current sg */
  95. u32 total; /* Total request */
  96. size_t ds;
  97. size_t bs;
  98. u8 *buffer;
  99. };
  100. struct mtk_sha_hmac_ctx {
  101. struct crypto_shash *shash;
  102. u8 ipad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
  103. u8 opad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
  104. };
  105. struct mtk_sha_ctx {
  106. struct mtk_cryp *cryp;
  107. unsigned long flags;
  108. u8 id;
  109. u8 buf[SHA_BUF_SIZE] __aligned(sizeof(u32));
  110. struct mtk_sha_hmac_ctx base[0];
  111. };
  112. struct mtk_sha_drv {
  113. struct list_head dev_list;
  114. /* Device list lock */
  115. spinlock_t lock;
  116. };
  117. static struct mtk_sha_drv mtk_sha = {
  118. .dev_list = LIST_HEAD_INIT(mtk_sha.dev_list),
  119. .lock = __SPIN_LOCK_UNLOCKED(mtk_sha.lock),
  120. };
  121. static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
  122. struct ahash_request *req);
  123. static inline u32 mtk_sha_read(struct mtk_cryp *cryp, u32 offset)
  124. {
  125. return readl_relaxed(cryp->base + offset);
  126. }
  127. static inline void mtk_sha_write(struct mtk_cryp *cryp,
  128. u32 offset, u32 value)
  129. {
  130. writel_relaxed(value, cryp->base + offset);
  131. }
  132. static struct mtk_cryp *mtk_sha_find_dev(struct mtk_sha_ctx *tctx)
  133. {
  134. struct mtk_cryp *cryp = NULL;
  135. struct mtk_cryp *tmp;
  136. spin_lock_bh(&mtk_sha.lock);
  137. if (!tctx->cryp) {
  138. list_for_each_entry(tmp, &mtk_sha.dev_list, sha_list) {
  139. cryp = tmp;
  140. break;
  141. }
  142. tctx->cryp = cryp;
  143. } else {
  144. cryp = tctx->cryp;
  145. }
  146. /*
  147. * Assign record id to tfm in round-robin fashion, and this
  148. * will help tfm to bind to corresponding descriptor rings.
  149. */
  150. tctx->id = cryp->rec;
  151. cryp->rec = !cryp->rec;
  152. spin_unlock_bh(&mtk_sha.lock);
  153. return cryp;
  154. }
  155. static int mtk_sha_append_sg(struct mtk_sha_reqctx *ctx)
  156. {
  157. size_t count;
  158. while ((ctx->bufcnt < SHA_BUF_SIZE) && ctx->total) {
  159. count = min(ctx->sg->length - ctx->offset, ctx->total);
  160. count = min(count, SHA_BUF_SIZE - ctx->bufcnt);
  161. if (count <= 0) {
  162. /*
  163. * Check if count <= 0 because the buffer is full or
  164. * because the sg length is 0. In the latest case,
  165. * check if there is another sg in the list, a 0 length
  166. * sg doesn't necessarily mean the end of the sg list.
  167. */
  168. if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
  169. ctx->sg = sg_next(ctx->sg);
  170. continue;
  171. } else {
  172. break;
  173. }
  174. }
  175. scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
  176. ctx->offset, count, 0);
  177. ctx->bufcnt += count;
  178. ctx->offset += count;
  179. ctx->total -= count;
  180. if (ctx->offset == ctx->sg->length) {
  181. ctx->sg = sg_next(ctx->sg);
  182. if (ctx->sg)
  183. ctx->offset = 0;
  184. else
  185. ctx->total = 0;
  186. }
  187. }
  188. return 0;
  189. }
  190. /*
  191. * The purpose of this padding is to ensure that the padded message is a
  192. * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
  193. * The bit "1" is appended at the end of the message followed by
  194. * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
  195. * 128 bits block (SHA384/SHA512) equals to the message length in bits
  196. * is appended.
  197. *
  198. * For SHA1/SHA224/SHA256, padlen is calculated as followed:
  199. * - if message length < 56 bytes then padlen = 56 - message length
  200. * - else padlen = 64 + 56 - message length
  201. *
  202. * For SHA384/SHA512, padlen is calculated as followed:
  203. * - if message length < 112 bytes then padlen = 112 - message length
  204. * - else padlen = 128 + 112 - message length
  205. */
  206. static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
  207. {
  208. u32 index, padlen;
  209. u64 bits[2];
  210. u64 size = ctx->digcnt;
  211. size += ctx->bufcnt;
  212. size += len;
  213. bits[1] = cpu_to_be64(size << 3);
  214. bits[0] = cpu_to_be64(size >> 61);
  215. if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
  216. index = ctx->bufcnt & 0x7f;
  217. padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
  218. *(ctx->buffer + ctx->bufcnt) = 0x80;
  219. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
  220. memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
  221. ctx->bufcnt += padlen + 16;
  222. ctx->flags |= SHA_FLAGS_PAD;
  223. } else {
  224. index = ctx->bufcnt & 0x3f;
  225. padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
  226. *(ctx->buffer + ctx->bufcnt) = 0x80;
  227. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
  228. memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
  229. ctx->bufcnt += padlen + 8;
  230. ctx->flags |= SHA_FLAGS_PAD;
  231. }
  232. }
  233. /* Initialize basic transform information of SHA */
  234. static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx)
  235. {
  236. struct mtk_sha_ct *ct = &ctx->info.ct;
  237. struct mtk_sha_tfm *tfm = &ctx->info.tfm;
  238. ctx->ct_hdr = SHA_CT_CTRL_HDR;
  239. ctx->ct_size = SHA_CT_SIZE;
  240. tfm->ctrl[0] = SHA_TFM_HASH | SHA_TFM_INNER_DIG |
  241. SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds));
  242. switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
  243. case SHA_FLAGS_SHA1:
  244. tfm->ctrl[0] |= SHA_TFM_SHA1;
  245. break;
  246. case SHA_FLAGS_SHA224:
  247. tfm->ctrl[0] |= SHA_TFM_SHA224;
  248. break;
  249. case SHA_FLAGS_SHA256:
  250. tfm->ctrl[0] |= SHA_TFM_SHA256;
  251. break;
  252. case SHA_FLAGS_SHA384:
  253. tfm->ctrl[0] |= SHA_TFM_SHA384;
  254. break;
  255. case SHA_FLAGS_SHA512:
  256. tfm->ctrl[0] |= SHA_TFM_SHA512;
  257. break;
  258. default:
  259. /* Should not happen... */
  260. return;
  261. }
  262. tfm->ctrl[1] = SHA_TFM_HASH_STORE;
  263. ct->ctrl[0] = tfm->ctrl[0] | SHA_TFM_CONTINUE | SHA_TFM_START;
  264. ct->ctrl[1] = tfm->ctrl[1];
  265. ct->cmd[0] = SHA_CMD0;
  266. ct->cmd[1] = SHA_CMD1;
  267. ct->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds));
  268. }
  269. /*
  270. * Update input data length field of transform information and
  271. * map it to DMA region.
  272. */
  273. static int mtk_sha_info_update(struct mtk_cryp *cryp,
  274. struct mtk_sha_rec *sha,
  275. size_t len)
  276. {
  277. struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
  278. struct mtk_sha_info *info = &ctx->info;
  279. struct mtk_sha_ct *ct = &info->ct;
  280. if (ctx->start)
  281. ctx->start = false;
  282. else
  283. ct->ctrl[0] &= ~SHA_TFM_START;
  284. ctx->ct_hdr &= ~SHA_DATA_LEN_MSK;
  285. ctx->ct_hdr |= cpu_to_le32(len);
  286. ct->cmd[0] &= ~SHA_DATA_LEN_MSK;
  287. ct->cmd[0] |= cpu_to_le32(len);
  288. ctx->digcnt += len;
  289. ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
  290. DMA_BIDIRECTIONAL);
  291. if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) {
  292. dev_err(cryp->dev, "dma %zu bytes error\n", sizeof(*info));
  293. return -EINVAL;
  294. }
  295. ctx->tfm_dma = ctx->ct_dma + sizeof(*ct);
  296. return 0;
  297. }
  298. /*
  299. * Because of hardware limitation, we must pre-calculate the inner
  300. * and outer digest that need to be processed firstly by engine, then
  301. * apply the result digest to the input message. These complex hashing
  302. * procedures limits HMAC performance, so we use fallback SW encoding.
  303. */
  304. static int mtk_sha_finish_hmac(struct ahash_request *req)
  305. {
  306. struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  307. struct mtk_sha_hmac_ctx *bctx = tctx->base;
  308. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  309. SHASH_DESC_ON_STACK(shash, bctx->shash);
  310. shash->tfm = bctx->shash;
  311. shash->flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */
  312. return crypto_shash_init(shash) ?:
  313. crypto_shash_update(shash, bctx->opad, ctx->bs) ?:
  314. crypto_shash_finup(shash, req->result, ctx->ds, req->result);
  315. }
  316. /* Initialize request context */
  317. static int mtk_sha_init(struct ahash_request *req)
  318. {
  319. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  320. struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
  321. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  322. ctx->flags = 0;
  323. ctx->ds = crypto_ahash_digestsize(tfm);
  324. switch (ctx->ds) {
  325. case SHA1_DIGEST_SIZE:
  326. ctx->flags |= SHA_FLAGS_SHA1;
  327. ctx->bs = SHA1_BLOCK_SIZE;
  328. break;
  329. case SHA224_DIGEST_SIZE:
  330. ctx->flags |= SHA_FLAGS_SHA224;
  331. ctx->bs = SHA224_BLOCK_SIZE;
  332. break;
  333. case SHA256_DIGEST_SIZE:
  334. ctx->flags |= SHA_FLAGS_SHA256;
  335. ctx->bs = SHA256_BLOCK_SIZE;
  336. break;
  337. case SHA384_DIGEST_SIZE:
  338. ctx->flags |= SHA_FLAGS_SHA384;
  339. ctx->bs = SHA384_BLOCK_SIZE;
  340. break;
  341. case SHA512_DIGEST_SIZE:
  342. ctx->flags |= SHA_FLAGS_SHA512;
  343. ctx->bs = SHA512_BLOCK_SIZE;
  344. break;
  345. default:
  346. return -EINVAL;
  347. }
  348. ctx->bufcnt = 0;
  349. ctx->digcnt = 0;
  350. ctx->buffer = tctx->buf;
  351. ctx->start = true;
  352. if (tctx->flags & SHA_FLAGS_HMAC) {
  353. struct mtk_sha_hmac_ctx *bctx = tctx->base;
  354. memcpy(ctx->buffer, bctx->ipad, ctx->bs);
  355. ctx->bufcnt = ctx->bs;
  356. ctx->flags |= SHA_FLAGS_HMAC;
  357. }
  358. return 0;
  359. }
  360. static int mtk_sha_xmit(struct mtk_cryp *cryp, struct mtk_sha_rec *sha,
  361. dma_addr_t addr, size_t len)
  362. {
  363. struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
  364. struct mtk_ring *ring = cryp->ring[sha->id];
  365. struct mtk_desc *cmd = ring->cmd_base + ring->cmd_pos;
  366. struct mtk_desc *res = ring->res_base + ring->res_pos;
  367. int err;
  368. err = mtk_sha_info_update(cryp, sha, len);
  369. if (err)
  370. return err;
  371. /* Fill in the command/result descriptors */
  372. res->hdr = MTK_DESC_FIRST | MTK_DESC_LAST | MTK_DESC_BUF_LEN(len);
  373. res->buf = cpu_to_le32(cryp->tmp_dma);
  374. cmd->hdr = MTK_DESC_FIRST | MTK_DESC_LAST | MTK_DESC_BUF_LEN(len) |
  375. MTK_DESC_CT_LEN(ctx->ct_size);
  376. cmd->buf = cpu_to_le32(addr);
  377. cmd->ct = cpu_to_le32(ctx->ct_dma);
  378. cmd->ct_hdr = ctx->ct_hdr;
  379. cmd->tfm = cpu_to_le32(ctx->tfm_dma);
  380. if (++ring->cmd_pos == MTK_DESC_NUM)
  381. ring->cmd_pos = 0;
  382. ring->res_pos = ring->cmd_pos;
  383. /*
  384. * Make sure that all changes to the DMA ring are done before we
  385. * start engine.
  386. */
  387. wmb();
  388. /* Start DMA transfer */
  389. mtk_sha_write(cryp, RDR_PREP_COUNT(sha->id), MTK_DESC_CNT(1));
  390. mtk_sha_write(cryp, CDR_PREP_COUNT(sha->id), MTK_DESC_CNT(1));
  391. return -EINPROGRESS;
  392. }
  393. static int mtk_sha_xmit2(struct mtk_cryp *cryp,
  394. struct mtk_sha_rec *sha,
  395. struct mtk_sha_reqctx *ctx,
  396. size_t len1, size_t len2)
  397. {
  398. struct mtk_ring *ring = cryp->ring[sha->id];
  399. struct mtk_desc *cmd = ring->cmd_base + ring->cmd_pos;
  400. struct mtk_desc *res = ring->res_base + ring->res_pos;
  401. int err;
  402. err = mtk_sha_info_update(cryp, sha, len1 + len2);
  403. if (err)
  404. return err;
  405. /* Fill in the command/result descriptors */
  406. res->hdr = MTK_DESC_BUF_LEN(len1) | MTK_DESC_FIRST;
  407. res->buf = cpu_to_le32(cryp->tmp_dma);
  408. cmd->hdr = MTK_DESC_BUF_LEN(len1) | MTK_DESC_FIRST |
  409. MTK_DESC_CT_LEN(ctx->ct_size);
  410. cmd->buf = cpu_to_le32(sg_dma_address(ctx->sg));
  411. cmd->ct = cpu_to_le32(ctx->ct_dma);
  412. cmd->ct_hdr = ctx->ct_hdr;
  413. cmd->tfm = cpu_to_le32(ctx->tfm_dma);
  414. if (++ring->cmd_pos == MTK_DESC_NUM)
  415. ring->cmd_pos = 0;
  416. ring->res_pos = ring->cmd_pos;
  417. cmd = ring->cmd_base + ring->cmd_pos;
  418. res = ring->res_base + ring->res_pos;
  419. res->hdr = MTK_DESC_BUF_LEN(len2) | MTK_DESC_LAST;
  420. res->buf = cpu_to_le32(cryp->tmp_dma);
  421. cmd->hdr = MTK_DESC_BUF_LEN(len2) | MTK_DESC_LAST;
  422. cmd->buf = cpu_to_le32(ctx->dma_addr);
  423. if (++ring->cmd_pos == MTK_DESC_NUM)
  424. ring->cmd_pos = 0;
  425. ring->res_pos = ring->cmd_pos;
  426. /*
  427. * Make sure that all changes to the DMA ring are done before we
  428. * start engine.
  429. */
  430. wmb();
  431. /* Start DMA transfer */
  432. mtk_sha_write(cryp, RDR_PREP_COUNT(sha->id), MTK_DESC_CNT(2));
  433. mtk_sha_write(cryp, CDR_PREP_COUNT(sha->id), MTK_DESC_CNT(2));
  434. return -EINPROGRESS;
  435. }
  436. static int mtk_sha_dma_map(struct mtk_cryp *cryp,
  437. struct mtk_sha_rec *sha,
  438. struct mtk_sha_reqctx *ctx,
  439. size_t count)
  440. {
  441. ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
  442. SHA_BUF_SIZE, DMA_TO_DEVICE);
  443. if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
  444. dev_err(cryp->dev, "dma map error\n");
  445. return -EINVAL;
  446. }
  447. ctx->flags &= ~SHA_FLAGS_SG;
  448. return mtk_sha_xmit(cryp, sha, ctx->dma_addr, count);
  449. }
  450. static int mtk_sha_update_slow(struct mtk_cryp *cryp,
  451. struct mtk_sha_rec *sha)
  452. {
  453. struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
  454. size_t count;
  455. u32 final;
  456. mtk_sha_append_sg(ctx);
  457. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  458. dev_dbg(cryp->dev, "slow: bufcnt: %zu\n", ctx->bufcnt);
  459. if (final) {
  460. sha->flags |= SHA_FLAGS_FINAL;
  461. mtk_sha_fill_padding(ctx, 0);
  462. }
  463. if (final || (ctx->bufcnt == SHA_BUF_SIZE && ctx->total)) {
  464. count = ctx->bufcnt;
  465. ctx->bufcnt = 0;
  466. return mtk_sha_dma_map(cryp, sha, ctx, count);
  467. }
  468. return 0;
  469. }
  470. static int mtk_sha_update_start(struct mtk_cryp *cryp,
  471. struct mtk_sha_rec *sha)
  472. {
  473. struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
  474. u32 len, final, tail;
  475. struct scatterlist *sg;
  476. if (!ctx->total)
  477. return 0;
  478. if (ctx->bufcnt || ctx->offset)
  479. return mtk_sha_update_slow(cryp, sha);
  480. sg = ctx->sg;
  481. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  482. return mtk_sha_update_slow(cryp, sha);
  483. if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->bs))
  484. /* size is not ctx->bs aligned */
  485. return mtk_sha_update_slow(cryp, sha);
  486. len = min(ctx->total, sg->length);
  487. if (sg_is_last(sg)) {
  488. if (!(ctx->flags & SHA_FLAGS_FINUP)) {
  489. /* not last sg must be ctx->bs aligned */
  490. tail = len & (ctx->bs - 1);
  491. len -= tail;
  492. }
  493. }
  494. ctx->total -= len;
  495. ctx->offset = len; /* offset where to start slow */
  496. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  497. /* Add padding */
  498. if (final) {
  499. size_t count;
  500. tail = len & (ctx->bs - 1);
  501. len -= tail;
  502. ctx->total += tail;
  503. ctx->offset = len; /* offset where to start slow */
  504. sg = ctx->sg;
  505. mtk_sha_append_sg(ctx);
  506. mtk_sha_fill_padding(ctx, len);
  507. ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
  508. SHA_BUF_SIZE, DMA_TO_DEVICE);
  509. if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
  510. dev_err(cryp->dev, "dma map bytes error\n");
  511. return -EINVAL;
  512. }
  513. sha->flags |= SHA_FLAGS_FINAL;
  514. count = ctx->bufcnt;
  515. ctx->bufcnt = 0;
  516. if (len == 0) {
  517. ctx->flags &= ~SHA_FLAGS_SG;
  518. return mtk_sha_xmit(cryp, sha, ctx->dma_addr, count);
  519. } else {
  520. ctx->sg = sg;
  521. if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
  522. dev_err(cryp->dev, "dma_map_sg error\n");
  523. return -EINVAL;
  524. }
  525. ctx->flags |= SHA_FLAGS_SG;
  526. return mtk_sha_xmit2(cryp, sha, ctx, len, count);
  527. }
  528. }
  529. if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
  530. dev_err(cryp->dev, "dma_map_sg error\n");
  531. return -EINVAL;
  532. }
  533. ctx->flags |= SHA_FLAGS_SG;
  534. return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg), len);
  535. }
  536. static int mtk_sha_final_req(struct mtk_cryp *cryp,
  537. struct mtk_sha_rec *sha)
  538. {
  539. struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
  540. size_t count;
  541. mtk_sha_fill_padding(ctx, 0);
  542. sha->flags |= SHA_FLAGS_FINAL;
  543. count = ctx->bufcnt;
  544. ctx->bufcnt = 0;
  545. return mtk_sha_dma_map(cryp, sha, ctx, count);
  546. }
  547. /* Copy ready hash (+ finalize hmac) */
  548. static int mtk_sha_finish(struct ahash_request *req)
  549. {
  550. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  551. u32 *digest = ctx->info.tfm.digest;
  552. u32 *result = (u32 *)req->result;
  553. int i;
  554. /* Get the hash from the digest buffer */
  555. for (i = 0; i < SIZE_IN_WORDS(ctx->ds); i++)
  556. result[i] = le32_to_cpu(digest[i]);
  557. if (ctx->flags & SHA_FLAGS_HMAC)
  558. return mtk_sha_finish_hmac(req);
  559. return 0;
  560. }
  561. static void mtk_sha_finish_req(struct mtk_cryp *cryp,
  562. struct mtk_sha_rec *sha,
  563. int err)
  564. {
  565. if (likely(!err && (SHA_FLAGS_FINAL & sha->flags)))
  566. err = mtk_sha_finish(sha->req);
  567. sha->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL);
  568. sha->req->base.complete(&sha->req->base, err);
  569. /* Handle new request */
  570. mtk_sha_handle_queue(cryp, sha->id - RING2, NULL);
  571. }
  572. static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
  573. struct ahash_request *req)
  574. {
  575. struct mtk_sha_rec *sha = cryp->sha[id];
  576. struct crypto_async_request *async_req, *backlog;
  577. struct mtk_sha_reqctx *ctx;
  578. unsigned long flags;
  579. int err = 0, ret = 0;
  580. spin_lock_irqsave(&sha->lock, flags);
  581. if (req)
  582. ret = ahash_enqueue_request(&sha->queue, req);
  583. if (SHA_FLAGS_BUSY & sha->flags) {
  584. spin_unlock_irqrestore(&sha->lock, flags);
  585. return ret;
  586. }
  587. backlog = crypto_get_backlog(&sha->queue);
  588. async_req = crypto_dequeue_request(&sha->queue);
  589. if (async_req)
  590. sha->flags |= SHA_FLAGS_BUSY;
  591. spin_unlock_irqrestore(&sha->lock, flags);
  592. if (!async_req)
  593. return ret;
  594. if (backlog)
  595. backlog->complete(backlog, -EINPROGRESS);
  596. req = ahash_request_cast(async_req);
  597. ctx = ahash_request_ctx(req);
  598. sha->req = req;
  599. mtk_sha_info_init(ctx);
  600. if (ctx->op == SHA_OP_UPDATE) {
  601. err = mtk_sha_update_start(cryp, sha);
  602. if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
  603. /* No final() after finup() */
  604. err = mtk_sha_final_req(cryp, sha);
  605. } else if (ctx->op == SHA_OP_FINAL) {
  606. err = mtk_sha_final_req(cryp, sha);
  607. }
  608. if (unlikely(err != -EINPROGRESS))
  609. /* Task will not finish it, so do it here */
  610. mtk_sha_finish_req(cryp, sha, err);
  611. return ret;
  612. }
  613. static int mtk_sha_enqueue(struct ahash_request *req, u32 op)
  614. {
  615. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  616. struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  617. ctx->op = op;
  618. return mtk_sha_handle_queue(tctx->cryp, tctx->id, req);
  619. }
  620. static void mtk_sha_unmap(struct mtk_cryp *cryp, struct mtk_sha_rec *sha)
  621. {
  622. struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
  623. dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
  624. DMA_BIDIRECTIONAL);
  625. if (ctx->flags & SHA_FLAGS_SG) {
  626. dma_unmap_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE);
  627. if (ctx->sg->length == ctx->offset) {
  628. ctx->sg = sg_next(ctx->sg);
  629. if (ctx->sg)
  630. ctx->offset = 0;
  631. }
  632. if (ctx->flags & SHA_FLAGS_PAD) {
  633. dma_unmap_single(cryp->dev, ctx->dma_addr,
  634. SHA_BUF_SIZE, DMA_TO_DEVICE);
  635. }
  636. } else
  637. dma_unmap_single(cryp->dev, ctx->dma_addr,
  638. SHA_BUF_SIZE, DMA_TO_DEVICE);
  639. }
  640. static void mtk_sha_complete(struct mtk_cryp *cryp,
  641. struct mtk_sha_rec *sha)
  642. {
  643. int err = 0;
  644. err = mtk_sha_update_start(cryp, sha);
  645. if (err != -EINPROGRESS)
  646. mtk_sha_finish_req(cryp, sha, err);
  647. }
  648. static int mtk_sha_update(struct ahash_request *req)
  649. {
  650. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  651. ctx->total = req->nbytes;
  652. ctx->sg = req->src;
  653. ctx->offset = 0;
  654. if ((ctx->bufcnt + ctx->total < SHA_BUF_SIZE) &&
  655. !(ctx->flags & SHA_FLAGS_FINUP))
  656. return mtk_sha_append_sg(ctx);
  657. return mtk_sha_enqueue(req, SHA_OP_UPDATE);
  658. }
  659. static int mtk_sha_final(struct ahash_request *req)
  660. {
  661. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  662. ctx->flags |= SHA_FLAGS_FINUP;
  663. if (ctx->flags & SHA_FLAGS_PAD)
  664. return mtk_sha_finish(req);
  665. return mtk_sha_enqueue(req, SHA_OP_FINAL);
  666. }
  667. static int mtk_sha_finup(struct ahash_request *req)
  668. {
  669. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  670. int err1, err2;
  671. ctx->flags |= SHA_FLAGS_FINUP;
  672. err1 = mtk_sha_update(req);
  673. if (err1 == -EINPROGRESS || err1 == -EBUSY)
  674. return err1;
  675. /*
  676. * final() has to be always called to cleanup resources
  677. * even if update() failed
  678. */
  679. err2 = mtk_sha_final(req);
  680. return err1 ?: err2;
  681. }
  682. static int mtk_sha_digest(struct ahash_request *req)
  683. {
  684. return mtk_sha_init(req) ?: mtk_sha_finup(req);
  685. }
  686. static int mtk_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
  687. u32 keylen)
  688. {
  689. struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
  690. struct mtk_sha_hmac_ctx *bctx = tctx->base;
  691. size_t bs = crypto_shash_blocksize(bctx->shash);
  692. size_t ds = crypto_shash_digestsize(bctx->shash);
  693. int err, i;
  694. SHASH_DESC_ON_STACK(shash, bctx->shash);
  695. shash->tfm = bctx->shash;
  696. shash->flags = crypto_shash_get_flags(bctx->shash) &
  697. CRYPTO_TFM_REQ_MAY_SLEEP;
  698. if (keylen > bs) {
  699. err = crypto_shash_digest(shash, key, keylen, bctx->ipad);
  700. if (err)
  701. return err;
  702. keylen = ds;
  703. } else {
  704. memcpy(bctx->ipad, key, keylen);
  705. }
  706. memset(bctx->ipad + keylen, 0, bs - keylen);
  707. memcpy(bctx->opad, bctx->ipad, bs);
  708. for (i = 0; i < bs; i++) {
  709. bctx->ipad[i] ^= 0x36;
  710. bctx->opad[i] ^= 0x5c;
  711. }
  712. return 0;
  713. }
  714. static int mtk_sha_export(struct ahash_request *req, void *out)
  715. {
  716. const struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  717. memcpy(out, ctx, sizeof(*ctx));
  718. return 0;
  719. }
  720. static int mtk_sha_import(struct ahash_request *req, const void *in)
  721. {
  722. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  723. memcpy(ctx, in, sizeof(*ctx));
  724. return 0;
  725. }
  726. static int mtk_sha_cra_init_alg(struct crypto_tfm *tfm,
  727. const char *alg_base)
  728. {
  729. struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
  730. struct mtk_cryp *cryp = NULL;
  731. cryp = mtk_sha_find_dev(tctx);
  732. if (!cryp)
  733. return -ENODEV;
  734. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  735. sizeof(struct mtk_sha_reqctx));
  736. if (alg_base) {
  737. struct mtk_sha_hmac_ctx *bctx = tctx->base;
  738. tctx->flags |= SHA_FLAGS_HMAC;
  739. bctx->shash = crypto_alloc_shash(alg_base, 0,
  740. CRYPTO_ALG_NEED_FALLBACK);
  741. if (IS_ERR(bctx->shash)) {
  742. pr_err("base driver %s could not be loaded.\n",
  743. alg_base);
  744. return PTR_ERR(bctx->shash);
  745. }
  746. }
  747. return 0;
  748. }
  749. static int mtk_sha_cra_init(struct crypto_tfm *tfm)
  750. {
  751. return mtk_sha_cra_init_alg(tfm, NULL);
  752. }
  753. static int mtk_sha_cra_sha1_init(struct crypto_tfm *tfm)
  754. {
  755. return mtk_sha_cra_init_alg(tfm, "sha1");
  756. }
  757. static int mtk_sha_cra_sha224_init(struct crypto_tfm *tfm)
  758. {
  759. return mtk_sha_cra_init_alg(tfm, "sha224");
  760. }
  761. static int mtk_sha_cra_sha256_init(struct crypto_tfm *tfm)
  762. {
  763. return mtk_sha_cra_init_alg(tfm, "sha256");
  764. }
  765. static int mtk_sha_cra_sha384_init(struct crypto_tfm *tfm)
  766. {
  767. return mtk_sha_cra_init_alg(tfm, "sha384");
  768. }
  769. static int mtk_sha_cra_sha512_init(struct crypto_tfm *tfm)
  770. {
  771. return mtk_sha_cra_init_alg(tfm, "sha512");
  772. }
  773. static void mtk_sha_cra_exit(struct crypto_tfm *tfm)
  774. {
  775. struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
  776. if (tctx->flags & SHA_FLAGS_HMAC) {
  777. struct mtk_sha_hmac_ctx *bctx = tctx->base;
  778. crypto_free_shash(bctx->shash);
  779. }
  780. }
  781. static struct ahash_alg algs_sha1_sha224_sha256[] = {
  782. {
  783. .init = mtk_sha_init,
  784. .update = mtk_sha_update,
  785. .final = mtk_sha_final,
  786. .finup = mtk_sha_finup,
  787. .digest = mtk_sha_digest,
  788. .export = mtk_sha_export,
  789. .import = mtk_sha_import,
  790. .halg.digestsize = SHA1_DIGEST_SIZE,
  791. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  792. .halg.base = {
  793. .cra_name = "sha1",
  794. .cra_driver_name = "mtk-sha1",
  795. .cra_priority = 400,
  796. .cra_flags = CRYPTO_ALG_ASYNC,
  797. .cra_blocksize = SHA1_BLOCK_SIZE,
  798. .cra_ctxsize = sizeof(struct mtk_sha_ctx),
  799. .cra_alignmask = SHA_ALIGN_MSK,
  800. .cra_module = THIS_MODULE,
  801. .cra_init = mtk_sha_cra_init,
  802. .cra_exit = mtk_sha_cra_exit,
  803. }
  804. },
  805. {
  806. .init = mtk_sha_init,
  807. .update = mtk_sha_update,
  808. .final = mtk_sha_final,
  809. .finup = mtk_sha_finup,
  810. .digest = mtk_sha_digest,
  811. .export = mtk_sha_export,
  812. .import = mtk_sha_import,
  813. .halg.digestsize = SHA224_DIGEST_SIZE,
  814. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  815. .halg.base = {
  816. .cra_name = "sha224",
  817. .cra_driver_name = "mtk-sha224",
  818. .cra_priority = 400,
  819. .cra_flags = CRYPTO_ALG_ASYNC,
  820. .cra_blocksize = SHA224_BLOCK_SIZE,
  821. .cra_ctxsize = sizeof(struct mtk_sha_ctx),
  822. .cra_alignmask = SHA_ALIGN_MSK,
  823. .cra_module = THIS_MODULE,
  824. .cra_init = mtk_sha_cra_init,
  825. .cra_exit = mtk_sha_cra_exit,
  826. }
  827. },
  828. {
  829. .init = mtk_sha_init,
  830. .update = mtk_sha_update,
  831. .final = mtk_sha_final,
  832. .finup = mtk_sha_finup,
  833. .digest = mtk_sha_digest,
  834. .export = mtk_sha_export,
  835. .import = mtk_sha_import,
  836. .halg.digestsize = SHA256_DIGEST_SIZE,
  837. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  838. .halg.base = {
  839. .cra_name = "sha256",
  840. .cra_driver_name = "mtk-sha256",
  841. .cra_priority = 400,
  842. .cra_flags = CRYPTO_ALG_ASYNC,
  843. .cra_blocksize = SHA256_BLOCK_SIZE,
  844. .cra_ctxsize = sizeof(struct mtk_sha_ctx),
  845. .cra_alignmask = SHA_ALIGN_MSK,
  846. .cra_module = THIS_MODULE,
  847. .cra_init = mtk_sha_cra_init,
  848. .cra_exit = mtk_sha_cra_exit,
  849. }
  850. },
  851. {
  852. .init = mtk_sha_init,
  853. .update = mtk_sha_update,
  854. .final = mtk_sha_final,
  855. .finup = mtk_sha_finup,
  856. .digest = mtk_sha_digest,
  857. .export = mtk_sha_export,
  858. .import = mtk_sha_import,
  859. .setkey = mtk_sha_setkey,
  860. .halg.digestsize = SHA1_DIGEST_SIZE,
  861. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  862. .halg.base = {
  863. .cra_name = "hmac(sha1)",
  864. .cra_driver_name = "mtk-hmac-sha1",
  865. .cra_priority = 400,
  866. .cra_flags = CRYPTO_ALG_ASYNC |
  867. CRYPTO_ALG_NEED_FALLBACK,
  868. .cra_blocksize = SHA1_BLOCK_SIZE,
  869. .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
  870. sizeof(struct mtk_sha_hmac_ctx),
  871. .cra_alignmask = SHA_ALIGN_MSK,
  872. .cra_module = THIS_MODULE,
  873. .cra_init = mtk_sha_cra_sha1_init,
  874. .cra_exit = mtk_sha_cra_exit,
  875. }
  876. },
  877. {
  878. .init = mtk_sha_init,
  879. .update = mtk_sha_update,
  880. .final = mtk_sha_final,
  881. .finup = mtk_sha_finup,
  882. .digest = mtk_sha_digest,
  883. .export = mtk_sha_export,
  884. .import = mtk_sha_import,
  885. .setkey = mtk_sha_setkey,
  886. .halg.digestsize = SHA224_DIGEST_SIZE,
  887. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  888. .halg.base = {
  889. .cra_name = "hmac(sha224)",
  890. .cra_driver_name = "mtk-hmac-sha224",
  891. .cra_priority = 400,
  892. .cra_flags = CRYPTO_ALG_ASYNC |
  893. CRYPTO_ALG_NEED_FALLBACK,
  894. .cra_blocksize = SHA224_BLOCK_SIZE,
  895. .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
  896. sizeof(struct mtk_sha_hmac_ctx),
  897. .cra_alignmask = SHA_ALIGN_MSK,
  898. .cra_module = THIS_MODULE,
  899. .cra_init = mtk_sha_cra_sha224_init,
  900. .cra_exit = mtk_sha_cra_exit,
  901. }
  902. },
  903. {
  904. .init = mtk_sha_init,
  905. .update = mtk_sha_update,
  906. .final = mtk_sha_final,
  907. .finup = mtk_sha_finup,
  908. .digest = mtk_sha_digest,
  909. .export = mtk_sha_export,
  910. .import = mtk_sha_import,
  911. .setkey = mtk_sha_setkey,
  912. .halg.digestsize = SHA256_DIGEST_SIZE,
  913. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  914. .halg.base = {
  915. .cra_name = "hmac(sha256)",
  916. .cra_driver_name = "mtk-hmac-sha256",
  917. .cra_priority = 400,
  918. .cra_flags = CRYPTO_ALG_ASYNC |
  919. CRYPTO_ALG_NEED_FALLBACK,
  920. .cra_blocksize = SHA256_BLOCK_SIZE,
  921. .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
  922. sizeof(struct mtk_sha_hmac_ctx),
  923. .cra_alignmask = SHA_ALIGN_MSK,
  924. .cra_module = THIS_MODULE,
  925. .cra_init = mtk_sha_cra_sha256_init,
  926. .cra_exit = mtk_sha_cra_exit,
  927. }
  928. },
  929. };
  930. static struct ahash_alg algs_sha384_sha512[] = {
  931. {
  932. .init = mtk_sha_init,
  933. .update = mtk_sha_update,
  934. .final = mtk_sha_final,
  935. .finup = mtk_sha_finup,
  936. .digest = mtk_sha_digest,
  937. .export = mtk_sha_export,
  938. .import = mtk_sha_import,
  939. .halg.digestsize = SHA384_DIGEST_SIZE,
  940. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  941. .halg.base = {
  942. .cra_name = "sha384",
  943. .cra_driver_name = "mtk-sha384",
  944. .cra_priority = 400,
  945. .cra_flags = CRYPTO_ALG_ASYNC,
  946. .cra_blocksize = SHA384_BLOCK_SIZE,
  947. .cra_ctxsize = sizeof(struct mtk_sha_ctx),
  948. .cra_alignmask = SHA_ALIGN_MSK,
  949. .cra_module = THIS_MODULE,
  950. .cra_init = mtk_sha_cra_init,
  951. .cra_exit = mtk_sha_cra_exit,
  952. }
  953. },
  954. {
  955. .init = mtk_sha_init,
  956. .update = mtk_sha_update,
  957. .final = mtk_sha_final,
  958. .finup = mtk_sha_finup,
  959. .digest = mtk_sha_digest,
  960. .export = mtk_sha_export,
  961. .import = mtk_sha_import,
  962. .halg.digestsize = SHA512_DIGEST_SIZE,
  963. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  964. .halg.base = {
  965. .cra_name = "sha512",
  966. .cra_driver_name = "mtk-sha512",
  967. .cra_priority = 400,
  968. .cra_flags = CRYPTO_ALG_ASYNC,
  969. .cra_blocksize = SHA512_BLOCK_SIZE,
  970. .cra_ctxsize = sizeof(struct mtk_sha_ctx),
  971. .cra_alignmask = SHA_ALIGN_MSK,
  972. .cra_module = THIS_MODULE,
  973. .cra_init = mtk_sha_cra_init,
  974. .cra_exit = mtk_sha_cra_exit,
  975. }
  976. },
  977. {
  978. .init = mtk_sha_init,
  979. .update = mtk_sha_update,
  980. .final = mtk_sha_final,
  981. .finup = mtk_sha_finup,
  982. .digest = mtk_sha_digest,
  983. .export = mtk_sha_export,
  984. .import = mtk_sha_import,
  985. .setkey = mtk_sha_setkey,
  986. .halg.digestsize = SHA384_DIGEST_SIZE,
  987. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  988. .halg.base = {
  989. .cra_name = "hmac(sha384)",
  990. .cra_driver_name = "mtk-hmac-sha384",
  991. .cra_priority = 400,
  992. .cra_flags = CRYPTO_ALG_ASYNC |
  993. CRYPTO_ALG_NEED_FALLBACK,
  994. .cra_blocksize = SHA384_BLOCK_SIZE,
  995. .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
  996. sizeof(struct mtk_sha_hmac_ctx),
  997. .cra_alignmask = SHA_ALIGN_MSK,
  998. .cra_module = THIS_MODULE,
  999. .cra_init = mtk_sha_cra_sha384_init,
  1000. .cra_exit = mtk_sha_cra_exit,
  1001. }
  1002. },
  1003. {
  1004. .init = mtk_sha_init,
  1005. .update = mtk_sha_update,
  1006. .final = mtk_sha_final,
  1007. .finup = mtk_sha_finup,
  1008. .digest = mtk_sha_digest,
  1009. .export = mtk_sha_export,
  1010. .import = mtk_sha_import,
  1011. .setkey = mtk_sha_setkey,
  1012. .halg.digestsize = SHA512_DIGEST_SIZE,
  1013. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  1014. .halg.base = {
  1015. .cra_name = "hmac(sha512)",
  1016. .cra_driver_name = "mtk-hmac-sha512",
  1017. .cra_priority = 400,
  1018. .cra_flags = CRYPTO_ALG_ASYNC |
  1019. CRYPTO_ALG_NEED_FALLBACK,
  1020. .cra_blocksize = SHA512_BLOCK_SIZE,
  1021. .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
  1022. sizeof(struct mtk_sha_hmac_ctx),
  1023. .cra_alignmask = SHA_ALIGN_MSK,
  1024. .cra_module = THIS_MODULE,
  1025. .cra_init = mtk_sha_cra_sha512_init,
  1026. .cra_exit = mtk_sha_cra_exit,
  1027. }
  1028. },
  1029. };
  1030. static void mtk_sha_task0(unsigned long data)
  1031. {
  1032. struct mtk_cryp *cryp = (struct mtk_cryp *)data;
  1033. struct mtk_sha_rec *sha = cryp->sha[0];
  1034. mtk_sha_unmap(cryp, sha);
  1035. mtk_sha_complete(cryp, sha);
  1036. }
  1037. static void mtk_sha_task1(unsigned long data)
  1038. {
  1039. struct mtk_cryp *cryp = (struct mtk_cryp *)data;
  1040. struct mtk_sha_rec *sha = cryp->sha[1];
  1041. mtk_sha_unmap(cryp, sha);
  1042. mtk_sha_complete(cryp, sha);
  1043. }
  1044. static irqreturn_t mtk_sha_ring2_irq(int irq, void *dev_id)
  1045. {
  1046. struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id;
  1047. struct mtk_sha_rec *sha = cryp->sha[0];
  1048. u32 val = mtk_sha_read(cryp, RDR_STAT(RING2));
  1049. mtk_sha_write(cryp, RDR_STAT(RING2), val);
  1050. if (likely((SHA_FLAGS_BUSY & sha->flags))) {
  1051. mtk_sha_write(cryp, RDR_PROC_COUNT(RING2), MTK_CNT_RST);
  1052. mtk_sha_write(cryp, RDR_THRESH(RING2),
  1053. MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
  1054. tasklet_schedule(&sha->task);
  1055. } else {
  1056. dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
  1057. }
  1058. return IRQ_HANDLED;
  1059. }
  1060. static irqreturn_t mtk_sha_ring3_irq(int irq, void *dev_id)
  1061. {
  1062. struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id;
  1063. struct mtk_sha_rec *sha = cryp->sha[1];
  1064. u32 val = mtk_sha_read(cryp, RDR_STAT(RING3));
  1065. mtk_sha_write(cryp, RDR_STAT(RING3), val);
  1066. if (likely((SHA_FLAGS_BUSY & sha->flags))) {
  1067. mtk_sha_write(cryp, RDR_PROC_COUNT(RING3), MTK_CNT_RST);
  1068. mtk_sha_write(cryp, RDR_THRESH(RING3),
  1069. MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
  1070. tasklet_schedule(&sha->task);
  1071. } else {
  1072. dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
  1073. }
  1074. return IRQ_HANDLED;
  1075. }
  1076. /*
  1077. * The purpose of two SHA records is used to get extra performance.
  1078. * It is similar to mtk_aes_record_init().
  1079. */
  1080. static int mtk_sha_record_init(struct mtk_cryp *cryp)
  1081. {
  1082. struct mtk_sha_rec **sha = cryp->sha;
  1083. int i, err = -ENOMEM;
  1084. for (i = 0; i < MTK_REC_NUM; i++) {
  1085. sha[i] = kzalloc(sizeof(**sha), GFP_KERNEL);
  1086. if (!sha[i])
  1087. goto err_cleanup;
  1088. sha[i]->id = i + RING2;
  1089. spin_lock_init(&sha[i]->lock);
  1090. crypto_init_queue(&sha[i]->queue, SHA_QUEUE_SIZE);
  1091. }
  1092. tasklet_init(&sha[0]->task, mtk_sha_task0, (unsigned long)cryp);
  1093. tasklet_init(&sha[1]->task, mtk_sha_task1, (unsigned long)cryp);
  1094. cryp->rec = 1;
  1095. return 0;
  1096. err_cleanup:
  1097. for (; i--; )
  1098. kfree(sha[i]);
  1099. return err;
  1100. }
  1101. static void mtk_sha_record_free(struct mtk_cryp *cryp)
  1102. {
  1103. int i;
  1104. for (i = 0; i < MTK_REC_NUM; i++) {
  1105. tasklet_kill(&cryp->sha[i]->task);
  1106. kfree(cryp->sha[i]);
  1107. }
  1108. }
  1109. static void mtk_sha_unregister_algs(void)
  1110. {
  1111. int i;
  1112. for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++)
  1113. crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
  1114. for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++)
  1115. crypto_unregister_ahash(&algs_sha384_sha512[i]);
  1116. }
  1117. static int mtk_sha_register_algs(void)
  1118. {
  1119. int err, i;
  1120. for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++) {
  1121. err = crypto_register_ahash(&algs_sha1_sha224_sha256[i]);
  1122. if (err)
  1123. goto err_sha_224_256_algs;
  1124. }
  1125. for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++) {
  1126. err = crypto_register_ahash(&algs_sha384_sha512[i]);
  1127. if (err)
  1128. goto err_sha_384_512_algs;
  1129. }
  1130. return 0;
  1131. err_sha_384_512_algs:
  1132. for (; i--; )
  1133. crypto_unregister_ahash(&algs_sha384_sha512[i]);
  1134. i = ARRAY_SIZE(algs_sha1_sha224_sha256);
  1135. err_sha_224_256_algs:
  1136. for (; i--; )
  1137. crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
  1138. return err;
  1139. }
  1140. int mtk_hash_alg_register(struct mtk_cryp *cryp)
  1141. {
  1142. int err;
  1143. INIT_LIST_HEAD(&cryp->sha_list);
  1144. /* Initialize two hash records */
  1145. err = mtk_sha_record_init(cryp);
  1146. if (err)
  1147. goto err_record;
  1148. /* Ring2 is use by SHA record0 */
  1149. err = devm_request_irq(cryp->dev, cryp->irq[RING2],
  1150. mtk_sha_ring2_irq, IRQF_TRIGGER_LOW,
  1151. "mtk-sha", cryp);
  1152. if (err) {
  1153. dev_err(cryp->dev, "unable to request sha irq0.\n");
  1154. goto err_res;
  1155. }
  1156. /* Ring3 is use by SHA record1 */
  1157. err = devm_request_irq(cryp->dev, cryp->irq[RING3],
  1158. mtk_sha_ring3_irq, IRQF_TRIGGER_LOW,
  1159. "mtk-sha", cryp);
  1160. if (err) {
  1161. dev_err(cryp->dev, "unable to request sha irq1.\n");
  1162. goto err_res;
  1163. }
  1164. /* Enable ring2 and ring3 interrupt for hash */
  1165. mtk_sha_write(cryp, AIC_ENABLE_SET(RING2), MTK_IRQ_RDR2);
  1166. mtk_sha_write(cryp, AIC_ENABLE_SET(RING3), MTK_IRQ_RDR3);
  1167. cryp->tmp = dma_alloc_coherent(cryp->dev, SHA_TMP_BUF_SIZE,
  1168. &cryp->tmp_dma, GFP_KERNEL);
  1169. if (!cryp->tmp) {
  1170. dev_err(cryp->dev, "unable to allocate tmp buffer.\n");
  1171. err = -EINVAL;
  1172. goto err_res;
  1173. }
  1174. spin_lock(&mtk_sha.lock);
  1175. list_add_tail(&cryp->sha_list, &mtk_sha.dev_list);
  1176. spin_unlock(&mtk_sha.lock);
  1177. err = mtk_sha_register_algs();
  1178. if (err)
  1179. goto err_algs;
  1180. return 0;
  1181. err_algs:
  1182. spin_lock(&mtk_sha.lock);
  1183. list_del(&cryp->sha_list);
  1184. spin_unlock(&mtk_sha.lock);
  1185. dma_free_coherent(cryp->dev, SHA_TMP_BUF_SIZE,
  1186. cryp->tmp, cryp->tmp_dma);
  1187. err_res:
  1188. mtk_sha_record_free(cryp);
  1189. err_record:
  1190. dev_err(cryp->dev, "mtk-sha initialization failed.\n");
  1191. return err;
  1192. }
  1193. void mtk_hash_alg_release(struct mtk_cryp *cryp)
  1194. {
  1195. spin_lock(&mtk_sha.lock);
  1196. list_del(&cryp->sha_list);
  1197. spin_unlock(&mtk_sha.lock);
  1198. mtk_sha_unregister_algs();
  1199. dma_free_coherent(cryp->dev, SHA_TMP_BUF_SIZE,
  1200. cryp->tmp, cryp->tmp_dma);
  1201. mtk_sha_record_free(cryp);
  1202. }