imx6q-cpufreq.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408
  1. /*
  2. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/cpu.h>
  10. #include <linux/cpufreq.h>
  11. #include <linux/err.h>
  12. #include <linux/module.h>
  13. #include <linux/of.h>
  14. #include <linux/pm_opp.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/regulator/consumer.h>
  17. #define PU_SOC_VOLTAGE_NORMAL 1250000
  18. #define PU_SOC_VOLTAGE_HIGH 1275000
  19. #define FREQ_1P2_GHZ 1200000000
  20. static struct regulator *arm_reg;
  21. static struct regulator *pu_reg;
  22. static struct regulator *soc_reg;
  23. static struct clk *arm_clk;
  24. static struct clk *pll1_sys_clk;
  25. static struct clk *pll1_sw_clk;
  26. static struct clk *step_clk;
  27. static struct clk *pll2_pfd2_396m_clk;
  28. /* clk used by i.MX6UL */
  29. static struct clk *pll2_bus_clk;
  30. static struct clk *secondary_sel_clk;
  31. static struct device *cpu_dev;
  32. static bool free_opp;
  33. static struct cpufreq_frequency_table *freq_table;
  34. static unsigned int transition_latency;
  35. static u32 *imx6_soc_volt;
  36. static u32 soc_opp_count;
  37. static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
  38. {
  39. struct dev_pm_opp *opp;
  40. unsigned long freq_hz, volt, volt_old;
  41. unsigned int old_freq, new_freq;
  42. int ret;
  43. new_freq = freq_table[index].frequency;
  44. freq_hz = new_freq * 1000;
  45. old_freq = clk_get_rate(arm_clk) / 1000;
  46. opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
  47. if (IS_ERR(opp)) {
  48. dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
  49. return PTR_ERR(opp);
  50. }
  51. volt = dev_pm_opp_get_voltage(opp);
  52. dev_pm_opp_put(opp);
  53. volt_old = regulator_get_voltage(arm_reg);
  54. dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
  55. old_freq / 1000, volt_old / 1000,
  56. new_freq / 1000, volt / 1000);
  57. /* scaling up? scale voltage before frequency */
  58. if (new_freq > old_freq) {
  59. if (!IS_ERR(pu_reg)) {
  60. ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
  61. if (ret) {
  62. dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
  63. return ret;
  64. }
  65. }
  66. ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
  67. if (ret) {
  68. dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
  69. return ret;
  70. }
  71. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  72. if (ret) {
  73. dev_err(cpu_dev,
  74. "failed to scale vddarm up: %d\n", ret);
  75. return ret;
  76. }
  77. }
  78. /*
  79. * The setpoints are selected per PLL/PDF frequencies, so we need to
  80. * reprogram PLL for frequency scaling. The procedure of reprogramming
  81. * PLL1 is as below.
  82. * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
  83. * flow is slightly different from other i.MX6 OSC.
  84. * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
  85. * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
  86. * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
  87. * - Disable pll2_pfd2_396m_clk
  88. */
  89. if (of_machine_is_compatible("fsl,imx6ul")) {
  90. /*
  91. * When changing pll1_sw_clk's parent to pll1_sys_clk,
  92. * CPU may run at higher than 528MHz, this will lead to
  93. * the system unstable if the voltage is lower than the
  94. * voltage of 528MHz, so lower the CPU frequency to one
  95. * half before changing CPU frequency.
  96. */
  97. clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
  98. clk_set_parent(pll1_sw_clk, pll1_sys_clk);
  99. if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
  100. clk_set_parent(secondary_sel_clk, pll2_bus_clk);
  101. else
  102. clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
  103. clk_set_parent(step_clk, secondary_sel_clk);
  104. clk_set_parent(pll1_sw_clk, step_clk);
  105. } else {
  106. clk_set_parent(step_clk, pll2_pfd2_396m_clk);
  107. clk_set_parent(pll1_sw_clk, step_clk);
  108. if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
  109. clk_set_rate(pll1_sys_clk, new_freq * 1000);
  110. clk_set_parent(pll1_sw_clk, pll1_sys_clk);
  111. }
  112. }
  113. /* Ensure the arm clock divider is what we expect */
  114. ret = clk_set_rate(arm_clk, new_freq * 1000);
  115. if (ret) {
  116. dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
  117. regulator_set_voltage_tol(arm_reg, volt_old, 0);
  118. return ret;
  119. }
  120. /* scaling down? scale voltage after frequency */
  121. if (new_freq < old_freq) {
  122. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  123. if (ret) {
  124. dev_warn(cpu_dev,
  125. "failed to scale vddarm down: %d\n", ret);
  126. ret = 0;
  127. }
  128. ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
  129. if (ret) {
  130. dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
  131. ret = 0;
  132. }
  133. if (!IS_ERR(pu_reg)) {
  134. ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
  135. if (ret) {
  136. dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
  137. ret = 0;
  138. }
  139. }
  140. }
  141. return 0;
  142. }
  143. static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
  144. {
  145. policy->clk = arm_clk;
  146. return cpufreq_generic_init(policy, freq_table, transition_latency);
  147. }
  148. static struct cpufreq_driver imx6q_cpufreq_driver = {
  149. .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
  150. .verify = cpufreq_generic_frequency_table_verify,
  151. .target_index = imx6q_set_target,
  152. .get = cpufreq_generic_get,
  153. .init = imx6q_cpufreq_init,
  154. .name = "imx6q-cpufreq",
  155. .attr = cpufreq_generic_attr,
  156. };
  157. static int imx6q_cpufreq_probe(struct platform_device *pdev)
  158. {
  159. struct device_node *np;
  160. struct dev_pm_opp *opp;
  161. unsigned long min_volt, max_volt;
  162. int num, ret;
  163. const struct property *prop;
  164. const __be32 *val;
  165. u32 nr, i, j;
  166. cpu_dev = get_cpu_device(0);
  167. if (!cpu_dev) {
  168. pr_err("failed to get cpu0 device\n");
  169. return -ENODEV;
  170. }
  171. np = of_node_get(cpu_dev->of_node);
  172. if (!np) {
  173. dev_err(cpu_dev, "failed to find cpu0 node\n");
  174. return -ENOENT;
  175. }
  176. arm_clk = clk_get(cpu_dev, "arm");
  177. pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
  178. pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
  179. step_clk = clk_get(cpu_dev, "step");
  180. pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
  181. if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
  182. IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
  183. dev_err(cpu_dev, "failed to get clocks\n");
  184. ret = -ENOENT;
  185. goto put_clk;
  186. }
  187. if (of_machine_is_compatible("fsl,imx6ul")) {
  188. pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
  189. secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
  190. if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
  191. dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
  192. ret = -ENOENT;
  193. goto put_clk;
  194. }
  195. }
  196. arm_reg = regulator_get(cpu_dev, "arm");
  197. pu_reg = regulator_get_optional(cpu_dev, "pu");
  198. soc_reg = regulator_get(cpu_dev, "soc");
  199. if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
  200. dev_err(cpu_dev, "failed to get regulators\n");
  201. ret = -ENOENT;
  202. goto put_reg;
  203. }
  204. /*
  205. * We expect an OPP table supplied by platform.
  206. * Just, incase the platform did not supply the OPP
  207. * table, it will try to get it.
  208. */
  209. num = dev_pm_opp_get_opp_count(cpu_dev);
  210. if (num < 0) {
  211. ret = dev_pm_opp_of_add_table(cpu_dev);
  212. if (ret < 0) {
  213. dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
  214. goto put_reg;
  215. }
  216. /* Because we have added the OPPs here, we must free them */
  217. free_opp = true;
  218. num = dev_pm_opp_get_opp_count(cpu_dev);
  219. if (num < 0) {
  220. ret = num;
  221. dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
  222. goto out_free_opp;
  223. }
  224. }
  225. ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
  226. if (ret) {
  227. dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
  228. goto put_reg;
  229. }
  230. /* Make imx6_soc_volt array's size same as arm opp number */
  231. imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
  232. if (imx6_soc_volt == NULL) {
  233. ret = -ENOMEM;
  234. goto free_freq_table;
  235. }
  236. prop = of_find_property(np, "fsl,soc-operating-points", NULL);
  237. if (!prop || !prop->value)
  238. goto soc_opp_out;
  239. /*
  240. * Each OPP is a set of tuples consisting of frequency and
  241. * voltage like <freq-kHz vol-uV>.
  242. */
  243. nr = prop->length / sizeof(u32);
  244. if (nr % 2 || (nr / 2) < num)
  245. goto soc_opp_out;
  246. for (j = 0; j < num; j++) {
  247. val = prop->value;
  248. for (i = 0; i < nr / 2; i++) {
  249. unsigned long freq = be32_to_cpup(val++);
  250. unsigned long volt = be32_to_cpup(val++);
  251. if (freq_table[j].frequency == freq) {
  252. imx6_soc_volt[soc_opp_count++] = volt;
  253. break;
  254. }
  255. }
  256. }
  257. soc_opp_out:
  258. /* use fixed soc opp volt if no valid soc opp info found in dtb */
  259. if (soc_opp_count != num) {
  260. dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
  261. for (j = 0; j < num; j++)
  262. imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
  263. if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
  264. imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
  265. }
  266. if (of_property_read_u32(np, "clock-latency", &transition_latency))
  267. transition_latency = CPUFREQ_ETERNAL;
  268. /*
  269. * Calculate the ramp time for max voltage change in the
  270. * VDDSOC and VDDPU regulators.
  271. */
  272. ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
  273. if (ret > 0)
  274. transition_latency += ret * 1000;
  275. if (!IS_ERR(pu_reg)) {
  276. ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
  277. if (ret > 0)
  278. transition_latency += ret * 1000;
  279. }
  280. /*
  281. * OPP is maintained in order of increasing frequency, and
  282. * freq_table initialised from OPP is therefore sorted in the
  283. * same order.
  284. */
  285. opp = dev_pm_opp_find_freq_exact(cpu_dev,
  286. freq_table[0].frequency * 1000, true);
  287. min_volt = dev_pm_opp_get_voltage(opp);
  288. dev_pm_opp_put(opp);
  289. opp = dev_pm_opp_find_freq_exact(cpu_dev,
  290. freq_table[--num].frequency * 1000, true);
  291. max_volt = dev_pm_opp_get_voltage(opp);
  292. dev_pm_opp_put(opp);
  293. ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
  294. if (ret > 0)
  295. transition_latency += ret * 1000;
  296. ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
  297. if (ret) {
  298. dev_err(cpu_dev, "failed register driver: %d\n", ret);
  299. goto free_freq_table;
  300. }
  301. of_node_put(np);
  302. return 0;
  303. free_freq_table:
  304. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  305. out_free_opp:
  306. if (free_opp)
  307. dev_pm_opp_of_remove_table(cpu_dev);
  308. put_reg:
  309. if (!IS_ERR(arm_reg))
  310. regulator_put(arm_reg);
  311. if (!IS_ERR(pu_reg))
  312. regulator_put(pu_reg);
  313. if (!IS_ERR(soc_reg))
  314. regulator_put(soc_reg);
  315. put_clk:
  316. if (!IS_ERR(arm_clk))
  317. clk_put(arm_clk);
  318. if (!IS_ERR(pll1_sys_clk))
  319. clk_put(pll1_sys_clk);
  320. if (!IS_ERR(pll1_sw_clk))
  321. clk_put(pll1_sw_clk);
  322. if (!IS_ERR(step_clk))
  323. clk_put(step_clk);
  324. if (!IS_ERR(pll2_pfd2_396m_clk))
  325. clk_put(pll2_pfd2_396m_clk);
  326. if (!IS_ERR(pll2_bus_clk))
  327. clk_put(pll2_bus_clk);
  328. if (!IS_ERR(secondary_sel_clk))
  329. clk_put(secondary_sel_clk);
  330. of_node_put(np);
  331. return ret;
  332. }
  333. static int imx6q_cpufreq_remove(struct platform_device *pdev)
  334. {
  335. cpufreq_unregister_driver(&imx6q_cpufreq_driver);
  336. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  337. if (free_opp)
  338. dev_pm_opp_of_remove_table(cpu_dev);
  339. regulator_put(arm_reg);
  340. if (!IS_ERR(pu_reg))
  341. regulator_put(pu_reg);
  342. regulator_put(soc_reg);
  343. clk_put(arm_clk);
  344. clk_put(pll1_sys_clk);
  345. clk_put(pll1_sw_clk);
  346. clk_put(step_clk);
  347. clk_put(pll2_pfd2_396m_clk);
  348. clk_put(pll2_bus_clk);
  349. clk_put(secondary_sel_clk);
  350. return 0;
  351. }
  352. static struct platform_driver imx6q_cpufreq_platdrv = {
  353. .driver = {
  354. .name = "imx6q-cpufreq",
  355. },
  356. .probe = imx6q_cpufreq_probe,
  357. .remove = imx6q_cpufreq_remove,
  358. };
  359. module_platform_driver(imx6q_cpufreq_platdrv);
  360. MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
  361. MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
  362. MODULE_LICENSE("GPL");