clk.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439
  1. /*
  2. * Copyright 2014 Linaro Ltd.
  3. * Copyright (C) 2014 ZTE Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/clk-provider.h>
  10. #include <linux/err.h>
  11. #include <linux/gcd.h>
  12. #include <linux/io.h>
  13. #include <linux/iopoll.h>
  14. #include <linux/slab.h>
  15. #include <linux/spinlock.h>
  16. #include <asm/div64.h>
  17. #include "clk.h"
  18. #define to_clk_zx_pll(_hw) container_of(_hw, struct clk_zx_pll, hw)
  19. #define to_clk_zx_audio(_hw) container_of(_hw, struct clk_zx_audio, hw)
  20. #define CFG0_CFG1_OFFSET 4
  21. #define LOCK_FLAG 30
  22. #define POWER_DOWN 31
  23. static int rate_to_idx(struct clk_zx_pll *zx_pll, unsigned long rate)
  24. {
  25. const struct zx_pll_config *config = zx_pll->lookup_table;
  26. int i;
  27. for (i = 0; i < zx_pll->count; i++) {
  28. if (config[i].rate > rate)
  29. return i > 0 ? i - 1 : 0;
  30. if (config[i].rate == rate)
  31. return i;
  32. }
  33. return i - 1;
  34. }
  35. static int hw_to_idx(struct clk_zx_pll *zx_pll)
  36. {
  37. const struct zx_pll_config *config = zx_pll->lookup_table;
  38. u32 hw_cfg0, hw_cfg1;
  39. int i;
  40. hw_cfg0 = readl_relaxed(zx_pll->reg_base);
  41. hw_cfg1 = readl_relaxed(zx_pll->reg_base + CFG0_CFG1_OFFSET);
  42. /* For matching the value in lookup table */
  43. hw_cfg0 &= ~BIT(zx_pll->lock_bit);
  44. hw_cfg0 |= BIT(zx_pll->pd_bit);
  45. for (i = 0; i < zx_pll->count; i++) {
  46. if (hw_cfg0 == config[i].cfg0 && hw_cfg1 == config[i].cfg1)
  47. return i;
  48. }
  49. return -EINVAL;
  50. }
  51. static unsigned long zx_pll_recalc_rate(struct clk_hw *hw,
  52. unsigned long parent_rate)
  53. {
  54. struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
  55. int idx;
  56. idx = hw_to_idx(zx_pll);
  57. if (unlikely(idx == -EINVAL))
  58. return 0;
  59. return zx_pll->lookup_table[idx].rate;
  60. }
  61. static long zx_pll_round_rate(struct clk_hw *hw, unsigned long rate,
  62. unsigned long *prate)
  63. {
  64. struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
  65. int idx;
  66. idx = rate_to_idx(zx_pll, rate);
  67. return zx_pll->lookup_table[idx].rate;
  68. }
  69. static int zx_pll_set_rate(struct clk_hw *hw, unsigned long rate,
  70. unsigned long parent_rate)
  71. {
  72. /* Assume current cpu is not running on current PLL */
  73. struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
  74. const struct zx_pll_config *config;
  75. int idx;
  76. idx = rate_to_idx(zx_pll, rate);
  77. config = &zx_pll->lookup_table[idx];
  78. writel_relaxed(config->cfg0, zx_pll->reg_base);
  79. writel_relaxed(config->cfg1, zx_pll->reg_base + CFG0_CFG1_OFFSET);
  80. return 0;
  81. }
  82. static int zx_pll_enable(struct clk_hw *hw)
  83. {
  84. struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
  85. u32 reg;
  86. reg = readl_relaxed(zx_pll->reg_base);
  87. writel_relaxed(reg & ~BIT(zx_pll->pd_bit), zx_pll->reg_base);
  88. return readl_relaxed_poll_timeout(zx_pll->reg_base, reg,
  89. reg & BIT(zx_pll->lock_bit), 0, 100);
  90. }
  91. static void zx_pll_disable(struct clk_hw *hw)
  92. {
  93. struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
  94. u32 reg;
  95. reg = readl_relaxed(zx_pll->reg_base);
  96. writel_relaxed(reg | BIT(zx_pll->pd_bit), zx_pll->reg_base);
  97. }
  98. static int zx_pll_is_enabled(struct clk_hw *hw)
  99. {
  100. struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
  101. u32 reg;
  102. reg = readl_relaxed(zx_pll->reg_base);
  103. return !(reg & BIT(zx_pll->pd_bit));
  104. }
  105. const struct clk_ops zx_pll_ops = {
  106. .recalc_rate = zx_pll_recalc_rate,
  107. .round_rate = zx_pll_round_rate,
  108. .set_rate = zx_pll_set_rate,
  109. .enable = zx_pll_enable,
  110. .disable = zx_pll_disable,
  111. .is_enabled = zx_pll_is_enabled,
  112. };
  113. EXPORT_SYMBOL(zx_pll_ops);
  114. struct clk *clk_register_zx_pll(const char *name, const char *parent_name,
  115. unsigned long flags, void __iomem *reg_base,
  116. const struct zx_pll_config *lookup_table,
  117. int count, spinlock_t *lock)
  118. {
  119. struct clk_zx_pll *zx_pll;
  120. struct clk *clk;
  121. struct clk_init_data init;
  122. zx_pll = kzalloc(sizeof(*zx_pll), GFP_KERNEL);
  123. if (!zx_pll)
  124. return ERR_PTR(-ENOMEM);
  125. init.name = name;
  126. init.ops = &zx_pll_ops;
  127. init.flags = flags;
  128. init.parent_names = parent_name ? &parent_name : NULL;
  129. init.num_parents = parent_name ? 1 : 0;
  130. zx_pll->reg_base = reg_base;
  131. zx_pll->lookup_table = lookup_table;
  132. zx_pll->count = count;
  133. zx_pll->lock_bit = LOCK_FLAG;
  134. zx_pll->pd_bit = POWER_DOWN;
  135. zx_pll->lock = lock;
  136. zx_pll->hw.init = &init;
  137. clk = clk_register(NULL, &zx_pll->hw);
  138. if (IS_ERR(clk))
  139. kfree(zx_pll);
  140. return clk;
  141. }
  142. #define BPAR 1000000
  143. static u32 calc_reg(u32 parent_rate, u32 rate)
  144. {
  145. u32 sel, integ, fra_div, tmp;
  146. u64 tmp64 = (u64)parent_rate * BPAR;
  147. do_div(tmp64, rate);
  148. integ = (u32)tmp64 / BPAR;
  149. integ = integ >> 1;
  150. tmp = (u32)tmp64 % BPAR;
  151. sel = tmp / BPAR;
  152. tmp = tmp % BPAR;
  153. fra_div = tmp * 0xff / BPAR;
  154. tmp = (sel << 24) | (integ << 16) | (0xff << 8) | fra_div;
  155. /* Set I2S integer divider as 1. This bit is reserved for SPDIF
  156. * and do no harm.
  157. */
  158. tmp |= BIT(28);
  159. return tmp;
  160. }
  161. static u32 calc_rate(u32 reg, u32 parent_rate)
  162. {
  163. u32 sel, integ, fra_div, tmp;
  164. u64 tmp64 = (u64)parent_rate * BPAR;
  165. tmp = reg;
  166. sel = (tmp >> 24) & BIT(0);
  167. integ = (tmp >> 16) & 0xff;
  168. fra_div = tmp & 0xff;
  169. tmp = fra_div * BPAR;
  170. tmp = tmp / 0xff;
  171. tmp += sel * BPAR;
  172. tmp += 2 * integ * BPAR;
  173. do_div(tmp64, tmp);
  174. return (u32)tmp64;
  175. }
  176. static unsigned long zx_audio_recalc_rate(struct clk_hw *hw,
  177. unsigned long parent_rate)
  178. {
  179. struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
  180. u32 reg;
  181. reg = readl_relaxed(zx_audio->reg_base);
  182. return calc_rate(reg, parent_rate);
  183. }
  184. static long zx_audio_round_rate(struct clk_hw *hw, unsigned long rate,
  185. unsigned long *prate)
  186. {
  187. u32 reg;
  188. if (rate * 2 > *prate)
  189. return -EINVAL;
  190. reg = calc_reg(*prate, rate);
  191. return calc_rate(reg, *prate);
  192. }
  193. static int zx_audio_set_rate(struct clk_hw *hw, unsigned long rate,
  194. unsigned long parent_rate)
  195. {
  196. struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
  197. u32 reg;
  198. reg = calc_reg(parent_rate, rate);
  199. writel_relaxed(reg, zx_audio->reg_base);
  200. return 0;
  201. }
  202. #define ZX_AUDIO_EN BIT(25)
  203. static int zx_audio_enable(struct clk_hw *hw)
  204. {
  205. struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
  206. u32 reg;
  207. reg = readl_relaxed(zx_audio->reg_base);
  208. writel_relaxed(reg & ~ZX_AUDIO_EN, zx_audio->reg_base);
  209. return 0;
  210. }
  211. static void zx_audio_disable(struct clk_hw *hw)
  212. {
  213. struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
  214. u32 reg;
  215. reg = readl_relaxed(zx_audio->reg_base);
  216. writel_relaxed(reg | ZX_AUDIO_EN, zx_audio->reg_base);
  217. }
  218. static const struct clk_ops zx_audio_ops = {
  219. .recalc_rate = zx_audio_recalc_rate,
  220. .round_rate = zx_audio_round_rate,
  221. .set_rate = zx_audio_set_rate,
  222. .enable = zx_audio_enable,
  223. .disable = zx_audio_disable,
  224. };
  225. struct clk *clk_register_zx_audio(const char *name,
  226. const char * const parent_name,
  227. unsigned long flags,
  228. void __iomem *reg_base)
  229. {
  230. struct clk_zx_audio *zx_audio;
  231. struct clk *clk;
  232. struct clk_init_data init;
  233. zx_audio = kzalloc(sizeof(*zx_audio), GFP_KERNEL);
  234. if (!zx_audio)
  235. return ERR_PTR(-ENOMEM);
  236. init.name = name;
  237. init.ops = &zx_audio_ops;
  238. init.flags = flags;
  239. init.parent_names = parent_name ? &parent_name : NULL;
  240. init.num_parents = parent_name ? 1 : 0;
  241. zx_audio->reg_base = reg_base;
  242. zx_audio->hw.init = &init;
  243. clk = clk_register(NULL, &zx_audio->hw);
  244. if (IS_ERR(clk))
  245. kfree(zx_audio);
  246. return clk;
  247. }
  248. #define CLK_AUDIO_DIV_FRAC BIT(0)
  249. #define CLK_AUDIO_DIV_INT BIT(1)
  250. #define CLK_AUDIO_DIV_UNCOMMON BIT(1)
  251. #define CLK_AUDIO_DIV_FRAC_NSHIFT 16
  252. #define CLK_AUDIO_DIV_INT_FRAC_RE BIT(16)
  253. #define CLK_AUDIO_DIV_INT_FRAC_MAX (0xffff)
  254. #define CLK_AUDIO_DIV_INT_FRAC_MIN (0x2)
  255. #define CLK_AUDIO_DIV_INT_INT_SHIFT 24
  256. #define CLK_AUDIO_DIV_INT_INT_WIDTH 4
  257. struct zx_clk_audio_div_table {
  258. unsigned long rate;
  259. unsigned int int_reg;
  260. unsigned int frac_reg;
  261. };
  262. #define to_clk_zx_audio_div(_hw) container_of(_hw, struct clk_zx_audio_divider, hw)
  263. static unsigned long audio_calc_rate(struct clk_zx_audio_divider *audio_div,
  264. u32 reg_frac, u32 reg_int,
  265. unsigned long parent_rate)
  266. {
  267. unsigned long rate, m, n;
  268. m = reg_frac & 0xffff;
  269. n = (reg_frac >> 16) & 0xffff;
  270. m = (reg_int & 0xffff) * n + m;
  271. rate = (parent_rate * n) / m;
  272. return rate;
  273. }
  274. static void audio_calc_reg(struct clk_zx_audio_divider *audio_div,
  275. struct zx_clk_audio_div_table *div_table,
  276. unsigned long rate, unsigned long parent_rate)
  277. {
  278. unsigned int reg_int, reg_frac;
  279. unsigned long m, n, div;
  280. reg_int = parent_rate / rate;
  281. if (reg_int > CLK_AUDIO_DIV_INT_FRAC_MAX)
  282. reg_int = CLK_AUDIO_DIV_INT_FRAC_MAX;
  283. else if (reg_int < CLK_AUDIO_DIV_INT_FRAC_MIN)
  284. reg_int = 0;
  285. m = parent_rate - rate * reg_int;
  286. n = rate;
  287. div = gcd(m, n);
  288. m = m / div;
  289. n = n / div;
  290. if ((m >> 16) || (n >> 16)) {
  291. if (m > n) {
  292. n = n * 0xffff / m;
  293. m = 0xffff;
  294. } else {
  295. m = m * 0xffff / n;
  296. n = 0xffff;
  297. }
  298. }
  299. reg_frac = m | (n << 16);
  300. div_table->rate = parent_rate * n / (reg_int * n + m);
  301. div_table->int_reg = reg_int;
  302. div_table->frac_reg = reg_frac;
  303. }
  304. static unsigned long zx_audio_div_recalc_rate(struct clk_hw *hw,
  305. unsigned long parent_rate)
  306. {
  307. struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw);
  308. u32 reg_frac, reg_int;
  309. reg_frac = readl_relaxed(zx_audio_div->reg_base);
  310. reg_int = readl_relaxed(zx_audio_div->reg_base + 0x4);
  311. return audio_calc_rate(zx_audio_div, reg_frac, reg_int, parent_rate);
  312. }
  313. static long zx_audio_div_round_rate(struct clk_hw *hw, unsigned long rate,
  314. unsigned long *prate)
  315. {
  316. struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw);
  317. struct zx_clk_audio_div_table divt;
  318. audio_calc_reg(zx_audio_div, &divt, rate, *prate);
  319. return audio_calc_rate(zx_audio_div, divt.frac_reg, divt.int_reg, *prate);
  320. }
  321. static int zx_audio_div_set_rate(struct clk_hw *hw, unsigned long rate,
  322. unsigned long parent_rate)
  323. {
  324. struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw);
  325. struct zx_clk_audio_div_table divt;
  326. unsigned int val;
  327. audio_calc_reg(zx_audio_div, &divt, rate, parent_rate);
  328. if (divt.rate != rate)
  329. pr_debug("the real rate is:%ld", divt.rate);
  330. writel_relaxed(divt.frac_reg, zx_audio_div->reg_base);
  331. val = readl_relaxed(zx_audio_div->reg_base + 0x4);
  332. val &= ~0xffff;
  333. val |= divt.int_reg | CLK_AUDIO_DIV_INT_FRAC_RE;
  334. writel_relaxed(val, zx_audio_div->reg_base + 0x4);
  335. mdelay(1);
  336. val = readl_relaxed(zx_audio_div->reg_base + 0x4);
  337. val &= ~CLK_AUDIO_DIV_INT_FRAC_RE;
  338. writel_relaxed(val, zx_audio_div->reg_base + 0x4);
  339. return 0;
  340. }
  341. const struct clk_ops zx_audio_div_ops = {
  342. .recalc_rate = zx_audio_div_recalc_rate,
  343. .round_rate = zx_audio_div_round_rate,
  344. .set_rate = zx_audio_div_set_rate,
  345. };