123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Resource Director Technology (RDT)
- *
- * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
- *
- * Copyright (C) 2018 Intel Corporation
- *
- * Author: Reinette Chatre <reinette.chatre@intel.com>
- */
- #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
- #include <linux/cacheinfo.h>
- #include <linux/cpu.h>
- #include <linux/cpumask.h>
- #include <linux/debugfs.h>
- #include <linux/kthread.h>
- #include <linux/mman.h>
- #include <linux/perf_event.h>
- #include <linux/pm_qos.h>
- #include <linux/slab.h>
- #include <linux/uaccess.h>
- #include <asm/cacheflush.h>
- #include <asm/intel-family.h>
- #include <asm/intel_rdt_sched.h>
- #include <asm/perf_event.h>
- #include "../../events/perf_event.h" /* For X86_CONFIG() */
- #include "intel_rdt.h"
- #define CREATE_TRACE_POINTS
- #include "intel_rdt_pseudo_lock_event.h"
- /*
- * MSR_MISC_FEATURE_CONTROL register enables the modification of hardware
- * prefetcher state. Details about this register can be found in the MSR
- * tables for specific platforms found in Intel's SDM.
- */
- #define MSR_MISC_FEATURE_CONTROL 0x000001a4
- /*
- * The bits needed to disable hardware prefetching varies based on the
- * platform. During initialization we will discover which bits to use.
- */
- static u64 prefetch_disable_bits;
- /*
- * Major number assigned to and shared by all devices exposing
- * pseudo-locked regions.
- */
- static unsigned int pseudo_lock_major;
- static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
- static struct class *pseudo_lock_class;
- /**
- * get_prefetch_disable_bits - prefetch disable bits of supported platforms
- *
- * Capture the list of platforms that have been validated to support
- * pseudo-locking. This includes testing to ensure pseudo-locked regions
- * with low cache miss rates can be created under variety of load conditions
- * as well as that these pseudo-locked regions can maintain their low cache
- * miss rates under variety of load conditions for significant lengths of time.
- *
- * After a platform has been validated to support pseudo-locking its
- * hardware prefetch disable bits are included here as they are documented
- * in the SDM.
- *
- * When adding a platform here also add support for its cache events to
- * measure_cycles_perf_fn()
- *
- * Return:
- * If platform is supported, the bits to disable hardware prefetchers, 0
- * if platform is not supported.
- */
- static u64 get_prefetch_disable_bits(void)
- {
- if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
- boot_cpu_data.x86 != 6)
- return 0;
- switch (boot_cpu_data.x86_model) {
- case INTEL_FAM6_BROADWELL_X:
- /*
- * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
- * as:
- * 0 L2 Hardware Prefetcher Disable (R/W)
- * 1 L2 Adjacent Cache Line Prefetcher Disable (R/W)
- * 2 DCU Hardware Prefetcher Disable (R/W)
- * 3 DCU IP Prefetcher Disable (R/W)
- * 63:4 Reserved
- */
- return 0xF;
- case INTEL_FAM6_ATOM_GOLDMONT:
- case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
- /*
- * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
- * as:
- * 0 L2 Hardware Prefetcher Disable (R/W)
- * 1 Reserved
- * 2 DCU Hardware Prefetcher Disable (R/W)
- * 63:3 Reserved
- */
- return 0x5;
- }
- return 0;
- }
- /**
- * pseudo_lock_minor_get - Obtain available minor number
- * @minor: Pointer to where new minor number will be stored
- *
- * A bitmask is used to track available minor numbers. Here the next free
- * minor number is marked as unavailable and returned.
- *
- * Return: 0 on success, <0 on failure.
- */
- static int pseudo_lock_minor_get(unsigned int *minor)
- {
- unsigned long first_bit;
- first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
- if (first_bit == MINORBITS)
- return -ENOSPC;
- __clear_bit(first_bit, &pseudo_lock_minor_avail);
- *minor = first_bit;
- return 0;
- }
- /**
- * pseudo_lock_minor_release - Return minor number to available
- * @minor: The minor number made available
- */
- static void pseudo_lock_minor_release(unsigned int minor)
- {
- __set_bit(minor, &pseudo_lock_minor_avail);
- }
- /**
- * region_find_by_minor - Locate a pseudo-lock region by inode minor number
- * @minor: The minor number of the device representing pseudo-locked region
- *
- * When the character device is accessed we need to determine which
- * pseudo-locked region it belongs to. This is done by matching the minor
- * number of the device to the pseudo-locked region it belongs.
- *
- * Minor numbers are assigned at the time a pseudo-locked region is associated
- * with a cache instance.
- *
- * Return: On success return pointer to resource group owning the pseudo-locked
- * region, NULL on failure.
- */
- static struct rdtgroup *region_find_by_minor(unsigned int minor)
- {
- struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
- list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
- if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
- rdtgrp_match = rdtgrp;
- break;
- }
- }
- return rdtgrp_match;
- }
- /**
- * pseudo_lock_pm_req - A power management QoS request list entry
- * @list: Entry within the @pm_reqs list for a pseudo-locked region
- * @req: PM QoS request
- */
- struct pseudo_lock_pm_req {
- struct list_head list;
- struct dev_pm_qos_request req;
- };
- static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
- {
- struct pseudo_lock_pm_req *pm_req, *next;
- list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
- dev_pm_qos_remove_request(&pm_req->req);
- list_del(&pm_req->list);
- kfree(pm_req);
- }
- }
- /**
- * pseudo_lock_cstates_constrain - Restrict cores from entering C6
- *
- * To prevent the cache from being affected by power management entering
- * C6 has to be avoided. This is accomplished by requesting a latency
- * requirement lower than lowest C6 exit latency of all supported
- * platforms as found in the cpuidle state tables in the intel_idle driver.
- * At this time it is possible to do so with a single latency requirement
- * for all supported platforms.
- *
- * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
- * the ACPI latencies need to be considered while keeping in mind that C2
- * may be set to map to deeper sleep states. In this case the latency
- * requirement needs to prevent entering C2 also.
- */
- static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
- {
- struct pseudo_lock_pm_req *pm_req;
- int cpu;
- int ret;
- for_each_cpu(cpu, &plr->d->cpu_mask) {
- pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
- if (!pm_req) {
- rdt_last_cmd_puts("fail allocating mem for PM QoS\n");
- ret = -ENOMEM;
- goto out_err;
- }
- ret = dev_pm_qos_add_request(get_cpu_device(cpu),
- &pm_req->req,
- DEV_PM_QOS_RESUME_LATENCY,
- 30);
- if (ret < 0) {
- rdt_last_cmd_printf("fail to add latency req cpu%d\n",
- cpu);
- kfree(pm_req);
- ret = -1;
- goto out_err;
- }
- list_add(&pm_req->list, &plr->pm_reqs);
- }
- return 0;
- out_err:
- pseudo_lock_cstates_relax(plr);
- return ret;
- }
- /**
- * pseudo_lock_region_clear - Reset pseudo-lock region data
- * @plr: pseudo-lock region
- *
- * All content of the pseudo-locked region is reset - any memory allocated
- * freed.
- *
- * Return: void
- */
- static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
- {
- plr->size = 0;
- plr->line_size = 0;
- kfree(plr->kmem);
- plr->kmem = NULL;
- plr->r = NULL;
- if (plr->d)
- plr->d->plr = NULL;
- plr->d = NULL;
- plr->cbm = 0;
- plr->debugfs_dir = NULL;
- }
- /**
- * pseudo_lock_region_init - Initialize pseudo-lock region information
- * @plr: pseudo-lock region
- *
- * Called after user provided a schemata to be pseudo-locked. From the
- * schemata the &struct pseudo_lock_region is on entry already initialized
- * with the resource, domain, and capacity bitmask. Here the information
- * required for pseudo-locking is deduced from this data and &struct
- * pseudo_lock_region initialized further. This information includes:
- * - size in bytes of the region to be pseudo-locked
- * - cache line size to know the stride with which data needs to be accessed
- * to be pseudo-locked
- * - a cpu associated with the cache instance on which the pseudo-locking
- * flow can be executed
- *
- * Return: 0 on success, <0 on failure. Descriptive error will be written
- * to last_cmd_status buffer.
- */
- static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
- {
- struct cpu_cacheinfo *ci;
- int ret;
- int i;
- /* Pick the first cpu we find that is associated with the cache. */
- plr->cpu = cpumask_first(&plr->d->cpu_mask);
- if (!cpu_online(plr->cpu)) {
- rdt_last_cmd_printf("cpu %u associated with cache not online\n",
- plr->cpu);
- ret = -ENODEV;
- goto out_region;
- }
- ci = get_cpu_cacheinfo(plr->cpu);
- plr->size = rdtgroup_cbm_to_size(plr->r, plr->d, plr->cbm);
- for (i = 0; i < ci->num_leaves; i++) {
- if (ci->info_list[i].level == plr->r->cache_level) {
- plr->line_size = ci->info_list[i].coherency_line_size;
- return 0;
- }
- }
- ret = -1;
- rdt_last_cmd_puts("unable to determine cache line size\n");
- out_region:
- pseudo_lock_region_clear(plr);
- return ret;
- }
- /**
- * pseudo_lock_init - Initialize a pseudo-lock region
- * @rdtgrp: resource group to which new pseudo-locked region will belong
- *
- * A pseudo-locked region is associated with a resource group. When this
- * association is created the pseudo-locked region is initialized. The
- * details of the pseudo-locked region are not known at this time so only
- * allocation is done and association established.
- *
- * Return: 0 on success, <0 on failure
- */
- static int pseudo_lock_init(struct rdtgroup *rdtgrp)
- {
- struct pseudo_lock_region *plr;
- plr = kzalloc(sizeof(*plr), GFP_KERNEL);
- if (!plr)
- return -ENOMEM;
- init_waitqueue_head(&plr->lock_thread_wq);
- INIT_LIST_HEAD(&plr->pm_reqs);
- rdtgrp->plr = plr;
- return 0;
- }
- /**
- * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
- * @plr: pseudo-lock region
- *
- * Initialize the details required to set up the pseudo-locked region and
- * allocate the contiguous memory that will be pseudo-locked to the cache.
- *
- * Return: 0 on success, <0 on failure. Descriptive error will be written
- * to last_cmd_status buffer.
- */
- static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
- {
- int ret;
- ret = pseudo_lock_region_init(plr);
- if (ret < 0)
- return ret;
- /*
- * We do not yet support contiguous regions larger than
- * KMALLOC_MAX_SIZE.
- */
- if (plr->size > KMALLOC_MAX_SIZE) {
- rdt_last_cmd_puts("requested region exceeds maximum size\n");
- ret = -E2BIG;
- goto out_region;
- }
- plr->kmem = kzalloc(plr->size, GFP_KERNEL);
- if (!plr->kmem) {
- rdt_last_cmd_puts("unable to allocate memory\n");
- ret = -ENOMEM;
- goto out_region;
- }
- ret = 0;
- goto out;
- out_region:
- pseudo_lock_region_clear(plr);
- out:
- return ret;
- }
- /**
- * pseudo_lock_free - Free a pseudo-locked region
- * @rdtgrp: resource group to which pseudo-locked region belonged
- *
- * The pseudo-locked region's resources have already been released, or not
- * yet created at this point. Now it can be freed and disassociated from the
- * resource group.
- *
- * Return: void
- */
- static void pseudo_lock_free(struct rdtgroup *rdtgrp)
- {
- pseudo_lock_region_clear(rdtgrp->plr);
- kfree(rdtgrp->plr);
- rdtgrp->plr = NULL;
- }
- /**
- * pseudo_lock_fn - Load kernel memory into cache
- * @_rdtgrp: resource group to which pseudo-lock region belongs
- *
- * This is the core pseudo-locking flow.
- *
- * First we ensure that the kernel memory cannot be found in the cache.
- * Then, while taking care that there will be as little interference as
- * possible, the memory to be loaded is accessed while core is running
- * with class of service set to the bitmask of the pseudo-locked region.
- * After this is complete no future CAT allocations will be allowed to
- * overlap with this bitmask.
- *
- * Local register variables are utilized to ensure that the memory region
- * to be locked is the only memory access made during the critical locking
- * loop.
- *
- * Return: 0. Waiter on waitqueue will be woken on completion.
- */
- static int pseudo_lock_fn(void *_rdtgrp)
- {
- struct rdtgroup *rdtgrp = _rdtgrp;
- struct pseudo_lock_region *plr = rdtgrp->plr;
- u32 rmid_p, closid_p;
- unsigned long i;
- #ifdef CONFIG_KASAN
- /*
- * The registers used for local register variables are also used
- * when KASAN is active. When KASAN is active we use a regular
- * variable to ensure we always use a valid pointer, but the cost
- * is that this variable will enter the cache through evicting the
- * memory we are trying to lock into the cache. Thus expect lower
- * pseudo-locking success rate when KASAN is active.
- */
- unsigned int line_size;
- unsigned int size;
- void *mem_r;
- #else
- register unsigned int line_size asm("esi");
- register unsigned int size asm("edi");
- #ifdef CONFIG_X86_64
- register void *mem_r asm("rbx");
- #else
- register void *mem_r asm("ebx");
- #endif /* CONFIG_X86_64 */
- #endif /* CONFIG_KASAN */
- /*
- * Make sure none of the allocated memory is cached. If it is we
- * will get a cache hit in below loop from outside of pseudo-locked
- * region.
- * wbinvd (as opposed to clflush/clflushopt) is required to
- * increase likelihood that allocated cache portion will be filled
- * with associated memory.
- */
- native_wbinvd();
- /*
- * Always called with interrupts enabled. By disabling interrupts
- * ensure that we will not be preempted during this critical section.
- */
- local_irq_disable();
- /*
- * Call wrmsr and rdmsr as directly as possible to avoid tracing
- * clobbering local register variables or affecting cache accesses.
- *
- * Disable the hardware prefetcher so that when the end of the memory
- * being pseudo-locked is reached the hardware will not read beyond
- * the buffer and evict pseudo-locked memory read earlier from the
- * cache.
- */
- __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
- closid_p = this_cpu_read(pqr_state.cur_closid);
- rmid_p = this_cpu_read(pqr_state.cur_rmid);
- mem_r = plr->kmem;
- size = plr->size;
- line_size = plr->line_size;
- /*
- * Critical section begin: start by writing the closid associated
- * with the capacity bitmask of the cache region being
- * pseudo-locked followed by reading of kernel memory to load it
- * into the cache.
- */
- __wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
- /*
- * Cache was flushed earlier. Now access kernel memory to read it
- * into cache region associated with just activated plr->closid.
- * Loop over data twice:
- * - In first loop the cache region is shared with the page walker
- * as it populates the paging structure caches (including TLB).
- * - In the second loop the paging structure caches are used and
- * cache region is populated with the memory being referenced.
- */
- for (i = 0; i < size; i += PAGE_SIZE) {
- /*
- * Add a barrier to prevent speculative execution of this
- * loop reading beyond the end of the buffer.
- */
- rmb();
- asm volatile("mov (%0,%1,1), %%eax\n\t"
- :
- : "r" (mem_r), "r" (i)
- : "%eax", "memory");
- }
- for (i = 0; i < size; i += line_size) {
- /*
- * Add a barrier to prevent speculative execution of this
- * loop reading beyond the end of the buffer.
- */
- rmb();
- asm volatile("mov (%0,%1,1), %%eax\n\t"
- :
- : "r" (mem_r), "r" (i)
- : "%eax", "memory");
- }
- /*
- * Critical section end: restore closid with capacity bitmask that
- * does not overlap with pseudo-locked region.
- */
- __wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p);
- /* Re-enable the hardware prefetcher(s) */
- wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
- local_irq_enable();
- plr->thread_done = 1;
- wake_up_interruptible(&plr->lock_thread_wq);
- return 0;
- }
- /**
- * rdtgroup_monitor_in_progress - Test if monitoring in progress
- * @r: resource group being queried
- *
- * Return: 1 if monitor groups have been created for this resource
- * group, 0 otherwise.
- */
- static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
- {
- return !list_empty(&rdtgrp->mon.crdtgrp_list);
- }
- /**
- * rdtgroup_locksetup_user_restrict - Restrict user access to group
- * @rdtgrp: resource group needing access restricted
- *
- * A resource group used for cache pseudo-locking cannot have cpus or tasks
- * assigned to it. This is communicated to the user by restricting access
- * to all the files that can be used to make such changes.
- *
- * Permissions restored with rdtgroup_locksetup_user_restore()
- *
- * Return: 0 on success, <0 on failure. If a failure occurs during the
- * restriction of access an attempt will be made to restore permissions but
- * the state of the mode of these files will be uncertain when a failure
- * occurs.
- */
- static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
- {
- int ret;
- ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
- if (ret)
- return ret;
- ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
- if (ret)
- goto err_tasks;
- ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
- if (ret)
- goto err_cpus;
- if (rdt_mon_capable) {
- ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
- if (ret)
- goto err_cpus_list;
- }
- ret = 0;
- goto out;
- err_cpus_list:
- rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
- err_cpus:
- rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
- err_tasks:
- rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
- out:
- return ret;
- }
- /**
- * rdtgroup_locksetup_user_restore - Restore user access to group
- * @rdtgrp: resource group needing access restored
- *
- * Restore all file access previously removed using
- * rdtgroup_locksetup_user_restrict()
- *
- * Return: 0 on success, <0 on failure. If a failure occurs during the
- * restoration of access an attempt will be made to restrict permissions
- * again but the state of the mode of these files will be uncertain when
- * a failure occurs.
- */
- static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
- {
- int ret;
- ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
- if (ret)
- return ret;
- ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
- if (ret)
- goto err_tasks;
- ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
- if (ret)
- goto err_cpus;
- if (rdt_mon_capable) {
- ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
- if (ret)
- goto err_cpus_list;
- }
- ret = 0;
- goto out;
- err_cpus_list:
- rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
- err_cpus:
- rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
- err_tasks:
- rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
- out:
- return ret;
- }
- /**
- * rdtgroup_locksetup_enter - Resource group enters locksetup mode
- * @rdtgrp: resource group requested to enter locksetup mode
- *
- * A resource group enters locksetup mode to reflect that it would be used
- * to represent a pseudo-locked region and is in the process of being set
- * up to do so. A resource group used for a pseudo-locked region would
- * lose the closid associated with it so we cannot allow it to have any
- * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
- * future. Monitoring of a pseudo-locked region is not allowed either.
- *
- * The above and more restrictions on a pseudo-locked region are checked
- * for and enforced before the resource group enters the locksetup mode.
- *
- * Returns: 0 if the resource group successfully entered locksetup mode, <0
- * on failure. On failure the last_cmd_status buffer is updated with text to
- * communicate details of failure to the user.
- */
- int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
- {
- int ret;
- /*
- * The default resource group can neither be removed nor lose the
- * default closid associated with it.
- */
- if (rdtgrp == &rdtgroup_default) {
- rdt_last_cmd_puts("cannot pseudo-lock default group\n");
- return -EINVAL;
- }
- /*
- * Cache Pseudo-locking not supported when CDP is enabled.
- *
- * Some things to consider if you would like to enable this
- * support (using L3 CDP as example):
- * - When CDP is enabled two separate resources are exposed,
- * L3DATA and L3CODE, but they are actually on the same cache.
- * The implication for pseudo-locking is that if a
- * pseudo-locked region is created on a domain of one
- * resource (eg. L3CODE), then a pseudo-locked region cannot
- * be created on that same domain of the other resource
- * (eg. L3DATA). This is because the creation of a
- * pseudo-locked region involves a call to wbinvd that will
- * affect all cache allocations on particular domain.
- * - Considering the previous, it may be possible to only
- * expose one of the CDP resources to pseudo-locking and
- * hide the other. For example, we could consider to only
- * expose L3DATA and since the L3 cache is unified it is
- * still possible to place instructions there are execute it.
- * - If only one region is exposed to pseudo-locking we should
- * still keep in mind that availability of a portion of cache
- * for pseudo-locking should take into account both resources.
- * Similarly, if a pseudo-locked region is created in one
- * resource, the portion of cache used by it should be made
- * unavailable to all future allocations from both resources.
- */
- if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled ||
- rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) {
- rdt_last_cmd_puts("CDP enabled\n");
- return -EINVAL;
- }
- /*
- * Not knowing the bits to disable prefetching implies that this
- * platform does not support Cache Pseudo-Locking.
- */
- prefetch_disable_bits = get_prefetch_disable_bits();
- if (prefetch_disable_bits == 0) {
- rdt_last_cmd_puts("pseudo-locking not supported\n");
- return -EINVAL;
- }
- if (rdtgroup_monitor_in_progress(rdtgrp)) {
- rdt_last_cmd_puts("monitoring in progress\n");
- return -EINVAL;
- }
- if (rdtgroup_tasks_assigned(rdtgrp)) {
- rdt_last_cmd_puts("tasks assigned to resource group\n");
- return -EINVAL;
- }
- if (!cpumask_empty(&rdtgrp->cpu_mask)) {
- rdt_last_cmd_puts("CPUs assigned to resource group\n");
- return -EINVAL;
- }
- if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
- rdt_last_cmd_puts("unable to modify resctrl permissions\n");
- return -EIO;
- }
- ret = pseudo_lock_init(rdtgrp);
- if (ret) {
- rdt_last_cmd_puts("unable to init pseudo-lock region\n");
- goto out_release;
- }
- /*
- * If this system is capable of monitoring a rmid would have been
- * allocated when the control group was created. This is not needed
- * anymore when this group would be used for pseudo-locking. This
- * is safe to call on platforms not capable of monitoring.
- */
- free_rmid(rdtgrp->mon.rmid);
- ret = 0;
- goto out;
- out_release:
- rdtgroup_locksetup_user_restore(rdtgrp);
- out:
- return ret;
- }
- /**
- * rdtgroup_locksetup_exit - resource group exist locksetup mode
- * @rdtgrp: resource group
- *
- * When a resource group exits locksetup mode the earlier restrictions are
- * lifted.
- *
- * Return: 0 on success, <0 on failure
- */
- int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
- {
- int ret;
- if (rdt_mon_capable) {
- ret = alloc_rmid();
- if (ret < 0) {
- rdt_last_cmd_puts("out of RMIDs\n");
- return ret;
- }
- rdtgrp->mon.rmid = ret;
- }
- ret = rdtgroup_locksetup_user_restore(rdtgrp);
- if (ret) {
- free_rmid(rdtgrp->mon.rmid);
- return ret;
- }
- pseudo_lock_free(rdtgrp);
- return 0;
- }
- /**
- * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
- * @d: RDT domain
- * @cbm: CBM to test
- *
- * @d represents a cache instance and @cbm a capacity bitmask that is
- * considered for it. Determine if @cbm overlaps with any existing
- * pseudo-locked region on @d.
- *
- * @cbm is unsigned long, even if only 32 bits are used, to make the
- * bitmap functions work correctly.
- *
- * Return: true if @cbm overlaps with pseudo-locked region on @d, false
- * otherwise.
- */
- bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
- {
- unsigned int cbm_len;
- unsigned long cbm_b;
- if (d->plr) {
- cbm_len = d->plr->r->cache.cbm_len;
- cbm_b = d->plr->cbm;
- if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
- return true;
- }
- return false;
- }
- /**
- * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
- * @d: RDT domain under test
- *
- * The setup of a pseudo-locked region affects all cache instances within
- * the hierarchy of the region. It is thus essential to know if any
- * pseudo-locked regions exist within a cache hierarchy to prevent any
- * attempts to create new pseudo-locked regions in the same hierarchy.
- *
- * Return: true if a pseudo-locked region exists in the hierarchy of @d or
- * if it is not possible to test due to memory allocation issue,
- * false otherwise.
- */
- bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
- {
- cpumask_var_t cpu_with_psl;
- struct rdt_resource *r;
- struct rdt_domain *d_i;
- bool ret = false;
- if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
- return true;
- /*
- * First determine which cpus have pseudo-locked regions
- * associated with them.
- */
- for_each_alloc_enabled_rdt_resource(r) {
- list_for_each_entry(d_i, &r->domains, list) {
- if (d_i->plr)
- cpumask_or(cpu_with_psl, cpu_with_psl,
- &d_i->cpu_mask);
- }
- }
- /*
- * Next test if new pseudo-locked region would intersect with
- * existing region.
- */
- if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
- ret = true;
- free_cpumask_var(cpu_with_psl);
- return ret;
- }
- /**
- * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
- * @_plr: pseudo-lock region to measure
- *
- * There is no deterministic way to test if a memory region is cached. One
- * way is to measure how long it takes to read the memory, the speed of
- * access is a good way to learn how close to the cpu the data was. Even
- * more, if the prefetcher is disabled and the memory is read at a stride
- * of half the cache line, then a cache miss will be easy to spot since the
- * read of the first half would be significantly slower than the read of
- * the second half.
- *
- * Return: 0. Waiter on waitqueue will be woken on completion.
- */
- static int measure_cycles_lat_fn(void *_plr)
- {
- struct pseudo_lock_region *plr = _plr;
- unsigned long i;
- u64 start, end;
- void *mem_r;
- local_irq_disable();
- /*
- * Disable hardware prefetchers.
- */
- wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
- mem_r = READ_ONCE(plr->kmem);
- /*
- * Dummy execute of the time measurement to load the needed
- * instructions into the L1 instruction cache.
- */
- start = rdtsc_ordered();
- for (i = 0; i < plr->size; i += 32) {
- start = rdtsc_ordered();
- asm volatile("mov (%0,%1,1), %%eax\n\t"
- :
- : "r" (mem_r), "r" (i)
- : "%eax", "memory");
- end = rdtsc_ordered();
- trace_pseudo_lock_mem_latency((u32)(end - start));
- }
- wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
- local_irq_enable();
- plr->thread_done = 1;
- wake_up_interruptible(&plr->lock_thread_wq);
- return 0;
- }
- /*
- * Create a perf_event_attr for the hit and miss perf events that will
- * be used during the performance measurement. A perf_event maintains
- * a pointer to its perf_event_attr so a unique attribute structure is
- * created for each perf_event.
- *
- * The actual configuration of the event is set right before use in order
- * to use the X86_CONFIG macro.
- */
- static struct perf_event_attr perf_miss_attr = {
- .type = PERF_TYPE_RAW,
- .size = sizeof(struct perf_event_attr),
- .pinned = 1,
- .disabled = 0,
- .exclude_user = 1,
- };
- static struct perf_event_attr perf_hit_attr = {
- .type = PERF_TYPE_RAW,
- .size = sizeof(struct perf_event_attr),
- .pinned = 1,
- .disabled = 0,
- .exclude_user = 1,
- };
- struct residency_counts {
- u64 miss_before, hits_before;
- u64 miss_after, hits_after;
- };
- static int measure_residency_fn(struct perf_event_attr *miss_attr,
- struct perf_event_attr *hit_attr,
- struct pseudo_lock_region *plr,
- struct residency_counts *counts)
- {
- u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
- struct perf_event *miss_event, *hit_event;
- int hit_pmcnum, miss_pmcnum;
- unsigned int line_size;
- unsigned int size;
- unsigned long i;
- void *mem_r;
- u64 tmp;
- miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
- NULL, NULL, NULL);
- if (IS_ERR(miss_event))
- goto out;
- hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
- NULL, NULL, NULL);
- if (IS_ERR(hit_event))
- goto out_miss;
- local_irq_disable();
- /*
- * Check any possible error state of events used by performing
- * one local read.
- */
- if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
- local_irq_enable();
- goto out_hit;
- }
- if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
- local_irq_enable();
- goto out_hit;
- }
- /*
- * Disable hardware prefetchers.
- */
- wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
- /* Initialize rest of local variables */
- /*
- * Performance event has been validated right before this with
- * interrupts disabled - it is thus safe to read the counter index.
- */
- miss_pmcnum = x86_perf_rdpmc_index(miss_event);
- hit_pmcnum = x86_perf_rdpmc_index(hit_event);
- line_size = READ_ONCE(plr->line_size);
- mem_r = READ_ONCE(plr->kmem);
- size = READ_ONCE(plr->size);
- /*
- * Read counter variables twice - first to load the instructions
- * used in L1 cache, second to capture accurate value that does not
- * include cache misses incurred because of instruction loads.
- */
- rdpmcl(hit_pmcnum, hits_before);
- rdpmcl(miss_pmcnum, miss_before);
- /*
- * From SDM: Performing back-to-back fast reads are not guaranteed
- * to be monotonic.
- * Use LFENCE to ensure all previous instructions are retired
- * before proceeding.
- */
- rmb();
- rdpmcl(hit_pmcnum, hits_before);
- rdpmcl(miss_pmcnum, miss_before);
- /*
- * Use LFENCE to ensure all previous instructions are retired
- * before proceeding.
- */
- rmb();
- for (i = 0; i < size; i += line_size) {
- /*
- * Add a barrier to prevent speculative execution of this
- * loop reading beyond the end of the buffer.
- */
- rmb();
- asm volatile("mov (%0,%1,1), %%eax\n\t"
- :
- : "r" (mem_r), "r" (i)
- : "%eax", "memory");
- }
- /*
- * Use LFENCE to ensure all previous instructions are retired
- * before proceeding.
- */
- rmb();
- rdpmcl(hit_pmcnum, hits_after);
- rdpmcl(miss_pmcnum, miss_after);
- /*
- * Use LFENCE to ensure all previous instructions are retired
- * before proceeding.
- */
- rmb();
- /* Re-enable hardware prefetchers */
- wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
- local_irq_enable();
- out_hit:
- perf_event_release_kernel(hit_event);
- out_miss:
- perf_event_release_kernel(miss_event);
- out:
- /*
- * All counts will be zero on failure.
- */
- counts->miss_before = miss_before;
- counts->hits_before = hits_before;
- counts->miss_after = miss_after;
- counts->hits_after = hits_after;
- return 0;
- }
- static int measure_l2_residency(void *_plr)
- {
- struct pseudo_lock_region *plr = _plr;
- struct residency_counts counts = {0};
- /*
- * Non-architectural event for the Goldmont Microarchitecture
- * from Intel x86 Architecture Software Developer Manual (SDM):
- * MEM_LOAD_UOPS_RETIRED D1H (event number)
- * Umask values:
- * L2_HIT 02H
- * L2_MISS 10H
- */
- switch (boot_cpu_data.x86_model) {
- case INTEL_FAM6_ATOM_GOLDMONT:
- case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
- perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
- .umask = 0x10);
- perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
- .umask = 0x2);
- break;
- default:
- goto out;
- }
- measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
- /*
- * If a failure prevented the measurements from succeeding
- * tracepoints will still be written and all counts will be zero.
- */
- trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
- counts.miss_after - counts.miss_before);
- out:
- plr->thread_done = 1;
- wake_up_interruptible(&plr->lock_thread_wq);
- return 0;
- }
- static int measure_l3_residency(void *_plr)
- {
- struct pseudo_lock_region *plr = _plr;
- struct residency_counts counts = {0};
- /*
- * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
- * has two "no fix" errata associated with it: BDM35 and BDM100. On
- * this platform the following events are used instead:
- * LONGEST_LAT_CACHE 2EH (Documented in SDM)
- * REFERENCE 4FH
- * MISS 41H
- */
- switch (boot_cpu_data.x86_model) {
- case INTEL_FAM6_BROADWELL_X:
- /* On BDW the hit event counts references, not hits */
- perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
- .umask = 0x4f);
- perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
- .umask = 0x41);
- break;
- default:
- goto out;
- }
- measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
- /*
- * If a failure prevented the measurements from succeeding
- * tracepoints will still be written and all counts will be zero.
- */
- counts.miss_after -= counts.miss_before;
- if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
- /*
- * On BDW references and misses are counted, need to adjust.
- * Sometimes the "hits" counter is a bit more than the
- * references, for example, x references but x + 1 hits.
- * To not report invalid hit values in this case we treat
- * that as misses equal to references.
- */
- /* First compute the number of cache references measured */
- counts.hits_after -= counts.hits_before;
- /* Next convert references to cache hits */
- counts.hits_after -= min(counts.miss_after, counts.hits_after);
- } else {
- counts.hits_after -= counts.hits_before;
- }
- trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
- out:
- plr->thread_done = 1;
- wake_up_interruptible(&plr->lock_thread_wq);
- return 0;
- }
- /**
- * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
- *
- * The measurement of latency to access a pseudo-locked region should be
- * done from a cpu that is associated with that pseudo-locked region.
- * Determine which cpu is associated with this region and start a thread on
- * that cpu to perform the measurement, wait for that thread to complete.
- *
- * Return: 0 on success, <0 on failure
- */
- static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
- {
- struct pseudo_lock_region *plr = rdtgrp->plr;
- struct task_struct *thread;
- unsigned int cpu;
- int ret = -1;
- cpus_read_lock();
- mutex_lock(&rdtgroup_mutex);
- if (rdtgrp->flags & RDT_DELETED) {
- ret = -ENODEV;
- goto out;
- }
- if (!plr->d) {
- ret = -ENODEV;
- goto out;
- }
- plr->thread_done = 0;
- cpu = cpumask_first(&plr->d->cpu_mask);
- if (!cpu_online(cpu)) {
- ret = -ENODEV;
- goto out;
- }
- plr->cpu = cpu;
- if (sel == 1)
- thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
- cpu_to_node(cpu),
- "pseudo_lock_measure/%u",
- cpu);
- else if (sel == 2)
- thread = kthread_create_on_node(measure_l2_residency, plr,
- cpu_to_node(cpu),
- "pseudo_lock_measure/%u",
- cpu);
- else if (sel == 3)
- thread = kthread_create_on_node(measure_l3_residency, plr,
- cpu_to_node(cpu),
- "pseudo_lock_measure/%u",
- cpu);
- else
- goto out;
- if (IS_ERR(thread)) {
- ret = PTR_ERR(thread);
- goto out;
- }
- kthread_bind(thread, cpu);
- wake_up_process(thread);
- ret = wait_event_interruptible(plr->lock_thread_wq,
- plr->thread_done == 1);
- if (ret < 0)
- goto out;
- ret = 0;
- out:
- mutex_unlock(&rdtgroup_mutex);
- cpus_read_unlock();
- return ret;
- }
- static ssize_t pseudo_lock_measure_trigger(struct file *file,
- const char __user *user_buf,
- size_t count, loff_t *ppos)
- {
- struct rdtgroup *rdtgrp = file->private_data;
- size_t buf_size;
- char buf[32];
- int ret;
- int sel;
- buf_size = min(count, (sizeof(buf) - 1));
- if (copy_from_user(buf, user_buf, buf_size))
- return -EFAULT;
- buf[buf_size] = '\0';
- ret = kstrtoint(buf, 10, &sel);
- if (ret == 0) {
- if (sel != 1 && sel != 2 && sel != 3)
- return -EINVAL;
- ret = debugfs_file_get(file->f_path.dentry);
- if (ret)
- return ret;
- ret = pseudo_lock_measure_cycles(rdtgrp, sel);
- if (ret == 0)
- ret = count;
- debugfs_file_put(file->f_path.dentry);
- }
- return ret;
- }
- static const struct file_operations pseudo_measure_fops = {
- .write = pseudo_lock_measure_trigger,
- .open = simple_open,
- .llseek = default_llseek,
- };
- /**
- * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
- * @rdtgrp: resource group to which pseudo-lock region belongs
- *
- * Called when a resource group in the pseudo-locksetup mode receives a
- * valid schemata that should be pseudo-locked. Since the resource group is
- * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
- * allocated and initialized with the essential information. If a failure
- * occurs the resource group remains in the pseudo-locksetup mode with the
- * &struct pseudo_lock_region associated with it, but cleared from all
- * information and ready for the user to re-attempt pseudo-locking by
- * writing the schemata again.
- *
- * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
- * on failure. Descriptive error will be written to last_cmd_status buffer.
- */
- int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
- {
- struct pseudo_lock_region *plr = rdtgrp->plr;
- struct task_struct *thread;
- unsigned int new_minor;
- struct device *dev;
- int ret;
- ret = pseudo_lock_region_alloc(plr);
- if (ret < 0)
- return ret;
- ret = pseudo_lock_cstates_constrain(plr);
- if (ret < 0) {
- ret = -EINVAL;
- goto out_region;
- }
- plr->thread_done = 0;
- thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
- cpu_to_node(plr->cpu),
- "pseudo_lock/%u", plr->cpu);
- if (IS_ERR(thread)) {
- ret = PTR_ERR(thread);
- rdt_last_cmd_printf("locking thread returned error %d\n", ret);
- goto out_cstates;
- }
- kthread_bind(thread, plr->cpu);
- wake_up_process(thread);
- ret = wait_event_interruptible(plr->lock_thread_wq,
- plr->thread_done == 1);
- if (ret < 0) {
- /*
- * If the thread does not get on the CPU for whatever
- * reason and the process which sets up the region is
- * interrupted then this will leave the thread in runnable
- * state and once it gets on the CPU it will derefence
- * the cleared, but not freed, plr struct resulting in an
- * empty pseudo-locking loop.
- */
- rdt_last_cmd_puts("locking thread interrupted\n");
- goto out_cstates;
- }
- ret = pseudo_lock_minor_get(&new_minor);
- if (ret < 0) {
- rdt_last_cmd_puts("unable to obtain a new minor number\n");
- goto out_cstates;
- }
- /*
- * Unlock access but do not release the reference. The
- * pseudo-locked region will still be here on return.
- *
- * The mutex has to be released temporarily to avoid a potential
- * deadlock with the mm->mmap_sem semaphore which is obtained in
- * the device_create() and debugfs_create_dir() callpath below
- * as well as before the mmap() callback is called.
- */
- mutex_unlock(&rdtgroup_mutex);
- if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
- plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
- debugfs_resctrl);
- if (!IS_ERR_OR_NULL(plr->debugfs_dir))
- debugfs_create_file("pseudo_lock_measure", 0200,
- plr->debugfs_dir, rdtgrp,
- &pseudo_measure_fops);
- }
- dev = device_create(pseudo_lock_class, NULL,
- MKDEV(pseudo_lock_major, new_minor),
- rdtgrp, "%s", rdtgrp->kn->name);
- mutex_lock(&rdtgroup_mutex);
- if (IS_ERR(dev)) {
- ret = PTR_ERR(dev);
- rdt_last_cmd_printf("failed to create character device: %d\n",
- ret);
- goto out_debugfs;
- }
- /* We released the mutex - check if group was removed while we did so */
- if (rdtgrp->flags & RDT_DELETED) {
- ret = -ENODEV;
- goto out_device;
- }
- plr->minor = new_minor;
- rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
- closid_free(rdtgrp->closid);
- rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
- rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
- ret = 0;
- goto out;
- out_device:
- device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
- out_debugfs:
- debugfs_remove_recursive(plr->debugfs_dir);
- pseudo_lock_minor_release(new_minor);
- out_cstates:
- pseudo_lock_cstates_relax(plr);
- out_region:
- pseudo_lock_region_clear(plr);
- out:
- return ret;
- }
- /**
- * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
- * @rdtgrp: resource group to which the pseudo-locked region belongs
- *
- * The removal of a pseudo-locked region can be initiated when the resource
- * group is removed from user space via a "rmdir" from userspace or the
- * unmount of the resctrl filesystem. On removal the resource group does
- * not go back to pseudo-locksetup mode before it is removed, instead it is
- * removed directly. There is thus assymmetry with the creation where the
- * &struct pseudo_lock_region is removed here while it was not created in
- * rdtgroup_pseudo_lock_create().
- *
- * Return: void
- */
- void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
- {
- struct pseudo_lock_region *plr = rdtgrp->plr;
- if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
- /*
- * Default group cannot be a pseudo-locked region so we can
- * free closid here.
- */
- closid_free(rdtgrp->closid);
- goto free;
- }
- pseudo_lock_cstates_relax(plr);
- debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
- device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
- pseudo_lock_minor_release(plr->minor);
- free:
- pseudo_lock_free(rdtgrp);
- }
- static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
- {
- struct rdtgroup *rdtgrp;
- mutex_lock(&rdtgroup_mutex);
- rdtgrp = region_find_by_minor(iminor(inode));
- if (!rdtgrp) {
- mutex_unlock(&rdtgroup_mutex);
- return -ENODEV;
- }
- filp->private_data = rdtgrp;
- atomic_inc(&rdtgrp->waitcount);
- /* Perform a non-seekable open - llseek is not supported */
- filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
- mutex_unlock(&rdtgroup_mutex);
- return 0;
- }
- static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
- {
- struct rdtgroup *rdtgrp;
- mutex_lock(&rdtgroup_mutex);
- rdtgrp = filp->private_data;
- WARN_ON(!rdtgrp);
- if (!rdtgrp) {
- mutex_unlock(&rdtgroup_mutex);
- return -ENODEV;
- }
- filp->private_data = NULL;
- atomic_dec(&rdtgrp->waitcount);
- mutex_unlock(&rdtgroup_mutex);
- return 0;
- }
- static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
- {
- /* Not supported */
- return -EINVAL;
- }
- static const struct vm_operations_struct pseudo_mmap_ops = {
- .mremap = pseudo_lock_dev_mremap,
- };
- static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
- {
- unsigned long vsize = vma->vm_end - vma->vm_start;
- unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
- struct pseudo_lock_region *plr;
- struct rdtgroup *rdtgrp;
- unsigned long physical;
- unsigned long psize;
- mutex_lock(&rdtgroup_mutex);
- rdtgrp = filp->private_data;
- WARN_ON(!rdtgrp);
- if (!rdtgrp) {
- mutex_unlock(&rdtgroup_mutex);
- return -ENODEV;
- }
- plr = rdtgrp->plr;
- if (!plr->d) {
- mutex_unlock(&rdtgroup_mutex);
- return -ENODEV;
- }
- /*
- * Task is required to run with affinity to the cpus associated
- * with the pseudo-locked region. If this is not the case the task
- * may be scheduled elsewhere and invalidate entries in the
- * pseudo-locked region.
- */
- if (!cpumask_subset(¤t->cpus_allowed, &plr->d->cpu_mask)) {
- mutex_unlock(&rdtgroup_mutex);
- return -EINVAL;
- }
- physical = __pa(plr->kmem) >> PAGE_SHIFT;
- psize = plr->size - off;
- if (off > plr->size) {
- mutex_unlock(&rdtgroup_mutex);
- return -ENOSPC;
- }
- /*
- * Ensure changes are carried directly to the memory being mapped,
- * do not allow copy-on-write mapping.
- */
- if (!(vma->vm_flags & VM_SHARED)) {
- mutex_unlock(&rdtgroup_mutex);
- return -EINVAL;
- }
- if (vsize > psize) {
- mutex_unlock(&rdtgroup_mutex);
- return -ENOSPC;
- }
- memset(plr->kmem + off, 0, vsize);
- if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
- vsize, vma->vm_page_prot)) {
- mutex_unlock(&rdtgroup_mutex);
- return -EAGAIN;
- }
- vma->vm_ops = &pseudo_mmap_ops;
- mutex_unlock(&rdtgroup_mutex);
- return 0;
- }
- static const struct file_operations pseudo_lock_dev_fops = {
- .owner = THIS_MODULE,
- .llseek = no_llseek,
- .read = NULL,
- .write = NULL,
- .open = pseudo_lock_dev_open,
- .release = pseudo_lock_dev_release,
- .mmap = pseudo_lock_dev_mmap,
- };
- static char *pseudo_lock_devnode(struct device *dev, umode_t *mode)
- {
- struct rdtgroup *rdtgrp;
- rdtgrp = dev_get_drvdata(dev);
- if (mode)
- *mode = 0600;
- return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
- }
- int rdt_pseudo_lock_init(void)
- {
- int ret;
- ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
- if (ret < 0)
- return ret;
- pseudo_lock_major = ret;
- pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
- if (IS_ERR(pseudo_lock_class)) {
- ret = PTR_ERR(pseudo_lock_class);
- unregister_chrdev(pseudo_lock_major, "pseudo_lock");
- return ret;
- }
- pseudo_lock_class->devnode = pseudo_lock_devnode;
- return 0;
- }
- void rdt_pseudo_lock_release(void)
- {
- class_destroy(pseudo_lock_class);
- pseudo_lock_class = NULL;
- unregister_chrdev(pseudo_lock_major, "pseudo_lock");
- pseudo_lock_major = 0;
- }
|