random.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_device_randomness(const void *buf, unsigned int size);
  128. * void add_input_randomness(unsigned int type, unsigned int code,
  129. * unsigned int value);
  130. * void add_interrupt_randomness(int irq, int irq_flags);
  131. * void add_disk_randomness(struct gendisk *disk);
  132. *
  133. * add_device_randomness() is for adding data to the random pool that
  134. * is likely to differ between two devices (or possibly even per boot).
  135. * This would be things like MAC addresses or serial numbers, or the
  136. * read-out of the RTC. This does *not* add any actual entropy to the
  137. * pool, but it initializes the pool to different values for devices
  138. * that might otherwise be identical and have very little entropy
  139. * available to them (particularly common in the embedded world).
  140. *
  141. * add_input_randomness() uses the input layer interrupt timing, as well as
  142. * the event type information from the hardware.
  143. *
  144. * add_interrupt_randomness() uses the interrupt timing as random
  145. * inputs to the entropy pool. Using the cycle counters and the irq source
  146. * as inputs, it feeds the randomness roughly once a second.
  147. *
  148. * add_disk_randomness() uses what amounts to the seek time of block
  149. * layer request events, on a per-disk_devt basis, as input to the
  150. * entropy pool. Note that high-speed solid state drives with very low
  151. * seek times do not make for good sources of entropy, as their seek
  152. * times are usually fairly consistent.
  153. *
  154. * All of these routines try to estimate how many bits of randomness a
  155. * particular randomness source. They do this by keeping track of the
  156. * first and second order deltas of the event timings.
  157. *
  158. * Ensuring unpredictability at system startup
  159. * ============================================
  160. *
  161. * When any operating system starts up, it will go through a sequence
  162. * of actions that are fairly predictable by an adversary, especially
  163. * if the start-up does not involve interaction with a human operator.
  164. * This reduces the actual number of bits of unpredictability in the
  165. * entropy pool below the value in entropy_count. In order to
  166. * counteract this effect, it helps to carry information in the
  167. * entropy pool across shut-downs and start-ups. To do this, put the
  168. * following lines an appropriate script which is run during the boot
  169. * sequence:
  170. *
  171. * echo "Initializing random number generator..."
  172. * random_seed=/var/run/random-seed
  173. * # Carry a random seed from start-up to start-up
  174. * # Load and then save the whole entropy pool
  175. * if [ -f $random_seed ]; then
  176. * cat $random_seed >/dev/urandom
  177. * else
  178. * touch $random_seed
  179. * fi
  180. * chmod 600 $random_seed
  181. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  182. *
  183. * and the following lines in an appropriate script which is run as
  184. * the system is shutdown:
  185. *
  186. * # Carry a random seed from shut-down to start-up
  187. * # Save the whole entropy pool
  188. * echo "Saving random seed..."
  189. * random_seed=/var/run/random-seed
  190. * touch $random_seed
  191. * chmod 600 $random_seed
  192. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  193. *
  194. * For example, on most modern systems using the System V init
  195. * scripts, such code fragments would be found in
  196. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  197. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  198. *
  199. * Effectively, these commands cause the contents of the entropy pool
  200. * to be saved at shut-down time and reloaded into the entropy pool at
  201. * start-up. (The 'dd' in the addition to the bootup script is to
  202. * make sure that /etc/random-seed is different for every start-up,
  203. * even if the system crashes without executing rc.0.) Even with
  204. * complete knowledge of the start-up activities, predicting the state
  205. * of the entropy pool requires knowledge of the previous history of
  206. * the system.
  207. *
  208. * Configuring the /dev/random driver under Linux
  209. * ==============================================
  210. *
  211. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  212. * the /dev/mem major number (#1). So if your system does not have
  213. * /dev/random and /dev/urandom created already, they can be created
  214. * by using the commands:
  215. *
  216. * mknod /dev/random c 1 8
  217. * mknod /dev/urandom c 1 9
  218. *
  219. * Acknowledgements:
  220. * =================
  221. *
  222. * Ideas for constructing this random number generator were derived
  223. * from Pretty Good Privacy's random number generator, and from private
  224. * discussions with Phil Karn. Colin Plumb provided a faster random
  225. * number generator, which speed up the mixing function of the entropy
  226. * pool, taken from PGPfone. Dale Worley has also contributed many
  227. * useful ideas and suggestions to improve this driver.
  228. *
  229. * Any flaws in the design are solely my responsibility, and should
  230. * not be attributed to the Phil, Colin, or any of authors of PGP.
  231. *
  232. * Further background information on this topic may be obtained from
  233. * RFC 1750, "Randomness Recommendations for Security", by Donald
  234. * Eastlake, Steve Crocker, and Jeff Schiller.
  235. */
  236. #include <linux/utsname.h>
  237. #include <linux/module.h>
  238. #include <linux/kernel.h>
  239. #include <linux/major.h>
  240. #include <linux/string.h>
  241. #include <linux/fcntl.h>
  242. #include <linux/slab.h>
  243. #include <linux/random.h>
  244. #include <linux/poll.h>
  245. #include <linux/init.h>
  246. #include <linux/fs.h>
  247. #include <linux/genhd.h>
  248. #include <linux/interrupt.h>
  249. #include <linux/mm.h>
  250. #include <linux/nodemask.h>
  251. #include <linux/spinlock.h>
  252. #include <linux/kthread.h>
  253. #include <linux/percpu.h>
  254. #include <linux/cryptohash.h>
  255. #include <linux/fips.h>
  256. #include <linux/ptrace.h>
  257. #include <linux/kmemcheck.h>
  258. #include <linux/workqueue.h>
  259. #include <linux/irq.h>
  260. #include <linux/syscalls.h>
  261. #include <linux/completion.h>
  262. #include <linux/uuid.h>
  263. #include <crypto/chacha20.h>
  264. #include <asm/processor.h>
  265. #include <linux/uaccess.h>
  266. #include <asm/irq.h>
  267. #include <asm/irq_regs.h>
  268. #include <asm/io.h>
  269. #define CREATE_TRACE_POINTS
  270. #include <trace/events/random.h>
  271. /* #define ADD_INTERRUPT_BENCH */
  272. /*
  273. * Configuration information
  274. */
  275. #define INPUT_POOL_SHIFT 12
  276. #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
  277. #define OUTPUT_POOL_SHIFT 10
  278. #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
  279. #define SEC_XFER_SIZE 512
  280. #define EXTRACT_SIZE 10
  281. #define DEBUG_RANDOM_BOOT 0
  282. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  283. /*
  284. * To allow fractional bits to be tracked, the entropy_count field is
  285. * denominated in units of 1/8th bits.
  286. *
  287. * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
  288. * credit_entropy_bits() needs to be 64 bits wide.
  289. */
  290. #define ENTROPY_SHIFT 3
  291. #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
  292. /*
  293. * The minimum number of bits of entropy before we wake up a read on
  294. * /dev/random. Should be enough to do a significant reseed.
  295. */
  296. static int random_read_wakeup_bits = 64;
  297. /*
  298. * If the entropy count falls under this number of bits, then we
  299. * should wake up processes which are selecting or polling on write
  300. * access to /dev/random.
  301. */
  302. static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
  303. /*
  304. * Originally, we used a primitive polynomial of degree .poolwords
  305. * over GF(2). The taps for various sizes are defined below. They
  306. * were chosen to be evenly spaced except for the last tap, which is 1
  307. * to get the twisting happening as fast as possible.
  308. *
  309. * For the purposes of better mixing, we use the CRC-32 polynomial as
  310. * well to make a (modified) twisted Generalized Feedback Shift
  311. * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
  312. * generators. ACM Transactions on Modeling and Computer Simulation
  313. * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
  314. * GFSR generators II. ACM Transactions on Modeling and Computer
  315. * Simulation 4:254-266)
  316. *
  317. * Thanks to Colin Plumb for suggesting this.
  318. *
  319. * The mixing operation is much less sensitive than the output hash,
  320. * where we use SHA-1. All that we want of mixing operation is that
  321. * it be a good non-cryptographic hash; i.e. it not produce collisions
  322. * when fed "random" data of the sort we expect to see. As long as
  323. * the pool state differs for different inputs, we have preserved the
  324. * input entropy and done a good job. The fact that an intelligent
  325. * attacker can construct inputs that will produce controlled
  326. * alterations to the pool's state is not important because we don't
  327. * consider such inputs to contribute any randomness. The only
  328. * property we need with respect to them is that the attacker can't
  329. * increase his/her knowledge of the pool's state. Since all
  330. * additions are reversible (knowing the final state and the input,
  331. * you can reconstruct the initial state), if an attacker has any
  332. * uncertainty about the initial state, he/she can only shuffle that
  333. * uncertainty about, but never cause any collisions (which would
  334. * decrease the uncertainty).
  335. *
  336. * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
  337. * Videau in their paper, "The Linux Pseudorandom Number Generator
  338. * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
  339. * paper, they point out that we are not using a true Twisted GFSR,
  340. * since Matsumoto & Kurita used a trinomial feedback polynomial (that
  341. * is, with only three taps, instead of the six that we are using).
  342. * As a result, the resulting polynomial is neither primitive nor
  343. * irreducible, and hence does not have a maximal period over
  344. * GF(2**32). They suggest a slight change to the generator
  345. * polynomial which improves the resulting TGFSR polynomial to be
  346. * irreducible, which we have made here.
  347. */
  348. static struct poolinfo {
  349. int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
  350. #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
  351. int tap1, tap2, tap3, tap4, tap5;
  352. } poolinfo_table[] = {
  353. /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
  354. /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
  355. { S(128), 104, 76, 51, 25, 1 },
  356. /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
  357. /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
  358. { S(32), 26, 19, 14, 7, 1 },
  359. #if 0
  360. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  361. { S(2048), 1638, 1231, 819, 411, 1 },
  362. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  363. { S(1024), 817, 615, 412, 204, 1 },
  364. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  365. { S(1024), 819, 616, 410, 207, 2 },
  366. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  367. { S(512), 411, 308, 208, 104, 1 },
  368. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  369. { S(512), 409, 307, 206, 102, 2 },
  370. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  371. { S(512), 409, 309, 205, 103, 2 },
  372. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  373. { S(256), 205, 155, 101, 52, 1 },
  374. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  375. { S(128), 103, 78, 51, 27, 2 },
  376. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  377. { S(64), 52, 39, 26, 14, 1 },
  378. #endif
  379. };
  380. /*
  381. * Static global variables
  382. */
  383. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  384. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  385. static struct fasync_struct *fasync;
  386. static DEFINE_SPINLOCK(random_ready_list_lock);
  387. static LIST_HEAD(random_ready_list);
  388. struct crng_state {
  389. __u32 state[16];
  390. unsigned long init_time;
  391. spinlock_t lock;
  392. };
  393. struct crng_state primary_crng = {
  394. .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
  395. };
  396. /*
  397. * crng_init = 0 --> Uninitialized
  398. * 1 --> Initialized
  399. * 2 --> Initialized from input_pool
  400. *
  401. * crng_init is protected by primary_crng->lock, and only increases
  402. * its value (from 0->1->2).
  403. */
  404. static int crng_init = 0;
  405. #define crng_ready() (likely(crng_init > 0))
  406. static int crng_init_cnt = 0;
  407. #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
  408. static void _extract_crng(struct crng_state *crng,
  409. __u8 out[CHACHA20_BLOCK_SIZE]);
  410. static void _crng_backtrack_protect(struct crng_state *crng,
  411. __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
  412. static void process_random_ready_list(void);
  413. /**********************************************************************
  414. *
  415. * OS independent entropy store. Here are the functions which handle
  416. * storing entropy in an entropy pool.
  417. *
  418. **********************************************************************/
  419. struct entropy_store;
  420. struct entropy_store {
  421. /* read-only data: */
  422. const struct poolinfo *poolinfo;
  423. __u32 *pool;
  424. const char *name;
  425. struct entropy_store *pull;
  426. struct work_struct push_work;
  427. /* read-write data: */
  428. unsigned long last_pulled;
  429. spinlock_t lock;
  430. unsigned short add_ptr;
  431. unsigned short input_rotate;
  432. int entropy_count;
  433. int entropy_total;
  434. unsigned int initialized:1;
  435. unsigned int last_data_init:1;
  436. __u8 last_data[EXTRACT_SIZE];
  437. };
  438. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  439. size_t nbytes, int min, int rsvd);
  440. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  441. size_t nbytes, int fips);
  442. static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
  443. static void push_to_pool(struct work_struct *work);
  444. static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
  445. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
  446. static struct entropy_store input_pool = {
  447. .poolinfo = &poolinfo_table[0],
  448. .name = "input",
  449. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  450. .pool = input_pool_data
  451. };
  452. static struct entropy_store blocking_pool = {
  453. .poolinfo = &poolinfo_table[1],
  454. .name = "blocking",
  455. .pull = &input_pool,
  456. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  457. .pool = blocking_pool_data,
  458. .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
  459. push_to_pool),
  460. };
  461. static __u32 const twist_table[8] = {
  462. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  463. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  464. /*
  465. * This function adds bytes into the entropy "pool". It does not
  466. * update the entropy estimate. The caller should call
  467. * credit_entropy_bits if this is appropriate.
  468. *
  469. * The pool is stirred with a primitive polynomial of the appropriate
  470. * degree, and then twisted. We twist by three bits at a time because
  471. * it's cheap to do so and helps slightly in the expected case where
  472. * the entropy is concentrated in the low-order bits.
  473. */
  474. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  475. int nbytes)
  476. {
  477. unsigned long i, tap1, tap2, tap3, tap4, tap5;
  478. int input_rotate;
  479. int wordmask = r->poolinfo->poolwords - 1;
  480. const char *bytes = in;
  481. __u32 w;
  482. tap1 = r->poolinfo->tap1;
  483. tap2 = r->poolinfo->tap2;
  484. tap3 = r->poolinfo->tap3;
  485. tap4 = r->poolinfo->tap4;
  486. tap5 = r->poolinfo->tap5;
  487. input_rotate = r->input_rotate;
  488. i = r->add_ptr;
  489. /* mix one byte at a time to simplify size handling and churn faster */
  490. while (nbytes--) {
  491. w = rol32(*bytes++, input_rotate);
  492. i = (i - 1) & wordmask;
  493. /* XOR in the various taps */
  494. w ^= r->pool[i];
  495. w ^= r->pool[(i + tap1) & wordmask];
  496. w ^= r->pool[(i + tap2) & wordmask];
  497. w ^= r->pool[(i + tap3) & wordmask];
  498. w ^= r->pool[(i + tap4) & wordmask];
  499. w ^= r->pool[(i + tap5) & wordmask];
  500. /* Mix the result back in with a twist */
  501. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  502. /*
  503. * Normally, we add 7 bits of rotation to the pool.
  504. * At the beginning of the pool, add an extra 7 bits
  505. * rotation, so that successive passes spread the
  506. * input bits across the pool evenly.
  507. */
  508. input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
  509. }
  510. r->input_rotate = input_rotate;
  511. r->add_ptr = i;
  512. }
  513. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  514. int nbytes)
  515. {
  516. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  517. _mix_pool_bytes(r, in, nbytes);
  518. }
  519. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  520. int nbytes)
  521. {
  522. unsigned long flags;
  523. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  524. spin_lock_irqsave(&r->lock, flags);
  525. _mix_pool_bytes(r, in, nbytes);
  526. spin_unlock_irqrestore(&r->lock, flags);
  527. }
  528. struct fast_pool {
  529. __u32 pool[4];
  530. unsigned long last;
  531. unsigned short reg_idx;
  532. unsigned char count;
  533. };
  534. /*
  535. * This is a fast mixing routine used by the interrupt randomness
  536. * collector. It's hardcoded for an 128 bit pool and assumes that any
  537. * locks that might be needed are taken by the caller.
  538. */
  539. static void fast_mix(struct fast_pool *f)
  540. {
  541. __u32 a = f->pool[0], b = f->pool[1];
  542. __u32 c = f->pool[2], d = f->pool[3];
  543. a += b; c += d;
  544. b = rol32(b, 6); d = rol32(d, 27);
  545. d ^= a; b ^= c;
  546. a += b; c += d;
  547. b = rol32(b, 16); d = rol32(d, 14);
  548. d ^= a; b ^= c;
  549. a += b; c += d;
  550. b = rol32(b, 6); d = rol32(d, 27);
  551. d ^= a; b ^= c;
  552. a += b; c += d;
  553. b = rol32(b, 16); d = rol32(d, 14);
  554. d ^= a; b ^= c;
  555. f->pool[0] = a; f->pool[1] = b;
  556. f->pool[2] = c; f->pool[3] = d;
  557. f->count++;
  558. }
  559. static void process_random_ready_list(void)
  560. {
  561. unsigned long flags;
  562. struct random_ready_callback *rdy, *tmp;
  563. spin_lock_irqsave(&random_ready_list_lock, flags);
  564. list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
  565. struct module *owner = rdy->owner;
  566. list_del_init(&rdy->list);
  567. rdy->func(rdy);
  568. module_put(owner);
  569. }
  570. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  571. }
  572. /*
  573. * Credit (or debit) the entropy store with n bits of entropy.
  574. * Use credit_entropy_bits_safe() if the value comes from userspace
  575. * or otherwise should be checked for extreme values.
  576. */
  577. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  578. {
  579. int entropy_count, orig;
  580. const int pool_size = r->poolinfo->poolfracbits;
  581. int nfrac = nbits << ENTROPY_SHIFT;
  582. if (!nbits)
  583. return;
  584. retry:
  585. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  586. if (nfrac < 0) {
  587. /* Debit */
  588. entropy_count += nfrac;
  589. } else {
  590. /*
  591. * Credit: we have to account for the possibility of
  592. * overwriting already present entropy. Even in the
  593. * ideal case of pure Shannon entropy, new contributions
  594. * approach the full value asymptotically:
  595. *
  596. * entropy <- entropy + (pool_size - entropy) *
  597. * (1 - exp(-add_entropy/pool_size))
  598. *
  599. * For add_entropy <= pool_size/2 then
  600. * (1 - exp(-add_entropy/pool_size)) >=
  601. * (add_entropy/pool_size)*0.7869...
  602. * so we can approximate the exponential with
  603. * 3/4*add_entropy/pool_size and still be on the
  604. * safe side by adding at most pool_size/2 at a time.
  605. *
  606. * The use of pool_size-2 in the while statement is to
  607. * prevent rounding artifacts from making the loop
  608. * arbitrarily long; this limits the loop to log2(pool_size)*2
  609. * turns no matter how large nbits is.
  610. */
  611. int pnfrac = nfrac;
  612. const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
  613. /* The +2 corresponds to the /4 in the denominator */
  614. do {
  615. unsigned int anfrac = min(pnfrac, pool_size/2);
  616. unsigned int add =
  617. ((pool_size - entropy_count)*anfrac*3) >> s;
  618. entropy_count += add;
  619. pnfrac -= anfrac;
  620. } while (unlikely(entropy_count < pool_size-2 && pnfrac));
  621. }
  622. if (unlikely(entropy_count < 0)) {
  623. pr_warn("random: negative entropy/overflow: pool %s count %d\n",
  624. r->name, entropy_count);
  625. WARN_ON(1);
  626. entropy_count = 0;
  627. } else if (entropy_count > pool_size)
  628. entropy_count = pool_size;
  629. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  630. goto retry;
  631. r->entropy_total += nbits;
  632. if (!r->initialized && r->entropy_total > 128) {
  633. r->initialized = 1;
  634. r->entropy_total = 0;
  635. }
  636. trace_credit_entropy_bits(r->name, nbits,
  637. entropy_count >> ENTROPY_SHIFT,
  638. r->entropy_total, _RET_IP_);
  639. if (r == &input_pool) {
  640. int entropy_bits = entropy_count >> ENTROPY_SHIFT;
  641. if (crng_init < 2 && entropy_bits >= 128) {
  642. crng_reseed(&primary_crng, r);
  643. entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
  644. }
  645. /* should we wake readers? */
  646. if (entropy_bits >= random_read_wakeup_bits) {
  647. wake_up_interruptible(&random_read_wait);
  648. kill_fasync(&fasync, SIGIO, POLL_IN);
  649. }
  650. /* If the input pool is getting full, send some
  651. * entropy to the blocking pool until it is 75% full.
  652. */
  653. if (entropy_bits > random_write_wakeup_bits &&
  654. r->initialized &&
  655. r->entropy_total >= 2*random_read_wakeup_bits) {
  656. struct entropy_store *other = &blocking_pool;
  657. if (other->entropy_count <=
  658. 3 * other->poolinfo->poolfracbits / 4) {
  659. schedule_work(&other->push_work);
  660. r->entropy_total = 0;
  661. }
  662. }
  663. }
  664. }
  665. static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
  666. {
  667. const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
  668. if (nbits < 0)
  669. return -EINVAL;
  670. /* Cap the value to avoid overflows */
  671. nbits = min(nbits, nbits_max);
  672. credit_entropy_bits(r, nbits);
  673. return 0;
  674. }
  675. /*********************************************************************
  676. *
  677. * CRNG using CHACHA20
  678. *
  679. *********************************************************************/
  680. #define CRNG_RESEED_INTERVAL (300*HZ)
  681. static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  682. #ifdef CONFIG_NUMA
  683. /*
  684. * Hack to deal with crazy userspace progams when they are all trying
  685. * to access /dev/urandom in parallel. The programs are almost
  686. * certainly doing something terribly wrong, but we'll work around
  687. * their brain damage.
  688. */
  689. static struct crng_state **crng_node_pool __read_mostly;
  690. #endif
  691. static void crng_initialize(struct crng_state *crng)
  692. {
  693. int i;
  694. unsigned long rv;
  695. memcpy(&crng->state[0], "expand 32-byte k", 16);
  696. if (crng == &primary_crng)
  697. _extract_entropy(&input_pool, &crng->state[4],
  698. sizeof(__u32) * 12, 0);
  699. else
  700. get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
  701. for (i = 4; i < 16; i++) {
  702. if (!arch_get_random_seed_long(&rv) &&
  703. !arch_get_random_long(&rv))
  704. rv = random_get_entropy();
  705. crng->state[i] ^= rv;
  706. }
  707. crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
  708. }
  709. static int crng_fast_load(const char *cp, size_t len)
  710. {
  711. unsigned long flags;
  712. char *p;
  713. if (!spin_trylock_irqsave(&primary_crng.lock, flags))
  714. return 0;
  715. if (crng_ready()) {
  716. spin_unlock_irqrestore(&primary_crng.lock, flags);
  717. return 0;
  718. }
  719. p = (unsigned char *) &primary_crng.state[4];
  720. while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
  721. p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
  722. cp++; crng_init_cnt++; len--;
  723. }
  724. if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
  725. crng_init = 1;
  726. wake_up_interruptible(&crng_init_wait);
  727. pr_notice("random: fast init done\n");
  728. }
  729. spin_unlock_irqrestore(&primary_crng.lock, flags);
  730. return 1;
  731. }
  732. static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
  733. {
  734. unsigned long flags;
  735. int i, num;
  736. union {
  737. __u8 block[CHACHA20_BLOCK_SIZE];
  738. __u32 key[8];
  739. } buf;
  740. if (r) {
  741. num = extract_entropy(r, &buf, 32, 16, 0);
  742. if (num == 0)
  743. return;
  744. } else {
  745. _extract_crng(&primary_crng, buf.block);
  746. _crng_backtrack_protect(&primary_crng, buf.block,
  747. CHACHA20_KEY_SIZE);
  748. }
  749. spin_lock_irqsave(&primary_crng.lock, flags);
  750. for (i = 0; i < 8; i++) {
  751. unsigned long rv;
  752. if (!arch_get_random_seed_long(&rv) &&
  753. !arch_get_random_long(&rv))
  754. rv = random_get_entropy();
  755. crng->state[i+4] ^= buf.key[i] ^ rv;
  756. }
  757. memzero_explicit(&buf, sizeof(buf));
  758. crng->init_time = jiffies;
  759. if (crng == &primary_crng && crng_init < 2) {
  760. crng_init = 2;
  761. process_random_ready_list();
  762. wake_up_interruptible(&crng_init_wait);
  763. pr_notice("random: crng init done\n");
  764. }
  765. spin_unlock_irqrestore(&primary_crng.lock, flags);
  766. }
  767. static inline void crng_wait_ready(void)
  768. {
  769. wait_event_interruptible(crng_init_wait, crng_ready());
  770. }
  771. static void _extract_crng(struct crng_state *crng,
  772. __u8 out[CHACHA20_BLOCK_SIZE])
  773. {
  774. unsigned long v, flags;
  775. if (crng_init > 1 &&
  776. time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
  777. crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
  778. spin_lock_irqsave(&crng->lock, flags);
  779. if (arch_get_random_long(&v))
  780. crng->state[14] ^= v;
  781. chacha20_block(&crng->state[0], out);
  782. if (crng->state[12] == 0)
  783. crng->state[13]++;
  784. spin_unlock_irqrestore(&crng->lock, flags);
  785. }
  786. static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
  787. {
  788. struct crng_state *crng = NULL;
  789. #ifdef CONFIG_NUMA
  790. if (crng_node_pool)
  791. crng = crng_node_pool[numa_node_id()];
  792. if (crng == NULL)
  793. #endif
  794. crng = &primary_crng;
  795. _extract_crng(crng, out);
  796. }
  797. /*
  798. * Use the leftover bytes from the CRNG block output (if there is
  799. * enough) to mutate the CRNG key to provide backtracking protection.
  800. */
  801. static void _crng_backtrack_protect(struct crng_state *crng,
  802. __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
  803. {
  804. unsigned long flags;
  805. __u32 *s, *d;
  806. int i;
  807. used = round_up(used, sizeof(__u32));
  808. if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
  809. extract_crng(tmp);
  810. used = 0;
  811. }
  812. spin_lock_irqsave(&crng->lock, flags);
  813. s = (__u32 *) &tmp[used];
  814. d = &crng->state[4];
  815. for (i=0; i < 8; i++)
  816. *d++ ^= *s++;
  817. spin_unlock_irqrestore(&crng->lock, flags);
  818. }
  819. static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
  820. {
  821. struct crng_state *crng = NULL;
  822. #ifdef CONFIG_NUMA
  823. if (crng_node_pool)
  824. crng = crng_node_pool[numa_node_id()];
  825. if (crng == NULL)
  826. #endif
  827. crng = &primary_crng;
  828. _crng_backtrack_protect(crng, tmp, used);
  829. }
  830. static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
  831. {
  832. ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
  833. __u8 tmp[CHACHA20_BLOCK_SIZE];
  834. int large_request = (nbytes > 256);
  835. while (nbytes) {
  836. if (large_request && need_resched()) {
  837. if (signal_pending(current)) {
  838. if (ret == 0)
  839. ret = -ERESTARTSYS;
  840. break;
  841. }
  842. schedule();
  843. }
  844. extract_crng(tmp);
  845. i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
  846. if (copy_to_user(buf, tmp, i)) {
  847. ret = -EFAULT;
  848. break;
  849. }
  850. nbytes -= i;
  851. buf += i;
  852. ret += i;
  853. }
  854. crng_backtrack_protect(tmp, i);
  855. /* Wipe data just written to memory */
  856. memzero_explicit(tmp, sizeof(tmp));
  857. return ret;
  858. }
  859. /*********************************************************************
  860. *
  861. * Entropy input management
  862. *
  863. *********************************************************************/
  864. /* There is one of these per entropy source */
  865. struct timer_rand_state {
  866. cycles_t last_time;
  867. long last_delta, last_delta2;
  868. unsigned dont_count_entropy:1;
  869. };
  870. #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
  871. /*
  872. * Add device- or boot-specific data to the input pool to help
  873. * initialize it.
  874. *
  875. * None of this adds any entropy; it is meant to avoid the problem of
  876. * the entropy pool having similar initial state across largely
  877. * identical devices.
  878. */
  879. void add_device_randomness(const void *buf, unsigned int size)
  880. {
  881. unsigned long time = random_get_entropy() ^ jiffies;
  882. unsigned long flags;
  883. trace_add_device_randomness(size, _RET_IP_);
  884. spin_lock_irqsave(&input_pool.lock, flags);
  885. _mix_pool_bytes(&input_pool, buf, size);
  886. _mix_pool_bytes(&input_pool, &time, sizeof(time));
  887. spin_unlock_irqrestore(&input_pool.lock, flags);
  888. }
  889. EXPORT_SYMBOL(add_device_randomness);
  890. static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
  891. /*
  892. * This function adds entropy to the entropy "pool" by using timing
  893. * delays. It uses the timer_rand_state structure to make an estimate
  894. * of how many bits of entropy this call has added to the pool.
  895. *
  896. * The number "num" is also added to the pool - it should somehow describe
  897. * the type of event which just happened. This is currently 0-255 for
  898. * keyboard scan codes, and 256 upwards for interrupts.
  899. *
  900. */
  901. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  902. {
  903. struct entropy_store *r;
  904. struct {
  905. long jiffies;
  906. unsigned cycles;
  907. unsigned num;
  908. } sample;
  909. long delta, delta2, delta3;
  910. preempt_disable();
  911. sample.jiffies = jiffies;
  912. sample.cycles = random_get_entropy();
  913. sample.num = num;
  914. r = &input_pool;
  915. mix_pool_bytes(r, &sample, sizeof(sample));
  916. /*
  917. * Calculate number of bits of randomness we probably added.
  918. * We take into account the first, second and third-order deltas
  919. * in order to make our estimate.
  920. */
  921. if (!state->dont_count_entropy) {
  922. delta = sample.jiffies - state->last_time;
  923. state->last_time = sample.jiffies;
  924. delta2 = delta - state->last_delta;
  925. state->last_delta = delta;
  926. delta3 = delta2 - state->last_delta2;
  927. state->last_delta2 = delta2;
  928. if (delta < 0)
  929. delta = -delta;
  930. if (delta2 < 0)
  931. delta2 = -delta2;
  932. if (delta3 < 0)
  933. delta3 = -delta3;
  934. if (delta > delta2)
  935. delta = delta2;
  936. if (delta > delta3)
  937. delta = delta3;
  938. /*
  939. * delta is now minimum absolute delta.
  940. * Round down by 1 bit on general principles,
  941. * and limit entropy entimate to 12 bits.
  942. */
  943. credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
  944. }
  945. preempt_enable();
  946. }
  947. void add_input_randomness(unsigned int type, unsigned int code,
  948. unsigned int value)
  949. {
  950. static unsigned char last_value;
  951. /* ignore autorepeat and the like */
  952. if (value == last_value)
  953. return;
  954. last_value = value;
  955. add_timer_randomness(&input_timer_state,
  956. (type << 4) ^ code ^ (code >> 4) ^ value);
  957. trace_add_input_randomness(ENTROPY_BITS(&input_pool));
  958. }
  959. EXPORT_SYMBOL_GPL(add_input_randomness);
  960. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  961. #ifdef ADD_INTERRUPT_BENCH
  962. static unsigned long avg_cycles, avg_deviation;
  963. #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
  964. #define FIXED_1_2 (1 << (AVG_SHIFT-1))
  965. static void add_interrupt_bench(cycles_t start)
  966. {
  967. long delta = random_get_entropy() - start;
  968. /* Use a weighted moving average */
  969. delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
  970. avg_cycles += delta;
  971. /* And average deviation */
  972. delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
  973. avg_deviation += delta;
  974. }
  975. #else
  976. #define add_interrupt_bench(x)
  977. #endif
  978. static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
  979. {
  980. __u32 *ptr = (__u32 *) regs;
  981. if (regs == NULL)
  982. return 0;
  983. if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
  984. f->reg_idx = 0;
  985. return *(ptr + f->reg_idx++);
  986. }
  987. void add_interrupt_randomness(int irq, int irq_flags)
  988. {
  989. struct entropy_store *r;
  990. struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
  991. struct pt_regs *regs = get_irq_regs();
  992. unsigned long now = jiffies;
  993. cycles_t cycles = random_get_entropy();
  994. __u32 c_high, j_high;
  995. __u64 ip;
  996. unsigned long seed;
  997. int credit = 0;
  998. if (cycles == 0)
  999. cycles = get_reg(fast_pool, regs);
  1000. c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
  1001. j_high = (sizeof(now) > 4) ? now >> 32 : 0;
  1002. fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
  1003. fast_pool->pool[1] ^= now ^ c_high;
  1004. ip = regs ? instruction_pointer(regs) : _RET_IP_;
  1005. fast_pool->pool[2] ^= ip;
  1006. fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
  1007. get_reg(fast_pool, regs);
  1008. fast_mix(fast_pool);
  1009. add_interrupt_bench(cycles);
  1010. if (!crng_ready()) {
  1011. if ((fast_pool->count >= 64) &&
  1012. crng_fast_load((char *) fast_pool->pool,
  1013. sizeof(fast_pool->pool))) {
  1014. fast_pool->count = 0;
  1015. fast_pool->last = now;
  1016. }
  1017. return;
  1018. }
  1019. if ((fast_pool->count < 64) &&
  1020. !time_after(now, fast_pool->last + HZ))
  1021. return;
  1022. r = &input_pool;
  1023. if (!spin_trylock(&r->lock))
  1024. return;
  1025. fast_pool->last = now;
  1026. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
  1027. /*
  1028. * If we have architectural seed generator, produce a seed and
  1029. * add it to the pool. For the sake of paranoia don't let the
  1030. * architectural seed generator dominate the input from the
  1031. * interrupt noise.
  1032. */
  1033. if (arch_get_random_seed_long(&seed)) {
  1034. __mix_pool_bytes(r, &seed, sizeof(seed));
  1035. credit = 1;
  1036. }
  1037. spin_unlock(&r->lock);
  1038. fast_pool->count = 0;
  1039. /* award one bit for the contents of the fast pool */
  1040. credit_entropy_bits(r, credit + 1);
  1041. }
  1042. EXPORT_SYMBOL_GPL(add_interrupt_randomness);
  1043. #ifdef CONFIG_BLOCK
  1044. void add_disk_randomness(struct gendisk *disk)
  1045. {
  1046. if (!disk || !disk->random)
  1047. return;
  1048. /* first major is 1, so we get >= 0x200 here */
  1049. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  1050. trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
  1051. }
  1052. EXPORT_SYMBOL_GPL(add_disk_randomness);
  1053. #endif
  1054. /*********************************************************************
  1055. *
  1056. * Entropy extraction routines
  1057. *
  1058. *********************************************************************/
  1059. /*
  1060. * This utility inline function is responsible for transferring entropy
  1061. * from the primary pool to the secondary extraction pool. We make
  1062. * sure we pull enough for a 'catastrophic reseed'.
  1063. */
  1064. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
  1065. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1066. {
  1067. if (!r->pull ||
  1068. r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
  1069. r->entropy_count > r->poolinfo->poolfracbits)
  1070. return;
  1071. _xfer_secondary_pool(r, nbytes);
  1072. }
  1073. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1074. {
  1075. __u32 tmp[OUTPUT_POOL_WORDS];
  1076. int bytes = nbytes;
  1077. /* pull at least as much as a wakeup */
  1078. bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
  1079. /* but never more than the buffer size */
  1080. bytes = min_t(int, bytes, sizeof(tmp));
  1081. trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
  1082. ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
  1083. bytes = extract_entropy(r->pull, tmp, bytes,
  1084. random_read_wakeup_bits / 8, 0);
  1085. mix_pool_bytes(r, tmp, bytes);
  1086. credit_entropy_bits(r, bytes*8);
  1087. }
  1088. /*
  1089. * Used as a workqueue function so that when the input pool is getting
  1090. * full, we can "spill over" some entropy to the output pools. That
  1091. * way the output pools can store some of the excess entropy instead
  1092. * of letting it go to waste.
  1093. */
  1094. static void push_to_pool(struct work_struct *work)
  1095. {
  1096. struct entropy_store *r = container_of(work, struct entropy_store,
  1097. push_work);
  1098. BUG_ON(!r);
  1099. _xfer_secondary_pool(r, random_read_wakeup_bits/8);
  1100. trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
  1101. r->pull->entropy_count >> ENTROPY_SHIFT);
  1102. }
  1103. /*
  1104. * This function decides how many bytes to actually take from the
  1105. * given pool, and also debits the entropy count accordingly.
  1106. */
  1107. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  1108. int reserved)
  1109. {
  1110. int entropy_count, orig, have_bytes;
  1111. size_t ibytes, nfrac;
  1112. BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
  1113. /* Can we pull enough? */
  1114. retry:
  1115. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  1116. ibytes = nbytes;
  1117. /* never pull more than available */
  1118. have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
  1119. if ((have_bytes -= reserved) < 0)
  1120. have_bytes = 0;
  1121. ibytes = min_t(size_t, ibytes, have_bytes);
  1122. if (ibytes < min)
  1123. ibytes = 0;
  1124. if (unlikely(entropy_count < 0)) {
  1125. pr_warn("random: negative entropy count: pool %s count %d\n",
  1126. r->name, entropy_count);
  1127. WARN_ON(1);
  1128. entropy_count = 0;
  1129. }
  1130. nfrac = ibytes << (ENTROPY_SHIFT + 3);
  1131. if ((size_t) entropy_count > nfrac)
  1132. entropy_count -= nfrac;
  1133. else
  1134. entropy_count = 0;
  1135. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  1136. goto retry;
  1137. trace_debit_entropy(r->name, 8 * ibytes);
  1138. if (ibytes &&
  1139. (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
  1140. wake_up_interruptible(&random_write_wait);
  1141. kill_fasync(&fasync, SIGIO, POLL_OUT);
  1142. }
  1143. return ibytes;
  1144. }
  1145. /*
  1146. * This function does the actual extraction for extract_entropy and
  1147. * extract_entropy_user.
  1148. *
  1149. * Note: we assume that .poolwords is a multiple of 16 words.
  1150. */
  1151. static void extract_buf(struct entropy_store *r, __u8 *out)
  1152. {
  1153. int i;
  1154. union {
  1155. __u32 w[5];
  1156. unsigned long l[LONGS(20)];
  1157. } hash;
  1158. __u32 workspace[SHA_WORKSPACE_WORDS];
  1159. unsigned long flags;
  1160. /*
  1161. * If we have an architectural hardware random number
  1162. * generator, use it for SHA's initial vector
  1163. */
  1164. sha_init(hash.w);
  1165. for (i = 0; i < LONGS(20); i++) {
  1166. unsigned long v;
  1167. if (!arch_get_random_long(&v))
  1168. break;
  1169. hash.l[i] = v;
  1170. }
  1171. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  1172. spin_lock_irqsave(&r->lock, flags);
  1173. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  1174. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  1175. /*
  1176. * We mix the hash back into the pool to prevent backtracking
  1177. * attacks (where the attacker knows the state of the pool
  1178. * plus the current outputs, and attempts to find previous
  1179. * ouputs), unless the hash function can be inverted. By
  1180. * mixing at least a SHA1 worth of hash data back, we make
  1181. * brute-forcing the feedback as hard as brute-forcing the
  1182. * hash.
  1183. */
  1184. __mix_pool_bytes(r, hash.w, sizeof(hash.w));
  1185. spin_unlock_irqrestore(&r->lock, flags);
  1186. memzero_explicit(workspace, sizeof(workspace));
  1187. /*
  1188. * In case the hash function has some recognizable output
  1189. * pattern, we fold it in half. Thus, we always feed back
  1190. * twice as much data as we output.
  1191. */
  1192. hash.w[0] ^= hash.w[3];
  1193. hash.w[1] ^= hash.w[4];
  1194. hash.w[2] ^= rol32(hash.w[2], 16);
  1195. memcpy(out, &hash, EXTRACT_SIZE);
  1196. memzero_explicit(&hash, sizeof(hash));
  1197. }
  1198. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  1199. size_t nbytes, int fips)
  1200. {
  1201. ssize_t ret = 0, i;
  1202. __u8 tmp[EXTRACT_SIZE];
  1203. unsigned long flags;
  1204. while (nbytes) {
  1205. extract_buf(r, tmp);
  1206. if (fips) {
  1207. spin_lock_irqsave(&r->lock, flags);
  1208. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  1209. panic("Hardware RNG duplicated output!\n");
  1210. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1211. spin_unlock_irqrestore(&r->lock, flags);
  1212. }
  1213. i = min_t(int, nbytes, EXTRACT_SIZE);
  1214. memcpy(buf, tmp, i);
  1215. nbytes -= i;
  1216. buf += i;
  1217. ret += i;
  1218. }
  1219. /* Wipe data just returned from memory */
  1220. memzero_explicit(tmp, sizeof(tmp));
  1221. return ret;
  1222. }
  1223. /*
  1224. * This function extracts randomness from the "entropy pool", and
  1225. * returns it in a buffer.
  1226. *
  1227. * The min parameter specifies the minimum amount we can pull before
  1228. * failing to avoid races that defeat catastrophic reseeding while the
  1229. * reserved parameter indicates how much entropy we must leave in the
  1230. * pool after each pull to avoid starving other readers.
  1231. */
  1232. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  1233. size_t nbytes, int min, int reserved)
  1234. {
  1235. __u8 tmp[EXTRACT_SIZE];
  1236. unsigned long flags;
  1237. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  1238. if (fips_enabled) {
  1239. spin_lock_irqsave(&r->lock, flags);
  1240. if (!r->last_data_init) {
  1241. r->last_data_init = 1;
  1242. spin_unlock_irqrestore(&r->lock, flags);
  1243. trace_extract_entropy(r->name, EXTRACT_SIZE,
  1244. ENTROPY_BITS(r), _RET_IP_);
  1245. xfer_secondary_pool(r, EXTRACT_SIZE);
  1246. extract_buf(r, tmp);
  1247. spin_lock_irqsave(&r->lock, flags);
  1248. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1249. }
  1250. spin_unlock_irqrestore(&r->lock, flags);
  1251. }
  1252. trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1253. xfer_secondary_pool(r, nbytes);
  1254. nbytes = account(r, nbytes, min, reserved);
  1255. return _extract_entropy(r, buf, nbytes, fips_enabled);
  1256. }
  1257. /*
  1258. * This function extracts randomness from the "entropy pool", and
  1259. * returns it in a userspace buffer.
  1260. */
  1261. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  1262. size_t nbytes)
  1263. {
  1264. ssize_t ret = 0, i;
  1265. __u8 tmp[EXTRACT_SIZE];
  1266. int large_request = (nbytes > 256);
  1267. trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1268. xfer_secondary_pool(r, nbytes);
  1269. nbytes = account(r, nbytes, 0, 0);
  1270. while (nbytes) {
  1271. if (large_request && need_resched()) {
  1272. if (signal_pending(current)) {
  1273. if (ret == 0)
  1274. ret = -ERESTARTSYS;
  1275. break;
  1276. }
  1277. schedule();
  1278. }
  1279. extract_buf(r, tmp);
  1280. i = min_t(int, nbytes, EXTRACT_SIZE);
  1281. if (copy_to_user(buf, tmp, i)) {
  1282. ret = -EFAULT;
  1283. break;
  1284. }
  1285. nbytes -= i;
  1286. buf += i;
  1287. ret += i;
  1288. }
  1289. /* Wipe data just returned from memory */
  1290. memzero_explicit(tmp, sizeof(tmp));
  1291. return ret;
  1292. }
  1293. /*
  1294. * This function is the exported kernel interface. It returns some
  1295. * number of good random numbers, suitable for key generation, seeding
  1296. * TCP sequence numbers, etc. It does not rely on the hardware random
  1297. * number generator. For random bytes direct from the hardware RNG
  1298. * (when available), use get_random_bytes_arch().
  1299. */
  1300. void get_random_bytes(void *buf, int nbytes)
  1301. {
  1302. __u8 tmp[CHACHA20_BLOCK_SIZE];
  1303. #if DEBUG_RANDOM_BOOT > 0
  1304. if (!crng_ready())
  1305. printk(KERN_NOTICE "random: %pF get_random_bytes called "
  1306. "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
  1307. #endif
  1308. trace_get_random_bytes(nbytes, _RET_IP_);
  1309. while (nbytes >= CHACHA20_BLOCK_SIZE) {
  1310. extract_crng(buf);
  1311. buf += CHACHA20_BLOCK_SIZE;
  1312. nbytes -= CHACHA20_BLOCK_SIZE;
  1313. }
  1314. if (nbytes > 0) {
  1315. extract_crng(tmp);
  1316. memcpy(buf, tmp, nbytes);
  1317. crng_backtrack_protect(tmp, nbytes);
  1318. } else
  1319. crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
  1320. memzero_explicit(tmp, sizeof(tmp));
  1321. }
  1322. EXPORT_SYMBOL(get_random_bytes);
  1323. /*
  1324. * Add a callback function that will be invoked when the nonblocking
  1325. * pool is initialised.
  1326. *
  1327. * returns: 0 if callback is successfully added
  1328. * -EALREADY if pool is already initialised (callback not called)
  1329. * -ENOENT if module for callback is not alive
  1330. */
  1331. int add_random_ready_callback(struct random_ready_callback *rdy)
  1332. {
  1333. struct module *owner;
  1334. unsigned long flags;
  1335. int err = -EALREADY;
  1336. if (crng_ready())
  1337. return err;
  1338. owner = rdy->owner;
  1339. if (!try_module_get(owner))
  1340. return -ENOENT;
  1341. spin_lock_irqsave(&random_ready_list_lock, flags);
  1342. if (crng_ready())
  1343. goto out;
  1344. owner = NULL;
  1345. list_add(&rdy->list, &random_ready_list);
  1346. err = 0;
  1347. out:
  1348. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1349. module_put(owner);
  1350. return err;
  1351. }
  1352. EXPORT_SYMBOL(add_random_ready_callback);
  1353. /*
  1354. * Delete a previously registered readiness callback function.
  1355. */
  1356. void del_random_ready_callback(struct random_ready_callback *rdy)
  1357. {
  1358. unsigned long flags;
  1359. struct module *owner = NULL;
  1360. spin_lock_irqsave(&random_ready_list_lock, flags);
  1361. if (!list_empty(&rdy->list)) {
  1362. list_del_init(&rdy->list);
  1363. owner = rdy->owner;
  1364. }
  1365. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1366. module_put(owner);
  1367. }
  1368. EXPORT_SYMBOL(del_random_ready_callback);
  1369. /*
  1370. * This function will use the architecture-specific hardware random
  1371. * number generator if it is available. The arch-specific hw RNG will
  1372. * almost certainly be faster than what we can do in software, but it
  1373. * is impossible to verify that it is implemented securely (as
  1374. * opposed, to, say, the AES encryption of a sequence number using a
  1375. * key known by the NSA). So it's useful if we need the speed, but
  1376. * only if we're willing to trust the hardware manufacturer not to
  1377. * have put in a back door.
  1378. */
  1379. void get_random_bytes_arch(void *buf, int nbytes)
  1380. {
  1381. char *p = buf;
  1382. trace_get_random_bytes_arch(nbytes, _RET_IP_);
  1383. while (nbytes) {
  1384. unsigned long v;
  1385. int chunk = min(nbytes, (int)sizeof(unsigned long));
  1386. if (!arch_get_random_long(&v))
  1387. break;
  1388. memcpy(p, &v, chunk);
  1389. p += chunk;
  1390. nbytes -= chunk;
  1391. }
  1392. if (nbytes)
  1393. get_random_bytes(p, nbytes);
  1394. }
  1395. EXPORT_SYMBOL(get_random_bytes_arch);
  1396. /*
  1397. * init_std_data - initialize pool with system data
  1398. *
  1399. * @r: pool to initialize
  1400. *
  1401. * This function clears the pool's entropy count and mixes some system
  1402. * data into the pool to prepare it for use. The pool is not cleared
  1403. * as that can only decrease the entropy in the pool.
  1404. */
  1405. static void init_std_data(struct entropy_store *r)
  1406. {
  1407. int i;
  1408. ktime_t now = ktime_get_real();
  1409. unsigned long rv;
  1410. r->last_pulled = jiffies;
  1411. mix_pool_bytes(r, &now, sizeof(now));
  1412. for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
  1413. if (!arch_get_random_seed_long(&rv) &&
  1414. !arch_get_random_long(&rv))
  1415. rv = random_get_entropy();
  1416. mix_pool_bytes(r, &rv, sizeof(rv));
  1417. }
  1418. mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
  1419. }
  1420. /*
  1421. * Note that setup_arch() may call add_device_randomness()
  1422. * long before we get here. This allows seeding of the pools
  1423. * with some platform dependent data very early in the boot
  1424. * process. But it limits our options here. We must use
  1425. * statically allocated structures that already have all
  1426. * initializations complete at compile time. We should also
  1427. * take care not to overwrite the precious per platform data
  1428. * we were given.
  1429. */
  1430. static int rand_initialize(void)
  1431. {
  1432. #ifdef CONFIG_NUMA
  1433. int i;
  1434. struct crng_state *crng;
  1435. struct crng_state **pool;
  1436. #endif
  1437. init_std_data(&input_pool);
  1438. init_std_data(&blocking_pool);
  1439. crng_initialize(&primary_crng);
  1440. #ifdef CONFIG_NUMA
  1441. pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
  1442. for_each_online_node(i) {
  1443. crng = kmalloc_node(sizeof(struct crng_state),
  1444. GFP_KERNEL | __GFP_NOFAIL, i);
  1445. spin_lock_init(&crng->lock);
  1446. crng_initialize(crng);
  1447. pool[i] = crng;
  1448. }
  1449. mb();
  1450. crng_node_pool = pool;
  1451. #endif
  1452. return 0;
  1453. }
  1454. early_initcall(rand_initialize);
  1455. #ifdef CONFIG_BLOCK
  1456. void rand_initialize_disk(struct gendisk *disk)
  1457. {
  1458. struct timer_rand_state *state;
  1459. /*
  1460. * If kzalloc returns null, we just won't use that entropy
  1461. * source.
  1462. */
  1463. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1464. if (state) {
  1465. state->last_time = INITIAL_JIFFIES;
  1466. disk->random = state;
  1467. }
  1468. }
  1469. #endif
  1470. static ssize_t
  1471. _random_read(int nonblock, char __user *buf, size_t nbytes)
  1472. {
  1473. ssize_t n;
  1474. if (nbytes == 0)
  1475. return 0;
  1476. nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
  1477. while (1) {
  1478. n = extract_entropy_user(&blocking_pool, buf, nbytes);
  1479. if (n < 0)
  1480. return n;
  1481. trace_random_read(n*8, (nbytes-n)*8,
  1482. ENTROPY_BITS(&blocking_pool),
  1483. ENTROPY_BITS(&input_pool));
  1484. if (n > 0)
  1485. return n;
  1486. /* Pool is (near) empty. Maybe wait and retry. */
  1487. if (nonblock)
  1488. return -EAGAIN;
  1489. wait_event_interruptible(random_read_wait,
  1490. ENTROPY_BITS(&input_pool) >=
  1491. random_read_wakeup_bits);
  1492. if (signal_pending(current))
  1493. return -ERESTARTSYS;
  1494. }
  1495. }
  1496. static ssize_t
  1497. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1498. {
  1499. return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
  1500. }
  1501. static ssize_t
  1502. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1503. {
  1504. unsigned long flags;
  1505. static int maxwarn = 10;
  1506. int ret;
  1507. if (!crng_ready() && maxwarn > 0) {
  1508. maxwarn--;
  1509. printk(KERN_NOTICE "random: %s: uninitialized urandom read "
  1510. "(%zd bytes read)\n",
  1511. current->comm, nbytes);
  1512. spin_lock_irqsave(&primary_crng.lock, flags);
  1513. crng_init_cnt = 0;
  1514. spin_unlock_irqrestore(&primary_crng.lock, flags);
  1515. }
  1516. nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
  1517. ret = extract_crng_user(buf, nbytes);
  1518. trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
  1519. return ret;
  1520. }
  1521. static unsigned int
  1522. random_poll(struct file *file, poll_table * wait)
  1523. {
  1524. unsigned int mask;
  1525. poll_wait(file, &random_read_wait, wait);
  1526. poll_wait(file, &random_write_wait, wait);
  1527. mask = 0;
  1528. if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
  1529. mask |= POLLIN | POLLRDNORM;
  1530. if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
  1531. mask |= POLLOUT | POLLWRNORM;
  1532. return mask;
  1533. }
  1534. static int
  1535. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1536. {
  1537. size_t bytes;
  1538. __u32 buf[16];
  1539. const char __user *p = buffer;
  1540. while (count > 0) {
  1541. bytes = min(count, sizeof(buf));
  1542. if (copy_from_user(&buf, p, bytes))
  1543. return -EFAULT;
  1544. count -= bytes;
  1545. p += bytes;
  1546. mix_pool_bytes(r, buf, bytes);
  1547. cond_resched();
  1548. }
  1549. return 0;
  1550. }
  1551. static ssize_t random_write(struct file *file, const char __user *buffer,
  1552. size_t count, loff_t *ppos)
  1553. {
  1554. size_t ret;
  1555. ret = write_pool(&input_pool, buffer, count);
  1556. if (ret)
  1557. return ret;
  1558. return (ssize_t)count;
  1559. }
  1560. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1561. {
  1562. int size, ent_count;
  1563. int __user *p = (int __user *)arg;
  1564. int retval;
  1565. switch (cmd) {
  1566. case RNDGETENTCNT:
  1567. /* inherently racy, no point locking */
  1568. ent_count = ENTROPY_BITS(&input_pool);
  1569. if (put_user(ent_count, p))
  1570. return -EFAULT;
  1571. return 0;
  1572. case RNDADDTOENTCNT:
  1573. if (!capable(CAP_SYS_ADMIN))
  1574. return -EPERM;
  1575. if (get_user(ent_count, p))
  1576. return -EFAULT;
  1577. return credit_entropy_bits_safe(&input_pool, ent_count);
  1578. case RNDADDENTROPY:
  1579. if (!capable(CAP_SYS_ADMIN))
  1580. return -EPERM;
  1581. if (get_user(ent_count, p++))
  1582. return -EFAULT;
  1583. if (ent_count < 0)
  1584. return -EINVAL;
  1585. if (get_user(size, p++))
  1586. return -EFAULT;
  1587. retval = write_pool(&input_pool, (const char __user *)p,
  1588. size);
  1589. if (retval < 0)
  1590. return retval;
  1591. return credit_entropy_bits_safe(&input_pool, ent_count);
  1592. case RNDZAPENTCNT:
  1593. case RNDCLEARPOOL:
  1594. /*
  1595. * Clear the entropy pool counters. We no longer clear
  1596. * the entropy pool, as that's silly.
  1597. */
  1598. if (!capable(CAP_SYS_ADMIN))
  1599. return -EPERM;
  1600. input_pool.entropy_count = 0;
  1601. blocking_pool.entropy_count = 0;
  1602. return 0;
  1603. default:
  1604. return -EINVAL;
  1605. }
  1606. }
  1607. static int random_fasync(int fd, struct file *filp, int on)
  1608. {
  1609. return fasync_helper(fd, filp, on, &fasync);
  1610. }
  1611. const struct file_operations random_fops = {
  1612. .read = random_read,
  1613. .write = random_write,
  1614. .poll = random_poll,
  1615. .unlocked_ioctl = random_ioctl,
  1616. .fasync = random_fasync,
  1617. .llseek = noop_llseek,
  1618. };
  1619. const struct file_operations urandom_fops = {
  1620. .read = urandom_read,
  1621. .write = random_write,
  1622. .unlocked_ioctl = random_ioctl,
  1623. .fasync = random_fasync,
  1624. .llseek = noop_llseek,
  1625. };
  1626. SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
  1627. unsigned int, flags)
  1628. {
  1629. if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
  1630. return -EINVAL;
  1631. if (count > INT_MAX)
  1632. count = INT_MAX;
  1633. if (flags & GRND_RANDOM)
  1634. return _random_read(flags & GRND_NONBLOCK, buf, count);
  1635. if (!crng_ready()) {
  1636. if (flags & GRND_NONBLOCK)
  1637. return -EAGAIN;
  1638. crng_wait_ready();
  1639. if (signal_pending(current))
  1640. return -ERESTARTSYS;
  1641. }
  1642. return urandom_read(NULL, buf, count, NULL);
  1643. }
  1644. /********************************************************************
  1645. *
  1646. * Sysctl interface
  1647. *
  1648. ********************************************************************/
  1649. #ifdef CONFIG_SYSCTL
  1650. #include <linux/sysctl.h>
  1651. static int min_read_thresh = 8, min_write_thresh;
  1652. static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
  1653. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1654. static int random_min_urandom_seed = 60;
  1655. static char sysctl_bootid[16];
  1656. /*
  1657. * This function is used to return both the bootid UUID, and random
  1658. * UUID. The difference is in whether table->data is NULL; if it is,
  1659. * then a new UUID is generated and returned to the user.
  1660. *
  1661. * If the user accesses this via the proc interface, the UUID will be
  1662. * returned as an ASCII string in the standard UUID format; if via the
  1663. * sysctl system call, as 16 bytes of binary data.
  1664. */
  1665. static int proc_do_uuid(struct ctl_table *table, int write,
  1666. void __user *buffer, size_t *lenp, loff_t *ppos)
  1667. {
  1668. struct ctl_table fake_table;
  1669. unsigned char buf[64], tmp_uuid[16], *uuid;
  1670. uuid = table->data;
  1671. if (!uuid) {
  1672. uuid = tmp_uuid;
  1673. generate_random_uuid(uuid);
  1674. } else {
  1675. static DEFINE_SPINLOCK(bootid_spinlock);
  1676. spin_lock(&bootid_spinlock);
  1677. if (!uuid[8])
  1678. generate_random_uuid(uuid);
  1679. spin_unlock(&bootid_spinlock);
  1680. }
  1681. sprintf(buf, "%pU", uuid);
  1682. fake_table.data = buf;
  1683. fake_table.maxlen = sizeof(buf);
  1684. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1685. }
  1686. /*
  1687. * Return entropy available scaled to integral bits
  1688. */
  1689. static int proc_do_entropy(struct ctl_table *table, int write,
  1690. void __user *buffer, size_t *lenp, loff_t *ppos)
  1691. {
  1692. struct ctl_table fake_table;
  1693. int entropy_count;
  1694. entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
  1695. fake_table.data = &entropy_count;
  1696. fake_table.maxlen = sizeof(entropy_count);
  1697. return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
  1698. }
  1699. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1700. extern struct ctl_table random_table[];
  1701. struct ctl_table random_table[] = {
  1702. {
  1703. .procname = "poolsize",
  1704. .data = &sysctl_poolsize,
  1705. .maxlen = sizeof(int),
  1706. .mode = 0444,
  1707. .proc_handler = proc_dointvec,
  1708. },
  1709. {
  1710. .procname = "entropy_avail",
  1711. .maxlen = sizeof(int),
  1712. .mode = 0444,
  1713. .proc_handler = proc_do_entropy,
  1714. .data = &input_pool.entropy_count,
  1715. },
  1716. {
  1717. .procname = "read_wakeup_threshold",
  1718. .data = &random_read_wakeup_bits,
  1719. .maxlen = sizeof(int),
  1720. .mode = 0644,
  1721. .proc_handler = proc_dointvec_minmax,
  1722. .extra1 = &min_read_thresh,
  1723. .extra2 = &max_read_thresh,
  1724. },
  1725. {
  1726. .procname = "write_wakeup_threshold",
  1727. .data = &random_write_wakeup_bits,
  1728. .maxlen = sizeof(int),
  1729. .mode = 0644,
  1730. .proc_handler = proc_dointvec_minmax,
  1731. .extra1 = &min_write_thresh,
  1732. .extra2 = &max_write_thresh,
  1733. },
  1734. {
  1735. .procname = "urandom_min_reseed_secs",
  1736. .data = &random_min_urandom_seed,
  1737. .maxlen = sizeof(int),
  1738. .mode = 0644,
  1739. .proc_handler = proc_dointvec,
  1740. },
  1741. {
  1742. .procname = "boot_id",
  1743. .data = &sysctl_bootid,
  1744. .maxlen = 16,
  1745. .mode = 0444,
  1746. .proc_handler = proc_do_uuid,
  1747. },
  1748. {
  1749. .procname = "uuid",
  1750. .maxlen = 16,
  1751. .mode = 0444,
  1752. .proc_handler = proc_do_uuid,
  1753. },
  1754. #ifdef ADD_INTERRUPT_BENCH
  1755. {
  1756. .procname = "add_interrupt_avg_cycles",
  1757. .data = &avg_cycles,
  1758. .maxlen = sizeof(avg_cycles),
  1759. .mode = 0444,
  1760. .proc_handler = proc_doulongvec_minmax,
  1761. },
  1762. {
  1763. .procname = "add_interrupt_avg_deviation",
  1764. .data = &avg_deviation,
  1765. .maxlen = sizeof(avg_deviation),
  1766. .mode = 0444,
  1767. .proc_handler = proc_doulongvec_minmax,
  1768. },
  1769. #endif
  1770. { }
  1771. };
  1772. #endif /* CONFIG_SYSCTL */
  1773. struct batched_entropy {
  1774. union {
  1775. u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
  1776. u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
  1777. };
  1778. unsigned int position;
  1779. };
  1780. /*
  1781. * Get a random word for internal kernel use only. The quality of the random
  1782. * number is either as good as RDRAND or as good as /dev/urandom, with the
  1783. * goal of being quite fast and not depleting entropy.
  1784. */
  1785. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
  1786. u64 get_random_u64(void)
  1787. {
  1788. u64 ret;
  1789. struct batched_entropy *batch;
  1790. #if BITS_PER_LONG == 64
  1791. if (arch_get_random_long((unsigned long *)&ret))
  1792. return ret;
  1793. #else
  1794. if (arch_get_random_long((unsigned long *)&ret) &&
  1795. arch_get_random_long((unsigned long *)&ret + 1))
  1796. return ret;
  1797. #endif
  1798. batch = &get_cpu_var(batched_entropy_u64);
  1799. if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
  1800. extract_crng((u8 *)batch->entropy_u64);
  1801. batch->position = 0;
  1802. }
  1803. ret = batch->entropy_u64[batch->position++];
  1804. put_cpu_var(batched_entropy_u64);
  1805. return ret;
  1806. }
  1807. EXPORT_SYMBOL(get_random_u64);
  1808. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
  1809. u32 get_random_u32(void)
  1810. {
  1811. u32 ret;
  1812. struct batched_entropy *batch;
  1813. if (arch_get_random_int(&ret))
  1814. return ret;
  1815. batch = &get_cpu_var(batched_entropy_u32);
  1816. if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
  1817. extract_crng((u8 *)batch->entropy_u32);
  1818. batch->position = 0;
  1819. }
  1820. ret = batch->entropy_u32[batch->position++];
  1821. put_cpu_var(batched_entropy_u32);
  1822. return ret;
  1823. }
  1824. EXPORT_SYMBOL(get_random_u32);
  1825. /**
  1826. * randomize_page - Generate a random, page aligned address
  1827. * @start: The smallest acceptable address the caller will take.
  1828. * @range: The size of the area, starting at @start, within which the
  1829. * random address must fall.
  1830. *
  1831. * If @start + @range would overflow, @range is capped.
  1832. *
  1833. * NOTE: Historical use of randomize_range, which this replaces, presumed that
  1834. * @start was already page aligned. We now align it regardless.
  1835. *
  1836. * Return: A page aligned address within [start, start + range). On error,
  1837. * @start is returned.
  1838. */
  1839. unsigned long
  1840. randomize_page(unsigned long start, unsigned long range)
  1841. {
  1842. if (!PAGE_ALIGNED(start)) {
  1843. range -= PAGE_ALIGN(start) - start;
  1844. start = PAGE_ALIGN(start);
  1845. }
  1846. if (start > ULONG_MAX - range)
  1847. range = ULONG_MAX - start;
  1848. range >>= PAGE_SHIFT;
  1849. if (range == 0)
  1850. return start;
  1851. return start + (get_random_long() % range << PAGE_SHIFT);
  1852. }
  1853. /* Interface for in-kernel drivers of true hardware RNGs.
  1854. * Those devices may produce endless random bits and will be throttled
  1855. * when our pool is full.
  1856. */
  1857. void add_hwgenerator_randomness(const char *buffer, size_t count,
  1858. size_t entropy)
  1859. {
  1860. struct entropy_store *poolp = &input_pool;
  1861. if (!crng_ready()) {
  1862. crng_fast_load(buffer, count);
  1863. return;
  1864. }
  1865. /* Suspend writing if we're above the trickle threshold.
  1866. * We'll be woken up again once below random_write_wakeup_thresh,
  1867. * or when the calling thread is about to terminate.
  1868. */
  1869. wait_event_interruptible(random_write_wait, kthread_should_stop() ||
  1870. ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
  1871. mix_pool_bytes(poolp, buffer, count);
  1872. credit_entropy_bits(poolp, entropy);
  1873. }
  1874. EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);