i915_debugfs.c 150 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. enum {
  42. ACTIVE_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  47. * allocated we need to hook into the minor for release. */
  48. static int
  49. drm_add_fake_info_node(struct drm_minor *minor,
  50. struct dentry *ent,
  51. const void *key)
  52. {
  53. struct drm_info_node *node;
  54. node = kmalloc(sizeof(*node), GFP_KERNEL);
  55. if (node == NULL) {
  56. debugfs_remove(ent);
  57. return -ENOMEM;
  58. }
  59. node->minor = minor;
  60. node->dent = ent;
  61. node->info_ent = (void *) key;
  62. mutex_lock(&minor->debugfs_lock);
  63. list_add(&node->list, &minor->debugfs_list);
  64. mutex_unlock(&minor->debugfs_lock);
  65. return 0;
  66. }
  67. static int i915_capabilities(struct seq_file *m, void *data)
  68. {
  69. struct drm_info_node *node = m->private;
  70. struct drm_device *dev = node->minor->dev;
  71. const struct intel_device_info *info = INTEL_INFO(dev);
  72. seq_printf(m, "gen: %d\n", info->gen);
  73. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  74. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  75. #define SEP_SEMICOLON ;
  76. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  77. #undef PRINT_FLAG
  78. #undef SEP_SEMICOLON
  79. return 0;
  80. }
  81. static const char get_active_flag(struct drm_i915_gem_object *obj)
  82. {
  83. return obj->active ? '*' : ' ';
  84. }
  85. static const char get_pin_flag(struct drm_i915_gem_object *obj)
  86. {
  87. return obj->pin_display ? 'p' : ' ';
  88. }
  89. static const char get_tiling_flag(struct drm_i915_gem_object *obj)
  90. {
  91. switch (obj->tiling_mode) {
  92. default:
  93. case I915_TILING_NONE: return ' ';
  94. case I915_TILING_X: return 'X';
  95. case I915_TILING_Y: return 'Y';
  96. }
  97. }
  98. static inline const char get_global_flag(struct drm_i915_gem_object *obj)
  99. {
  100. return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
  101. }
  102. static inline const char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  103. {
  104. return obj->mapping ? 'M' : ' ';
  105. }
  106. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  107. {
  108. u64 size = 0;
  109. struct i915_vma *vma;
  110. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  111. if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
  112. size += vma->node.size;
  113. }
  114. return size;
  115. }
  116. static void
  117. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  118. {
  119. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  120. struct intel_engine_cs *engine;
  121. struct i915_vma *vma;
  122. int pin_count = 0;
  123. enum intel_engine_id id;
  124. lockdep_assert_held(&obj->base.dev->struct_mutex);
  125. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
  126. &obj->base,
  127. get_active_flag(obj),
  128. get_pin_flag(obj),
  129. get_tiling_flag(obj),
  130. get_global_flag(obj),
  131. get_pin_mapped_flag(obj),
  132. obj->base.size / 1024,
  133. obj->base.read_domains,
  134. obj->base.write_domain);
  135. for_each_engine_id(engine, dev_priv, id)
  136. seq_printf(m, "%x ",
  137. i915_gem_request_get_seqno(obj->last_read_req[id]));
  138. seq_printf(m, "] %x %x%s%s%s",
  139. i915_gem_request_get_seqno(obj->last_write_req),
  140. i915_gem_request_get_seqno(obj->last_fenced_req),
  141. i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
  142. obj->dirty ? " dirty" : "",
  143. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  144. if (obj->base.name)
  145. seq_printf(m, " (name: %d)", obj->base.name);
  146. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  147. if (vma->pin_count > 0)
  148. pin_count++;
  149. }
  150. seq_printf(m, " (pinned x %d)", pin_count);
  151. if (obj->pin_display)
  152. seq_printf(m, " (display)");
  153. if (obj->fence_reg != I915_FENCE_REG_NONE)
  154. seq_printf(m, " (fence: %d)", obj->fence_reg);
  155. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  156. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  157. vma->is_ggtt ? "g" : "pp",
  158. vma->node.start, vma->node.size);
  159. if (vma->is_ggtt)
  160. seq_printf(m, ", type: %u", vma->ggtt_view.type);
  161. seq_puts(m, ")");
  162. }
  163. if (obj->stolen)
  164. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  165. if (obj->pin_display || obj->fault_mappable) {
  166. char s[3], *t = s;
  167. if (obj->pin_display)
  168. *t++ = 'p';
  169. if (obj->fault_mappable)
  170. *t++ = 'f';
  171. *t = '\0';
  172. seq_printf(m, " (%s mappable)", s);
  173. }
  174. if (obj->last_write_req != NULL)
  175. seq_printf(m, " (%s)",
  176. i915_gem_request_get_engine(obj->last_write_req)->name);
  177. if (obj->frontbuffer_bits)
  178. seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
  179. }
  180. static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
  181. {
  182. seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
  183. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  184. seq_putc(m, ' ');
  185. }
  186. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  187. {
  188. struct drm_info_node *node = m->private;
  189. uintptr_t list = (uintptr_t) node->info_ent->data;
  190. struct list_head *head;
  191. struct drm_device *dev = node->minor->dev;
  192. struct drm_i915_private *dev_priv = to_i915(dev);
  193. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  194. struct i915_vma *vma;
  195. u64 total_obj_size, total_gtt_size;
  196. int count, ret;
  197. ret = mutex_lock_interruptible(&dev->struct_mutex);
  198. if (ret)
  199. return ret;
  200. /* FIXME: the user of this interface might want more than just GGTT */
  201. switch (list) {
  202. case ACTIVE_LIST:
  203. seq_puts(m, "Active:\n");
  204. head = &ggtt->base.active_list;
  205. break;
  206. case INACTIVE_LIST:
  207. seq_puts(m, "Inactive:\n");
  208. head = &ggtt->base.inactive_list;
  209. break;
  210. default:
  211. mutex_unlock(&dev->struct_mutex);
  212. return -EINVAL;
  213. }
  214. total_obj_size = total_gtt_size = count = 0;
  215. list_for_each_entry(vma, head, vm_link) {
  216. seq_printf(m, " ");
  217. describe_obj(m, vma->obj);
  218. seq_printf(m, "\n");
  219. total_obj_size += vma->obj->base.size;
  220. total_gtt_size += vma->node.size;
  221. count++;
  222. }
  223. mutex_unlock(&dev->struct_mutex);
  224. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  225. count, total_obj_size, total_gtt_size);
  226. return 0;
  227. }
  228. static int obj_rank_by_stolen(void *priv,
  229. struct list_head *A, struct list_head *B)
  230. {
  231. struct drm_i915_gem_object *a =
  232. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  233. struct drm_i915_gem_object *b =
  234. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  235. if (a->stolen->start < b->stolen->start)
  236. return -1;
  237. if (a->stolen->start > b->stolen->start)
  238. return 1;
  239. return 0;
  240. }
  241. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  242. {
  243. struct drm_info_node *node = m->private;
  244. struct drm_device *dev = node->minor->dev;
  245. struct drm_i915_private *dev_priv = dev->dev_private;
  246. struct drm_i915_gem_object *obj;
  247. u64 total_obj_size, total_gtt_size;
  248. LIST_HEAD(stolen);
  249. int count, ret;
  250. ret = mutex_lock_interruptible(&dev->struct_mutex);
  251. if (ret)
  252. return ret;
  253. total_obj_size = total_gtt_size = count = 0;
  254. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  255. if (obj->stolen == NULL)
  256. continue;
  257. list_add(&obj->obj_exec_link, &stolen);
  258. total_obj_size += obj->base.size;
  259. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  260. count++;
  261. }
  262. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  263. if (obj->stolen == NULL)
  264. continue;
  265. list_add(&obj->obj_exec_link, &stolen);
  266. total_obj_size += obj->base.size;
  267. count++;
  268. }
  269. list_sort(NULL, &stolen, obj_rank_by_stolen);
  270. seq_puts(m, "Stolen:\n");
  271. while (!list_empty(&stolen)) {
  272. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  273. seq_puts(m, " ");
  274. describe_obj(m, obj);
  275. seq_putc(m, '\n');
  276. list_del_init(&obj->obj_exec_link);
  277. }
  278. mutex_unlock(&dev->struct_mutex);
  279. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  280. count, total_obj_size, total_gtt_size);
  281. return 0;
  282. }
  283. #define count_objects(list, member) do { \
  284. list_for_each_entry(obj, list, member) { \
  285. size += i915_gem_obj_total_ggtt_size(obj); \
  286. ++count; \
  287. if (obj->map_and_fenceable) { \
  288. mappable_size += i915_gem_obj_ggtt_size(obj); \
  289. ++mappable_count; \
  290. } \
  291. } \
  292. } while (0)
  293. struct file_stats {
  294. struct drm_i915_file_private *file_priv;
  295. unsigned long count;
  296. u64 total, unbound;
  297. u64 global, shared;
  298. u64 active, inactive;
  299. };
  300. static int per_file_stats(int id, void *ptr, void *data)
  301. {
  302. struct drm_i915_gem_object *obj = ptr;
  303. struct file_stats *stats = data;
  304. struct i915_vma *vma;
  305. stats->count++;
  306. stats->total += obj->base.size;
  307. if (obj->base.name || obj->base.dma_buf)
  308. stats->shared += obj->base.size;
  309. if (USES_FULL_PPGTT(obj->base.dev)) {
  310. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  311. struct i915_hw_ppgtt *ppgtt;
  312. if (!drm_mm_node_allocated(&vma->node))
  313. continue;
  314. if (vma->is_ggtt) {
  315. stats->global += obj->base.size;
  316. continue;
  317. }
  318. ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
  319. if (ppgtt->file_priv != stats->file_priv)
  320. continue;
  321. if (obj->active) /* XXX per-vma statistic */
  322. stats->active += obj->base.size;
  323. else
  324. stats->inactive += obj->base.size;
  325. return 0;
  326. }
  327. } else {
  328. if (i915_gem_obj_ggtt_bound(obj)) {
  329. stats->global += obj->base.size;
  330. if (obj->active)
  331. stats->active += obj->base.size;
  332. else
  333. stats->inactive += obj->base.size;
  334. return 0;
  335. }
  336. }
  337. if (!list_empty(&obj->global_list))
  338. stats->unbound += obj->base.size;
  339. return 0;
  340. }
  341. #define print_file_stats(m, name, stats) do { \
  342. if (stats.count) \
  343. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  344. name, \
  345. stats.count, \
  346. stats.total, \
  347. stats.active, \
  348. stats.inactive, \
  349. stats.global, \
  350. stats.shared, \
  351. stats.unbound); \
  352. } while (0)
  353. static void print_batch_pool_stats(struct seq_file *m,
  354. struct drm_i915_private *dev_priv)
  355. {
  356. struct drm_i915_gem_object *obj;
  357. struct file_stats stats;
  358. struct intel_engine_cs *engine;
  359. int j;
  360. memset(&stats, 0, sizeof(stats));
  361. for_each_engine(engine, dev_priv) {
  362. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  363. list_for_each_entry(obj,
  364. &engine->batch_pool.cache_list[j],
  365. batch_pool_link)
  366. per_file_stats(0, obj, &stats);
  367. }
  368. }
  369. print_file_stats(m, "[k]batch pool", stats);
  370. }
  371. #define count_vmas(list, member) do { \
  372. list_for_each_entry(vma, list, member) { \
  373. size += i915_gem_obj_total_ggtt_size(vma->obj); \
  374. ++count; \
  375. if (vma->obj->map_and_fenceable) { \
  376. mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
  377. ++mappable_count; \
  378. } \
  379. } \
  380. } while (0)
  381. static int i915_gem_object_info(struct seq_file *m, void* data)
  382. {
  383. struct drm_info_node *node = m->private;
  384. struct drm_device *dev = node->minor->dev;
  385. struct drm_i915_private *dev_priv = to_i915(dev);
  386. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  387. u32 count, mappable_count, purgeable_count;
  388. u64 size, mappable_size, purgeable_size;
  389. unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
  390. u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
  391. struct drm_i915_gem_object *obj;
  392. struct drm_file *file;
  393. struct i915_vma *vma;
  394. int ret;
  395. ret = mutex_lock_interruptible(&dev->struct_mutex);
  396. if (ret)
  397. return ret;
  398. seq_printf(m, "%u objects, %zu bytes\n",
  399. dev_priv->mm.object_count,
  400. dev_priv->mm.object_memory);
  401. size = count = mappable_size = mappable_count = 0;
  402. count_objects(&dev_priv->mm.bound_list, global_list);
  403. seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
  404. count, mappable_count, size, mappable_size);
  405. size = count = mappable_size = mappable_count = 0;
  406. count_vmas(&ggtt->base.active_list, vm_link);
  407. seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
  408. count, mappable_count, size, mappable_size);
  409. size = count = mappable_size = mappable_count = 0;
  410. count_vmas(&ggtt->base.inactive_list, vm_link);
  411. seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
  412. count, mappable_count, size, mappable_size);
  413. size = count = purgeable_size = purgeable_count = 0;
  414. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  415. size += obj->base.size, ++count;
  416. if (obj->madv == I915_MADV_DONTNEED)
  417. purgeable_size += obj->base.size, ++purgeable_count;
  418. if (obj->mapping) {
  419. pin_mapped_count++;
  420. pin_mapped_size += obj->base.size;
  421. if (obj->pages_pin_count == 0) {
  422. pin_mapped_purgeable_count++;
  423. pin_mapped_purgeable_size += obj->base.size;
  424. }
  425. }
  426. }
  427. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  428. size = count = mappable_size = mappable_count = 0;
  429. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  430. if (obj->fault_mappable) {
  431. size += i915_gem_obj_ggtt_size(obj);
  432. ++count;
  433. }
  434. if (obj->pin_display) {
  435. mappable_size += i915_gem_obj_ggtt_size(obj);
  436. ++mappable_count;
  437. }
  438. if (obj->madv == I915_MADV_DONTNEED) {
  439. purgeable_size += obj->base.size;
  440. ++purgeable_count;
  441. }
  442. if (obj->mapping) {
  443. pin_mapped_count++;
  444. pin_mapped_size += obj->base.size;
  445. if (obj->pages_pin_count == 0) {
  446. pin_mapped_purgeable_count++;
  447. pin_mapped_purgeable_size += obj->base.size;
  448. }
  449. }
  450. }
  451. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  452. purgeable_count, purgeable_size);
  453. seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
  454. mappable_count, mappable_size);
  455. seq_printf(m, "%u fault mappable objects, %llu bytes\n",
  456. count, size);
  457. seq_printf(m,
  458. "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
  459. pin_mapped_count, pin_mapped_purgeable_count,
  460. pin_mapped_size, pin_mapped_purgeable_size);
  461. seq_printf(m, "%llu [%llu] gtt total\n",
  462. ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
  463. seq_putc(m, '\n');
  464. print_batch_pool_stats(m, dev_priv);
  465. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  466. struct file_stats stats;
  467. struct task_struct *task;
  468. memset(&stats, 0, sizeof(stats));
  469. stats.file_priv = file->driver_priv;
  470. spin_lock(&file->table_lock);
  471. idr_for_each(&file->object_idr, per_file_stats, &stats);
  472. spin_unlock(&file->table_lock);
  473. /*
  474. * Although we have a valid reference on file->pid, that does
  475. * not guarantee that the task_struct who called get_pid() is
  476. * still alive (e.g. get_pid(current) => fork() => exit()).
  477. * Therefore, we need to protect this ->comm access using RCU.
  478. */
  479. rcu_read_lock();
  480. task = pid_task(file->pid, PIDTYPE_PID);
  481. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  482. rcu_read_unlock();
  483. }
  484. mutex_unlock(&dev->struct_mutex);
  485. return 0;
  486. }
  487. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  488. {
  489. struct drm_info_node *node = m->private;
  490. struct drm_device *dev = node->minor->dev;
  491. uintptr_t list = (uintptr_t) node->info_ent->data;
  492. struct drm_i915_private *dev_priv = dev->dev_private;
  493. struct drm_i915_gem_object *obj;
  494. u64 total_obj_size, total_gtt_size;
  495. int count, ret;
  496. ret = mutex_lock_interruptible(&dev->struct_mutex);
  497. if (ret)
  498. return ret;
  499. total_obj_size = total_gtt_size = count = 0;
  500. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  501. if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
  502. continue;
  503. seq_puts(m, " ");
  504. describe_obj(m, obj);
  505. seq_putc(m, '\n');
  506. total_obj_size += obj->base.size;
  507. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  508. count++;
  509. }
  510. mutex_unlock(&dev->struct_mutex);
  511. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  512. count, total_obj_size, total_gtt_size);
  513. return 0;
  514. }
  515. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  516. {
  517. struct drm_info_node *node = m->private;
  518. struct drm_device *dev = node->minor->dev;
  519. struct drm_i915_private *dev_priv = dev->dev_private;
  520. struct intel_crtc *crtc;
  521. int ret;
  522. ret = mutex_lock_interruptible(&dev->struct_mutex);
  523. if (ret)
  524. return ret;
  525. for_each_intel_crtc(dev, crtc) {
  526. const char pipe = pipe_name(crtc->pipe);
  527. const char plane = plane_name(crtc->plane);
  528. struct intel_unpin_work *work;
  529. spin_lock_irq(&dev->event_lock);
  530. work = crtc->unpin_work;
  531. if (work == NULL) {
  532. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  533. pipe, plane);
  534. } else {
  535. u32 addr;
  536. if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  537. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  538. pipe, plane);
  539. } else {
  540. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  541. pipe, plane);
  542. }
  543. if (work->flip_queued_req) {
  544. struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
  545. seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
  546. engine->name,
  547. i915_gem_request_get_seqno(work->flip_queued_req),
  548. dev_priv->next_seqno,
  549. engine->get_seqno(engine),
  550. i915_gem_request_completed(work->flip_queued_req, true));
  551. } else
  552. seq_printf(m, "Flip not associated with any ring\n");
  553. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  554. work->flip_queued_vblank,
  555. work->flip_ready_vblank,
  556. drm_crtc_vblank_count(&crtc->base));
  557. if (work->enable_stall_check)
  558. seq_puts(m, "Stall check enabled, ");
  559. else
  560. seq_puts(m, "Stall check waiting for page flip ioctl, ");
  561. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  562. if (INTEL_INFO(dev)->gen >= 4)
  563. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  564. else
  565. addr = I915_READ(DSPADDR(crtc->plane));
  566. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  567. if (work->pending_flip_obj) {
  568. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  569. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  570. }
  571. }
  572. spin_unlock_irq(&dev->event_lock);
  573. }
  574. mutex_unlock(&dev->struct_mutex);
  575. return 0;
  576. }
  577. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  578. {
  579. struct drm_info_node *node = m->private;
  580. struct drm_device *dev = node->minor->dev;
  581. struct drm_i915_private *dev_priv = dev->dev_private;
  582. struct drm_i915_gem_object *obj;
  583. struct intel_engine_cs *engine;
  584. int total = 0;
  585. int ret, j;
  586. ret = mutex_lock_interruptible(&dev->struct_mutex);
  587. if (ret)
  588. return ret;
  589. for_each_engine(engine, dev_priv) {
  590. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  591. int count;
  592. count = 0;
  593. list_for_each_entry(obj,
  594. &engine->batch_pool.cache_list[j],
  595. batch_pool_link)
  596. count++;
  597. seq_printf(m, "%s cache[%d]: %d objects\n",
  598. engine->name, j, count);
  599. list_for_each_entry(obj,
  600. &engine->batch_pool.cache_list[j],
  601. batch_pool_link) {
  602. seq_puts(m, " ");
  603. describe_obj(m, obj);
  604. seq_putc(m, '\n');
  605. }
  606. total += count;
  607. }
  608. }
  609. seq_printf(m, "total: %d\n", total);
  610. mutex_unlock(&dev->struct_mutex);
  611. return 0;
  612. }
  613. static int i915_gem_request_info(struct seq_file *m, void *data)
  614. {
  615. struct drm_info_node *node = m->private;
  616. struct drm_device *dev = node->minor->dev;
  617. struct drm_i915_private *dev_priv = dev->dev_private;
  618. struct intel_engine_cs *engine;
  619. struct drm_i915_gem_request *req;
  620. int ret, any;
  621. ret = mutex_lock_interruptible(&dev->struct_mutex);
  622. if (ret)
  623. return ret;
  624. any = 0;
  625. for_each_engine(engine, dev_priv) {
  626. int count;
  627. count = 0;
  628. list_for_each_entry(req, &engine->request_list, list)
  629. count++;
  630. if (count == 0)
  631. continue;
  632. seq_printf(m, "%s requests: %d\n", engine->name, count);
  633. list_for_each_entry(req, &engine->request_list, list) {
  634. struct task_struct *task;
  635. rcu_read_lock();
  636. task = NULL;
  637. if (req->pid)
  638. task = pid_task(req->pid, PIDTYPE_PID);
  639. seq_printf(m, " %x @ %d: %s [%d]\n",
  640. req->seqno,
  641. (int) (jiffies - req->emitted_jiffies),
  642. task ? task->comm : "<unknown>",
  643. task ? task->pid : -1);
  644. rcu_read_unlock();
  645. }
  646. any++;
  647. }
  648. mutex_unlock(&dev->struct_mutex);
  649. if (any == 0)
  650. seq_puts(m, "No requests\n");
  651. return 0;
  652. }
  653. static void i915_ring_seqno_info(struct seq_file *m,
  654. struct intel_engine_cs *engine)
  655. {
  656. seq_printf(m, "Current sequence (%s): %x\n",
  657. engine->name, engine->get_seqno(engine));
  658. seq_printf(m, "Current user interrupts (%s): %x\n",
  659. engine->name, READ_ONCE(engine->user_interrupts));
  660. }
  661. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  662. {
  663. struct drm_info_node *node = m->private;
  664. struct drm_device *dev = node->minor->dev;
  665. struct drm_i915_private *dev_priv = dev->dev_private;
  666. struct intel_engine_cs *engine;
  667. int ret;
  668. ret = mutex_lock_interruptible(&dev->struct_mutex);
  669. if (ret)
  670. return ret;
  671. intel_runtime_pm_get(dev_priv);
  672. for_each_engine(engine, dev_priv)
  673. i915_ring_seqno_info(m, engine);
  674. intel_runtime_pm_put(dev_priv);
  675. mutex_unlock(&dev->struct_mutex);
  676. return 0;
  677. }
  678. static int i915_interrupt_info(struct seq_file *m, void *data)
  679. {
  680. struct drm_info_node *node = m->private;
  681. struct drm_device *dev = node->minor->dev;
  682. struct drm_i915_private *dev_priv = dev->dev_private;
  683. struct intel_engine_cs *engine;
  684. int ret, i, pipe;
  685. ret = mutex_lock_interruptible(&dev->struct_mutex);
  686. if (ret)
  687. return ret;
  688. intel_runtime_pm_get(dev_priv);
  689. if (IS_CHERRYVIEW(dev)) {
  690. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  691. I915_READ(GEN8_MASTER_IRQ));
  692. seq_printf(m, "Display IER:\t%08x\n",
  693. I915_READ(VLV_IER));
  694. seq_printf(m, "Display IIR:\t%08x\n",
  695. I915_READ(VLV_IIR));
  696. seq_printf(m, "Display IIR_RW:\t%08x\n",
  697. I915_READ(VLV_IIR_RW));
  698. seq_printf(m, "Display IMR:\t%08x\n",
  699. I915_READ(VLV_IMR));
  700. for_each_pipe(dev_priv, pipe)
  701. seq_printf(m, "Pipe %c stat:\t%08x\n",
  702. pipe_name(pipe),
  703. I915_READ(PIPESTAT(pipe)));
  704. seq_printf(m, "Port hotplug:\t%08x\n",
  705. I915_READ(PORT_HOTPLUG_EN));
  706. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  707. I915_READ(VLV_DPFLIPSTAT));
  708. seq_printf(m, "DPINVGTT:\t%08x\n",
  709. I915_READ(DPINVGTT));
  710. for (i = 0; i < 4; i++) {
  711. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  712. i, I915_READ(GEN8_GT_IMR(i)));
  713. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  714. i, I915_READ(GEN8_GT_IIR(i)));
  715. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  716. i, I915_READ(GEN8_GT_IER(i)));
  717. }
  718. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  719. I915_READ(GEN8_PCU_IMR));
  720. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  721. I915_READ(GEN8_PCU_IIR));
  722. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  723. I915_READ(GEN8_PCU_IER));
  724. } else if (INTEL_INFO(dev)->gen >= 8) {
  725. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  726. I915_READ(GEN8_MASTER_IRQ));
  727. for (i = 0; i < 4; i++) {
  728. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  729. i, I915_READ(GEN8_GT_IMR(i)));
  730. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  731. i, I915_READ(GEN8_GT_IIR(i)));
  732. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  733. i, I915_READ(GEN8_GT_IER(i)));
  734. }
  735. for_each_pipe(dev_priv, pipe) {
  736. enum intel_display_power_domain power_domain;
  737. power_domain = POWER_DOMAIN_PIPE(pipe);
  738. if (!intel_display_power_get_if_enabled(dev_priv,
  739. power_domain)) {
  740. seq_printf(m, "Pipe %c power disabled\n",
  741. pipe_name(pipe));
  742. continue;
  743. }
  744. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  745. pipe_name(pipe),
  746. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  747. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  748. pipe_name(pipe),
  749. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  750. seq_printf(m, "Pipe %c IER:\t%08x\n",
  751. pipe_name(pipe),
  752. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  753. intel_display_power_put(dev_priv, power_domain);
  754. }
  755. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  756. I915_READ(GEN8_DE_PORT_IMR));
  757. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  758. I915_READ(GEN8_DE_PORT_IIR));
  759. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  760. I915_READ(GEN8_DE_PORT_IER));
  761. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  762. I915_READ(GEN8_DE_MISC_IMR));
  763. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  764. I915_READ(GEN8_DE_MISC_IIR));
  765. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  766. I915_READ(GEN8_DE_MISC_IER));
  767. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  768. I915_READ(GEN8_PCU_IMR));
  769. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  770. I915_READ(GEN8_PCU_IIR));
  771. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  772. I915_READ(GEN8_PCU_IER));
  773. } else if (IS_VALLEYVIEW(dev)) {
  774. seq_printf(m, "Display IER:\t%08x\n",
  775. I915_READ(VLV_IER));
  776. seq_printf(m, "Display IIR:\t%08x\n",
  777. I915_READ(VLV_IIR));
  778. seq_printf(m, "Display IIR_RW:\t%08x\n",
  779. I915_READ(VLV_IIR_RW));
  780. seq_printf(m, "Display IMR:\t%08x\n",
  781. I915_READ(VLV_IMR));
  782. for_each_pipe(dev_priv, pipe)
  783. seq_printf(m, "Pipe %c stat:\t%08x\n",
  784. pipe_name(pipe),
  785. I915_READ(PIPESTAT(pipe)));
  786. seq_printf(m, "Master IER:\t%08x\n",
  787. I915_READ(VLV_MASTER_IER));
  788. seq_printf(m, "Render IER:\t%08x\n",
  789. I915_READ(GTIER));
  790. seq_printf(m, "Render IIR:\t%08x\n",
  791. I915_READ(GTIIR));
  792. seq_printf(m, "Render IMR:\t%08x\n",
  793. I915_READ(GTIMR));
  794. seq_printf(m, "PM IER:\t\t%08x\n",
  795. I915_READ(GEN6_PMIER));
  796. seq_printf(m, "PM IIR:\t\t%08x\n",
  797. I915_READ(GEN6_PMIIR));
  798. seq_printf(m, "PM IMR:\t\t%08x\n",
  799. I915_READ(GEN6_PMIMR));
  800. seq_printf(m, "Port hotplug:\t%08x\n",
  801. I915_READ(PORT_HOTPLUG_EN));
  802. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  803. I915_READ(VLV_DPFLIPSTAT));
  804. seq_printf(m, "DPINVGTT:\t%08x\n",
  805. I915_READ(DPINVGTT));
  806. } else if (!HAS_PCH_SPLIT(dev)) {
  807. seq_printf(m, "Interrupt enable: %08x\n",
  808. I915_READ(IER));
  809. seq_printf(m, "Interrupt identity: %08x\n",
  810. I915_READ(IIR));
  811. seq_printf(m, "Interrupt mask: %08x\n",
  812. I915_READ(IMR));
  813. for_each_pipe(dev_priv, pipe)
  814. seq_printf(m, "Pipe %c stat: %08x\n",
  815. pipe_name(pipe),
  816. I915_READ(PIPESTAT(pipe)));
  817. } else {
  818. seq_printf(m, "North Display Interrupt enable: %08x\n",
  819. I915_READ(DEIER));
  820. seq_printf(m, "North Display Interrupt identity: %08x\n",
  821. I915_READ(DEIIR));
  822. seq_printf(m, "North Display Interrupt mask: %08x\n",
  823. I915_READ(DEIMR));
  824. seq_printf(m, "South Display Interrupt enable: %08x\n",
  825. I915_READ(SDEIER));
  826. seq_printf(m, "South Display Interrupt identity: %08x\n",
  827. I915_READ(SDEIIR));
  828. seq_printf(m, "South Display Interrupt mask: %08x\n",
  829. I915_READ(SDEIMR));
  830. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  831. I915_READ(GTIER));
  832. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  833. I915_READ(GTIIR));
  834. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  835. I915_READ(GTIMR));
  836. }
  837. for_each_engine(engine, dev_priv) {
  838. if (INTEL_INFO(dev)->gen >= 6) {
  839. seq_printf(m,
  840. "Graphics Interrupt mask (%s): %08x\n",
  841. engine->name, I915_READ_IMR(engine));
  842. }
  843. i915_ring_seqno_info(m, engine);
  844. }
  845. intel_runtime_pm_put(dev_priv);
  846. mutex_unlock(&dev->struct_mutex);
  847. return 0;
  848. }
  849. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  850. {
  851. struct drm_info_node *node = m->private;
  852. struct drm_device *dev = node->minor->dev;
  853. struct drm_i915_private *dev_priv = dev->dev_private;
  854. int i, ret;
  855. ret = mutex_lock_interruptible(&dev->struct_mutex);
  856. if (ret)
  857. return ret;
  858. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  859. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  860. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  861. seq_printf(m, "Fence %d, pin count = %d, object = ",
  862. i, dev_priv->fence_regs[i].pin_count);
  863. if (obj == NULL)
  864. seq_puts(m, "unused");
  865. else
  866. describe_obj(m, obj);
  867. seq_putc(m, '\n');
  868. }
  869. mutex_unlock(&dev->struct_mutex);
  870. return 0;
  871. }
  872. static int i915_hws_info(struct seq_file *m, void *data)
  873. {
  874. struct drm_info_node *node = m->private;
  875. struct drm_device *dev = node->minor->dev;
  876. struct drm_i915_private *dev_priv = dev->dev_private;
  877. struct intel_engine_cs *engine;
  878. const u32 *hws;
  879. int i;
  880. engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
  881. hws = engine->status_page.page_addr;
  882. if (hws == NULL)
  883. return 0;
  884. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  885. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  886. i * 4,
  887. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  888. }
  889. return 0;
  890. }
  891. static ssize_t
  892. i915_error_state_write(struct file *filp,
  893. const char __user *ubuf,
  894. size_t cnt,
  895. loff_t *ppos)
  896. {
  897. struct i915_error_state_file_priv *error_priv = filp->private_data;
  898. struct drm_device *dev = error_priv->dev;
  899. int ret;
  900. DRM_DEBUG_DRIVER("Resetting error state\n");
  901. ret = mutex_lock_interruptible(&dev->struct_mutex);
  902. if (ret)
  903. return ret;
  904. i915_destroy_error_state(dev);
  905. mutex_unlock(&dev->struct_mutex);
  906. return cnt;
  907. }
  908. static int i915_error_state_open(struct inode *inode, struct file *file)
  909. {
  910. struct drm_device *dev = inode->i_private;
  911. struct i915_error_state_file_priv *error_priv;
  912. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  913. if (!error_priv)
  914. return -ENOMEM;
  915. error_priv->dev = dev;
  916. i915_error_state_get(dev, error_priv);
  917. file->private_data = error_priv;
  918. return 0;
  919. }
  920. static int i915_error_state_release(struct inode *inode, struct file *file)
  921. {
  922. struct i915_error_state_file_priv *error_priv = file->private_data;
  923. i915_error_state_put(error_priv);
  924. kfree(error_priv);
  925. return 0;
  926. }
  927. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  928. size_t count, loff_t *pos)
  929. {
  930. struct i915_error_state_file_priv *error_priv = file->private_data;
  931. struct drm_i915_error_state_buf error_str;
  932. loff_t tmp_pos = 0;
  933. ssize_t ret_count = 0;
  934. int ret;
  935. ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
  936. if (ret)
  937. return ret;
  938. ret = i915_error_state_to_str(&error_str, error_priv);
  939. if (ret)
  940. goto out;
  941. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  942. error_str.buf,
  943. error_str.bytes);
  944. if (ret_count < 0)
  945. ret = ret_count;
  946. else
  947. *pos = error_str.start + ret_count;
  948. out:
  949. i915_error_state_buf_release(&error_str);
  950. return ret ?: ret_count;
  951. }
  952. static const struct file_operations i915_error_state_fops = {
  953. .owner = THIS_MODULE,
  954. .open = i915_error_state_open,
  955. .read = i915_error_state_read,
  956. .write = i915_error_state_write,
  957. .llseek = default_llseek,
  958. .release = i915_error_state_release,
  959. };
  960. static int
  961. i915_next_seqno_get(void *data, u64 *val)
  962. {
  963. struct drm_device *dev = data;
  964. struct drm_i915_private *dev_priv = dev->dev_private;
  965. int ret;
  966. ret = mutex_lock_interruptible(&dev->struct_mutex);
  967. if (ret)
  968. return ret;
  969. *val = dev_priv->next_seqno;
  970. mutex_unlock(&dev->struct_mutex);
  971. return 0;
  972. }
  973. static int
  974. i915_next_seqno_set(void *data, u64 val)
  975. {
  976. struct drm_device *dev = data;
  977. int ret;
  978. ret = mutex_lock_interruptible(&dev->struct_mutex);
  979. if (ret)
  980. return ret;
  981. ret = i915_gem_set_seqno(dev, val);
  982. mutex_unlock(&dev->struct_mutex);
  983. return ret;
  984. }
  985. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  986. i915_next_seqno_get, i915_next_seqno_set,
  987. "0x%llx\n");
  988. static int i915_frequency_info(struct seq_file *m, void *unused)
  989. {
  990. struct drm_info_node *node = m->private;
  991. struct drm_device *dev = node->minor->dev;
  992. struct drm_i915_private *dev_priv = dev->dev_private;
  993. int ret = 0;
  994. intel_runtime_pm_get(dev_priv);
  995. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  996. if (IS_GEN5(dev)) {
  997. u16 rgvswctl = I915_READ16(MEMSWCTL);
  998. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  999. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  1000. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  1001. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  1002. MEMSTAT_VID_SHIFT);
  1003. seq_printf(m, "Current P-state: %d\n",
  1004. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  1005. } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  1006. u32 freq_sts;
  1007. mutex_lock(&dev_priv->rps.hw_lock);
  1008. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  1009. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  1010. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  1011. seq_printf(m, "actual GPU freq: %d MHz\n",
  1012. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  1013. seq_printf(m, "current GPU freq: %d MHz\n",
  1014. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1015. seq_printf(m, "max GPU freq: %d MHz\n",
  1016. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1017. seq_printf(m, "min GPU freq: %d MHz\n",
  1018. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1019. seq_printf(m, "idle GPU freq: %d MHz\n",
  1020. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1021. seq_printf(m,
  1022. "efficient (RPe) frequency: %d MHz\n",
  1023. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1024. mutex_unlock(&dev_priv->rps.hw_lock);
  1025. } else if (INTEL_INFO(dev)->gen >= 6) {
  1026. u32 rp_state_limits;
  1027. u32 gt_perf_status;
  1028. u32 rp_state_cap;
  1029. u32 rpmodectl, rpinclimit, rpdeclimit;
  1030. u32 rpstat, cagf, reqf;
  1031. u32 rpupei, rpcurup, rpprevup;
  1032. u32 rpdownei, rpcurdown, rpprevdown;
  1033. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  1034. int max_freq;
  1035. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  1036. if (IS_BROXTON(dev)) {
  1037. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  1038. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  1039. } else {
  1040. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  1041. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  1042. }
  1043. /* RPSTAT1 is in the GT power well */
  1044. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1045. if (ret)
  1046. goto out;
  1047. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1048. reqf = I915_READ(GEN6_RPNSWREQ);
  1049. if (IS_GEN9(dev))
  1050. reqf >>= 23;
  1051. else {
  1052. reqf &= ~GEN6_TURBO_DISABLE;
  1053. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1054. reqf >>= 24;
  1055. else
  1056. reqf >>= 25;
  1057. }
  1058. reqf = intel_gpu_freq(dev_priv, reqf);
  1059. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  1060. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  1061. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  1062. rpstat = I915_READ(GEN6_RPSTAT1);
  1063. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  1064. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  1065. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  1066. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  1067. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  1068. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  1069. if (IS_GEN9(dev))
  1070. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  1071. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1072. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  1073. else
  1074. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  1075. cagf = intel_gpu_freq(dev_priv, cagf);
  1076. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1077. mutex_unlock(&dev->struct_mutex);
  1078. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1079. pm_ier = I915_READ(GEN6_PMIER);
  1080. pm_imr = I915_READ(GEN6_PMIMR);
  1081. pm_isr = I915_READ(GEN6_PMISR);
  1082. pm_iir = I915_READ(GEN6_PMIIR);
  1083. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1084. } else {
  1085. pm_ier = I915_READ(GEN8_GT_IER(2));
  1086. pm_imr = I915_READ(GEN8_GT_IMR(2));
  1087. pm_isr = I915_READ(GEN8_GT_ISR(2));
  1088. pm_iir = I915_READ(GEN8_GT_IIR(2));
  1089. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1090. }
  1091. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1092. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1093. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1094. seq_printf(m, "Render p-state ratio: %d\n",
  1095. (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
  1096. seq_printf(m, "Render p-state VID: %d\n",
  1097. gt_perf_status & 0xff);
  1098. seq_printf(m, "Render p-state limit: %d\n",
  1099. rp_state_limits & 0xff);
  1100. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1101. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1102. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1103. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1104. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1105. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1106. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  1107. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  1108. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  1109. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  1110. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  1111. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  1112. seq_printf(m, "Up threshold: %d%%\n",
  1113. dev_priv->rps.up_threshold);
  1114. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  1115. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  1116. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  1117. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  1118. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  1119. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  1120. seq_printf(m, "Down threshold: %d%%\n",
  1121. dev_priv->rps.down_threshold);
  1122. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
  1123. rp_state_cap >> 16) & 0xff;
  1124. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1125. GEN9_FREQ_SCALER : 1);
  1126. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1127. intel_gpu_freq(dev_priv, max_freq));
  1128. max_freq = (rp_state_cap & 0xff00) >> 8;
  1129. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1130. GEN9_FREQ_SCALER : 1);
  1131. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1132. intel_gpu_freq(dev_priv, max_freq));
  1133. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
  1134. rp_state_cap >> 0) & 0xff;
  1135. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1136. GEN9_FREQ_SCALER : 1);
  1137. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1138. intel_gpu_freq(dev_priv, max_freq));
  1139. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1140. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1141. seq_printf(m, "Current freq: %d MHz\n",
  1142. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1143. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1144. seq_printf(m, "Idle freq: %d MHz\n",
  1145. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1146. seq_printf(m, "Min freq: %d MHz\n",
  1147. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1148. seq_printf(m, "Max freq: %d MHz\n",
  1149. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1150. seq_printf(m,
  1151. "efficient (RPe) frequency: %d MHz\n",
  1152. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1153. } else {
  1154. seq_puts(m, "no P-state info available\n");
  1155. }
  1156. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
  1157. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1158. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1159. out:
  1160. intel_runtime_pm_put(dev_priv);
  1161. return ret;
  1162. }
  1163. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1164. {
  1165. struct drm_info_node *node = m->private;
  1166. struct drm_device *dev = node->minor->dev;
  1167. struct drm_i915_private *dev_priv = dev->dev_private;
  1168. struct intel_engine_cs *engine;
  1169. u64 acthd[I915_NUM_ENGINES];
  1170. u32 seqno[I915_NUM_ENGINES];
  1171. u32 instdone[I915_NUM_INSTDONE_REG];
  1172. enum intel_engine_id id;
  1173. int j;
  1174. if (!i915.enable_hangcheck) {
  1175. seq_printf(m, "Hangcheck disabled\n");
  1176. return 0;
  1177. }
  1178. intel_runtime_pm_get(dev_priv);
  1179. for_each_engine_id(engine, dev_priv, id) {
  1180. acthd[id] = intel_ring_get_active_head(engine);
  1181. seqno[id] = engine->get_seqno(engine);
  1182. }
  1183. i915_get_extra_instdone(dev_priv, instdone);
  1184. intel_runtime_pm_put(dev_priv);
  1185. if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
  1186. seq_printf(m, "Hangcheck active, fires in %dms\n",
  1187. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1188. jiffies));
  1189. } else
  1190. seq_printf(m, "Hangcheck inactive\n");
  1191. for_each_engine_id(engine, dev_priv, id) {
  1192. seq_printf(m, "%s:\n", engine->name);
  1193. seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
  1194. engine->hangcheck.seqno,
  1195. seqno[id],
  1196. engine->last_submitted_seqno);
  1197. seq_printf(m, "\tuser interrupts = %x [current %x]\n",
  1198. engine->hangcheck.user_interrupts,
  1199. READ_ONCE(engine->user_interrupts));
  1200. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1201. (long long)engine->hangcheck.acthd,
  1202. (long long)acthd[id]);
  1203. seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
  1204. seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
  1205. if (engine->id == RCS) {
  1206. seq_puts(m, "\tinstdone read =");
  1207. for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
  1208. seq_printf(m, " 0x%08x", instdone[j]);
  1209. seq_puts(m, "\n\tinstdone accu =");
  1210. for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
  1211. seq_printf(m, " 0x%08x",
  1212. engine->hangcheck.instdone[j]);
  1213. seq_puts(m, "\n");
  1214. }
  1215. }
  1216. return 0;
  1217. }
  1218. static int ironlake_drpc_info(struct seq_file *m)
  1219. {
  1220. struct drm_info_node *node = m->private;
  1221. struct drm_device *dev = node->minor->dev;
  1222. struct drm_i915_private *dev_priv = dev->dev_private;
  1223. u32 rgvmodectl, rstdbyctl;
  1224. u16 crstandvid;
  1225. int ret;
  1226. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1227. if (ret)
  1228. return ret;
  1229. intel_runtime_pm_get(dev_priv);
  1230. rgvmodectl = I915_READ(MEMMODECTL);
  1231. rstdbyctl = I915_READ(RSTDBYCTL);
  1232. crstandvid = I915_READ16(CRSTANDVID);
  1233. intel_runtime_pm_put(dev_priv);
  1234. mutex_unlock(&dev->struct_mutex);
  1235. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1236. seq_printf(m, "Boost freq: %d\n",
  1237. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1238. MEMMODE_BOOST_FREQ_SHIFT);
  1239. seq_printf(m, "HW control enabled: %s\n",
  1240. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1241. seq_printf(m, "SW control enabled: %s\n",
  1242. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1243. seq_printf(m, "Gated voltage change: %s\n",
  1244. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1245. seq_printf(m, "Starting frequency: P%d\n",
  1246. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1247. seq_printf(m, "Max P-state: P%d\n",
  1248. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1249. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1250. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1251. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1252. seq_printf(m, "Render standby enabled: %s\n",
  1253. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1254. seq_puts(m, "Current RS state: ");
  1255. switch (rstdbyctl & RSX_STATUS_MASK) {
  1256. case RSX_STATUS_ON:
  1257. seq_puts(m, "on\n");
  1258. break;
  1259. case RSX_STATUS_RC1:
  1260. seq_puts(m, "RC1\n");
  1261. break;
  1262. case RSX_STATUS_RC1E:
  1263. seq_puts(m, "RC1E\n");
  1264. break;
  1265. case RSX_STATUS_RS1:
  1266. seq_puts(m, "RS1\n");
  1267. break;
  1268. case RSX_STATUS_RS2:
  1269. seq_puts(m, "RS2 (RC6)\n");
  1270. break;
  1271. case RSX_STATUS_RS3:
  1272. seq_puts(m, "RC3 (RC6+)\n");
  1273. break;
  1274. default:
  1275. seq_puts(m, "unknown\n");
  1276. break;
  1277. }
  1278. return 0;
  1279. }
  1280. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1281. {
  1282. struct drm_info_node *node = m->private;
  1283. struct drm_device *dev = node->minor->dev;
  1284. struct drm_i915_private *dev_priv = dev->dev_private;
  1285. struct intel_uncore_forcewake_domain *fw_domain;
  1286. spin_lock_irq(&dev_priv->uncore.lock);
  1287. for_each_fw_domain(fw_domain, dev_priv) {
  1288. seq_printf(m, "%s.wake_count = %u\n",
  1289. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1290. fw_domain->wake_count);
  1291. }
  1292. spin_unlock_irq(&dev_priv->uncore.lock);
  1293. return 0;
  1294. }
  1295. static int vlv_drpc_info(struct seq_file *m)
  1296. {
  1297. struct drm_info_node *node = m->private;
  1298. struct drm_device *dev = node->minor->dev;
  1299. struct drm_i915_private *dev_priv = dev->dev_private;
  1300. u32 rpmodectl1, rcctl1, pw_status;
  1301. intel_runtime_pm_get(dev_priv);
  1302. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1303. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1304. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1305. intel_runtime_pm_put(dev_priv);
  1306. seq_printf(m, "Video Turbo Mode: %s\n",
  1307. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1308. seq_printf(m, "Turbo enabled: %s\n",
  1309. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1310. seq_printf(m, "HW control enabled: %s\n",
  1311. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1312. seq_printf(m, "SW control enabled: %s\n",
  1313. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1314. GEN6_RP_MEDIA_SW_MODE));
  1315. seq_printf(m, "RC6 Enabled: %s\n",
  1316. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1317. GEN6_RC_CTL_EI_MODE(1))));
  1318. seq_printf(m, "Render Power Well: %s\n",
  1319. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1320. seq_printf(m, "Media Power Well: %s\n",
  1321. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1322. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1323. I915_READ(VLV_GT_RENDER_RC6));
  1324. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1325. I915_READ(VLV_GT_MEDIA_RC6));
  1326. return i915_forcewake_domains(m, NULL);
  1327. }
  1328. static int gen6_drpc_info(struct seq_file *m)
  1329. {
  1330. struct drm_info_node *node = m->private;
  1331. struct drm_device *dev = node->minor->dev;
  1332. struct drm_i915_private *dev_priv = dev->dev_private;
  1333. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1334. unsigned forcewake_count;
  1335. int count = 0, ret;
  1336. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1337. if (ret)
  1338. return ret;
  1339. intel_runtime_pm_get(dev_priv);
  1340. spin_lock_irq(&dev_priv->uncore.lock);
  1341. forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
  1342. spin_unlock_irq(&dev_priv->uncore.lock);
  1343. if (forcewake_count) {
  1344. seq_puts(m, "RC information inaccurate because somebody "
  1345. "holds a forcewake reference \n");
  1346. } else {
  1347. /* NB: we cannot use forcewake, else we read the wrong values */
  1348. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1349. udelay(10);
  1350. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1351. }
  1352. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1353. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1354. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1355. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1356. mutex_unlock(&dev->struct_mutex);
  1357. mutex_lock(&dev_priv->rps.hw_lock);
  1358. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1359. mutex_unlock(&dev_priv->rps.hw_lock);
  1360. intel_runtime_pm_put(dev_priv);
  1361. seq_printf(m, "Video Turbo Mode: %s\n",
  1362. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1363. seq_printf(m, "HW control enabled: %s\n",
  1364. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1365. seq_printf(m, "SW control enabled: %s\n",
  1366. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1367. GEN6_RP_MEDIA_SW_MODE));
  1368. seq_printf(m, "RC1e Enabled: %s\n",
  1369. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1370. seq_printf(m, "RC6 Enabled: %s\n",
  1371. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1372. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1373. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1374. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1375. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1376. seq_puts(m, "Current RC state: ");
  1377. switch (gt_core_status & GEN6_RCn_MASK) {
  1378. case GEN6_RC0:
  1379. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1380. seq_puts(m, "Core Power Down\n");
  1381. else
  1382. seq_puts(m, "on\n");
  1383. break;
  1384. case GEN6_RC3:
  1385. seq_puts(m, "RC3\n");
  1386. break;
  1387. case GEN6_RC6:
  1388. seq_puts(m, "RC6\n");
  1389. break;
  1390. case GEN6_RC7:
  1391. seq_puts(m, "RC7\n");
  1392. break;
  1393. default:
  1394. seq_puts(m, "Unknown\n");
  1395. break;
  1396. }
  1397. seq_printf(m, "Core Power Down: %s\n",
  1398. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1399. /* Not exactly sure what this is */
  1400. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1401. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1402. seq_printf(m, "RC6 residency since boot: %u\n",
  1403. I915_READ(GEN6_GT_GFX_RC6));
  1404. seq_printf(m, "RC6+ residency since boot: %u\n",
  1405. I915_READ(GEN6_GT_GFX_RC6p));
  1406. seq_printf(m, "RC6++ residency since boot: %u\n",
  1407. I915_READ(GEN6_GT_GFX_RC6pp));
  1408. seq_printf(m, "RC6 voltage: %dmV\n",
  1409. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1410. seq_printf(m, "RC6+ voltage: %dmV\n",
  1411. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1412. seq_printf(m, "RC6++ voltage: %dmV\n",
  1413. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1414. return 0;
  1415. }
  1416. static int i915_drpc_info(struct seq_file *m, void *unused)
  1417. {
  1418. struct drm_info_node *node = m->private;
  1419. struct drm_device *dev = node->minor->dev;
  1420. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  1421. return vlv_drpc_info(m);
  1422. else if (INTEL_INFO(dev)->gen >= 6)
  1423. return gen6_drpc_info(m);
  1424. else
  1425. return ironlake_drpc_info(m);
  1426. }
  1427. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1428. {
  1429. struct drm_info_node *node = m->private;
  1430. struct drm_device *dev = node->minor->dev;
  1431. struct drm_i915_private *dev_priv = dev->dev_private;
  1432. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1433. dev_priv->fb_tracking.busy_bits);
  1434. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1435. dev_priv->fb_tracking.flip_bits);
  1436. return 0;
  1437. }
  1438. static int i915_fbc_status(struct seq_file *m, void *unused)
  1439. {
  1440. struct drm_info_node *node = m->private;
  1441. struct drm_device *dev = node->minor->dev;
  1442. struct drm_i915_private *dev_priv = dev->dev_private;
  1443. if (!HAS_FBC(dev)) {
  1444. seq_puts(m, "FBC unsupported on this chipset\n");
  1445. return 0;
  1446. }
  1447. intel_runtime_pm_get(dev_priv);
  1448. mutex_lock(&dev_priv->fbc.lock);
  1449. if (intel_fbc_is_active(dev_priv))
  1450. seq_puts(m, "FBC enabled\n");
  1451. else
  1452. seq_printf(m, "FBC disabled: %s\n",
  1453. dev_priv->fbc.no_fbc_reason);
  1454. if (INTEL_INFO(dev_priv)->gen >= 7)
  1455. seq_printf(m, "Compressing: %s\n",
  1456. yesno(I915_READ(FBC_STATUS2) &
  1457. FBC_COMPRESSION_MASK));
  1458. mutex_unlock(&dev_priv->fbc.lock);
  1459. intel_runtime_pm_put(dev_priv);
  1460. return 0;
  1461. }
  1462. static int i915_fbc_fc_get(void *data, u64 *val)
  1463. {
  1464. struct drm_device *dev = data;
  1465. struct drm_i915_private *dev_priv = dev->dev_private;
  1466. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1467. return -ENODEV;
  1468. *val = dev_priv->fbc.false_color;
  1469. return 0;
  1470. }
  1471. static int i915_fbc_fc_set(void *data, u64 val)
  1472. {
  1473. struct drm_device *dev = data;
  1474. struct drm_i915_private *dev_priv = dev->dev_private;
  1475. u32 reg;
  1476. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1477. return -ENODEV;
  1478. mutex_lock(&dev_priv->fbc.lock);
  1479. reg = I915_READ(ILK_DPFC_CONTROL);
  1480. dev_priv->fbc.false_color = val;
  1481. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1482. (reg | FBC_CTL_FALSE_COLOR) :
  1483. (reg & ~FBC_CTL_FALSE_COLOR));
  1484. mutex_unlock(&dev_priv->fbc.lock);
  1485. return 0;
  1486. }
  1487. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1488. i915_fbc_fc_get, i915_fbc_fc_set,
  1489. "%llu\n");
  1490. static int i915_ips_status(struct seq_file *m, void *unused)
  1491. {
  1492. struct drm_info_node *node = m->private;
  1493. struct drm_device *dev = node->minor->dev;
  1494. struct drm_i915_private *dev_priv = dev->dev_private;
  1495. if (!HAS_IPS(dev)) {
  1496. seq_puts(m, "not supported\n");
  1497. return 0;
  1498. }
  1499. intel_runtime_pm_get(dev_priv);
  1500. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1501. yesno(i915.enable_ips));
  1502. if (INTEL_INFO(dev)->gen >= 8) {
  1503. seq_puts(m, "Currently: unknown\n");
  1504. } else {
  1505. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1506. seq_puts(m, "Currently: enabled\n");
  1507. else
  1508. seq_puts(m, "Currently: disabled\n");
  1509. }
  1510. intel_runtime_pm_put(dev_priv);
  1511. return 0;
  1512. }
  1513. static int i915_sr_status(struct seq_file *m, void *unused)
  1514. {
  1515. struct drm_info_node *node = m->private;
  1516. struct drm_device *dev = node->minor->dev;
  1517. struct drm_i915_private *dev_priv = dev->dev_private;
  1518. bool sr_enabled = false;
  1519. intel_runtime_pm_get(dev_priv);
  1520. if (HAS_PCH_SPLIT(dev))
  1521. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1522. else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
  1523. IS_I945G(dev) || IS_I945GM(dev))
  1524. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1525. else if (IS_I915GM(dev))
  1526. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1527. else if (IS_PINEVIEW(dev))
  1528. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1529. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  1530. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1531. intel_runtime_pm_put(dev_priv);
  1532. seq_printf(m, "self-refresh: %s\n",
  1533. sr_enabled ? "enabled" : "disabled");
  1534. return 0;
  1535. }
  1536. static int i915_emon_status(struct seq_file *m, void *unused)
  1537. {
  1538. struct drm_info_node *node = m->private;
  1539. struct drm_device *dev = node->minor->dev;
  1540. struct drm_i915_private *dev_priv = dev->dev_private;
  1541. unsigned long temp, chipset, gfx;
  1542. int ret;
  1543. if (!IS_GEN5(dev))
  1544. return -ENODEV;
  1545. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1546. if (ret)
  1547. return ret;
  1548. temp = i915_mch_val(dev_priv);
  1549. chipset = i915_chipset_val(dev_priv);
  1550. gfx = i915_gfx_val(dev_priv);
  1551. mutex_unlock(&dev->struct_mutex);
  1552. seq_printf(m, "GMCH temp: %ld\n", temp);
  1553. seq_printf(m, "Chipset power: %ld\n", chipset);
  1554. seq_printf(m, "GFX power: %ld\n", gfx);
  1555. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1556. return 0;
  1557. }
  1558. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1559. {
  1560. struct drm_info_node *node = m->private;
  1561. struct drm_device *dev = node->minor->dev;
  1562. struct drm_i915_private *dev_priv = dev->dev_private;
  1563. int ret = 0;
  1564. int gpu_freq, ia_freq;
  1565. unsigned int max_gpu_freq, min_gpu_freq;
  1566. if (!HAS_CORE_RING_FREQ(dev)) {
  1567. seq_puts(m, "unsupported on this chipset\n");
  1568. return 0;
  1569. }
  1570. intel_runtime_pm_get(dev_priv);
  1571. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1572. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1573. if (ret)
  1574. goto out;
  1575. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  1576. /* Convert GT frequency to 50 HZ units */
  1577. min_gpu_freq =
  1578. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1579. max_gpu_freq =
  1580. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1581. } else {
  1582. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1583. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1584. }
  1585. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1586. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1587. ia_freq = gpu_freq;
  1588. sandybridge_pcode_read(dev_priv,
  1589. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1590. &ia_freq);
  1591. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1592. intel_gpu_freq(dev_priv, (gpu_freq *
  1593. (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1594. GEN9_FREQ_SCALER : 1))),
  1595. ((ia_freq >> 0) & 0xff) * 100,
  1596. ((ia_freq >> 8) & 0xff) * 100);
  1597. }
  1598. mutex_unlock(&dev_priv->rps.hw_lock);
  1599. out:
  1600. intel_runtime_pm_put(dev_priv);
  1601. return ret;
  1602. }
  1603. static int i915_opregion(struct seq_file *m, void *unused)
  1604. {
  1605. struct drm_info_node *node = m->private;
  1606. struct drm_device *dev = node->minor->dev;
  1607. struct drm_i915_private *dev_priv = dev->dev_private;
  1608. struct intel_opregion *opregion = &dev_priv->opregion;
  1609. int ret;
  1610. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1611. if (ret)
  1612. goto out;
  1613. if (opregion->header)
  1614. seq_write(m, opregion->header, OPREGION_SIZE);
  1615. mutex_unlock(&dev->struct_mutex);
  1616. out:
  1617. return 0;
  1618. }
  1619. static int i915_vbt(struct seq_file *m, void *unused)
  1620. {
  1621. struct drm_info_node *node = m->private;
  1622. struct drm_device *dev = node->minor->dev;
  1623. struct drm_i915_private *dev_priv = dev->dev_private;
  1624. struct intel_opregion *opregion = &dev_priv->opregion;
  1625. if (opregion->vbt)
  1626. seq_write(m, opregion->vbt, opregion->vbt_size);
  1627. return 0;
  1628. }
  1629. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1630. {
  1631. struct drm_info_node *node = m->private;
  1632. struct drm_device *dev = node->minor->dev;
  1633. struct intel_framebuffer *fbdev_fb = NULL;
  1634. struct drm_framebuffer *drm_fb;
  1635. int ret;
  1636. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1637. if (ret)
  1638. return ret;
  1639. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1640. if (to_i915(dev)->fbdev) {
  1641. fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
  1642. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1643. fbdev_fb->base.width,
  1644. fbdev_fb->base.height,
  1645. fbdev_fb->base.depth,
  1646. fbdev_fb->base.bits_per_pixel,
  1647. fbdev_fb->base.modifier[0],
  1648. atomic_read(&fbdev_fb->base.refcount.refcount));
  1649. describe_obj(m, fbdev_fb->obj);
  1650. seq_putc(m, '\n');
  1651. }
  1652. #endif
  1653. mutex_lock(&dev->mode_config.fb_lock);
  1654. drm_for_each_fb(drm_fb, dev) {
  1655. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1656. if (fb == fbdev_fb)
  1657. continue;
  1658. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1659. fb->base.width,
  1660. fb->base.height,
  1661. fb->base.depth,
  1662. fb->base.bits_per_pixel,
  1663. fb->base.modifier[0],
  1664. atomic_read(&fb->base.refcount.refcount));
  1665. describe_obj(m, fb->obj);
  1666. seq_putc(m, '\n');
  1667. }
  1668. mutex_unlock(&dev->mode_config.fb_lock);
  1669. mutex_unlock(&dev->struct_mutex);
  1670. return 0;
  1671. }
  1672. static void describe_ctx_ringbuf(struct seq_file *m,
  1673. struct intel_ringbuffer *ringbuf)
  1674. {
  1675. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1676. ringbuf->space, ringbuf->head, ringbuf->tail,
  1677. ringbuf->last_retired_head);
  1678. }
  1679. static int i915_context_status(struct seq_file *m, void *unused)
  1680. {
  1681. struct drm_info_node *node = m->private;
  1682. struct drm_device *dev = node->minor->dev;
  1683. struct drm_i915_private *dev_priv = dev->dev_private;
  1684. struct intel_engine_cs *engine;
  1685. struct intel_context *ctx;
  1686. enum intel_engine_id id;
  1687. int ret;
  1688. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1689. if (ret)
  1690. return ret;
  1691. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1692. if (!i915.enable_execlists &&
  1693. ctx->legacy_hw_ctx.rcs_state == NULL)
  1694. continue;
  1695. seq_printf(m, "HW context %u ", ctx->hw_id);
  1696. describe_ctx(m, ctx);
  1697. if (ctx == dev_priv->kernel_context)
  1698. seq_printf(m, "(kernel context) ");
  1699. if (i915.enable_execlists) {
  1700. seq_putc(m, '\n');
  1701. for_each_engine_id(engine, dev_priv, id) {
  1702. struct drm_i915_gem_object *ctx_obj =
  1703. ctx->engine[id].state;
  1704. struct intel_ringbuffer *ringbuf =
  1705. ctx->engine[id].ringbuf;
  1706. seq_printf(m, "%s: ", engine->name);
  1707. if (ctx_obj)
  1708. describe_obj(m, ctx_obj);
  1709. if (ringbuf)
  1710. describe_ctx_ringbuf(m, ringbuf);
  1711. seq_putc(m, '\n');
  1712. }
  1713. } else {
  1714. describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
  1715. }
  1716. seq_putc(m, '\n');
  1717. }
  1718. mutex_unlock(&dev->struct_mutex);
  1719. return 0;
  1720. }
  1721. static void i915_dump_lrc_obj(struct seq_file *m,
  1722. struct intel_context *ctx,
  1723. struct intel_engine_cs *engine)
  1724. {
  1725. struct page *page;
  1726. uint32_t *reg_state;
  1727. int j;
  1728. struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
  1729. unsigned long ggtt_offset = 0;
  1730. seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
  1731. if (ctx_obj == NULL) {
  1732. seq_puts(m, "\tNot allocated\n");
  1733. return;
  1734. }
  1735. if (!i915_gem_obj_ggtt_bound(ctx_obj))
  1736. seq_puts(m, "\tNot bound in GGTT\n");
  1737. else
  1738. ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
  1739. if (i915_gem_object_get_pages(ctx_obj)) {
  1740. seq_puts(m, "\tFailed to get pages for context object\n");
  1741. return;
  1742. }
  1743. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  1744. if (!WARN_ON(page == NULL)) {
  1745. reg_state = kmap_atomic(page);
  1746. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1747. seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1748. ggtt_offset + 4096 + (j * 4),
  1749. reg_state[j], reg_state[j + 1],
  1750. reg_state[j + 2], reg_state[j + 3]);
  1751. }
  1752. kunmap_atomic(reg_state);
  1753. }
  1754. seq_putc(m, '\n');
  1755. }
  1756. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1757. {
  1758. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1759. struct drm_device *dev = node->minor->dev;
  1760. struct drm_i915_private *dev_priv = dev->dev_private;
  1761. struct intel_engine_cs *engine;
  1762. struct intel_context *ctx;
  1763. int ret;
  1764. if (!i915.enable_execlists) {
  1765. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1766. return 0;
  1767. }
  1768. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1769. if (ret)
  1770. return ret;
  1771. list_for_each_entry(ctx, &dev_priv->context_list, link)
  1772. for_each_engine(engine, dev_priv)
  1773. i915_dump_lrc_obj(m, ctx, engine);
  1774. mutex_unlock(&dev->struct_mutex);
  1775. return 0;
  1776. }
  1777. static int i915_execlists(struct seq_file *m, void *data)
  1778. {
  1779. struct drm_info_node *node = (struct drm_info_node *)m->private;
  1780. struct drm_device *dev = node->minor->dev;
  1781. struct drm_i915_private *dev_priv = dev->dev_private;
  1782. struct intel_engine_cs *engine;
  1783. u32 status_pointer;
  1784. u8 read_pointer;
  1785. u8 write_pointer;
  1786. u32 status;
  1787. u32 ctx_id;
  1788. struct list_head *cursor;
  1789. int i, ret;
  1790. if (!i915.enable_execlists) {
  1791. seq_puts(m, "Logical Ring Contexts are disabled\n");
  1792. return 0;
  1793. }
  1794. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1795. if (ret)
  1796. return ret;
  1797. intel_runtime_pm_get(dev_priv);
  1798. for_each_engine(engine, dev_priv) {
  1799. struct drm_i915_gem_request *head_req = NULL;
  1800. int count = 0;
  1801. seq_printf(m, "%s\n", engine->name);
  1802. status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
  1803. ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
  1804. seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
  1805. status, ctx_id);
  1806. status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
  1807. seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
  1808. read_pointer = engine->next_context_status_buffer;
  1809. write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
  1810. if (read_pointer > write_pointer)
  1811. write_pointer += GEN8_CSB_ENTRIES;
  1812. seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
  1813. read_pointer, write_pointer);
  1814. for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
  1815. status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
  1816. ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
  1817. seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
  1818. i, status, ctx_id);
  1819. }
  1820. spin_lock_bh(&engine->execlist_lock);
  1821. list_for_each(cursor, &engine->execlist_queue)
  1822. count++;
  1823. head_req = list_first_entry_or_null(&engine->execlist_queue,
  1824. struct drm_i915_gem_request,
  1825. execlist_link);
  1826. spin_unlock_bh(&engine->execlist_lock);
  1827. seq_printf(m, "\t%d requests in queue\n", count);
  1828. if (head_req) {
  1829. seq_printf(m, "\tHead request context: %u\n",
  1830. head_req->ctx->hw_id);
  1831. seq_printf(m, "\tHead request tail: %u\n",
  1832. head_req->tail);
  1833. }
  1834. seq_putc(m, '\n');
  1835. }
  1836. intel_runtime_pm_put(dev_priv);
  1837. mutex_unlock(&dev->struct_mutex);
  1838. return 0;
  1839. }
  1840. static const char *swizzle_string(unsigned swizzle)
  1841. {
  1842. switch (swizzle) {
  1843. case I915_BIT_6_SWIZZLE_NONE:
  1844. return "none";
  1845. case I915_BIT_6_SWIZZLE_9:
  1846. return "bit9";
  1847. case I915_BIT_6_SWIZZLE_9_10:
  1848. return "bit9/bit10";
  1849. case I915_BIT_6_SWIZZLE_9_11:
  1850. return "bit9/bit11";
  1851. case I915_BIT_6_SWIZZLE_9_10_11:
  1852. return "bit9/bit10/bit11";
  1853. case I915_BIT_6_SWIZZLE_9_17:
  1854. return "bit9/bit17";
  1855. case I915_BIT_6_SWIZZLE_9_10_17:
  1856. return "bit9/bit10/bit17";
  1857. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1858. return "unknown";
  1859. }
  1860. return "bug";
  1861. }
  1862. static int i915_swizzle_info(struct seq_file *m, void *data)
  1863. {
  1864. struct drm_info_node *node = m->private;
  1865. struct drm_device *dev = node->minor->dev;
  1866. struct drm_i915_private *dev_priv = dev->dev_private;
  1867. int ret;
  1868. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1869. if (ret)
  1870. return ret;
  1871. intel_runtime_pm_get(dev_priv);
  1872. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1873. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1874. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1875. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1876. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1877. seq_printf(m, "DDC = 0x%08x\n",
  1878. I915_READ(DCC));
  1879. seq_printf(m, "DDC2 = 0x%08x\n",
  1880. I915_READ(DCC2));
  1881. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1882. I915_READ16(C0DRB3));
  1883. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1884. I915_READ16(C1DRB3));
  1885. } else if (INTEL_INFO(dev)->gen >= 6) {
  1886. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1887. I915_READ(MAD_DIMM_C0));
  1888. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1889. I915_READ(MAD_DIMM_C1));
  1890. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1891. I915_READ(MAD_DIMM_C2));
  1892. seq_printf(m, "TILECTL = 0x%08x\n",
  1893. I915_READ(TILECTL));
  1894. if (INTEL_INFO(dev)->gen >= 8)
  1895. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1896. I915_READ(GAMTARBMODE));
  1897. else
  1898. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1899. I915_READ(ARB_MODE));
  1900. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1901. I915_READ(DISP_ARB_CTL));
  1902. }
  1903. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1904. seq_puts(m, "L-shaped memory detected\n");
  1905. intel_runtime_pm_put(dev_priv);
  1906. mutex_unlock(&dev->struct_mutex);
  1907. return 0;
  1908. }
  1909. static int per_file_ctx(int id, void *ptr, void *data)
  1910. {
  1911. struct intel_context *ctx = ptr;
  1912. struct seq_file *m = data;
  1913. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1914. if (!ppgtt) {
  1915. seq_printf(m, " no ppgtt for context %d\n",
  1916. ctx->user_handle);
  1917. return 0;
  1918. }
  1919. if (i915_gem_context_is_default(ctx))
  1920. seq_puts(m, " default context:\n");
  1921. else
  1922. seq_printf(m, " context %d:\n", ctx->user_handle);
  1923. ppgtt->debug_dump(ppgtt, m);
  1924. return 0;
  1925. }
  1926. static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1927. {
  1928. struct drm_i915_private *dev_priv = dev->dev_private;
  1929. struct intel_engine_cs *engine;
  1930. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1931. int i;
  1932. if (!ppgtt)
  1933. return;
  1934. for_each_engine(engine, dev_priv) {
  1935. seq_printf(m, "%s\n", engine->name);
  1936. for (i = 0; i < 4; i++) {
  1937. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1938. pdp <<= 32;
  1939. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1940. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1941. }
  1942. }
  1943. }
  1944. static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1945. {
  1946. struct drm_i915_private *dev_priv = dev->dev_private;
  1947. struct intel_engine_cs *engine;
  1948. if (INTEL_INFO(dev)->gen == 6)
  1949. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1950. for_each_engine(engine, dev_priv) {
  1951. seq_printf(m, "%s\n", engine->name);
  1952. if (INTEL_INFO(dev)->gen == 7)
  1953. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1954. I915_READ(RING_MODE_GEN7(engine)));
  1955. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1956. I915_READ(RING_PP_DIR_BASE(engine)));
  1957. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1958. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1959. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1960. I915_READ(RING_PP_DIR_DCLV(engine)));
  1961. }
  1962. if (dev_priv->mm.aliasing_ppgtt) {
  1963. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1964. seq_puts(m, "aliasing PPGTT:\n");
  1965. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1966. ppgtt->debug_dump(ppgtt, m);
  1967. }
  1968. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1969. }
  1970. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1971. {
  1972. struct drm_info_node *node = m->private;
  1973. struct drm_device *dev = node->minor->dev;
  1974. struct drm_i915_private *dev_priv = dev->dev_private;
  1975. struct drm_file *file;
  1976. int ret = mutex_lock_interruptible(&dev->struct_mutex);
  1977. if (ret)
  1978. return ret;
  1979. intel_runtime_pm_get(dev_priv);
  1980. if (INTEL_INFO(dev)->gen >= 8)
  1981. gen8_ppgtt_info(m, dev);
  1982. else if (INTEL_INFO(dev)->gen >= 6)
  1983. gen6_ppgtt_info(m, dev);
  1984. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1985. struct drm_i915_file_private *file_priv = file->driver_priv;
  1986. struct task_struct *task;
  1987. task = get_pid_task(file->pid, PIDTYPE_PID);
  1988. if (!task) {
  1989. ret = -ESRCH;
  1990. goto out_put;
  1991. }
  1992. seq_printf(m, "\nproc: %s\n", task->comm);
  1993. put_task_struct(task);
  1994. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1995. (void *)(unsigned long)m);
  1996. }
  1997. out_put:
  1998. intel_runtime_pm_put(dev_priv);
  1999. mutex_unlock(&dev->struct_mutex);
  2000. return ret;
  2001. }
  2002. static int count_irq_waiters(struct drm_i915_private *i915)
  2003. {
  2004. struct intel_engine_cs *engine;
  2005. int count = 0;
  2006. for_each_engine(engine, i915)
  2007. count += engine->irq_refcount;
  2008. return count;
  2009. }
  2010. static int i915_rps_boost_info(struct seq_file *m, void *data)
  2011. {
  2012. struct drm_info_node *node = m->private;
  2013. struct drm_device *dev = node->minor->dev;
  2014. struct drm_i915_private *dev_priv = dev->dev_private;
  2015. struct drm_file *file;
  2016. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  2017. seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
  2018. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  2019. seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  2020. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  2021. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  2022. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  2023. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  2024. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  2025. spin_lock(&dev_priv->rps.client_lock);
  2026. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  2027. struct drm_i915_file_private *file_priv = file->driver_priv;
  2028. struct task_struct *task;
  2029. rcu_read_lock();
  2030. task = pid_task(file->pid, PIDTYPE_PID);
  2031. seq_printf(m, "%s [%d]: %d boosts%s\n",
  2032. task ? task->comm : "<unknown>",
  2033. task ? task->pid : -1,
  2034. file_priv->rps.boosts,
  2035. list_empty(&file_priv->rps.link) ? "" : ", active");
  2036. rcu_read_unlock();
  2037. }
  2038. seq_printf(m, "Semaphore boosts: %d%s\n",
  2039. dev_priv->rps.semaphores.boosts,
  2040. list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
  2041. seq_printf(m, "MMIO flip boosts: %d%s\n",
  2042. dev_priv->rps.mmioflips.boosts,
  2043. list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
  2044. seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
  2045. spin_unlock(&dev_priv->rps.client_lock);
  2046. return 0;
  2047. }
  2048. static int i915_llc(struct seq_file *m, void *data)
  2049. {
  2050. struct drm_info_node *node = m->private;
  2051. struct drm_device *dev = node->minor->dev;
  2052. struct drm_i915_private *dev_priv = dev->dev_private;
  2053. const bool edram = INTEL_GEN(dev_priv) > 8;
  2054. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
  2055. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  2056. intel_uncore_edram_size(dev_priv)/1024/1024);
  2057. return 0;
  2058. }
  2059. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  2060. {
  2061. struct drm_info_node *node = m->private;
  2062. struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
  2063. struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
  2064. u32 tmp, i;
  2065. if (!HAS_GUC_UCODE(dev_priv))
  2066. return 0;
  2067. seq_printf(m, "GuC firmware status:\n");
  2068. seq_printf(m, "\tpath: %s\n",
  2069. guc_fw->guc_fw_path);
  2070. seq_printf(m, "\tfetch: %s\n",
  2071. intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
  2072. seq_printf(m, "\tload: %s\n",
  2073. intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
  2074. seq_printf(m, "\tversion wanted: %d.%d\n",
  2075. guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
  2076. seq_printf(m, "\tversion found: %d.%d\n",
  2077. guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
  2078. seq_printf(m, "\theader: offset is %d; size = %d\n",
  2079. guc_fw->header_offset, guc_fw->header_size);
  2080. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  2081. guc_fw->ucode_offset, guc_fw->ucode_size);
  2082. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  2083. guc_fw->rsa_offset, guc_fw->rsa_size);
  2084. tmp = I915_READ(GUC_STATUS);
  2085. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  2086. seq_printf(m, "\tBootrom status = 0x%x\n",
  2087. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2088. seq_printf(m, "\tuKernel status = 0x%x\n",
  2089. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2090. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2091. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2092. seq_puts(m, "\nScratch registers:\n");
  2093. for (i = 0; i < 16; i++)
  2094. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2095. return 0;
  2096. }
  2097. static void i915_guc_client_info(struct seq_file *m,
  2098. struct drm_i915_private *dev_priv,
  2099. struct i915_guc_client *client)
  2100. {
  2101. struct intel_engine_cs *engine;
  2102. uint64_t tot = 0;
  2103. seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
  2104. client->priority, client->ctx_index, client->proc_desc_offset);
  2105. seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
  2106. client->doorbell_id, client->doorbell_offset, client->cookie);
  2107. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2108. client->wq_size, client->wq_offset, client->wq_tail);
  2109. seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
  2110. seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
  2111. seq_printf(m, "\tLast submission result: %d\n", client->retcode);
  2112. for_each_engine(engine, dev_priv) {
  2113. seq_printf(m, "\tSubmissions: %llu %s\n",
  2114. client->submissions[engine->guc_id],
  2115. engine->name);
  2116. tot += client->submissions[engine->guc_id];
  2117. }
  2118. seq_printf(m, "\tTotal: %llu\n", tot);
  2119. }
  2120. static int i915_guc_info(struct seq_file *m, void *data)
  2121. {
  2122. struct drm_info_node *node = m->private;
  2123. struct drm_device *dev = node->minor->dev;
  2124. struct drm_i915_private *dev_priv = dev->dev_private;
  2125. struct intel_guc guc;
  2126. struct i915_guc_client client = {};
  2127. struct intel_engine_cs *engine;
  2128. u64 total = 0;
  2129. if (!HAS_GUC_SCHED(dev_priv))
  2130. return 0;
  2131. if (mutex_lock_interruptible(&dev->struct_mutex))
  2132. return 0;
  2133. /* Take a local copy of the GuC data, so we can dump it at leisure */
  2134. guc = dev_priv->guc;
  2135. if (guc.execbuf_client)
  2136. client = *guc.execbuf_client;
  2137. mutex_unlock(&dev->struct_mutex);
  2138. seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
  2139. seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
  2140. seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
  2141. seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
  2142. seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
  2143. seq_printf(m, "\nGuC submissions:\n");
  2144. for_each_engine(engine, dev_priv) {
  2145. seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
  2146. engine->name, guc.submissions[engine->guc_id],
  2147. guc.last_seqno[engine->guc_id]);
  2148. total += guc.submissions[engine->guc_id];
  2149. }
  2150. seq_printf(m, "\t%s: %llu\n", "Total", total);
  2151. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
  2152. i915_guc_client_info(m, dev_priv, &client);
  2153. /* Add more as required ... */
  2154. return 0;
  2155. }
  2156. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2157. {
  2158. struct drm_info_node *node = m->private;
  2159. struct drm_device *dev = node->minor->dev;
  2160. struct drm_i915_private *dev_priv = dev->dev_private;
  2161. struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
  2162. u32 *log;
  2163. int i = 0, pg;
  2164. if (!log_obj)
  2165. return 0;
  2166. for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
  2167. log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
  2168. for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
  2169. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2170. *(log + i), *(log + i + 1),
  2171. *(log + i + 2), *(log + i + 3));
  2172. kunmap_atomic(log);
  2173. }
  2174. seq_putc(m, '\n');
  2175. return 0;
  2176. }
  2177. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2178. {
  2179. struct drm_info_node *node = m->private;
  2180. struct drm_device *dev = node->minor->dev;
  2181. struct drm_i915_private *dev_priv = dev->dev_private;
  2182. u32 psrperf = 0;
  2183. u32 stat[3];
  2184. enum pipe pipe;
  2185. bool enabled = false;
  2186. if (!HAS_PSR(dev)) {
  2187. seq_puts(m, "PSR not supported\n");
  2188. return 0;
  2189. }
  2190. intel_runtime_pm_get(dev_priv);
  2191. mutex_lock(&dev_priv->psr.lock);
  2192. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2193. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2194. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2195. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2196. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2197. dev_priv->psr.busy_frontbuffer_bits);
  2198. seq_printf(m, "Re-enable work scheduled: %s\n",
  2199. yesno(work_busy(&dev_priv->psr.work.work)));
  2200. if (HAS_DDI(dev))
  2201. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2202. else {
  2203. for_each_pipe(dev_priv, pipe) {
  2204. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2205. VLV_EDP_PSR_CURR_STATE_MASK;
  2206. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2207. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2208. enabled = true;
  2209. }
  2210. }
  2211. seq_printf(m, "Main link in standby mode: %s\n",
  2212. yesno(dev_priv->psr.link_standby));
  2213. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2214. if (!HAS_DDI(dev))
  2215. for_each_pipe(dev_priv, pipe) {
  2216. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2217. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2218. seq_printf(m, " pipe %c", pipe_name(pipe));
  2219. }
  2220. seq_puts(m, "\n");
  2221. /*
  2222. * VLV/CHV PSR has no kind of performance counter
  2223. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2224. */
  2225. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2226. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2227. EDP_PSR_PERF_CNT_MASK;
  2228. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2229. }
  2230. mutex_unlock(&dev_priv->psr.lock);
  2231. intel_runtime_pm_put(dev_priv);
  2232. return 0;
  2233. }
  2234. static int i915_sink_crc(struct seq_file *m, void *data)
  2235. {
  2236. struct drm_info_node *node = m->private;
  2237. struct drm_device *dev = node->minor->dev;
  2238. struct intel_encoder *encoder;
  2239. struct intel_connector *connector;
  2240. struct intel_dp *intel_dp = NULL;
  2241. int ret;
  2242. u8 crc[6];
  2243. drm_modeset_lock_all(dev);
  2244. for_each_intel_connector(dev, connector) {
  2245. if (connector->base.dpms != DRM_MODE_DPMS_ON)
  2246. continue;
  2247. if (!connector->base.encoder)
  2248. continue;
  2249. encoder = to_intel_encoder(connector->base.encoder);
  2250. if (encoder->type != INTEL_OUTPUT_EDP)
  2251. continue;
  2252. intel_dp = enc_to_intel_dp(&encoder->base);
  2253. ret = intel_dp_sink_crc(intel_dp, crc);
  2254. if (ret)
  2255. goto out;
  2256. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2257. crc[0], crc[1], crc[2],
  2258. crc[3], crc[4], crc[5]);
  2259. goto out;
  2260. }
  2261. ret = -ENODEV;
  2262. out:
  2263. drm_modeset_unlock_all(dev);
  2264. return ret;
  2265. }
  2266. static int i915_energy_uJ(struct seq_file *m, void *data)
  2267. {
  2268. struct drm_info_node *node = m->private;
  2269. struct drm_device *dev = node->minor->dev;
  2270. struct drm_i915_private *dev_priv = dev->dev_private;
  2271. u64 power;
  2272. u32 units;
  2273. if (INTEL_INFO(dev)->gen < 6)
  2274. return -ENODEV;
  2275. intel_runtime_pm_get(dev_priv);
  2276. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  2277. power = (power & 0x1f00) >> 8;
  2278. units = 1000000 / (1 << power); /* convert to uJ */
  2279. power = I915_READ(MCH_SECP_NRG_STTS);
  2280. power *= units;
  2281. intel_runtime_pm_put(dev_priv);
  2282. seq_printf(m, "%llu", (long long unsigned)power);
  2283. return 0;
  2284. }
  2285. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2286. {
  2287. struct drm_info_node *node = m->private;
  2288. struct drm_device *dev = node->minor->dev;
  2289. struct drm_i915_private *dev_priv = dev->dev_private;
  2290. if (!HAS_RUNTIME_PM(dev_priv))
  2291. seq_puts(m, "Runtime power management not supported\n");
  2292. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
  2293. seq_printf(m, "IRQs disabled: %s\n",
  2294. yesno(!intel_irqs_enabled(dev_priv)));
  2295. #ifdef CONFIG_PM
  2296. seq_printf(m, "Usage count: %d\n",
  2297. atomic_read(&dev->dev->power.usage_count));
  2298. #else
  2299. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2300. #endif
  2301. seq_printf(m, "PCI device power state: %s [%d]\n",
  2302. pci_power_name(dev_priv->dev->pdev->current_state),
  2303. dev_priv->dev->pdev->current_state);
  2304. return 0;
  2305. }
  2306. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2307. {
  2308. struct drm_info_node *node = m->private;
  2309. struct drm_device *dev = node->minor->dev;
  2310. struct drm_i915_private *dev_priv = dev->dev_private;
  2311. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2312. int i;
  2313. mutex_lock(&power_domains->lock);
  2314. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2315. for (i = 0; i < power_domains->power_well_count; i++) {
  2316. struct i915_power_well *power_well;
  2317. enum intel_display_power_domain power_domain;
  2318. power_well = &power_domains->power_wells[i];
  2319. seq_printf(m, "%-25s %d\n", power_well->name,
  2320. power_well->count);
  2321. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  2322. power_domain++) {
  2323. if (!(BIT(power_domain) & power_well->domains))
  2324. continue;
  2325. seq_printf(m, " %-23s %d\n",
  2326. intel_display_power_domain_str(power_domain),
  2327. power_domains->domain_use_count[power_domain]);
  2328. }
  2329. }
  2330. mutex_unlock(&power_domains->lock);
  2331. return 0;
  2332. }
  2333. static int i915_dmc_info(struct seq_file *m, void *unused)
  2334. {
  2335. struct drm_info_node *node = m->private;
  2336. struct drm_device *dev = node->minor->dev;
  2337. struct drm_i915_private *dev_priv = dev->dev_private;
  2338. struct intel_csr *csr;
  2339. if (!HAS_CSR(dev)) {
  2340. seq_puts(m, "not supported\n");
  2341. return 0;
  2342. }
  2343. csr = &dev_priv->csr;
  2344. intel_runtime_pm_get(dev_priv);
  2345. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2346. seq_printf(m, "path: %s\n", csr->fw_path);
  2347. if (!csr->dmc_payload)
  2348. goto out;
  2349. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2350. CSR_VERSION_MINOR(csr->version));
  2351. if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
  2352. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2353. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2354. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2355. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2356. } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
  2357. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2358. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2359. }
  2360. out:
  2361. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2362. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2363. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2364. intel_runtime_pm_put(dev_priv);
  2365. return 0;
  2366. }
  2367. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2368. struct drm_display_mode *mode)
  2369. {
  2370. int i;
  2371. for (i = 0; i < tabs; i++)
  2372. seq_putc(m, '\t');
  2373. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2374. mode->base.id, mode->name,
  2375. mode->vrefresh, mode->clock,
  2376. mode->hdisplay, mode->hsync_start,
  2377. mode->hsync_end, mode->htotal,
  2378. mode->vdisplay, mode->vsync_start,
  2379. mode->vsync_end, mode->vtotal,
  2380. mode->type, mode->flags);
  2381. }
  2382. static void intel_encoder_info(struct seq_file *m,
  2383. struct intel_crtc *intel_crtc,
  2384. struct intel_encoder *intel_encoder)
  2385. {
  2386. struct drm_info_node *node = m->private;
  2387. struct drm_device *dev = node->minor->dev;
  2388. struct drm_crtc *crtc = &intel_crtc->base;
  2389. struct intel_connector *intel_connector;
  2390. struct drm_encoder *encoder;
  2391. encoder = &intel_encoder->base;
  2392. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2393. encoder->base.id, encoder->name);
  2394. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2395. struct drm_connector *connector = &intel_connector->base;
  2396. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2397. connector->base.id,
  2398. connector->name,
  2399. drm_get_connector_status_name(connector->status));
  2400. if (connector->status == connector_status_connected) {
  2401. struct drm_display_mode *mode = &crtc->mode;
  2402. seq_printf(m, ", mode:\n");
  2403. intel_seq_print_mode(m, 2, mode);
  2404. } else {
  2405. seq_putc(m, '\n');
  2406. }
  2407. }
  2408. }
  2409. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2410. {
  2411. struct drm_info_node *node = m->private;
  2412. struct drm_device *dev = node->minor->dev;
  2413. struct drm_crtc *crtc = &intel_crtc->base;
  2414. struct intel_encoder *intel_encoder;
  2415. struct drm_plane_state *plane_state = crtc->primary->state;
  2416. struct drm_framebuffer *fb = plane_state->fb;
  2417. if (fb)
  2418. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2419. fb->base.id, plane_state->src_x >> 16,
  2420. plane_state->src_y >> 16, fb->width, fb->height);
  2421. else
  2422. seq_puts(m, "\tprimary plane disabled\n");
  2423. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2424. intel_encoder_info(m, intel_crtc, intel_encoder);
  2425. }
  2426. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2427. {
  2428. struct drm_display_mode *mode = panel->fixed_mode;
  2429. seq_printf(m, "\tfixed mode:\n");
  2430. intel_seq_print_mode(m, 2, mode);
  2431. }
  2432. static void intel_dp_info(struct seq_file *m,
  2433. struct intel_connector *intel_connector)
  2434. {
  2435. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2436. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2437. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2438. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2439. if (intel_encoder->type == INTEL_OUTPUT_EDP)
  2440. intel_panel_info(m, &intel_connector->panel);
  2441. }
  2442. static void intel_hdmi_info(struct seq_file *m,
  2443. struct intel_connector *intel_connector)
  2444. {
  2445. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2446. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2447. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2448. }
  2449. static void intel_lvds_info(struct seq_file *m,
  2450. struct intel_connector *intel_connector)
  2451. {
  2452. intel_panel_info(m, &intel_connector->panel);
  2453. }
  2454. static void intel_connector_info(struct seq_file *m,
  2455. struct drm_connector *connector)
  2456. {
  2457. struct intel_connector *intel_connector = to_intel_connector(connector);
  2458. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2459. struct drm_display_mode *mode;
  2460. seq_printf(m, "connector %d: type %s, status: %s\n",
  2461. connector->base.id, connector->name,
  2462. drm_get_connector_status_name(connector->status));
  2463. if (connector->status == connector_status_connected) {
  2464. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2465. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2466. connector->display_info.width_mm,
  2467. connector->display_info.height_mm);
  2468. seq_printf(m, "\tsubpixel order: %s\n",
  2469. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2470. seq_printf(m, "\tCEA rev: %d\n",
  2471. connector->display_info.cea_rev);
  2472. }
  2473. if (intel_encoder) {
  2474. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2475. intel_encoder->type == INTEL_OUTPUT_EDP)
  2476. intel_dp_info(m, intel_connector);
  2477. else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
  2478. intel_hdmi_info(m, intel_connector);
  2479. else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2480. intel_lvds_info(m, intel_connector);
  2481. }
  2482. seq_printf(m, "\tmodes:\n");
  2483. list_for_each_entry(mode, &connector->modes, head)
  2484. intel_seq_print_mode(m, 2, mode);
  2485. }
  2486. static bool cursor_active(struct drm_device *dev, int pipe)
  2487. {
  2488. struct drm_i915_private *dev_priv = dev->dev_private;
  2489. u32 state;
  2490. if (IS_845G(dev) || IS_I865G(dev))
  2491. state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  2492. else
  2493. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2494. return state;
  2495. }
  2496. static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
  2497. {
  2498. struct drm_i915_private *dev_priv = dev->dev_private;
  2499. u32 pos;
  2500. pos = I915_READ(CURPOS(pipe));
  2501. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2502. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2503. *x = -*x;
  2504. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2505. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2506. *y = -*y;
  2507. return cursor_active(dev, pipe);
  2508. }
  2509. static const char *plane_type(enum drm_plane_type type)
  2510. {
  2511. switch (type) {
  2512. case DRM_PLANE_TYPE_OVERLAY:
  2513. return "OVL";
  2514. case DRM_PLANE_TYPE_PRIMARY:
  2515. return "PRI";
  2516. case DRM_PLANE_TYPE_CURSOR:
  2517. return "CUR";
  2518. /*
  2519. * Deliberately omitting default: to generate compiler warnings
  2520. * when a new drm_plane_type gets added.
  2521. */
  2522. }
  2523. return "unknown";
  2524. }
  2525. static const char *plane_rotation(unsigned int rotation)
  2526. {
  2527. static char buf[48];
  2528. /*
  2529. * According to doc only one DRM_ROTATE_ is allowed but this
  2530. * will print them all to visualize if the values are misused
  2531. */
  2532. snprintf(buf, sizeof(buf),
  2533. "%s%s%s%s%s%s(0x%08x)",
  2534. (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
  2535. (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
  2536. (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
  2537. (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
  2538. (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
  2539. (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
  2540. rotation);
  2541. return buf;
  2542. }
  2543. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2544. {
  2545. struct drm_info_node *node = m->private;
  2546. struct drm_device *dev = node->minor->dev;
  2547. struct intel_plane *intel_plane;
  2548. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2549. struct drm_plane_state *state;
  2550. struct drm_plane *plane = &intel_plane->base;
  2551. if (!plane->state) {
  2552. seq_puts(m, "plane->state is NULL!\n");
  2553. continue;
  2554. }
  2555. state = plane->state;
  2556. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2557. plane->base.id,
  2558. plane_type(intel_plane->base.type),
  2559. state->crtc_x, state->crtc_y,
  2560. state->crtc_w, state->crtc_h,
  2561. (state->src_x >> 16),
  2562. ((state->src_x & 0xffff) * 15625) >> 10,
  2563. (state->src_y >> 16),
  2564. ((state->src_y & 0xffff) * 15625) >> 10,
  2565. (state->src_w >> 16),
  2566. ((state->src_w & 0xffff) * 15625) >> 10,
  2567. (state->src_h >> 16),
  2568. ((state->src_h & 0xffff) * 15625) >> 10,
  2569. state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
  2570. plane_rotation(state->rotation));
  2571. }
  2572. }
  2573. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2574. {
  2575. struct intel_crtc_state *pipe_config;
  2576. int num_scalers = intel_crtc->num_scalers;
  2577. int i;
  2578. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2579. /* Not all platformas have a scaler */
  2580. if (num_scalers) {
  2581. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2582. num_scalers,
  2583. pipe_config->scaler_state.scaler_users,
  2584. pipe_config->scaler_state.scaler_id);
  2585. for (i = 0; i < SKL_NUM_SCALERS; i++) {
  2586. struct intel_scaler *sc =
  2587. &pipe_config->scaler_state.scalers[i];
  2588. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2589. i, yesno(sc->in_use), sc->mode);
  2590. }
  2591. seq_puts(m, "\n");
  2592. } else {
  2593. seq_puts(m, "\tNo scalers available on this platform\n");
  2594. }
  2595. }
  2596. static int i915_display_info(struct seq_file *m, void *unused)
  2597. {
  2598. struct drm_info_node *node = m->private;
  2599. struct drm_device *dev = node->minor->dev;
  2600. struct drm_i915_private *dev_priv = dev->dev_private;
  2601. struct intel_crtc *crtc;
  2602. struct drm_connector *connector;
  2603. intel_runtime_pm_get(dev_priv);
  2604. drm_modeset_lock_all(dev);
  2605. seq_printf(m, "CRTC info\n");
  2606. seq_printf(m, "---------\n");
  2607. for_each_intel_crtc(dev, crtc) {
  2608. bool active;
  2609. struct intel_crtc_state *pipe_config;
  2610. int x, y;
  2611. pipe_config = to_intel_crtc_state(crtc->base.state);
  2612. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2613. crtc->base.base.id, pipe_name(crtc->pipe),
  2614. yesno(pipe_config->base.active),
  2615. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2616. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2617. if (pipe_config->base.active) {
  2618. intel_crtc_info(m, crtc);
  2619. active = cursor_position(dev, crtc->pipe, &x, &y);
  2620. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2621. yesno(crtc->cursor_base),
  2622. x, y, crtc->base.cursor->state->crtc_w,
  2623. crtc->base.cursor->state->crtc_h,
  2624. crtc->cursor_addr, yesno(active));
  2625. intel_scaler_info(m, crtc);
  2626. intel_plane_info(m, crtc);
  2627. }
  2628. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2629. yesno(!crtc->cpu_fifo_underrun_disabled),
  2630. yesno(!crtc->pch_fifo_underrun_disabled));
  2631. }
  2632. seq_printf(m, "\n");
  2633. seq_printf(m, "Connector info\n");
  2634. seq_printf(m, "--------------\n");
  2635. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2636. intel_connector_info(m, connector);
  2637. }
  2638. drm_modeset_unlock_all(dev);
  2639. intel_runtime_pm_put(dev_priv);
  2640. return 0;
  2641. }
  2642. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2643. {
  2644. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2645. struct drm_device *dev = node->minor->dev;
  2646. struct drm_i915_private *dev_priv = dev->dev_private;
  2647. struct intel_engine_cs *engine;
  2648. int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  2649. enum intel_engine_id id;
  2650. int j, ret;
  2651. if (!i915_semaphore_is_enabled(dev_priv)) {
  2652. seq_puts(m, "Semaphores are disabled\n");
  2653. return 0;
  2654. }
  2655. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2656. if (ret)
  2657. return ret;
  2658. intel_runtime_pm_get(dev_priv);
  2659. if (IS_BROADWELL(dev)) {
  2660. struct page *page;
  2661. uint64_t *seqno;
  2662. page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
  2663. seqno = (uint64_t *)kmap_atomic(page);
  2664. for_each_engine_id(engine, dev_priv, id) {
  2665. uint64_t offset;
  2666. seq_printf(m, "%s\n", engine->name);
  2667. seq_puts(m, " Last signal:");
  2668. for (j = 0; j < num_rings; j++) {
  2669. offset = id * I915_NUM_ENGINES + j;
  2670. seq_printf(m, "0x%08llx (0x%02llx) ",
  2671. seqno[offset], offset * 8);
  2672. }
  2673. seq_putc(m, '\n');
  2674. seq_puts(m, " Last wait: ");
  2675. for (j = 0; j < num_rings; j++) {
  2676. offset = id + (j * I915_NUM_ENGINES);
  2677. seq_printf(m, "0x%08llx (0x%02llx) ",
  2678. seqno[offset], offset * 8);
  2679. }
  2680. seq_putc(m, '\n');
  2681. }
  2682. kunmap_atomic(seqno);
  2683. } else {
  2684. seq_puts(m, " Last signal:");
  2685. for_each_engine(engine, dev_priv)
  2686. for (j = 0; j < num_rings; j++)
  2687. seq_printf(m, "0x%08x\n",
  2688. I915_READ(engine->semaphore.mbox.signal[j]));
  2689. seq_putc(m, '\n');
  2690. }
  2691. seq_puts(m, "\nSync seqno:\n");
  2692. for_each_engine(engine, dev_priv) {
  2693. for (j = 0; j < num_rings; j++)
  2694. seq_printf(m, " 0x%08x ",
  2695. engine->semaphore.sync_seqno[j]);
  2696. seq_putc(m, '\n');
  2697. }
  2698. seq_putc(m, '\n');
  2699. intel_runtime_pm_put(dev_priv);
  2700. mutex_unlock(&dev->struct_mutex);
  2701. return 0;
  2702. }
  2703. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2704. {
  2705. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2706. struct drm_device *dev = node->minor->dev;
  2707. struct drm_i915_private *dev_priv = dev->dev_private;
  2708. int i;
  2709. drm_modeset_lock_all(dev);
  2710. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2711. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2712. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2713. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2714. pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
  2715. seq_printf(m, " tracked hardware state:\n");
  2716. seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
  2717. seq_printf(m, " dpll_md: 0x%08x\n",
  2718. pll->config.hw_state.dpll_md);
  2719. seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
  2720. seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
  2721. seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
  2722. }
  2723. drm_modeset_unlock_all(dev);
  2724. return 0;
  2725. }
  2726. static int i915_wa_registers(struct seq_file *m, void *unused)
  2727. {
  2728. int i;
  2729. int ret;
  2730. struct intel_engine_cs *engine;
  2731. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2732. struct drm_device *dev = node->minor->dev;
  2733. struct drm_i915_private *dev_priv = dev->dev_private;
  2734. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2735. enum intel_engine_id id;
  2736. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2737. if (ret)
  2738. return ret;
  2739. intel_runtime_pm_get(dev_priv);
  2740. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2741. for_each_engine_id(engine, dev_priv, id)
  2742. seq_printf(m, "HW whitelist count for %s: %d\n",
  2743. engine->name, workarounds->hw_whitelist_count[id]);
  2744. for (i = 0; i < workarounds->count; ++i) {
  2745. i915_reg_t addr;
  2746. u32 mask, value, read;
  2747. bool ok;
  2748. addr = workarounds->reg[i].addr;
  2749. mask = workarounds->reg[i].mask;
  2750. value = workarounds->reg[i].value;
  2751. read = I915_READ(addr);
  2752. ok = (value & mask) == (read & mask);
  2753. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2754. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2755. }
  2756. intel_runtime_pm_put(dev_priv);
  2757. mutex_unlock(&dev->struct_mutex);
  2758. return 0;
  2759. }
  2760. static int i915_ddb_info(struct seq_file *m, void *unused)
  2761. {
  2762. struct drm_info_node *node = m->private;
  2763. struct drm_device *dev = node->minor->dev;
  2764. struct drm_i915_private *dev_priv = dev->dev_private;
  2765. struct skl_ddb_allocation *ddb;
  2766. struct skl_ddb_entry *entry;
  2767. enum pipe pipe;
  2768. int plane;
  2769. if (INTEL_INFO(dev)->gen < 9)
  2770. return 0;
  2771. drm_modeset_lock_all(dev);
  2772. ddb = &dev_priv->wm.skl_hw.ddb;
  2773. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2774. for_each_pipe(dev_priv, pipe) {
  2775. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2776. for_each_plane(dev_priv, pipe, plane) {
  2777. entry = &ddb->plane[pipe][plane];
  2778. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2779. entry->start, entry->end,
  2780. skl_ddb_entry_size(entry));
  2781. }
  2782. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2783. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2784. entry->end, skl_ddb_entry_size(entry));
  2785. }
  2786. drm_modeset_unlock_all(dev);
  2787. return 0;
  2788. }
  2789. static void drrs_status_per_crtc(struct seq_file *m,
  2790. struct drm_device *dev, struct intel_crtc *intel_crtc)
  2791. {
  2792. struct intel_encoder *intel_encoder;
  2793. struct drm_i915_private *dev_priv = dev->dev_private;
  2794. struct i915_drrs *drrs = &dev_priv->drrs;
  2795. int vrefresh = 0;
  2796. for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
  2797. /* Encoder connected on this CRTC */
  2798. switch (intel_encoder->type) {
  2799. case INTEL_OUTPUT_EDP:
  2800. seq_puts(m, "eDP:\n");
  2801. break;
  2802. case INTEL_OUTPUT_DSI:
  2803. seq_puts(m, "DSI:\n");
  2804. break;
  2805. case INTEL_OUTPUT_HDMI:
  2806. seq_puts(m, "HDMI:\n");
  2807. break;
  2808. case INTEL_OUTPUT_DISPLAYPORT:
  2809. seq_puts(m, "DP:\n");
  2810. break;
  2811. default:
  2812. seq_printf(m, "Other encoder (id=%d).\n",
  2813. intel_encoder->type);
  2814. return;
  2815. }
  2816. }
  2817. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2818. seq_puts(m, "\tVBT: DRRS_type: Static");
  2819. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2820. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2821. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2822. seq_puts(m, "\tVBT: DRRS_type: None");
  2823. else
  2824. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2825. seq_puts(m, "\n\n");
  2826. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2827. struct intel_panel *panel;
  2828. mutex_lock(&drrs->mutex);
  2829. /* DRRS Supported */
  2830. seq_puts(m, "\tDRRS Supported: Yes\n");
  2831. /* disable_drrs() will make drrs->dp NULL */
  2832. if (!drrs->dp) {
  2833. seq_puts(m, "Idleness DRRS: Disabled");
  2834. mutex_unlock(&drrs->mutex);
  2835. return;
  2836. }
  2837. panel = &drrs->dp->attached_connector->panel;
  2838. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2839. drrs->busy_frontbuffer_bits);
  2840. seq_puts(m, "\n\t\t");
  2841. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2842. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2843. vrefresh = panel->fixed_mode->vrefresh;
  2844. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2845. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2846. vrefresh = panel->downclock_mode->vrefresh;
  2847. } else {
  2848. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2849. drrs->refresh_rate_type);
  2850. mutex_unlock(&drrs->mutex);
  2851. return;
  2852. }
  2853. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2854. seq_puts(m, "\n\t\t");
  2855. mutex_unlock(&drrs->mutex);
  2856. } else {
  2857. /* DRRS not supported. Print the VBT parameter*/
  2858. seq_puts(m, "\tDRRS Supported : No");
  2859. }
  2860. seq_puts(m, "\n");
  2861. }
  2862. static int i915_drrs_status(struct seq_file *m, void *unused)
  2863. {
  2864. struct drm_info_node *node = m->private;
  2865. struct drm_device *dev = node->minor->dev;
  2866. struct intel_crtc *intel_crtc;
  2867. int active_crtc_cnt = 0;
  2868. for_each_intel_crtc(dev, intel_crtc) {
  2869. drm_modeset_lock(&intel_crtc->base.mutex, NULL);
  2870. if (intel_crtc->base.state->active) {
  2871. active_crtc_cnt++;
  2872. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2873. drrs_status_per_crtc(m, dev, intel_crtc);
  2874. }
  2875. drm_modeset_unlock(&intel_crtc->base.mutex);
  2876. }
  2877. if (!active_crtc_cnt)
  2878. seq_puts(m, "No active crtc found\n");
  2879. return 0;
  2880. }
  2881. struct pipe_crc_info {
  2882. const char *name;
  2883. struct drm_device *dev;
  2884. enum pipe pipe;
  2885. };
  2886. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2887. {
  2888. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2889. struct drm_device *dev = node->minor->dev;
  2890. struct drm_encoder *encoder;
  2891. struct intel_encoder *intel_encoder;
  2892. struct intel_digital_port *intel_dig_port;
  2893. drm_modeset_lock_all(dev);
  2894. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  2895. intel_encoder = to_intel_encoder(encoder);
  2896. if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
  2897. continue;
  2898. intel_dig_port = enc_to_dig_port(encoder);
  2899. if (!intel_dig_port->dp.can_mst)
  2900. continue;
  2901. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2902. }
  2903. drm_modeset_unlock_all(dev);
  2904. return 0;
  2905. }
  2906. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2907. {
  2908. struct pipe_crc_info *info = inode->i_private;
  2909. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2910. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2911. if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
  2912. return -ENODEV;
  2913. spin_lock_irq(&pipe_crc->lock);
  2914. if (pipe_crc->opened) {
  2915. spin_unlock_irq(&pipe_crc->lock);
  2916. return -EBUSY; /* already open */
  2917. }
  2918. pipe_crc->opened = true;
  2919. filep->private_data = inode->i_private;
  2920. spin_unlock_irq(&pipe_crc->lock);
  2921. return 0;
  2922. }
  2923. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2924. {
  2925. struct pipe_crc_info *info = inode->i_private;
  2926. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2927. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2928. spin_lock_irq(&pipe_crc->lock);
  2929. pipe_crc->opened = false;
  2930. spin_unlock_irq(&pipe_crc->lock);
  2931. return 0;
  2932. }
  2933. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2934. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2935. /* account for \'0' */
  2936. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2937. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2938. {
  2939. assert_spin_locked(&pipe_crc->lock);
  2940. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2941. INTEL_PIPE_CRC_ENTRIES_NR);
  2942. }
  2943. static ssize_t
  2944. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2945. loff_t *pos)
  2946. {
  2947. struct pipe_crc_info *info = filep->private_data;
  2948. struct drm_device *dev = info->dev;
  2949. struct drm_i915_private *dev_priv = dev->dev_private;
  2950. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2951. char buf[PIPE_CRC_BUFFER_LEN];
  2952. int n_entries;
  2953. ssize_t bytes_read;
  2954. /*
  2955. * Don't allow user space to provide buffers not big enough to hold
  2956. * a line of data.
  2957. */
  2958. if (count < PIPE_CRC_LINE_LEN)
  2959. return -EINVAL;
  2960. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  2961. return 0;
  2962. /* nothing to read */
  2963. spin_lock_irq(&pipe_crc->lock);
  2964. while (pipe_crc_data_count(pipe_crc) == 0) {
  2965. int ret;
  2966. if (filep->f_flags & O_NONBLOCK) {
  2967. spin_unlock_irq(&pipe_crc->lock);
  2968. return -EAGAIN;
  2969. }
  2970. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  2971. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  2972. if (ret) {
  2973. spin_unlock_irq(&pipe_crc->lock);
  2974. return ret;
  2975. }
  2976. }
  2977. /* We now have one or more entries to read */
  2978. n_entries = count / PIPE_CRC_LINE_LEN;
  2979. bytes_read = 0;
  2980. while (n_entries > 0) {
  2981. struct intel_pipe_crc_entry *entry =
  2982. &pipe_crc->entries[pipe_crc->tail];
  2983. int ret;
  2984. if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2985. INTEL_PIPE_CRC_ENTRIES_NR) < 1)
  2986. break;
  2987. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  2988. pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  2989. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  2990. "%8u %8x %8x %8x %8x %8x\n",
  2991. entry->frame, entry->crc[0],
  2992. entry->crc[1], entry->crc[2],
  2993. entry->crc[3], entry->crc[4]);
  2994. spin_unlock_irq(&pipe_crc->lock);
  2995. ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
  2996. if (ret == PIPE_CRC_LINE_LEN)
  2997. return -EFAULT;
  2998. user_buf += PIPE_CRC_LINE_LEN;
  2999. n_entries--;
  3000. spin_lock_irq(&pipe_crc->lock);
  3001. }
  3002. spin_unlock_irq(&pipe_crc->lock);
  3003. return bytes_read;
  3004. }
  3005. static const struct file_operations i915_pipe_crc_fops = {
  3006. .owner = THIS_MODULE,
  3007. .open = i915_pipe_crc_open,
  3008. .read = i915_pipe_crc_read,
  3009. .release = i915_pipe_crc_release,
  3010. };
  3011. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  3012. {
  3013. .name = "i915_pipe_A_crc",
  3014. .pipe = PIPE_A,
  3015. },
  3016. {
  3017. .name = "i915_pipe_B_crc",
  3018. .pipe = PIPE_B,
  3019. },
  3020. {
  3021. .name = "i915_pipe_C_crc",
  3022. .pipe = PIPE_C,
  3023. },
  3024. };
  3025. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  3026. enum pipe pipe)
  3027. {
  3028. struct drm_device *dev = minor->dev;
  3029. struct dentry *ent;
  3030. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  3031. info->dev = dev;
  3032. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  3033. &i915_pipe_crc_fops);
  3034. if (!ent)
  3035. return -ENOMEM;
  3036. return drm_add_fake_info_node(minor, ent, info);
  3037. }
  3038. static const char * const pipe_crc_sources[] = {
  3039. "none",
  3040. "plane1",
  3041. "plane2",
  3042. "pf",
  3043. "pipe",
  3044. "TV",
  3045. "DP-B",
  3046. "DP-C",
  3047. "DP-D",
  3048. "auto",
  3049. };
  3050. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  3051. {
  3052. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  3053. return pipe_crc_sources[source];
  3054. }
  3055. static int display_crc_ctl_show(struct seq_file *m, void *data)
  3056. {
  3057. struct drm_device *dev = m->private;
  3058. struct drm_i915_private *dev_priv = dev->dev_private;
  3059. int i;
  3060. for (i = 0; i < I915_MAX_PIPES; i++)
  3061. seq_printf(m, "%c %s\n", pipe_name(i),
  3062. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  3063. return 0;
  3064. }
  3065. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  3066. {
  3067. struct drm_device *dev = inode->i_private;
  3068. return single_open(file, display_crc_ctl_show, dev);
  3069. }
  3070. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3071. uint32_t *val)
  3072. {
  3073. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3074. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3075. switch (*source) {
  3076. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3077. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  3078. break;
  3079. case INTEL_PIPE_CRC_SOURCE_NONE:
  3080. *val = 0;
  3081. break;
  3082. default:
  3083. return -EINVAL;
  3084. }
  3085. return 0;
  3086. }
  3087. static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
  3088. enum intel_pipe_crc_source *source)
  3089. {
  3090. struct intel_encoder *encoder;
  3091. struct intel_crtc *crtc;
  3092. struct intel_digital_port *dig_port;
  3093. int ret = 0;
  3094. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3095. drm_modeset_lock_all(dev);
  3096. for_each_intel_encoder(dev, encoder) {
  3097. if (!encoder->base.crtc)
  3098. continue;
  3099. crtc = to_intel_crtc(encoder->base.crtc);
  3100. if (crtc->pipe != pipe)
  3101. continue;
  3102. switch (encoder->type) {
  3103. case INTEL_OUTPUT_TVOUT:
  3104. *source = INTEL_PIPE_CRC_SOURCE_TV;
  3105. break;
  3106. case INTEL_OUTPUT_DISPLAYPORT:
  3107. case INTEL_OUTPUT_EDP:
  3108. dig_port = enc_to_dig_port(&encoder->base);
  3109. switch (dig_port->port) {
  3110. case PORT_B:
  3111. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  3112. break;
  3113. case PORT_C:
  3114. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  3115. break;
  3116. case PORT_D:
  3117. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  3118. break;
  3119. default:
  3120. WARN(1, "nonexisting DP port %c\n",
  3121. port_name(dig_port->port));
  3122. break;
  3123. }
  3124. break;
  3125. default:
  3126. break;
  3127. }
  3128. }
  3129. drm_modeset_unlock_all(dev);
  3130. return ret;
  3131. }
  3132. static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
  3133. enum pipe pipe,
  3134. enum intel_pipe_crc_source *source,
  3135. uint32_t *val)
  3136. {
  3137. struct drm_i915_private *dev_priv = dev->dev_private;
  3138. bool need_stable_symbols = false;
  3139. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3140. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3141. if (ret)
  3142. return ret;
  3143. }
  3144. switch (*source) {
  3145. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3146. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  3147. break;
  3148. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3149. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  3150. need_stable_symbols = true;
  3151. break;
  3152. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3153. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  3154. need_stable_symbols = true;
  3155. break;
  3156. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3157. if (!IS_CHERRYVIEW(dev))
  3158. return -EINVAL;
  3159. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
  3160. need_stable_symbols = true;
  3161. break;
  3162. case INTEL_PIPE_CRC_SOURCE_NONE:
  3163. *val = 0;
  3164. break;
  3165. default:
  3166. return -EINVAL;
  3167. }
  3168. /*
  3169. * When the pipe CRC tap point is after the transcoders we need
  3170. * to tweak symbol-level features to produce a deterministic series of
  3171. * symbols for a given frame. We need to reset those features only once
  3172. * a frame (instead of every nth symbol):
  3173. * - DC-balance: used to ensure a better clock recovery from the data
  3174. * link (SDVO)
  3175. * - DisplayPort scrambling: used for EMI reduction
  3176. */
  3177. if (need_stable_symbols) {
  3178. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3179. tmp |= DC_BALANCE_RESET_VLV;
  3180. switch (pipe) {
  3181. case PIPE_A:
  3182. tmp |= PIPE_A_SCRAMBLE_RESET;
  3183. break;
  3184. case PIPE_B:
  3185. tmp |= PIPE_B_SCRAMBLE_RESET;
  3186. break;
  3187. case PIPE_C:
  3188. tmp |= PIPE_C_SCRAMBLE_RESET;
  3189. break;
  3190. default:
  3191. return -EINVAL;
  3192. }
  3193. I915_WRITE(PORT_DFT2_G4X, tmp);
  3194. }
  3195. return 0;
  3196. }
  3197. static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
  3198. enum pipe pipe,
  3199. enum intel_pipe_crc_source *source,
  3200. uint32_t *val)
  3201. {
  3202. struct drm_i915_private *dev_priv = dev->dev_private;
  3203. bool need_stable_symbols = false;
  3204. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3205. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3206. if (ret)
  3207. return ret;
  3208. }
  3209. switch (*source) {
  3210. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3211. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  3212. break;
  3213. case INTEL_PIPE_CRC_SOURCE_TV:
  3214. if (!SUPPORTS_TV(dev))
  3215. return -EINVAL;
  3216. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  3217. break;
  3218. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3219. if (!IS_G4X(dev))
  3220. return -EINVAL;
  3221. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  3222. need_stable_symbols = true;
  3223. break;
  3224. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3225. if (!IS_G4X(dev))
  3226. return -EINVAL;
  3227. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  3228. need_stable_symbols = true;
  3229. break;
  3230. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3231. if (!IS_G4X(dev))
  3232. return -EINVAL;
  3233. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  3234. need_stable_symbols = true;
  3235. break;
  3236. case INTEL_PIPE_CRC_SOURCE_NONE:
  3237. *val = 0;
  3238. break;
  3239. default:
  3240. return -EINVAL;
  3241. }
  3242. /*
  3243. * When the pipe CRC tap point is after the transcoders we need
  3244. * to tweak symbol-level features to produce a deterministic series of
  3245. * symbols for a given frame. We need to reset those features only once
  3246. * a frame (instead of every nth symbol):
  3247. * - DC-balance: used to ensure a better clock recovery from the data
  3248. * link (SDVO)
  3249. * - DisplayPort scrambling: used for EMI reduction
  3250. */
  3251. if (need_stable_symbols) {
  3252. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3253. WARN_ON(!IS_G4X(dev));
  3254. I915_WRITE(PORT_DFT_I9XX,
  3255. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  3256. if (pipe == PIPE_A)
  3257. tmp |= PIPE_A_SCRAMBLE_RESET;
  3258. else
  3259. tmp |= PIPE_B_SCRAMBLE_RESET;
  3260. I915_WRITE(PORT_DFT2_G4X, tmp);
  3261. }
  3262. return 0;
  3263. }
  3264. static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
  3265. enum pipe pipe)
  3266. {
  3267. struct drm_i915_private *dev_priv = dev->dev_private;
  3268. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3269. switch (pipe) {
  3270. case PIPE_A:
  3271. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3272. break;
  3273. case PIPE_B:
  3274. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3275. break;
  3276. case PIPE_C:
  3277. tmp &= ~PIPE_C_SCRAMBLE_RESET;
  3278. break;
  3279. default:
  3280. return;
  3281. }
  3282. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  3283. tmp &= ~DC_BALANCE_RESET_VLV;
  3284. I915_WRITE(PORT_DFT2_G4X, tmp);
  3285. }
  3286. static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
  3287. enum pipe pipe)
  3288. {
  3289. struct drm_i915_private *dev_priv = dev->dev_private;
  3290. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3291. if (pipe == PIPE_A)
  3292. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3293. else
  3294. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3295. I915_WRITE(PORT_DFT2_G4X, tmp);
  3296. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  3297. I915_WRITE(PORT_DFT_I9XX,
  3298. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  3299. }
  3300. }
  3301. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3302. uint32_t *val)
  3303. {
  3304. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3305. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3306. switch (*source) {
  3307. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3308. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  3309. break;
  3310. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3311. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  3312. break;
  3313. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3314. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  3315. break;
  3316. case INTEL_PIPE_CRC_SOURCE_NONE:
  3317. *val = 0;
  3318. break;
  3319. default:
  3320. return -EINVAL;
  3321. }
  3322. return 0;
  3323. }
  3324. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
  3325. {
  3326. struct drm_i915_private *dev_priv = dev->dev_private;
  3327. struct intel_crtc *crtc =
  3328. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  3329. struct intel_crtc_state *pipe_config;
  3330. struct drm_atomic_state *state;
  3331. int ret = 0;
  3332. drm_modeset_lock_all(dev);
  3333. state = drm_atomic_state_alloc(dev);
  3334. if (!state) {
  3335. ret = -ENOMEM;
  3336. goto out;
  3337. }
  3338. state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
  3339. pipe_config = intel_atomic_get_crtc_state(state, crtc);
  3340. if (IS_ERR(pipe_config)) {
  3341. ret = PTR_ERR(pipe_config);
  3342. goto out;
  3343. }
  3344. pipe_config->pch_pfit.force_thru = enable;
  3345. if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
  3346. pipe_config->pch_pfit.enabled != enable)
  3347. pipe_config->base.connectors_changed = true;
  3348. ret = drm_atomic_commit(state);
  3349. out:
  3350. drm_modeset_unlock_all(dev);
  3351. WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
  3352. if (ret)
  3353. drm_atomic_state_free(state);
  3354. }
  3355. static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
  3356. enum pipe pipe,
  3357. enum intel_pipe_crc_source *source,
  3358. uint32_t *val)
  3359. {
  3360. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3361. *source = INTEL_PIPE_CRC_SOURCE_PF;
  3362. switch (*source) {
  3363. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3364. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  3365. break;
  3366. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3367. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  3368. break;
  3369. case INTEL_PIPE_CRC_SOURCE_PF:
  3370. if (IS_HASWELL(dev) && pipe == PIPE_A)
  3371. hsw_trans_edp_pipe_A_crc_wa(dev, true);
  3372. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  3373. break;
  3374. case INTEL_PIPE_CRC_SOURCE_NONE:
  3375. *val = 0;
  3376. break;
  3377. default:
  3378. return -EINVAL;
  3379. }
  3380. return 0;
  3381. }
  3382. static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
  3383. enum intel_pipe_crc_source source)
  3384. {
  3385. struct drm_i915_private *dev_priv = dev->dev_private;
  3386. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3387. struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
  3388. pipe));
  3389. enum intel_display_power_domain power_domain;
  3390. u32 val = 0; /* shut up gcc */
  3391. int ret;
  3392. if (pipe_crc->source == source)
  3393. return 0;
  3394. /* forbid changing the source without going back to 'none' */
  3395. if (pipe_crc->source && source)
  3396. return -EINVAL;
  3397. power_domain = POWER_DOMAIN_PIPE(pipe);
  3398. if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
  3399. DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
  3400. return -EIO;
  3401. }
  3402. if (IS_GEN2(dev))
  3403. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  3404. else if (INTEL_INFO(dev)->gen < 5)
  3405. ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3406. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3407. ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3408. else if (IS_GEN5(dev) || IS_GEN6(dev))
  3409. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  3410. else
  3411. ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3412. if (ret != 0)
  3413. goto out;
  3414. /* none -> real source transition */
  3415. if (source) {
  3416. struct intel_pipe_crc_entry *entries;
  3417. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  3418. pipe_name(pipe), pipe_crc_source_name(source));
  3419. entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
  3420. sizeof(pipe_crc->entries[0]),
  3421. GFP_KERNEL);
  3422. if (!entries) {
  3423. ret = -ENOMEM;
  3424. goto out;
  3425. }
  3426. /*
  3427. * When IPS gets enabled, the pipe CRC changes. Since IPS gets
  3428. * enabled and disabled dynamically based on package C states,
  3429. * user space can't make reliable use of the CRCs, so let's just
  3430. * completely disable it.
  3431. */
  3432. hsw_disable_ips(crtc);
  3433. spin_lock_irq(&pipe_crc->lock);
  3434. kfree(pipe_crc->entries);
  3435. pipe_crc->entries = entries;
  3436. pipe_crc->head = 0;
  3437. pipe_crc->tail = 0;
  3438. spin_unlock_irq(&pipe_crc->lock);
  3439. }
  3440. pipe_crc->source = source;
  3441. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  3442. POSTING_READ(PIPE_CRC_CTL(pipe));
  3443. /* real source -> none transition */
  3444. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  3445. struct intel_pipe_crc_entry *entries;
  3446. struct intel_crtc *crtc =
  3447. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  3448. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  3449. pipe_name(pipe));
  3450. drm_modeset_lock(&crtc->base.mutex, NULL);
  3451. if (crtc->base.state->active)
  3452. intel_wait_for_vblank(dev, pipe);
  3453. drm_modeset_unlock(&crtc->base.mutex);
  3454. spin_lock_irq(&pipe_crc->lock);
  3455. entries = pipe_crc->entries;
  3456. pipe_crc->entries = NULL;
  3457. pipe_crc->head = 0;
  3458. pipe_crc->tail = 0;
  3459. spin_unlock_irq(&pipe_crc->lock);
  3460. kfree(entries);
  3461. if (IS_G4X(dev))
  3462. g4x_undo_pipe_scramble_reset(dev, pipe);
  3463. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3464. vlv_undo_pipe_scramble_reset(dev, pipe);
  3465. else if (IS_HASWELL(dev) && pipe == PIPE_A)
  3466. hsw_trans_edp_pipe_A_crc_wa(dev, false);
  3467. hsw_enable_ips(crtc);
  3468. }
  3469. ret = 0;
  3470. out:
  3471. intel_display_power_put(dev_priv, power_domain);
  3472. return ret;
  3473. }
  3474. /*
  3475. * Parse pipe CRC command strings:
  3476. * command: wsp* object wsp+ name wsp+ source wsp*
  3477. * object: 'pipe'
  3478. * name: (A | B | C)
  3479. * source: (none | plane1 | plane2 | pf)
  3480. * wsp: (#0x20 | #0x9 | #0xA)+
  3481. *
  3482. * eg.:
  3483. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  3484. * "pipe A none" -> Stop CRC
  3485. */
  3486. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  3487. {
  3488. int n_words = 0;
  3489. while (*buf) {
  3490. char *end;
  3491. /* skip leading white space */
  3492. buf = skip_spaces(buf);
  3493. if (!*buf)
  3494. break; /* end of buffer */
  3495. /* find end of word */
  3496. for (end = buf; *end && !isspace(*end); end++)
  3497. ;
  3498. if (n_words == max_words) {
  3499. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  3500. max_words);
  3501. return -EINVAL; /* ran out of words[] before bytes */
  3502. }
  3503. if (*end)
  3504. *end++ = '\0';
  3505. words[n_words++] = buf;
  3506. buf = end;
  3507. }
  3508. return n_words;
  3509. }
  3510. enum intel_pipe_crc_object {
  3511. PIPE_CRC_OBJECT_PIPE,
  3512. };
  3513. static const char * const pipe_crc_objects[] = {
  3514. "pipe",
  3515. };
  3516. static int
  3517. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  3518. {
  3519. int i;
  3520. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  3521. if (!strcmp(buf, pipe_crc_objects[i])) {
  3522. *o = i;
  3523. return 0;
  3524. }
  3525. return -EINVAL;
  3526. }
  3527. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  3528. {
  3529. const char name = buf[0];
  3530. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  3531. return -EINVAL;
  3532. *pipe = name - 'A';
  3533. return 0;
  3534. }
  3535. static int
  3536. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  3537. {
  3538. int i;
  3539. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  3540. if (!strcmp(buf, pipe_crc_sources[i])) {
  3541. *s = i;
  3542. return 0;
  3543. }
  3544. return -EINVAL;
  3545. }
  3546. static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
  3547. {
  3548. #define N_WORDS 3
  3549. int n_words;
  3550. char *words[N_WORDS];
  3551. enum pipe pipe;
  3552. enum intel_pipe_crc_object object;
  3553. enum intel_pipe_crc_source source;
  3554. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  3555. if (n_words != N_WORDS) {
  3556. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  3557. N_WORDS);
  3558. return -EINVAL;
  3559. }
  3560. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  3561. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  3562. return -EINVAL;
  3563. }
  3564. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  3565. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  3566. return -EINVAL;
  3567. }
  3568. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  3569. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  3570. return -EINVAL;
  3571. }
  3572. return pipe_crc_set_source(dev, pipe, source);
  3573. }
  3574. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  3575. size_t len, loff_t *offp)
  3576. {
  3577. struct seq_file *m = file->private_data;
  3578. struct drm_device *dev = m->private;
  3579. char *tmpbuf;
  3580. int ret;
  3581. if (len == 0)
  3582. return 0;
  3583. if (len > PAGE_SIZE - 1) {
  3584. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  3585. PAGE_SIZE);
  3586. return -E2BIG;
  3587. }
  3588. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  3589. if (!tmpbuf)
  3590. return -ENOMEM;
  3591. if (copy_from_user(tmpbuf, ubuf, len)) {
  3592. ret = -EFAULT;
  3593. goto out;
  3594. }
  3595. tmpbuf[len] = '\0';
  3596. ret = display_crc_ctl_parse(dev, tmpbuf, len);
  3597. out:
  3598. kfree(tmpbuf);
  3599. if (ret < 0)
  3600. return ret;
  3601. *offp += len;
  3602. return len;
  3603. }
  3604. static const struct file_operations i915_display_crc_ctl_fops = {
  3605. .owner = THIS_MODULE,
  3606. .open = display_crc_ctl_open,
  3607. .read = seq_read,
  3608. .llseek = seq_lseek,
  3609. .release = single_release,
  3610. .write = display_crc_ctl_write
  3611. };
  3612. static ssize_t i915_displayport_test_active_write(struct file *file,
  3613. const char __user *ubuf,
  3614. size_t len, loff_t *offp)
  3615. {
  3616. char *input_buffer;
  3617. int status = 0;
  3618. struct drm_device *dev;
  3619. struct drm_connector *connector;
  3620. struct list_head *connector_list;
  3621. struct intel_dp *intel_dp;
  3622. int val = 0;
  3623. dev = ((struct seq_file *)file->private_data)->private;
  3624. connector_list = &dev->mode_config.connector_list;
  3625. if (len == 0)
  3626. return 0;
  3627. input_buffer = kmalloc(len + 1, GFP_KERNEL);
  3628. if (!input_buffer)
  3629. return -ENOMEM;
  3630. if (copy_from_user(input_buffer, ubuf, len)) {
  3631. status = -EFAULT;
  3632. goto out;
  3633. }
  3634. input_buffer[len] = '\0';
  3635. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3636. list_for_each_entry(connector, connector_list, head) {
  3637. if (connector->connector_type !=
  3638. DRM_MODE_CONNECTOR_DisplayPort)
  3639. continue;
  3640. if (connector->status == connector_status_connected &&
  3641. connector->encoder != NULL) {
  3642. intel_dp = enc_to_intel_dp(connector->encoder);
  3643. status = kstrtoint(input_buffer, 10, &val);
  3644. if (status < 0)
  3645. goto out;
  3646. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3647. /* To prevent erroneous activation of the compliance
  3648. * testing code, only accept an actual value of 1 here
  3649. */
  3650. if (val == 1)
  3651. intel_dp->compliance_test_active = 1;
  3652. else
  3653. intel_dp->compliance_test_active = 0;
  3654. }
  3655. }
  3656. out:
  3657. kfree(input_buffer);
  3658. if (status < 0)
  3659. return status;
  3660. *offp += len;
  3661. return len;
  3662. }
  3663. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3664. {
  3665. struct drm_device *dev = m->private;
  3666. struct drm_connector *connector;
  3667. struct list_head *connector_list = &dev->mode_config.connector_list;
  3668. struct intel_dp *intel_dp;
  3669. list_for_each_entry(connector, connector_list, head) {
  3670. if (connector->connector_type !=
  3671. DRM_MODE_CONNECTOR_DisplayPort)
  3672. continue;
  3673. if (connector->status == connector_status_connected &&
  3674. connector->encoder != NULL) {
  3675. intel_dp = enc_to_intel_dp(connector->encoder);
  3676. if (intel_dp->compliance_test_active)
  3677. seq_puts(m, "1");
  3678. else
  3679. seq_puts(m, "0");
  3680. } else
  3681. seq_puts(m, "0");
  3682. }
  3683. return 0;
  3684. }
  3685. static int i915_displayport_test_active_open(struct inode *inode,
  3686. struct file *file)
  3687. {
  3688. struct drm_device *dev = inode->i_private;
  3689. return single_open(file, i915_displayport_test_active_show, dev);
  3690. }
  3691. static const struct file_operations i915_displayport_test_active_fops = {
  3692. .owner = THIS_MODULE,
  3693. .open = i915_displayport_test_active_open,
  3694. .read = seq_read,
  3695. .llseek = seq_lseek,
  3696. .release = single_release,
  3697. .write = i915_displayport_test_active_write
  3698. };
  3699. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3700. {
  3701. struct drm_device *dev = m->private;
  3702. struct drm_connector *connector;
  3703. struct list_head *connector_list = &dev->mode_config.connector_list;
  3704. struct intel_dp *intel_dp;
  3705. list_for_each_entry(connector, connector_list, head) {
  3706. if (connector->connector_type !=
  3707. DRM_MODE_CONNECTOR_DisplayPort)
  3708. continue;
  3709. if (connector->status == connector_status_connected &&
  3710. connector->encoder != NULL) {
  3711. intel_dp = enc_to_intel_dp(connector->encoder);
  3712. seq_printf(m, "%lx", intel_dp->compliance_test_data);
  3713. } else
  3714. seq_puts(m, "0");
  3715. }
  3716. return 0;
  3717. }
  3718. static int i915_displayport_test_data_open(struct inode *inode,
  3719. struct file *file)
  3720. {
  3721. struct drm_device *dev = inode->i_private;
  3722. return single_open(file, i915_displayport_test_data_show, dev);
  3723. }
  3724. static const struct file_operations i915_displayport_test_data_fops = {
  3725. .owner = THIS_MODULE,
  3726. .open = i915_displayport_test_data_open,
  3727. .read = seq_read,
  3728. .llseek = seq_lseek,
  3729. .release = single_release
  3730. };
  3731. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3732. {
  3733. struct drm_device *dev = m->private;
  3734. struct drm_connector *connector;
  3735. struct list_head *connector_list = &dev->mode_config.connector_list;
  3736. struct intel_dp *intel_dp;
  3737. list_for_each_entry(connector, connector_list, head) {
  3738. if (connector->connector_type !=
  3739. DRM_MODE_CONNECTOR_DisplayPort)
  3740. continue;
  3741. if (connector->status == connector_status_connected &&
  3742. connector->encoder != NULL) {
  3743. intel_dp = enc_to_intel_dp(connector->encoder);
  3744. seq_printf(m, "%02lx", intel_dp->compliance_test_type);
  3745. } else
  3746. seq_puts(m, "0");
  3747. }
  3748. return 0;
  3749. }
  3750. static int i915_displayport_test_type_open(struct inode *inode,
  3751. struct file *file)
  3752. {
  3753. struct drm_device *dev = inode->i_private;
  3754. return single_open(file, i915_displayport_test_type_show, dev);
  3755. }
  3756. static const struct file_operations i915_displayport_test_type_fops = {
  3757. .owner = THIS_MODULE,
  3758. .open = i915_displayport_test_type_open,
  3759. .read = seq_read,
  3760. .llseek = seq_lseek,
  3761. .release = single_release
  3762. };
  3763. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3764. {
  3765. struct drm_device *dev = m->private;
  3766. int level;
  3767. int num_levels;
  3768. if (IS_CHERRYVIEW(dev))
  3769. num_levels = 3;
  3770. else if (IS_VALLEYVIEW(dev))
  3771. num_levels = 1;
  3772. else
  3773. num_levels = ilk_wm_max_level(dev) + 1;
  3774. drm_modeset_lock_all(dev);
  3775. for (level = 0; level < num_levels; level++) {
  3776. unsigned int latency = wm[level];
  3777. /*
  3778. * - WM1+ latency values in 0.5us units
  3779. * - latencies are in us on gen9/vlv/chv
  3780. */
  3781. if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
  3782. IS_CHERRYVIEW(dev))
  3783. latency *= 10;
  3784. else if (level > 0)
  3785. latency *= 5;
  3786. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3787. level, wm[level], latency / 10, latency % 10);
  3788. }
  3789. drm_modeset_unlock_all(dev);
  3790. }
  3791. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3792. {
  3793. struct drm_device *dev = m->private;
  3794. struct drm_i915_private *dev_priv = dev->dev_private;
  3795. const uint16_t *latencies;
  3796. if (INTEL_INFO(dev)->gen >= 9)
  3797. latencies = dev_priv->wm.skl_latency;
  3798. else
  3799. latencies = to_i915(dev)->wm.pri_latency;
  3800. wm_latency_show(m, latencies);
  3801. return 0;
  3802. }
  3803. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3804. {
  3805. struct drm_device *dev = m->private;
  3806. struct drm_i915_private *dev_priv = dev->dev_private;
  3807. const uint16_t *latencies;
  3808. if (INTEL_INFO(dev)->gen >= 9)
  3809. latencies = dev_priv->wm.skl_latency;
  3810. else
  3811. latencies = to_i915(dev)->wm.spr_latency;
  3812. wm_latency_show(m, latencies);
  3813. return 0;
  3814. }
  3815. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3816. {
  3817. struct drm_device *dev = m->private;
  3818. struct drm_i915_private *dev_priv = dev->dev_private;
  3819. const uint16_t *latencies;
  3820. if (INTEL_INFO(dev)->gen >= 9)
  3821. latencies = dev_priv->wm.skl_latency;
  3822. else
  3823. latencies = to_i915(dev)->wm.cur_latency;
  3824. wm_latency_show(m, latencies);
  3825. return 0;
  3826. }
  3827. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3828. {
  3829. struct drm_device *dev = inode->i_private;
  3830. if (INTEL_INFO(dev)->gen < 5)
  3831. return -ENODEV;
  3832. return single_open(file, pri_wm_latency_show, dev);
  3833. }
  3834. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3835. {
  3836. struct drm_device *dev = inode->i_private;
  3837. if (HAS_GMCH_DISPLAY(dev))
  3838. return -ENODEV;
  3839. return single_open(file, spr_wm_latency_show, dev);
  3840. }
  3841. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3842. {
  3843. struct drm_device *dev = inode->i_private;
  3844. if (HAS_GMCH_DISPLAY(dev))
  3845. return -ENODEV;
  3846. return single_open(file, cur_wm_latency_show, dev);
  3847. }
  3848. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3849. size_t len, loff_t *offp, uint16_t wm[8])
  3850. {
  3851. struct seq_file *m = file->private_data;
  3852. struct drm_device *dev = m->private;
  3853. uint16_t new[8] = { 0 };
  3854. int num_levels;
  3855. int level;
  3856. int ret;
  3857. char tmp[32];
  3858. if (IS_CHERRYVIEW(dev))
  3859. num_levels = 3;
  3860. else if (IS_VALLEYVIEW(dev))
  3861. num_levels = 1;
  3862. else
  3863. num_levels = ilk_wm_max_level(dev) + 1;
  3864. if (len >= sizeof(tmp))
  3865. return -EINVAL;
  3866. if (copy_from_user(tmp, ubuf, len))
  3867. return -EFAULT;
  3868. tmp[len] = '\0';
  3869. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3870. &new[0], &new[1], &new[2], &new[3],
  3871. &new[4], &new[5], &new[6], &new[7]);
  3872. if (ret != num_levels)
  3873. return -EINVAL;
  3874. drm_modeset_lock_all(dev);
  3875. for (level = 0; level < num_levels; level++)
  3876. wm[level] = new[level];
  3877. drm_modeset_unlock_all(dev);
  3878. return len;
  3879. }
  3880. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3881. size_t len, loff_t *offp)
  3882. {
  3883. struct seq_file *m = file->private_data;
  3884. struct drm_device *dev = m->private;
  3885. struct drm_i915_private *dev_priv = dev->dev_private;
  3886. uint16_t *latencies;
  3887. if (INTEL_INFO(dev)->gen >= 9)
  3888. latencies = dev_priv->wm.skl_latency;
  3889. else
  3890. latencies = to_i915(dev)->wm.pri_latency;
  3891. return wm_latency_write(file, ubuf, len, offp, latencies);
  3892. }
  3893. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3894. size_t len, loff_t *offp)
  3895. {
  3896. struct seq_file *m = file->private_data;
  3897. struct drm_device *dev = m->private;
  3898. struct drm_i915_private *dev_priv = dev->dev_private;
  3899. uint16_t *latencies;
  3900. if (INTEL_INFO(dev)->gen >= 9)
  3901. latencies = dev_priv->wm.skl_latency;
  3902. else
  3903. latencies = to_i915(dev)->wm.spr_latency;
  3904. return wm_latency_write(file, ubuf, len, offp, latencies);
  3905. }
  3906. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3907. size_t len, loff_t *offp)
  3908. {
  3909. struct seq_file *m = file->private_data;
  3910. struct drm_device *dev = m->private;
  3911. struct drm_i915_private *dev_priv = dev->dev_private;
  3912. uint16_t *latencies;
  3913. if (INTEL_INFO(dev)->gen >= 9)
  3914. latencies = dev_priv->wm.skl_latency;
  3915. else
  3916. latencies = to_i915(dev)->wm.cur_latency;
  3917. return wm_latency_write(file, ubuf, len, offp, latencies);
  3918. }
  3919. static const struct file_operations i915_pri_wm_latency_fops = {
  3920. .owner = THIS_MODULE,
  3921. .open = pri_wm_latency_open,
  3922. .read = seq_read,
  3923. .llseek = seq_lseek,
  3924. .release = single_release,
  3925. .write = pri_wm_latency_write
  3926. };
  3927. static const struct file_operations i915_spr_wm_latency_fops = {
  3928. .owner = THIS_MODULE,
  3929. .open = spr_wm_latency_open,
  3930. .read = seq_read,
  3931. .llseek = seq_lseek,
  3932. .release = single_release,
  3933. .write = spr_wm_latency_write
  3934. };
  3935. static const struct file_operations i915_cur_wm_latency_fops = {
  3936. .owner = THIS_MODULE,
  3937. .open = cur_wm_latency_open,
  3938. .read = seq_read,
  3939. .llseek = seq_lseek,
  3940. .release = single_release,
  3941. .write = cur_wm_latency_write
  3942. };
  3943. static int
  3944. i915_wedged_get(void *data, u64 *val)
  3945. {
  3946. struct drm_device *dev = data;
  3947. struct drm_i915_private *dev_priv = dev->dev_private;
  3948. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3949. return 0;
  3950. }
  3951. static int
  3952. i915_wedged_set(void *data, u64 val)
  3953. {
  3954. struct drm_device *dev = data;
  3955. struct drm_i915_private *dev_priv = dev->dev_private;
  3956. /*
  3957. * There is no safeguard against this debugfs entry colliding
  3958. * with the hangcheck calling same i915_handle_error() in
  3959. * parallel, causing an explosion. For now we assume that the
  3960. * test harness is responsible enough not to inject gpu hangs
  3961. * while it is writing to 'i915_wedged'
  3962. */
  3963. if (i915_reset_in_progress(&dev_priv->gpu_error))
  3964. return -EAGAIN;
  3965. intel_runtime_pm_get(dev_priv);
  3966. i915_handle_error(dev_priv, val,
  3967. "Manually setting wedged to %llu", val);
  3968. intel_runtime_pm_put(dev_priv);
  3969. return 0;
  3970. }
  3971. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3972. i915_wedged_get, i915_wedged_set,
  3973. "%llu\n");
  3974. static int
  3975. i915_ring_stop_get(void *data, u64 *val)
  3976. {
  3977. struct drm_device *dev = data;
  3978. struct drm_i915_private *dev_priv = dev->dev_private;
  3979. *val = dev_priv->gpu_error.stop_rings;
  3980. return 0;
  3981. }
  3982. static int
  3983. i915_ring_stop_set(void *data, u64 val)
  3984. {
  3985. struct drm_device *dev = data;
  3986. struct drm_i915_private *dev_priv = dev->dev_private;
  3987. int ret;
  3988. DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
  3989. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3990. if (ret)
  3991. return ret;
  3992. dev_priv->gpu_error.stop_rings = val;
  3993. mutex_unlock(&dev->struct_mutex);
  3994. return 0;
  3995. }
  3996. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
  3997. i915_ring_stop_get, i915_ring_stop_set,
  3998. "0x%08llx\n");
  3999. static int
  4000. i915_ring_missed_irq_get(void *data, u64 *val)
  4001. {
  4002. struct drm_device *dev = data;
  4003. struct drm_i915_private *dev_priv = dev->dev_private;
  4004. *val = dev_priv->gpu_error.missed_irq_rings;
  4005. return 0;
  4006. }
  4007. static int
  4008. i915_ring_missed_irq_set(void *data, u64 val)
  4009. {
  4010. struct drm_device *dev = data;
  4011. struct drm_i915_private *dev_priv = dev->dev_private;
  4012. int ret;
  4013. /* Lock against concurrent debugfs callers */
  4014. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4015. if (ret)
  4016. return ret;
  4017. dev_priv->gpu_error.missed_irq_rings = val;
  4018. mutex_unlock(&dev->struct_mutex);
  4019. return 0;
  4020. }
  4021. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  4022. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  4023. "0x%08llx\n");
  4024. static int
  4025. i915_ring_test_irq_get(void *data, u64 *val)
  4026. {
  4027. struct drm_device *dev = data;
  4028. struct drm_i915_private *dev_priv = dev->dev_private;
  4029. *val = dev_priv->gpu_error.test_irq_rings;
  4030. return 0;
  4031. }
  4032. static int
  4033. i915_ring_test_irq_set(void *data, u64 val)
  4034. {
  4035. struct drm_device *dev = data;
  4036. struct drm_i915_private *dev_priv = dev->dev_private;
  4037. int ret;
  4038. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  4039. /* Lock against concurrent debugfs callers */
  4040. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4041. if (ret)
  4042. return ret;
  4043. dev_priv->gpu_error.test_irq_rings = val;
  4044. mutex_unlock(&dev->struct_mutex);
  4045. return 0;
  4046. }
  4047. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  4048. i915_ring_test_irq_get, i915_ring_test_irq_set,
  4049. "0x%08llx\n");
  4050. #define DROP_UNBOUND 0x1
  4051. #define DROP_BOUND 0x2
  4052. #define DROP_RETIRE 0x4
  4053. #define DROP_ACTIVE 0x8
  4054. #define DROP_ALL (DROP_UNBOUND | \
  4055. DROP_BOUND | \
  4056. DROP_RETIRE | \
  4057. DROP_ACTIVE)
  4058. static int
  4059. i915_drop_caches_get(void *data, u64 *val)
  4060. {
  4061. *val = DROP_ALL;
  4062. return 0;
  4063. }
  4064. static int
  4065. i915_drop_caches_set(void *data, u64 val)
  4066. {
  4067. struct drm_device *dev = data;
  4068. struct drm_i915_private *dev_priv = dev->dev_private;
  4069. int ret;
  4070. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  4071. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  4072. * on ioctls on -EAGAIN. */
  4073. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4074. if (ret)
  4075. return ret;
  4076. if (val & DROP_ACTIVE) {
  4077. ret = i915_gpu_idle(dev);
  4078. if (ret)
  4079. goto unlock;
  4080. }
  4081. if (val & (DROP_RETIRE | DROP_ACTIVE))
  4082. i915_gem_retire_requests(dev_priv);
  4083. if (val & DROP_BOUND)
  4084. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  4085. if (val & DROP_UNBOUND)
  4086. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  4087. unlock:
  4088. mutex_unlock(&dev->struct_mutex);
  4089. return ret;
  4090. }
  4091. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  4092. i915_drop_caches_get, i915_drop_caches_set,
  4093. "0x%08llx\n");
  4094. static int
  4095. i915_max_freq_get(void *data, u64 *val)
  4096. {
  4097. struct drm_device *dev = data;
  4098. struct drm_i915_private *dev_priv = dev->dev_private;
  4099. int ret;
  4100. if (INTEL_INFO(dev)->gen < 6)
  4101. return -ENODEV;
  4102. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4103. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4104. if (ret)
  4105. return ret;
  4106. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  4107. mutex_unlock(&dev_priv->rps.hw_lock);
  4108. return 0;
  4109. }
  4110. static int
  4111. i915_max_freq_set(void *data, u64 val)
  4112. {
  4113. struct drm_device *dev = data;
  4114. struct drm_i915_private *dev_priv = dev->dev_private;
  4115. u32 hw_max, hw_min;
  4116. int ret;
  4117. if (INTEL_INFO(dev)->gen < 6)
  4118. return -ENODEV;
  4119. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4120. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  4121. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4122. if (ret)
  4123. return ret;
  4124. /*
  4125. * Turbo will still be enabled, but won't go above the set value.
  4126. */
  4127. val = intel_freq_opcode(dev_priv, val);
  4128. hw_max = dev_priv->rps.max_freq;
  4129. hw_min = dev_priv->rps.min_freq;
  4130. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  4131. mutex_unlock(&dev_priv->rps.hw_lock);
  4132. return -EINVAL;
  4133. }
  4134. dev_priv->rps.max_freq_softlimit = val;
  4135. intel_set_rps(dev, val);
  4136. mutex_unlock(&dev_priv->rps.hw_lock);
  4137. return 0;
  4138. }
  4139. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  4140. i915_max_freq_get, i915_max_freq_set,
  4141. "%llu\n");
  4142. static int
  4143. i915_min_freq_get(void *data, u64 *val)
  4144. {
  4145. struct drm_device *dev = data;
  4146. struct drm_i915_private *dev_priv = dev->dev_private;
  4147. int ret;
  4148. if (INTEL_INFO(dev)->gen < 6)
  4149. return -ENODEV;
  4150. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4151. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4152. if (ret)
  4153. return ret;
  4154. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  4155. mutex_unlock(&dev_priv->rps.hw_lock);
  4156. return 0;
  4157. }
  4158. static int
  4159. i915_min_freq_set(void *data, u64 val)
  4160. {
  4161. struct drm_device *dev = data;
  4162. struct drm_i915_private *dev_priv = dev->dev_private;
  4163. u32 hw_max, hw_min;
  4164. int ret;
  4165. if (INTEL_INFO(dev)->gen < 6)
  4166. return -ENODEV;
  4167. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4168. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  4169. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4170. if (ret)
  4171. return ret;
  4172. /*
  4173. * Turbo will still be enabled, but won't go below the set value.
  4174. */
  4175. val = intel_freq_opcode(dev_priv, val);
  4176. hw_max = dev_priv->rps.max_freq;
  4177. hw_min = dev_priv->rps.min_freq;
  4178. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  4179. mutex_unlock(&dev_priv->rps.hw_lock);
  4180. return -EINVAL;
  4181. }
  4182. dev_priv->rps.min_freq_softlimit = val;
  4183. intel_set_rps(dev, val);
  4184. mutex_unlock(&dev_priv->rps.hw_lock);
  4185. return 0;
  4186. }
  4187. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  4188. i915_min_freq_get, i915_min_freq_set,
  4189. "%llu\n");
  4190. static int
  4191. i915_cache_sharing_get(void *data, u64 *val)
  4192. {
  4193. struct drm_device *dev = data;
  4194. struct drm_i915_private *dev_priv = dev->dev_private;
  4195. u32 snpcr;
  4196. int ret;
  4197. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4198. return -ENODEV;
  4199. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4200. if (ret)
  4201. return ret;
  4202. intel_runtime_pm_get(dev_priv);
  4203. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4204. intel_runtime_pm_put(dev_priv);
  4205. mutex_unlock(&dev_priv->dev->struct_mutex);
  4206. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  4207. return 0;
  4208. }
  4209. static int
  4210. i915_cache_sharing_set(void *data, u64 val)
  4211. {
  4212. struct drm_device *dev = data;
  4213. struct drm_i915_private *dev_priv = dev->dev_private;
  4214. u32 snpcr;
  4215. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4216. return -ENODEV;
  4217. if (val > 3)
  4218. return -EINVAL;
  4219. intel_runtime_pm_get(dev_priv);
  4220. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  4221. /* Update the cache sharing policy here as well */
  4222. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4223. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4224. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  4225. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4226. intel_runtime_pm_put(dev_priv);
  4227. return 0;
  4228. }
  4229. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  4230. i915_cache_sharing_get, i915_cache_sharing_set,
  4231. "%llu\n");
  4232. struct sseu_dev_status {
  4233. unsigned int slice_total;
  4234. unsigned int subslice_total;
  4235. unsigned int subslice_per_slice;
  4236. unsigned int eu_total;
  4237. unsigned int eu_per_subslice;
  4238. };
  4239. static void cherryview_sseu_device_status(struct drm_device *dev,
  4240. struct sseu_dev_status *stat)
  4241. {
  4242. struct drm_i915_private *dev_priv = dev->dev_private;
  4243. int ss_max = 2;
  4244. int ss;
  4245. u32 sig1[ss_max], sig2[ss_max];
  4246. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  4247. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  4248. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  4249. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  4250. for (ss = 0; ss < ss_max; ss++) {
  4251. unsigned int eu_cnt;
  4252. if (sig1[ss] & CHV_SS_PG_ENABLE)
  4253. /* skip disabled subslice */
  4254. continue;
  4255. stat->slice_total = 1;
  4256. stat->subslice_per_slice++;
  4257. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  4258. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  4259. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  4260. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  4261. stat->eu_total += eu_cnt;
  4262. stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
  4263. }
  4264. stat->subslice_total = stat->subslice_per_slice;
  4265. }
  4266. static void gen9_sseu_device_status(struct drm_device *dev,
  4267. struct sseu_dev_status *stat)
  4268. {
  4269. struct drm_i915_private *dev_priv = dev->dev_private;
  4270. int s_max = 3, ss_max = 4;
  4271. int s, ss;
  4272. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  4273. /* BXT has a single slice and at most 3 subslices. */
  4274. if (IS_BROXTON(dev)) {
  4275. s_max = 1;
  4276. ss_max = 3;
  4277. }
  4278. for (s = 0; s < s_max; s++) {
  4279. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  4280. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  4281. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  4282. }
  4283. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  4284. GEN9_PGCTL_SSA_EU19_ACK |
  4285. GEN9_PGCTL_SSA_EU210_ACK |
  4286. GEN9_PGCTL_SSA_EU311_ACK;
  4287. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  4288. GEN9_PGCTL_SSB_EU19_ACK |
  4289. GEN9_PGCTL_SSB_EU210_ACK |
  4290. GEN9_PGCTL_SSB_EU311_ACK;
  4291. for (s = 0; s < s_max; s++) {
  4292. unsigned int ss_cnt = 0;
  4293. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  4294. /* skip disabled slice */
  4295. continue;
  4296. stat->slice_total++;
  4297. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  4298. ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
  4299. for (ss = 0; ss < ss_max; ss++) {
  4300. unsigned int eu_cnt;
  4301. if (IS_BROXTON(dev) &&
  4302. !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  4303. /* skip disabled subslice */
  4304. continue;
  4305. if (IS_BROXTON(dev))
  4306. ss_cnt++;
  4307. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  4308. eu_mask[ss%2]);
  4309. stat->eu_total += eu_cnt;
  4310. stat->eu_per_subslice = max(stat->eu_per_subslice,
  4311. eu_cnt);
  4312. }
  4313. stat->subslice_total += ss_cnt;
  4314. stat->subslice_per_slice = max(stat->subslice_per_slice,
  4315. ss_cnt);
  4316. }
  4317. }
  4318. static void broadwell_sseu_device_status(struct drm_device *dev,
  4319. struct sseu_dev_status *stat)
  4320. {
  4321. struct drm_i915_private *dev_priv = dev->dev_private;
  4322. int s;
  4323. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  4324. stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
  4325. if (stat->slice_total) {
  4326. stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
  4327. stat->subslice_total = stat->slice_total *
  4328. stat->subslice_per_slice;
  4329. stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
  4330. stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
  4331. /* subtract fused off EU(s) from enabled slice(s) */
  4332. for (s = 0; s < stat->slice_total; s++) {
  4333. u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
  4334. stat->eu_total -= hweight8(subslice_7eu);
  4335. }
  4336. }
  4337. }
  4338. static int i915_sseu_status(struct seq_file *m, void *unused)
  4339. {
  4340. struct drm_info_node *node = (struct drm_info_node *) m->private;
  4341. struct drm_device *dev = node->minor->dev;
  4342. struct sseu_dev_status stat;
  4343. if (INTEL_INFO(dev)->gen < 8)
  4344. return -ENODEV;
  4345. seq_puts(m, "SSEU Device Info\n");
  4346. seq_printf(m, " Available Slice Total: %u\n",
  4347. INTEL_INFO(dev)->slice_total);
  4348. seq_printf(m, " Available Subslice Total: %u\n",
  4349. INTEL_INFO(dev)->subslice_total);
  4350. seq_printf(m, " Available Subslice Per Slice: %u\n",
  4351. INTEL_INFO(dev)->subslice_per_slice);
  4352. seq_printf(m, " Available EU Total: %u\n",
  4353. INTEL_INFO(dev)->eu_total);
  4354. seq_printf(m, " Available EU Per Subslice: %u\n",
  4355. INTEL_INFO(dev)->eu_per_subslice);
  4356. seq_printf(m, " Has Slice Power Gating: %s\n",
  4357. yesno(INTEL_INFO(dev)->has_slice_pg));
  4358. seq_printf(m, " Has Subslice Power Gating: %s\n",
  4359. yesno(INTEL_INFO(dev)->has_subslice_pg));
  4360. seq_printf(m, " Has EU Power Gating: %s\n",
  4361. yesno(INTEL_INFO(dev)->has_eu_pg));
  4362. seq_puts(m, "SSEU Device Status\n");
  4363. memset(&stat, 0, sizeof(stat));
  4364. if (IS_CHERRYVIEW(dev)) {
  4365. cherryview_sseu_device_status(dev, &stat);
  4366. } else if (IS_BROADWELL(dev)) {
  4367. broadwell_sseu_device_status(dev, &stat);
  4368. } else if (INTEL_INFO(dev)->gen >= 9) {
  4369. gen9_sseu_device_status(dev, &stat);
  4370. }
  4371. seq_printf(m, " Enabled Slice Total: %u\n",
  4372. stat.slice_total);
  4373. seq_printf(m, " Enabled Subslice Total: %u\n",
  4374. stat.subslice_total);
  4375. seq_printf(m, " Enabled Subslice Per Slice: %u\n",
  4376. stat.subslice_per_slice);
  4377. seq_printf(m, " Enabled EU Total: %u\n",
  4378. stat.eu_total);
  4379. seq_printf(m, " Enabled EU Per Subslice: %u\n",
  4380. stat.eu_per_subslice);
  4381. return 0;
  4382. }
  4383. static int i915_forcewake_open(struct inode *inode, struct file *file)
  4384. {
  4385. struct drm_device *dev = inode->i_private;
  4386. struct drm_i915_private *dev_priv = dev->dev_private;
  4387. if (INTEL_INFO(dev)->gen < 6)
  4388. return 0;
  4389. intel_runtime_pm_get(dev_priv);
  4390. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4391. return 0;
  4392. }
  4393. static int i915_forcewake_release(struct inode *inode, struct file *file)
  4394. {
  4395. struct drm_device *dev = inode->i_private;
  4396. struct drm_i915_private *dev_priv = dev->dev_private;
  4397. if (INTEL_INFO(dev)->gen < 6)
  4398. return 0;
  4399. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4400. intel_runtime_pm_put(dev_priv);
  4401. return 0;
  4402. }
  4403. static const struct file_operations i915_forcewake_fops = {
  4404. .owner = THIS_MODULE,
  4405. .open = i915_forcewake_open,
  4406. .release = i915_forcewake_release,
  4407. };
  4408. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  4409. {
  4410. struct drm_device *dev = minor->dev;
  4411. struct dentry *ent;
  4412. ent = debugfs_create_file("i915_forcewake_user",
  4413. S_IRUSR,
  4414. root, dev,
  4415. &i915_forcewake_fops);
  4416. if (!ent)
  4417. return -ENOMEM;
  4418. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  4419. }
  4420. static int i915_debugfs_create(struct dentry *root,
  4421. struct drm_minor *minor,
  4422. const char *name,
  4423. const struct file_operations *fops)
  4424. {
  4425. struct drm_device *dev = minor->dev;
  4426. struct dentry *ent;
  4427. ent = debugfs_create_file(name,
  4428. S_IRUGO | S_IWUSR,
  4429. root, dev,
  4430. fops);
  4431. if (!ent)
  4432. return -ENOMEM;
  4433. return drm_add_fake_info_node(minor, ent, fops);
  4434. }
  4435. static const struct drm_info_list i915_debugfs_list[] = {
  4436. {"i915_capabilities", i915_capabilities, 0},
  4437. {"i915_gem_objects", i915_gem_object_info, 0},
  4438. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  4439. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  4440. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  4441. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  4442. {"i915_gem_stolen", i915_gem_stolen_list_info },
  4443. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  4444. {"i915_gem_request", i915_gem_request_info, 0},
  4445. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  4446. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  4447. {"i915_gem_interrupt", i915_interrupt_info, 0},
  4448. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  4449. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  4450. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  4451. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  4452. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  4453. {"i915_guc_info", i915_guc_info, 0},
  4454. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  4455. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  4456. {"i915_frequency_info", i915_frequency_info, 0},
  4457. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  4458. {"i915_drpc_info", i915_drpc_info, 0},
  4459. {"i915_emon_status", i915_emon_status, 0},
  4460. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  4461. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  4462. {"i915_fbc_status", i915_fbc_status, 0},
  4463. {"i915_ips_status", i915_ips_status, 0},
  4464. {"i915_sr_status", i915_sr_status, 0},
  4465. {"i915_opregion", i915_opregion, 0},
  4466. {"i915_vbt", i915_vbt, 0},
  4467. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  4468. {"i915_context_status", i915_context_status, 0},
  4469. {"i915_dump_lrc", i915_dump_lrc, 0},
  4470. {"i915_execlists", i915_execlists, 0},
  4471. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  4472. {"i915_swizzle_info", i915_swizzle_info, 0},
  4473. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  4474. {"i915_llc", i915_llc, 0},
  4475. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  4476. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  4477. {"i915_energy_uJ", i915_energy_uJ, 0},
  4478. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  4479. {"i915_power_domain_info", i915_power_domain_info, 0},
  4480. {"i915_dmc_info", i915_dmc_info, 0},
  4481. {"i915_display_info", i915_display_info, 0},
  4482. {"i915_semaphore_status", i915_semaphore_status, 0},
  4483. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  4484. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  4485. {"i915_wa_registers", i915_wa_registers, 0},
  4486. {"i915_ddb_info", i915_ddb_info, 0},
  4487. {"i915_sseu_status", i915_sseu_status, 0},
  4488. {"i915_drrs_status", i915_drrs_status, 0},
  4489. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  4490. };
  4491. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  4492. static const struct i915_debugfs_files {
  4493. const char *name;
  4494. const struct file_operations *fops;
  4495. } i915_debugfs_files[] = {
  4496. {"i915_wedged", &i915_wedged_fops},
  4497. {"i915_max_freq", &i915_max_freq_fops},
  4498. {"i915_min_freq", &i915_min_freq_fops},
  4499. {"i915_cache_sharing", &i915_cache_sharing_fops},
  4500. {"i915_ring_stop", &i915_ring_stop_fops},
  4501. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  4502. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  4503. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  4504. {"i915_error_state", &i915_error_state_fops},
  4505. {"i915_next_seqno", &i915_next_seqno_fops},
  4506. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  4507. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  4508. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  4509. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  4510. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  4511. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  4512. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  4513. {"i915_dp_test_active", &i915_displayport_test_active_fops}
  4514. };
  4515. void intel_display_crc_init(struct drm_device *dev)
  4516. {
  4517. struct drm_i915_private *dev_priv = dev->dev_private;
  4518. enum pipe pipe;
  4519. for_each_pipe(dev_priv, pipe) {
  4520. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  4521. pipe_crc->opened = false;
  4522. spin_lock_init(&pipe_crc->lock);
  4523. init_waitqueue_head(&pipe_crc->wq);
  4524. }
  4525. }
  4526. int i915_debugfs_init(struct drm_minor *minor)
  4527. {
  4528. int ret, i;
  4529. ret = i915_forcewake_create(minor->debugfs_root, minor);
  4530. if (ret)
  4531. return ret;
  4532. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4533. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  4534. if (ret)
  4535. return ret;
  4536. }
  4537. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4538. ret = i915_debugfs_create(minor->debugfs_root, minor,
  4539. i915_debugfs_files[i].name,
  4540. i915_debugfs_files[i].fops);
  4541. if (ret)
  4542. return ret;
  4543. }
  4544. return drm_debugfs_create_files(i915_debugfs_list,
  4545. I915_DEBUGFS_ENTRIES,
  4546. minor->debugfs_root, minor);
  4547. }
  4548. void i915_debugfs_cleanup(struct drm_minor *minor)
  4549. {
  4550. int i;
  4551. drm_debugfs_remove_files(i915_debugfs_list,
  4552. I915_DEBUGFS_ENTRIES, minor);
  4553. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  4554. 1, minor);
  4555. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4556. struct drm_info_list *info_list =
  4557. (struct drm_info_list *)&i915_pipe_crc_data[i];
  4558. drm_debugfs_remove_files(info_list, 1, minor);
  4559. }
  4560. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4561. struct drm_info_list *info_list =
  4562. (struct drm_info_list *) i915_debugfs_files[i].fops;
  4563. drm_debugfs_remove_files(info_list, 1, minor);
  4564. }
  4565. }
  4566. struct dpcd_block {
  4567. /* DPCD dump start address. */
  4568. unsigned int offset;
  4569. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4570. unsigned int end;
  4571. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4572. size_t size;
  4573. /* Only valid for eDP. */
  4574. bool edp;
  4575. };
  4576. static const struct dpcd_block i915_dpcd_debug[] = {
  4577. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4578. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4579. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4580. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4581. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4582. { .offset = DP_SET_POWER },
  4583. { .offset = DP_EDP_DPCD_REV },
  4584. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4585. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4586. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4587. };
  4588. static int i915_dpcd_show(struct seq_file *m, void *data)
  4589. {
  4590. struct drm_connector *connector = m->private;
  4591. struct intel_dp *intel_dp =
  4592. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4593. uint8_t buf[16];
  4594. ssize_t err;
  4595. int i;
  4596. if (connector->status != connector_status_connected)
  4597. return -ENODEV;
  4598. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4599. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4600. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4601. if (b->edp &&
  4602. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4603. continue;
  4604. /* low tech for now */
  4605. if (WARN_ON(size > sizeof(buf)))
  4606. continue;
  4607. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4608. if (err <= 0) {
  4609. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4610. size, b->offset, err);
  4611. continue;
  4612. }
  4613. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4614. }
  4615. return 0;
  4616. }
  4617. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4618. {
  4619. return single_open(file, i915_dpcd_show, inode->i_private);
  4620. }
  4621. static const struct file_operations i915_dpcd_fops = {
  4622. .owner = THIS_MODULE,
  4623. .open = i915_dpcd_open,
  4624. .read = seq_read,
  4625. .llseek = seq_lseek,
  4626. .release = single_release,
  4627. };
  4628. /**
  4629. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4630. * @connector: pointer to a registered drm_connector
  4631. *
  4632. * Cleanup will be done by drm_connector_unregister() through a call to
  4633. * drm_debugfs_connector_remove().
  4634. *
  4635. * Returns 0 on success, negative error codes on error.
  4636. */
  4637. int i915_debugfs_connector_add(struct drm_connector *connector)
  4638. {
  4639. struct dentry *root = connector->debugfs_entry;
  4640. /* The connector must have been registered beforehands. */
  4641. if (!root)
  4642. return -ENODEV;
  4643. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4644. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4645. debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
  4646. &i915_dpcd_fops);
  4647. return 0;
  4648. }