intel_ringbuffer.c 89 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. int __intel_ring_space(int head, int tail, int size)
  36. {
  37. int space = head - tail;
  38. if (space <= 0)
  39. space += size;
  40. return space - I915_RING_FREE_SPACE;
  41. }
  42. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  43. {
  44. if (ringbuf->last_retired_head != -1) {
  45. ringbuf->head = ringbuf->last_retired_head;
  46. ringbuf->last_retired_head = -1;
  47. }
  48. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  49. ringbuf->tail, ringbuf->size);
  50. }
  51. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  52. {
  53. intel_ring_update_space(ringbuf);
  54. return ringbuf->space;
  55. }
  56. bool intel_engine_stopped(struct intel_engine_cs *engine)
  57. {
  58. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  59. return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
  60. }
  61. static void __intel_ring_advance(struct intel_engine_cs *engine)
  62. {
  63. struct intel_ringbuffer *ringbuf = engine->buffer;
  64. ringbuf->tail &= ringbuf->size - 1;
  65. if (intel_engine_stopped(engine))
  66. return;
  67. engine->write_tail(engine, ringbuf->tail);
  68. }
  69. static int
  70. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  71. u32 invalidate_domains,
  72. u32 flush_domains)
  73. {
  74. struct intel_engine_cs *engine = req->engine;
  75. u32 cmd;
  76. int ret;
  77. cmd = MI_FLUSH;
  78. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  79. cmd |= MI_NO_WRITE_FLUSH;
  80. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  81. cmd |= MI_READ_FLUSH;
  82. ret = intel_ring_begin(req, 2);
  83. if (ret)
  84. return ret;
  85. intel_ring_emit(engine, cmd);
  86. intel_ring_emit(engine, MI_NOOP);
  87. intel_ring_advance(engine);
  88. return 0;
  89. }
  90. static int
  91. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  92. u32 invalidate_domains,
  93. u32 flush_domains)
  94. {
  95. struct intel_engine_cs *engine = req->engine;
  96. struct drm_device *dev = engine->dev;
  97. u32 cmd;
  98. int ret;
  99. /*
  100. * read/write caches:
  101. *
  102. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  103. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  104. * also flushed at 2d versus 3d pipeline switches.
  105. *
  106. * read-only caches:
  107. *
  108. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  109. * MI_READ_FLUSH is set, and is always flushed on 965.
  110. *
  111. * I915_GEM_DOMAIN_COMMAND may not exist?
  112. *
  113. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  114. * invalidated when MI_EXE_FLUSH is set.
  115. *
  116. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  117. * invalidated with every MI_FLUSH.
  118. *
  119. * TLBs:
  120. *
  121. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  122. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  123. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  124. * are flushed at any MI_FLUSH.
  125. */
  126. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  127. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  128. cmd &= ~MI_NO_WRITE_FLUSH;
  129. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  130. cmd |= MI_EXE_FLUSH;
  131. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  132. (IS_G4X(dev) || IS_GEN5(dev)))
  133. cmd |= MI_INVALIDATE_ISP;
  134. ret = intel_ring_begin(req, 2);
  135. if (ret)
  136. return ret;
  137. intel_ring_emit(engine, cmd);
  138. intel_ring_emit(engine, MI_NOOP);
  139. intel_ring_advance(engine);
  140. return 0;
  141. }
  142. /**
  143. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  144. * implementing two workarounds on gen6. From section 1.4.7.1
  145. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  146. *
  147. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  148. * produced by non-pipelined state commands), software needs to first
  149. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  150. * 0.
  151. *
  152. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  153. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  154. *
  155. * And the workaround for these two requires this workaround first:
  156. *
  157. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  158. * BEFORE the pipe-control with a post-sync op and no write-cache
  159. * flushes.
  160. *
  161. * And this last workaround is tricky because of the requirements on
  162. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  163. * volume 2 part 1:
  164. *
  165. * "1 of the following must also be set:
  166. * - Render Target Cache Flush Enable ([12] of DW1)
  167. * - Depth Cache Flush Enable ([0] of DW1)
  168. * - Stall at Pixel Scoreboard ([1] of DW1)
  169. * - Depth Stall ([13] of DW1)
  170. * - Post-Sync Operation ([13] of DW1)
  171. * - Notify Enable ([8] of DW1)"
  172. *
  173. * The cache flushes require the workaround flush that triggered this
  174. * one, so we can't use it. Depth stall would trigger the same.
  175. * Post-sync nonzero is what triggered this second workaround, so we
  176. * can't use that one either. Notify enable is IRQs, which aren't
  177. * really our business. That leaves only stall at scoreboard.
  178. */
  179. static int
  180. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  181. {
  182. struct intel_engine_cs *engine = req->engine;
  183. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(req, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(engine, 0); /* low dword */
  193. intel_ring_emit(engine, 0); /* high dword */
  194. intel_ring_emit(engine, MI_NOOP);
  195. intel_ring_advance(engine);
  196. ret = intel_ring_begin(req, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(engine, 0);
  203. intel_ring_emit(engine, 0);
  204. intel_ring_emit(engine, MI_NOOP);
  205. intel_ring_advance(engine);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. struct intel_engine_cs *engine = req->engine;
  213. u32 flags = 0;
  214. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  215. int ret;
  216. /* Force SNB workarounds for PIPE_CONTROL flushes */
  217. ret = intel_emit_post_sync_nonzero_flush(req);
  218. if (ret)
  219. return ret;
  220. /* Just flush everything. Experiments have shown that reducing the
  221. * number of bits based on the write domains has little performance
  222. * impact.
  223. */
  224. if (flush_domains) {
  225. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  226. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  227. /*
  228. * Ensure that any following seqno writes only happen
  229. * when the render cache is indeed flushed.
  230. */
  231. flags |= PIPE_CONTROL_CS_STALL;
  232. }
  233. if (invalidate_domains) {
  234. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  235. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  239. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  240. /*
  241. * TLB invalidate requires a post-sync write.
  242. */
  243. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  244. }
  245. ret = intel_ring_begin(req, 4);
  246. if (ret)
  247. return ret;
  248. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  249. intel_ring_emit(engine, flags);
  250. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  251. intel_ring_emit(engine, 0);
  252. intel_ring_advance(engine);
  253. return 0;
  254. }
  255. static int
  256. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  257. {
  258. struct intel_engine_cs *engine = req->engine;
  259. int ret;
  260. ret = intel_ring_begin(req, 4);
  261. if (ret)
  262. return ret;
  263. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  264. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  265. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  266. intel_ring_emit(engine, 0);
  267. intel_ring_emit(engine, 0);
  268. intel_ring_advance(engine);
  269. return 0;
  270. }
  271. static int
  272. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  273. u32 invalidate_domains, u32 flush_domains)
  274. {
  275. struct intel_engine_cs *engine = req->engine;
  276. u32 flags = 0;
  277. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  278. int ret;
  279. /*
  280. * Ensure that any following seqno writes only happen when the render
  281. * cache is indeed flushed.
  282. *
  283. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  284. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  285. * don't try to be clever and just set it unconditionally.
  286. */
  287. flags |= PIPE_CONTROL_CS_STALL;
  288. /* Just flush everything. Experiments have shown that reducing the
  289. * number of bits based on the write domains has little performance
  290. * impact.
  291. */
  292. if (flush_domains) {
  293. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  294. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  295. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  296. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  297. }
  298. if (invalidate_domains) {
  299. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  300. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  304. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  305. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  306. /*
  307. * TLB invalidate requires a post-sync write.
  308. */
  309. flags |= PIPE_CONTROL_QW_WRITE;
  310. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  311. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  312. /* Workaround: we must issue a pipe_control with CS-stall bit
  313. * set before a pipe_control command that has the state cache
  314. * invalidate bit set. */
  315. gen7_render_ring_cs_stall_wa(req);
  316. }
  317. ret = intel_ring_begin(req, 4);
  318. if (ret)
  319. return ret;
  320. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  321. intel_ring_emit(engine, flags);
  322. intel_ring_emit(engine, scratch_addr);
  323. intel_ring_emit(engine, 0);
  324. intel_ring_advance(engine);
  325. return 0;
  326. }
  327. static int
  328. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  329. u32 flags, u32 scratch_addr)
  330. {
  331. struct intel_engine_cs *engine = req->engine;
  332. int ret;
  333. ret = intel_ring_begin(req, 6);
  334. if (ret)
  335. return ret;
  336. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  337. intel_ring_emit(engine, flags);
  338. intel_ring_emit(engine, scratch_addr);
  339. intel_ring_emit(engine, 0);
  340. intel_ring_emit(engine, 0);
  341. intel_ring_emit(engine, 0);
  342. intel_ring_advance(engine);
  343. return 0;
  344. }
  345. static int
  346. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  347. u32 invalidate_domains, u32 flush_domains)
  348. {
  349. u32 flags = 0;
  350. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  351. int ret;
  352. flags |= PIPE_CONTROL_CS_STALL;
  353. if (flush_domains) {
  354. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  355. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  356. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  357. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  358. }
  359. if (invalidate_domains) {
  360. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  361. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  365. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  366. flags |= PIPE_CONTROL_QW_WRITE;
  367. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  368. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  369. ret = gen8_emit_pipe_control(req,
  370. PIPE_CONTROL_CS_STALL |
  371. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  372. 0);
  373. if (ret)
  374. return ret;
  375. }
  376. return gen8_emit_pipe_control(req, flags, scratch_addr);
  377. }
  378. static void ring_write_tail(struct intel_engine_cs *engine,
  379. u32 value)
  380. {
  381. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  382. I915_WRITE_TAIL(engine, value);
  383. }
  384. u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
  385. {
  386. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  387. u64 acthd;
  388. if (INTEL_INFO(engine->dev)->gen >= 8)
  389. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  390. RING_ACTHD_UDW(engine->mmio_base));
  391. else if (INTEL_INFO(engine->dev)->gen >= 4)
  392. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  393. else
  394. acthd = I915_READ(ACTHD);
  395. return acthd;
  396. }
  397. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  398. {
  399. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  400. u32 addr;
  401. addr = dev_priv->status_page_dmah->busaddr;
  402. if (INTEL_INFO(engine->dev)->gen >= 4)
  403. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  404. I915_WRITE(HWS_PGA, addr);
  405. }
  406. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  407. {
  408. struct drm_device *dev = engine->dev;
  409. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  410. i915_reg_t mmio;
  411. /* The ring status page addresses are no longer next to the rest of
  412. * the ring registers as of gen7.
  413. */
  414. if (IS_GEN7(dev)) {
  415. switch (engine->id) {
  416. case RCS:
  417. mmio = RENDER_HWS_PGA_GEN7;
  418. break;
  419. case BCS:
  420. mmio = BLT_HWS_PGA_GEN7;
  421. break;
  422. /*
  423. * VCS2 actually doesn't exist on Gen7. Only shut up
  424. * gcc switch check warning
  425. */
  426. case VCS2:
  427. case VCS:
  428. mmio = BSD_HWS_PGA_GEN7;
  429. break;
  430. case VECS:
  431. mmio = VEBOX_HWS_PGA_GEN7;
  432. break;
  433. }
  434. } else if (IS_GEN6(engine->dev)) {
  435. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  436. } else {
  437. /* XXX: gen8 returns to sanity */
  438. mmio = RING_HWS_PGA(engine->mmio_base);
  439. }
  440. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  441. POSTING_READ(mmio);
  442. /*
  443. * Flush the TLB for this page
  444. *
  445. * FIXME: These two bits have disappeared on gen8, so a question
  446. * arises: do we still need this and if so how should we go about
  447. * invalidating the TLB?
  448. */
  449. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  450. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  451. /* ring should be idle before issuing a sync flush*/
  452. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  453. I915_WRITE(reg,
  454. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  455. INSTPM_SYNC_FLUSH));
  456. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  457. 1000))
  458. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  459. engine->name);
  460. }
  461. }
  462. static bool stop_ring(struct intel_engine_cs *engine)
  463. {
  464. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  465. if (!IS_GEN2(engine->dev)) {
  466. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  467. if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
  468. DRM_ERROR("%s : timed out trying to stop ring\n",
  469. engine->name);
  470. /* Sometimes we observe that the idle flag is not
  471. * set even though the ring is empty. So double
  472. * check before giving up.
  473. */
  474. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  475. return false;
  476. }
  477. }
  478. I915_WRITE_CTL(engine, 0);
  479. I915_WRITE_HEAD(engine, 0);
  480. engine->write_tail(engine, 0);
  481. if (!IS_GEN2(engine->dev)) {
  482. (void)I915_READ_CTL(engine);
  483. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  484. }
  485. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  486. }
  487. void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
  488. {
  489. memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
  490. }
  491. static int init_ring_common(struct intel_engine_cs *engine)
  492. {
  493. struct drm_device *dev = engine->dev;
  494. struct drm_i915_private *dev_priv = dev->dev_private;
  495. struct intel_ringbuffer *ringbuf = engine->buffer;
  496. struct drm_i915_gem_object *obj = ringbuf->obj;
  497. int ret = 0;
  498. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  499. if (!stop_ring(engine)) {
  500. /* G45 ring initialization often fails to reset head to zero */
  501. DRM_DEBUG_KMS("%s head not reset to zero "
  502. "ctl %08x head %08x tail %08x start %08x\n",
  503. engine->name,
  504. I915_READ_CTL(engine),
  505. I915_READ_HEAD(engine),
  506. I915_READ_TAIL(engine),
  507. I915_READ_START(engine));
  508. if (!stop_ring(engine)) {
  509. DRM_ERROR("failed to set %s head to zero "
  510. "ctl %08x head %08x tail %08x start %08x\n",
  511. engine->name,
  512. I915_READ_CTL(engine),
  513. I915_READ_HEAD(engine),
  514. I915_READ_TAIL(engine),
  515. I915_READ_START(engine));
  516. ret = -EIO;
  517. goto out;
  518. }
  519. }
  520. if (I915_NEED_GFX_HWS(dev))
  521. intel_ring_setup_status_page(engine);
  522. else
  523. ring_setup_phys_status_page(engine);
  524. /* Enforce ordering by reading HEAD register back */
  525. I915_READ_HEAD(engine);
  526. /* Initialize the ring. This must happen _after_ we've cleared the ring
  527. * registers with the above sequence (the readback of the HEAD registers
  528. * also enforces ordering), otherwise the hw might lose the new ring
  529. * register values. */
  530. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  531. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  532. if (I915_READ_HEAD(engine))
  533. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  534. engine->name, I915_READ_HEAD(engine));
  535. I915_WRITE_HEAD(engine, 0);
  536. (void)I915_READ_HEAD(engine);
  537. I915_WRITE_CTL(engine,
  538. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  539. | RING_VALID);
  540. /* If the head is still not zero, the ring is dead */
  541. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  542. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  543. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  544. DRM_ERROR("%s initialization failed "
  545. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  546. engine->name,
  547. I915_READ_CTL(engine),
  548. I915_READ_CTL(engine) & RING_VALID,
  549. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  550. I915_READ_START(engine),
  551. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  552. ret = -EIO;
  553. goto out;
  554. }
  555. ringbuf->last_retired_head = -1;
  556. ringbuf->head = I915_READ_HEAD(engine);
  557. ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  558. intel_ring_update_space(ringbuf);
  559. intel_engine_init_hangcheck(engine);
  560. out:
  561. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  562. return ret;
  563. }
  564. void
  565. intel_fini_pipe_control(struct intel_engine_cs *engine)
  566. {
  567. struct drm_device *dev = engine->dev;
  568. if (engine->scratch.obj == NULL)
  569. return;
  570. if (INTEL_INFO(dev)->gen >= 5) {
  571. kunmap(sg_page(engine->scratch.obj->pages->sgl));
  572. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  573. }
  574. drm_gem_object_unreference(&engine->scratch.obj->base);
  575. engine->scratch.obj = NULL;
  576. }
  577. int
  578. intel_init_pipe_control(struct intel_engine_cs *engine)
  579. {
  580. int ret;
  581. WARN_ON(engine->scratch.obj);
  582. engine->scratch.obj = i915_gem_alloc_object(engine->dev, 4096);
  583. if (engine->scratch.obj == NULL) {
  584. DRM_ERROR("Failed to allocate seqno page\n");
  585. ret = -ENOMEM;
  586. goto err;
  587. }
  588. ret = i915_gem_object_set_cache_level(engine->scratch.obj,
  589. I915_CACHE_LLC);
  590. if (ret)
  591. goto err_unref;
  592. ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
  593. if (ret)
  594. goto err_unref;
  595. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
  596. engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
  597. if (engine->scratch.cpu_page == NULL) {
  598. ret = -ENOMEM;
  599. goto err_unpin;
  600. }
  601. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  602. engine->name, engine->scratch.gtt_offset);
  603. return 0;
  604. err_unpin:
  605. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  606. err_unref:
  607. drm_gem_object_unreference(&engine->scratch.obj->base);
  608. err:
  609. return ret;
  610. }
  611. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  612. {
  613. int ret, i;
  614. struct intel_engine_cs *engine = req->engine;
  615. struct drm_device *dev = engine->dev;
  616. struct drm_i915_private *dev_priv = dev->dev_private;
  617. struct i915_workarounds *w = &dev_priv->workarounds;
  618. if (w->count == 0)
  619. return 0;
  620. engine->gpu_caches_dirty = true;
  621. ret = intel_ring_flush_all_caches(req);
  622. if (ret)
  623. return ret;
  624. ret = intel_ring_begin(req, (w->count * 2 + 2));
  625. if (ret)
  626. return ret;
  627. intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
  628. for (i = 0; i < w->count; i++) {
  629. intel_ring_emit_reg(engine, w->reg[i].addr);
  630. intel_ring_emit(engine, w->reg[i].value);
  631. }
  632. intel_ring_emit(engine, MI_NOOP);
  633. intel_ring_advance(engine);
  634. engine->gpu_caches_dirty = true;
  635. ret = intel_ring_flush_all_caches(req);
  636. if (ret)
  637. return ret;
  638. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  639. return 0;
  640. }
  641. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  642. {
  643. int ret;
  644. ret = intel_ring_workarounds_emit(req);
  645. if (ret != 0)
  646. return ret;
  647. ret = i915_gem_render_state_init(req);
  648. if (ret)
  649. return ret;
  650. return 0;
  651. }
  652. static int wa_add(struct drm_i915_private *dev_priv,
  653. i915_reg_t addr,
  654. const u32 mask, const u32 val)
  655. {
  656. const u32 idx = dev_priv->workarounds.count;
  657. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  658. return -ENOSPC;
  659. dev_priv->workarounds.reg[idx].addr = addr;
  660. dev_priv->workarounds.reg[idx].value = val;
  661. dev_priv->workarounds.reg[idx].mask = mask;
  662. dev_priv->workarounds.count++;
  663. return 0;
  664. }
  665. #define WA_REG(addr, mask, val) do { \
  666. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  667. if (r) \
  668. return r; \
  669. } while (0)
  670. #define WA_SET_BIT_MASKED(addr, mask) \
  671. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  672. #define WA_CLR_BIT_MASKED(addr, mask) \
  673. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  674. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  675. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  676. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  677. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  678. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  679. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  680. i915_reg_t reg)
  681. {
  682. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  683. struct i915_workarounds *wa = &dev_priv->workarounds;
  684. const uint32_t index = wa->hw_whitelist_count[engine->id];
  685. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  686. return -EINVAL;
  687. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  688. i915_mmio_reg_offset(reg));
  689. wa->hw_whitelist_count[engine->id]++;
  690. return 0;
  691. }
  692. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  693. {
  694. struct drm_device *dev = engine->dev;
  695. struct drm_i915_private *dev_priv = dev->dev_private;
  696. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  697. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  698. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  699. /* WaDisablePartialInstShootdown:bdw,chv */
  700. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  701. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  702. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  703. * workaround for for a possible hang in the unlikely event a TLB
  704. * invalidation occurs during a PSD flush.
  705. */
  706. /* WaForceEnableNonCoherent:bdw,chv */
  707. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  708. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  709. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  710. HDC_FORCE_NON_COHERENT);
  711. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  712. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  713. * polygons in the same 8x4 pixel/sample area to be processed without
  714. * stalling waiting for the earlier ones to write to Hierarchical Z
  715. * buffer."
  716. *
  717. * This optimization is off by default for BDW and CHV; turn it on.
  718. */
  719. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  720. /* Wa4x4STCOptimizationDisable:bdw,chv */
  721. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  722. /*
  723. * BSpec recommends 8x4 when MSAA is used,
  724. * however in practice 16x4 seems fastest.
  725. *
  726. * Note that PS/WM thread counts depend on the WIZ hashing
  727. * disable bit, which we don't touch here, but it's good
  728. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  729. */
  730. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  731. GEN6_WIZ_HASHING_MASK,
  732. GEN6_WIZ_HASHING_16x4);
  733. return 0;
  734. }
  735. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  736. {
  737. int ret;
  738. struct drm_device *dev = engine->dev;
  739. struct drm_i915_private *dev_priv = dev->dev_private;
  740. ret = gen8_init_workarounds(engine);
  741. if (ret)
  742. return ret;
  743. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  744. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  745. /* WaDisableDopClockGating:bdw */
  746. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  747. DOP_CLOCK_GATING_DISABLE);
  748. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  749. GEN8_SAMPLER_POWER_BYPASS_DIS);
  750. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  751. /* WaForceContextSaveRestoreNonCoherent:bdw */
  752. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  753. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  754. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  755. return 0;
  756. }
  757. static int chv_init_workarounds(struct intel_engine_cs *engine)
  758. {
  759. int ret;
  760. struct drm_device *dev = engine->dev;
  761. struct drm_i915_private *dev_priv = dev->dev_private;
  762. ret = gen8_init_workarounds(engine);
  763. if (ret)
  764. return ret;
  765. /* WaDisableThreadStallDopClockGating:chv */
  766. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  767. /* Improve HiZ throughput on CHV. */
  768. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  769. return 0;
  770. }
  771. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  772. {
  773. struct drm_device *dev = engine->dev;
  774. struct drm_i915_private *dev_priv = dev->dev_private;
  775. uint32_t tmp;
  776. int ret;
  777. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  778. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  779. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  780. /* WaDisableKillLogic:bxt,skl */
  781. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  782. ECOCHK_DIS_TLB);
  783. /* WaClearFlowControlGpgpuContextSave:skl,bxt */
  784. /* WaDisablePartialInstShootdown:skl,bxt */
  785. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  786. FLOW_CONTROL_ENABLE |
  787. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  788. /* Syncing dependencies between camera and graphics:skl,bxt */
  789. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  790. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  791. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  792. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  793. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  794. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  795. GEN9_DG_MIRROR_FIX_ENABLE);
  796. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  797. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  798. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  799. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  800. GEN9_RHWO_OPTIMIZATION_DISABLE);
  801. /*
  802. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  803. * but we do that in per ctx batchbuffer as there is an issue
  804. * with this register not getting restored on ctx restore
  805. */
  806. }
  807. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  808. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt */
  809. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  810. GEN9_ENABLE_YV12_BUGFIX |
  811. GEN9_ENABLE_GPGPU_PREEMPTION);
  812. /* Wa4x4STCOptimizationDisable:skl,bxt */
  813. /* WaDisablePartialResolveInVc:skl,bxt */
  814. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  815. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  816. /* WaCcsTlbPrefetchDisable:skl,bxt */
  817. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  818. GEN9_CCS_TLB_PREFETCH_ENABLE);
  819. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  820. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
  821. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  822. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  823. PIXEL_MASK_CAMMING_DISABLE);
  824. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  825. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  826. if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
  827. IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  828. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  829. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  830. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  831. if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
  832. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  833. GEN8_SAMPLER_POWER_BYPASS_DIS);
  834. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  835. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  836. /* WaOCLCoherentLineFlush:skl,bxt */
  837. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  838. GEN8_LQSC_FLUSH_COHERENT_LINES));
  839. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
  840. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  841. if (ret)
  842. return ret;
  843. /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
  844. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  845. if (ret)
  846. return ret;
  847. return 0;
  848. }
  849. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  850. {
  851. struct drm_device *dev = engine->dev;
  852. struct drm_i915_private *dev_priv = dev->dev_private;
  853. u8 vals[3] = { 0, 0, 0 };
  854. unsigned int i;
  855. for (i = 0; i < 3; i++) {
  856. u8 ss;
  857. /*
  858. * Only consider slices where one, and only one, subslice has 7
  859. * EUs
  860. */
  861. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  862. continue;
  863. /*
  864. * subslice_7eu[i] != 0 (because of the check above) and
  865. * ss_max == 4 (maximum number of subslices possible per slice)
  866. *
  867. * -> 0 <= ss <= 3;
  868. */
  869. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  870. vals[i] = 3 - ss;
  871. }
  872. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  873. return 0;
  874. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  875. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  876. GEN9_IZ_HASHING_MASK(2) |
  877. GEN9_IZ_HASHING_MASK(1) |
  878. GEN9_IZ_HASHING_MASK(0),
  879. GEN9_IZ_HASHING(2, vals[2]) |
  880. GEN9_IZ_HASHING(1, vals[1]) |
  881. GEN9_IZ_HASHING(0, vals[0]));
  882. return 0;
  883. }
  884. static int skl_init_workarounds(struct intel_engine_cs *engine)
  885. {
  886. int ret;
  887. struct drm_device *dev = engine->dev;
  888. struct drm_i915_private *dev_priv = dev->dev_private;
  889. ret = gen9_init_workarounds(engine);
  890. if (ret)
  891. return ret;
  892. /*
  893. * Actual WA is to disable percontext preemption granularity control
  894. * until D0 which is the default case so this is equivalent to
  895. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  896. */
  897. if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
  898. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  899. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  900. }
  901. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
  902. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  903. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  904. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  905. }
  906. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  907. * involving this register should also be added to WA batch as required.
  908. */
  909. if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
  910. /* WaDisableLSQCROPERFforOCL:skl */
  911. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  912. GEN8_LQSC_RO_PERF_DIS);
  913. /* WaEnableGapsTsvCreditFix:skl */
  914. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
  915. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  916. GEN9_GAPS_TSV_CREDIT_DISABLE));
  917. }
  918. /* WaDisablePowerCompilerClockGating:skl */
  919. if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
  920. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  921. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  922. /* This is tied to WaForceContextSaveRestoreNonCoherent */
  923. if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
  924. /*
  925. *Use Force Non-Coherent whenever executing a 3D context. This
  926. * is a workaround for a possible hang in the unlikely event
  927. * a TLB invalidation occurs during a PSD flush.
  928. */
  929. /* WaForceEnableNonCoherent:skl */
  930. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  931. HDC_FORCE_NON_COHERENT);
  932. /* WaDisableHDCInvalidation:skl */
  933. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  934. BDW_DISABLE_HDC_INVALIDATION);
  935. }
  936. /* WaBarrierPerformanceFixDisable:skl */
  937. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
  938. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  939. HDC_FENCE_DEST_SLM_DISABLE |
  940. HDC_BARRIER_PERFORMANCE_DISABLE);
  941. /* WaDisableSbeCacheDispatchPortSharing:skl */
  942. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
  943. WA_SET_BIT_MASKED(
  944. GEN7_HALF_SLICE_CHICKEN1,
  945. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  946. /* WaDisableLSQCROPERFforOCL:skl */
  947. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  948. if (ret)
  949. return ret;
  950. return skl_tune_iz_hashing(engine);
  951. }
  952. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  953. {
  954. int ret;
  955. struct drm_device *dev = engine->dev;
  956. struct drm_i915_private *dev_priv = dev->dev_private;
  957. ret = gen9_init_workarounds(engine);
  958. if (ret)
  959. return ret;
  960. /* WaStoreMultiplePTEenable:bxt */
  961. /* This is a requirement according to Hardware specification */
  962. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  963. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  964. /* WaSetClckGatingDisableMedia:bxt */
  965. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  966. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  967. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  968. }
  969. /* WaDisableThreadStallDopClockGating:bxt */
  970. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  971. STALL_DOP_GATING_DISABLE);
  972. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  973. if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
  974. WA_SET_BIT_MASKED(
  975. GEN7_HALF_SLICE_CHICKEN1,
  976. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  977. }
  978. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  979. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  980. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  981. /* WaDisableLSQCROPERFforOCL:bxt */
  982. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  983. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  984. if (ret)
  985. return ret;
  986. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  987. if (ret)
  988. return ret;
  989. }
  990. return 0;
  991. }
  992. int init_workarounds_ring(struct intel_engine_cs *engine)
  993. {
  994. struct drm_device *dev = engine->dev;
  995. struct drm_i915_private *dev_priv = dev->dev_private;
  996. WARN_ON(engine->id != RCS);
  997. dev_priv->workarounds.count = 0;
  998. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  999. if (IS_BROADWELL(dev))
  1000. return bdw_init_workarounds(engine);
  1001. if (IS_CHERRYVIEW(dev))
  1002. return chv_init_workarounds(engine);
  1003. if (IS_SKYLAKE(dev))
  1004. return skl_init_workarounds(engine);
  1005. if (IS_BROXTON(dev))
  1006. return bxt_init_workarounds(engine);
  1007. return 0;
  1008. }
  1009. static int init_render_ring(struct intel_engine_cs *engine)
  1010. {
  1011. struct drm_device *dev = engine->dev;
  1012. struct drm_i915_private *dev_priv = dev->dev_private;
  1013. int ret = init_ring_common(engine);
  1014. if (ret)
  1015. return ret;
  1016. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1017. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  1018. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1019. /* We need to disable the AsyncFlip performance optimisations in order
  1020. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1021. * programmed to '1' on all products.
  1022. *
  1023. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1024. */
  1025. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  1026. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1027. /* Required for the hardware to program scanline values for waiting */
  1028. /* WaEnableFlushTlbInvalidationMode:snb */
  1029. if (INTEL_INFO(dev)->gen == 6)
  1030. I915_WRITE(GFX_MODE,
  1031. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1032. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1033. if (IS_GEN7(dev))
  1034. I915_WRITE(GFX_MODE_GEN7,
  1035. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1036. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1037. if (IS_GEN6(dev)) {
  1038. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1039. * "If this bit is set, STCunit will have LRA as replacement
  1040. * policy. [...] This bit must be reset. LRA replacement
  1041. * policy is not supported."
  1042. */
  1043. I915_WRITE(CACHE_MODE_0,
  1044. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1045. }
  1046. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  1047. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1048. if (HAS_L3_DPF(dev))
  1049. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
  1050. return init_workarounds_ring(engine);
  1051. }
  1052. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1053. {
  1054. struct drm_device *dev = engine->dev;
  1055. struct drm_i915_private *dev_priv = dev->dev_private;
  1056. if (dev_priv->semaphore_obj) {
  1057. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1058. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1059. dev_priv->semaphore_obj = NULL;
  1060. }
  1061. intel_fini_pipe_control(engine);
  1062. }
  1063. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1064. unsigned int num_dwords)
  1065. {
  1066. #define MBOX_UPDATE_DWORDS 8
  1067. struct intel_engine_cs *signaller = signaller_req->engine;
  1068. struct drm_device *dev = signaller->dev;
  1069. struct drm_i915_private *dev_priv = dev->dev_private;
  1070. struct intel_engine_cs *waiter;
  1071. enum intel_engine_id id;
  1072. int ret, num_rings;
  1073. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1074. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1075. #undef MBOX_UPDATE_DWORDS
  1076. ret = intel_ring_begin(signaller_req, num_dwords);
  1077. if (ret)
  1078. return ret;
  1079. for_each_engine_id(waiter, dev_priv, id) {
  1080. u32 seqno;
  1081. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1082. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1083. continue;
  1084. seqno = i915_gem_request_get_seqno(signaller_req);
  1085. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1086. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1087. PIPE_CONTROL_QW_WRITE |
  1088. PIPE_CONTROL_FLUSH_ENABLE);
  1089. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1090. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1091. intel_ring_emit(signaller, seqno);
  1092. intel_ring_emit(signaller, 0);
  1093. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1094. MI_SEMAPHORE_TARGET(waiter->id));
  1095. intel_ring_emit(signaller, 0);
  1096. }
  1097. return 0;
  1098. }
  1099. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1100. unsigned int num_dwords)
  1101. {
  1102. #define MBOX_UPDATE_DWORDS 6
  1103. struct intel_engine_cs *signaller = signaller_req->engine;
  1104. struct drm_device *dev = signaller->dev;
  1105. struct drm_i915_private *dev_priv = dev->dev_private;
  1106. struct intel_engine_cs *waiter;
  1107. enum intel_engine_id id;
  1108. int ret, num_rings;
  1109. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1110. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1111. #undef MBOX_UPDATE_DWORDS
  1112. ret = intel_ring_begin(signaller_req, num_dwords);
  1113. if (ret)
  1114. return ret;
  1115. for_each_engine_id(waiter, dev_priv, id) {
  1116. u32 seqno;
  1117. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1118. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1119. continue;
  1120. seqno = i915_gem_request_get_seqno(signaller_req);
  1121. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1122. MI_FLUSH_DW_OP_STOREDW);
  1123. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1124. MI_FLUSH_DW_USE_GTT);
  1125. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1126. intel_ring_emit(signaller, seqno);
  1127. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1128. MI_SEMAPHORE_TARGET(waiter->id));
  1129. intel_ring_emit(signaller, 0);
  1130. }
  1131. return 0;
  1132. }
  1133. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1134. unsigned int num_dwords)
  1135. {
  1136. struct intel_engine_cs *signaller = signaller_req->engine;
  1137. struct drm_device *dev = signaller->dev;
  1138. struct drm_i915_private *dev_priv = dev->dev_private;
  1139. struct intel_engine_cs *useless;
  1140. enum intel_engine_id id;
  1141. int ret, num_rings;
  1142. #define MBOX_UPDATE_DWORDS 3
  1143. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1144. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1145. #undef MBOX_UPDATE_DWORDS
  1146. ret = intel_ring_begin(signaller_req, num_dwords);
  1147. if (ret)
  1148. return ret;
  1149. for_each_engine_id(useless, dev_priv, id) {
  1150. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
  1151. if (i915_mmio_reg_valid(mbox_reg)) {
  1152. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1153. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1154. intel_ring_emit_reg(signaller, mbox_reg);
  1155. intel_ring_emit(signaller, seqno);
  1156. }
  1157. }
  1158. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1159. if (num_rings % 2 == 0)
  1160. intel_ring_emit(signaller, MI_NOOP);
  1161. return 0;
  1162. }
  1163. /**
  1164. * gen6_add_request - Update the semaphore mailbox registers
  1165. *
  1166. * @request - request to write to the ring
  1167. *
  1168. * Update the mailbox registers in the *other* rings with the current seqno.
  1169. * This acts like a signal in the canonical semaphore.
  1170. */
  1171. static int
  1172. gen6_add_request(struct drm_i915_gem_request *req)
  1173. {
  1174. struct intel_engine_cs *engine = req->engine;
  1175. int ret;
  1176. if (engine->semaphore.signal)
  1177. ret = engine->semaphore.signal(req, 4);
  1178. else
  1179. ret = intel_ring_begin(req, 4);
  1180. if (ret)
  1181. return ret;
  1182. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1183. intel_ring_emit(engine,
  1184. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1185. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1186. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1187. __intel_ring_advance(engine);
  1188. return 0;
  1189. }
  1190. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1191. u32 seqno)
  1192. {
  1193. struct drm_i915_private *dev_priv = dev->dev_private;
  1194. return dev_priv->last_seqno < seqno;
  1195. }
  1196. /**
  1197. * intel_ring_sync - sync the waiter to the signaller on seqno
  1198. *
  1199. * @waiter - ring that is waiting
  1200. * @signaller - ring which has, or will signal
  1201. * @seqno - seqno which the waiter will block on
  1202. */
  1203. static int
  1204. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1205. struct intel_engine_cs *signaller,
  1206. u32 seqno)
  1207. {
  1208. struct intel_engine_cs *waiter = waiter_req->engine;
  1209. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1210. int ret;
  1211. ret = intel_ring_begin(waiter_req, 4);
  1212. if (ret)
  1213. return ret;
  1214. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1215. MI_SEMAPHORE_GLOBAL_GTT |
  1216. MI_SEMAPHORE_POLL |
  1217. MI_SEMAPHORE_SAD_GTE_SDD);
  1218. intel_ring_emit(waiter, seqno);
  1219. intel_ring_emit(waiter,
  1220. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1221. intel_ring_emit(waiter,
  1222. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1223. intel_ring_advance(waiter);
  1224. return 0;
  1225. }
  1226. static int
  1227. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1228. struct intel_engine_cs *signaller,
  1229. u32 seqno)
  1230. {
  1231. struct intel_engine_cs *waiter = waiter_req->engine;
  1232. u32 dw1 = MI_SEMAPHORE_MBOX |
  1233. MI_SEMAPHORE_COMPARE |
  1234. MI_SEMAPHORE_REGISTER;
  1235. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1236. int ret;
  1237. /* Throughout all of the GEM code, seqno passed implies our current
  1238. * seqno is >= the last seqno executed. However for hardware the
  1239. * comparison is strictly greater than.
  1240. */
  1241. seqno -= 1;
  1242. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1243. ret = intel_ring_begin(waiter_req, 4);
  1244. if (ret)
  1245. return ret;
  1246. /* If seqno wrap happened, omit the wait with no-ops */
  1247. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1248. intel_ring_emit(waiter, dw1 | wait_mbox);
  1249. intel_ring_emit(waiter, seqno);
  1250. intel_ring_emit(waiter, 0);
  1251. intel_ring_emit(waiter, MI_NOOP);
  1252. } else {
  1253. intel_ring_emit(waiter, MI_NOOP);
  1254. intel_ring_emit(waiter, MI_NOOP);
  1255. intel_ring_emit(waiter, MI_NOOP);
  1256. intel_ring_emit(waiter, MI_NOOP);
  1257. }
  1258. intel_ring_advance(waiter);
  1259. return 0;
  1260. }
  1261. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1262. do { \
  1263. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1264. PIPE_CONTROL_DEPTH_STALL); \
  1265. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1266. intel_ring_emit(ring__, 0); \
  1267. intel_ring_emit(ring__, 0); \
  1268. } while (0)
  1269. static int
  1270. pc_render_add_request(struct drm_i915_gem_request *req)
  1271. {
  1272. struct intel_engine_cs *engine = req->engine;
  1273. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1274. int ret;
  1275. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1276. * incoherent with writes to memory, i.e. completely fubar,
  1277. * so we need to use PIPE_NOTIFY instead.
  1278. *
  1279. * However, we also need to workaround the qword write
  1280. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1281. * memory before requesting an interrupt.
  1282. */
  1283. ret = intel_ring_begin(req, 32);
  1284. if (ret)
  1285. return ret;
  1286. intel_ring_emit(engine,
  1287. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1288. PIPE_CONTROL_WRITE_FLUSH |
  1289. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1290. intel_ring_emit(engine,
  1291. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1292. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1293. intel_ring_emit(engine, 0);
  1294. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1295. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1296. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1297. scratch_addr += 2 * CACHELINE_BYTES;
  1298. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1299. scratch_addr += 2 * CACHELINE_BYTES;
  1300. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1301. scratch_addr += 2 * CACHELINE_BYTES;
  1302. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1303. scratch_addr += 2 * CACHELINE_BYTES;
  1304. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1305. intel_ring_emit(engine,
  1306. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1307. PIPE_CONTROL_WRITE_FLUSH |
  1308. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1309. PIPE_CONTROL_NOTIFY);
  1310. intel_ring_emit(engine,
  1311. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1312. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1313. intel_ring_emit(engine, 0);
  1314. __intel_ring_advance(engine);
  1315. return 0;
  1316. }
  1317. static void
  1318. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1319. {
  1320. /* Workaround to force correct ordering between irq and seqno writes on
  1321. * ivb (and maybe also on snb) by reading from a CS register (like
  1322. * ACTHD) before reading the status page.
  1323. *
  1324. * Note that this effectively stalls the read by the time it takes to
  1325. * do a memory transaction, which more or less ensures that the write
  1326. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1327. * Alternatively we could delay the interrupt from the CS ring to give
  1328. * the write time to land, but that would incur a delay after every
  1329. * batch i.e. much more frequent than a delay when waiting for the
  1330. * interrupt (with the same net latency).
  1331. */
  1332. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  1333. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1334. }
  1335. static u32
  1336. ring_get_seqno(struct intel_engine_cs *engine)
  1337. {
  1338. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  1339. }
  1340. static void
  1341. ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1342. {
  1343. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  1344. }
  1345. static u32
  1346. pc_render_get_seqno(struct intel_engine_cs *engine)
  1347. {
  1348. return engine->scratch.cpu_page[0];
  1349. }
  1350. static void
  1351. pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1352. {
  1353. engine->scratch.cpu_page[0] = seqno;
  1354. }
  1355. static bool
  1356. gen5_ring_get_irq(struct intel_engine_cs *engine)
  1357. {
  1358. struct drm_device *dev = engine->dev;
  1359. struct drm_i915_private *dev_priv = dev->dev_private;
  1360. unsigned long flags;
  1361. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1362. return false;
  1363. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1364. if (engine->irq_refcount++ == 0)
  1365. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1366. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1367. return true;
  1368. }
  1369. static void
  1370. gen5_ring_put_irq(struct intel_engine_cs *engine)
  1371. {
  1372. struct drm_device *dev = engine->dev;
  1373. struct drm_i915_private *dev_priv = dev->dev_private;
  1374. unsigned long flags;
  1375. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1376. if (--engine->irq_refcount == 0)
  1377. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1378. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1379. }
  1380. static bool
  1381. i9xx_ring_get_irq(struct intel_engine_cs *engine)
  1382. {
  1383. struct drm_device *dev = engine->dev;
  1384. struct drm_i915_private *dev_priv = dev->dev_private;
  1385. unsigned long flags;
  1386. if (!intel_irqs_enabled(dev_priv))
  1387. return false;
  1388. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1389. if (engine->irq_refcount++ == 0) {
  1390. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1391. I915_WRITE(IMR, dev_priv->irq_mask);
  1392. POSTING_READ(IMR);
  1393. }
  1394. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1395. return true;
  1396. }
  1397. static void
  1398. i9xx_ring_put_irq(struct intel_engine_cs *engine)
  1399. {
  1400. struct drm_device *dev = engine->dev;
  1401. struct drm_i915_private *dev_priv = dev->dev_private;
  1402. unsigned long flags;
  1403. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1404. if (--engine->irq_refcount == 0) {
  1405. dev_priv->irq_mask |= engine->irq_enable_mask;
  1406. I915_WRITE(IMR, dev_priv->irq_mask);
  1407. POSTING_READ(IMR);
  1408. }
  1409. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1410. }
  1411. static bool
  1412. i8xx_ring_get_irq(struct intel_engine_cs *engine)
  1413. {
  1414. struct drm_device *dev = engine->dev;
  1415. struct drm_i915_private *dev_priv = dev->dev_private;
  1416. unsigned long flags;
  1417. if (!intel_irqs_enabled(dev_priv))
  1418. return false;
  1419. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1420. if (engine->irq_refcount++ == 0) {
  1421. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1422. I915_WRITE16(IMR, dev_priv->irq_mask);
  1423. POSTING_READ16(IMR);
  1424. }
  1425. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1426. return true;
  1427. }
  1428. static void
  1429. i8xx_ring_put_irq(struct intel_engine_cs *engine)
  1430. {
  1431. struct drm_device *dev = engine->dev;
  1432. struct drm_i915_private *dev_priv = dev->dev_private;
  1433. unsigned long flags;
  1434. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1435. if (--engine->irq_refcount == 0) {
  1436. dev_priv->irq_mask |= engine->irq_enable_mask;
  1437. I915_WRITE16(IMR, dev_priv->irq_mask);
  1438. POSTING_READ16(IMR);
  1439. }
  1440. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1441. }
  1442. static int
  1443. bsd_ring_flush(struct drm_i915_gem_request *req,
  1444. u32 invalidate_domains,
  1445. u32 flush_domains)
  1446. {
  1447. struct intel_engine_cs *engine = req->engine;
  1448. int ret;
  1449. ret = intel_ring_begin(req, 2);
  1450. if (ret)
  1451. return ret;
  1452. intel_ring_emit(engine, MI_FLUSH);
  1453. intel_ring_emit(engine, MI_NOOP);
  1454. intel_ring_advance(engine);
  1455. return 0;
  1456. }
  1457. static int
  1458. i9xx_add_request(struct drm_i915_gem_request *req)
  1459. {
  1460. struct intel_engine_cs *engine = req->engine;
  1461. int ret;
  1462. ret = intel_ring_begin(req, 4);
  1463. if (ret)
  1464. return ret;
  1465. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1466. intel_ring_emit(engine,
  1467. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1468. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1469. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1470. __intel_ring_advance(engine);
  1471. return 0;
  1472. }
  1473. static bool
  1474. gen6_ring_get_irq(struct intel_engine_cs *engine)
  1475. {
  1476. struct drm_device *dev = engine->dev;
  1477. struct drm_i915_private *dev_priv = dev->dev_private;
  1478. unsigned long flags;
  1479. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1480. return false;
  1481. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1482. if (engine->irq_refcount++ == 0) {
  1483. if (HAS_L3_DPF(dev) && engine->id == RCS)
  1484. I915_WRITE_IMR(engine,
  1485. ~(engine->irq_enable_mask |
  1486. GT_PARITY_ERROR(dev)));
  1487. else
  1488. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1489. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1490. }
  1491. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1492. return true;
  1493. }
  1494. static void
  1495. gen6_ring_put_irq(struct intel_engine_cs *engine)
  1496. {
  1497. struct drm_device *dev = engine->dev;
  1498. struct drm_i915_private *dev_priv = dev->dev_private;
  1499. unsigned long flags;
  1500. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1501. if (--engine->irq_refcount == 0) {
  1502. if (HAS_L3_DPF(dev) && engine->id == RCS)
  1503. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
  1504. else
  1505. I915_WRITE_IMR(engine, ~0);
  1506. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1507. }
  1508. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1509. }
  1510. static bool
  1511. hsw_vebox_get_irq(struct intel_engine_cs *engine)
  1512. {
  1513. struct drm_device *dev = engine->dev;
  1514. struct drm_i915_private *dev_priv = dev->dev_private;
  1515. unsigned long flags;
  1516. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1517. return false;
  1518. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1519. if (engine->irq_refcount++ == 0) {
  1520. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1521. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1522. }
  1523. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1524. return true;
  1525. }
  1526. static void
  1527. hsw_vebox_put_irq(struct intel_engine_cs *engine)
  1528. {
  1529. struct drm_device *dev = engine->dev;
  1530. struct drm_i915_private *dev_priv = dev->dev_private;
  1531. unsigned long flags;
  1532. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1533. if (--engine->irq_refcount == 0) {
  1534. I915_WRITE_IMR(engine, ~0);
  1535. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1536. }
  1537. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1538. }
  1539. static bool
  1540. gen8_ring_get_irq(struct intel_engine_cs *engine)
  1541. {
  1542. struct drm_device *dev = engine->dev;
  1543. struct drm_i915_private *dev_priv = dev->dev_private;
  1544. unsigned long flags;
  1545. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1546. return false;
  1547. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1548. if (engine->irq_refcount++ == 0) {
  1549. if (HAS_L3_DPF(dev) && engine->id == RCS) {
  1550. I915_WRITE_IMR(engine,
  1551. ~(engine->irq_enable_mask |
  1552. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1553. } else {
  1554. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1555. }
  1556. POSTING_READ(RING_IMR(engine->mmio_base));
  1557. }
  1558. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1559. return true;
  1560. }
  1561. static void
  1562. gen8_ring_put_irq(struct intel_engine_cs *engine)
  1563. {
  1564. struct drm_device *dev = engine->dev;
  1565. struct drm_i915_private *dev_priv = dev->dev_private;
  1566. unsigned long flags;
  1567. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1568. if (--engine->irq_refcount == 0) {
  1569. if (HAS_L3_DPF(dev) && engine->id == RCS) {
  1570. I915_WRITE_IMR(engine,
  1571. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1572. } else {
  1573. I915_WRITE_IMR(engine, ~0);
  1574. }
  1575. POSTING_READ(RING_IMR(engine->mmio_base));
  1576. }
  1577. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1578. }
  1579. static int
  1580. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1581. u64 offset, u32 length,
  1582. unsigned dispatch_flags)
  1583. {
  1584. struct intel_engine_cs *engine = req->engine;
  1585. int ret;
  1586. ret = intel_ring_begin(req, 2);
  1587. if (ret)
  1588. return ret;
  1589. intel_ring_emit(engine,
  1590. MI_BATCH_BUFFER_START |
  1591. MI_BATCH_GTT |
  1592. (dispatch_flags & I915_DISPATCH_SECURE ?
  1593. 0 : MI_BATCH_NON_SECURE_I965));
  1594. intel_ring_emit(engine, offset);
  1595. intel_ring_advance(engine);
  1596. return 0;
  1597. }
  1598. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1599. #define I830_BATCH_LIMIT (256*1024)
  1600. #define I830_TLB_ENTRIES (2)
  1601. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1602. static int
  1603. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1604. u64 offset, u32 len,
  1605. unsigned dispatch_flags)
  1606. {
  1607. struct intel_engine_cs *engine = req->engine;
  1608. u32 cs_offset = engine->scratch.gtt_offset;
  1609. int ret;
  1610. ret = intel_ring_begin(req, 6);
  1611. if (ret)
  1612. return ret;
  1613. /* Evict the invalid PTE TLBs */
  1614. intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1615. intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1616. intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1617. intel_ring_emit(engine, cs_offset);
  1618. intel_ring_emit(engine, 0xdeadbeef);
  1619. intel_ring_emit(engine, MI_NOOP);
  1620. intel_ring_advance(engine);
  1621. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1622. if (len > I830_BATCH_LIMIT)
  1623. return -ENOSPC;
  1624. ret = intel_ring_begin(req, 6 + 2);
  1625. if (ret)
  1626. return ret;
  1627. /* Blit the batch (which has now all relocs applied) to the
  1628. * stable batch scratch bo area (so that the CS never
  1629. * stumbles over its tlb invalidation bug) ...
  1630. */
  1631. intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1632. intel_ring_emit(engine,
  1633. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1634. intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1635. intel_ring_emit(engine, cs_offset);
  1636. intel_ring_emit(engine, 4096);
  1637. intel_ring_emit(engine, offset);
  1638. intel_ring_emit(engine, MI_FLUSH);
  1639. intel_ring_emit(engine, MI_NOOP);
  1640. intel_ring_advance(engine);
  1641. /* ... and execute it. */
  1642. offset = cs_offset;
  1643. }
  1644. ret = intel_ring_begin(req, 2);
  1645. if (ret)
  1646. return ret;
  1647. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1648. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1649. 0 : MI_BATCH_NON_SECURE));
  1650. intel_ring_advance(engine);
  1651. return 0;
  1652. }
  1653. static int
  1654. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1655. u64 offset, u32 len,
  1656. unsigned dispatch_flags)
  1657. {
  1658. struct intel_engine_cs *engine = req->engine;
  1659. int ret;
  1660. ret = intel_ring_begin(req, 2);
  1661. if (ret)
  1662. return ret;
  1663. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1664. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1665. 0 : MI_BATCH_NON_SECURE));
  1666. intel_ring_advance(engine);
  1667. return 0;
  1668. }
  1669. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1670. {
  1671. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  1672. if (!dev_priv->status_page_dmah)
  1673. return;
  1674. drm_pci_free(engine->dev, dev_priv->status_page_dmah);
  1675. engine->status_page.page_addr = NULL;
  1676. }
  1677. static void cleanup_status_page(struct intel_engine_cs *engine)
  1678. {
  1679. struct drm_i915_gem_object *obj;
  1680. obj = engine->status_page.obj;
  1681. if (obj == NULL)
  1682. return;
  1683. kunmap(sg_page(obj->pages->sgl));
  1684. i915_gem_object_ggtt_unpin(obj);
  1685. drm_gem_object_unreference(&obj->base);
  1686. engine->status_page.obj = NULL;
  1687. }
  1688. static int init_status_page(struct intel_engine_cs *engine)
  1689. {
  1690. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1691. if (obj == NULL) {
  1692. unsigned flags;
  1693. int ret;
  1694. obj = i915_gem_alloc_object(engine->dev, 4096);
  1695. if (obj == NULL) {
  1696. DRM_ERROR("Failed to allocate status page\n");
  1697. return -ENOMEM;
  1698. }
  1699. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1700. if (ret)
  1701. goto err_unref;
  1702. flags = 0;
  1703. if (!HAS_LLC(engine->dev))
  1704. /* On g33, we cannot place HWS above 256MiB, so
  1705. * restrict its pinning to the low mappable arena.
  1706. * Though this restriction is not documented for
  1707. * gen4, gen5, or byt, they also behave similarly
  1708. * and hang if the HWS is placed at the top of the
  1709. * GTT. To generalise, it appears that all !llc
  1710. * platforms have issues with us placing the HWS
  1711. * above the mappable region (even though we never
  1712. * actualy map it).
  1713. */
  1714. flags |= PIN_MAPPABLE;
  1715. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1716. if (ret) {
  1717. err_unref:
  1718. drm_gem_object_unreference(&obj->base);
  1719. return ret;
  1720. }
  1721. engine->status_page.obj = obj;
  1722. }
  1723. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1724. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1725. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1726. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1727. engine->name, engine->status_page.gfx_addr);
  1728. return 0;
  1729. }
  1730. static int init_phys_status_page(struct intel_engine_cs *engine)
  1731. {
  1732. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  1733. if (!dev_priv->status_page_dmah) {
  1734. dev_priv->status_page_dmah =
  1735. drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
  1736. if (!dev_priv->status_page_dmah)
  1737. return -ENOMEM;
  1738. }
  1739. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1740. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1741. return 0;
  1742. }
  1743. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1744. {
  1745. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1746. i915_gem_object_unpin_map(ringbuf->obj);
  1747. else
  1748. iounmap(ringbuf->virtual_start);
  1749. ringbuf->vma = NULL;
  1750. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1751. }
  1752. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1753. struct intel_ringbuffer *ringbuf)
  1754. {
  1755. struct drm_i915_private *dev_priv = to_i915(dev);
  1756. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  1757. struct drm_i915_gem_object *obj = ringbuf->obj;
  1758. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1759. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1760. int ret;
  1761. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1762. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1763. if (ret)
  1764. return ret;
  1765. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1766. if (ret)
  1767. goto err_unpin;
  1768. ringbuf->virtual_start = i915_gem_object_pin_map(obj);
  1769. if (ringbuf->virtual_start == NULL) {
  1770. ret = -ENOMEM;
  1771. goto err_unpin;
  1772. }
  1773. } else {
  1774. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1775. flags | PIN_MAPPABLE);
  1776. if (ret)
  1777. return ret;
  1778. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1779. if (ret)
  1780. goto err_unpin;
  1781. /* Access through the GTT requires the device to be awake. */
  1782. assert_rpm_wakelock_held(dev_priv);
  1783. ringbuf->virtual_start = ioremap_wc(ggtt->mappable_base +
  1784. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1785. if (ringbuf->virtual_start == NULL) {
  1786. ret = -ENOMEM;
  1787. goto err_unpin;
  1788. }
  1789. }
  1790. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1791. return 0;
  1792. err_unpin:
  1793. i915_gem_object_ggtt_unpin(obj);
  1794. return ret;
  1795. }
  1796. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1797. {
  1798. drm_gem_object_unreference(&ringbuf->obj->base);
  1799. ringbuf->obj = NULL;
  1800. }
  1801. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1802. struct intel_ringbuffer *ringbuf)
  1803. {
  1804. struct drm_i915_gem_object *obj;
  1805. obj = NULL;
  1806. if (!HAS_LLC(dev))
  1807. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1808. if (obj == NULL)
  1809. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1810. if (obj == NULL)
  1811. return -ENOMEM;
  1812. /* mark ring buffers as read-only from GPU side by default */
  1813. obj->gt_ro = 1;
  1814. ringbuf->obj = obj;
  1815. return 0;
  1816. }
  1817. struct intel_ringbuffer *
  1818. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1819. {
  1820. struct intel_ringbuffer *ring;
  1821. int ret;
  1822. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1823. if (ring == NULL) {
  1824. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1825. engine->name);
  1826. return ERR_PTR(-ENOMEM);
  1827. }
  1828. ring->engine = engine;
  1829. list_add(&ring->link, &engine->buffers);
  1830. ring->size = size;
  1831. /* Workaround an erratum on the i830 which causes a hang if
  1832. * the TAIL pointer points to within the last 2 cachelines
  1833. * of the buffer.
  1834. */
  1835. ring->effective_size = size;
  1836. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1837. ring->effective_size -= 2 * CACHELINE_BYTES;
  1838. ring->last_retired_head = -1;
  1839. intel_ring_update_space(ring);
  1840. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1841. if (ret) {
  1842. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1843. engine->name, ret);
  1844. list_del(&ring->link);
  1845. kfree(ring);
  1846. return ERR_PTR(ret);
  1847. }
  1848. return ring;
  1849. }
  1850. void
  1851. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1852. {
  1853. intel_destroy_ringbuffer_obj(ring);
  1854. list_del(&ring->link);
  1855. kfree(ring);
  1856. }
  1857. static int intel_init_ring_buffer(struct drm_device *dev,
  1858. struct intel_engine_cs *engine)
  1859. {
  1860. struct intel_ringbuffer *ringbuf;
  1861. int ret;
  1862. WARN_ON(engine->buffer);
  1863. engine->dev = dev;
  1864. INIT_LIST_HEAD(&engine->active_list);
  1865. INIT_LIST_HEAD(&engine->request_list);
  1866. INIT_LIST_HEAD(&engine->execlist_queue);
  1867. INIT_LIST_HEAD(&engine->buffers);
  1868. i915_gem_batch_pool_init(dev, &engine->batch_pool);
  1869. memset(engine->semaphore.sync_seqno, 0,
  1870. sizeof(engine->semaphore.sync_seqno));
  1871. init_waitqueue_head(&engine->irq_queue);
  1872. ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
  1873. if (IS_ERR(ringbuf)) {
  1874. ret = PTR_ERR(ringbuf);
  1875. goto error;
  1876. }
  1877. engine->buffer = ringbuf;
  1878. if (I915_NEED_GFX_HWS(dev)) {
  1879. ret = init_status_page(engine);
  1880. if (ret)
  1881. goto error;
  1882. } else {
  1883. WARN_ON(engine->id != RCS);
  1884. ret = init_phys_status_page(engine);
  1885. if (ret)
  1886. goto error;
  1887. }
  1888. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1889. if (ret) {
  1890. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1891. engine->name, ret);
  1892. intel_destroy_ringbuffer_obj(ringbuf);
  1893. goto error;
  1894. }
  1895. ret = i915_cmd_parser_init_ring(engine);
  1896. if (ret)
  1897. goto error;
  1898. return 0;
  1899. error:
  1900. intel_cleanup_engine(engine);
  1901. return ret;
  1902. }
  1903. void intel_cleanup_engine(struct intel_engine_cs *engine)
  1904. {
  1905. struct drm_i915_private *dev_priv;
  1906. if (!intel_engine_initialized(engine))
  1907. return;
  1908. dev_priv = to_i915(engine->dev);
  1909. if (engine->buffer) {
  1910. intel_stop_engine(engine);
  1911. WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1912. intel_unpin_ringbuffer_obj(engine->buffer);
  1913. intel_ringbuffer_free(engine->buffer);
  1914. engine->buffer = NULL;
  1915. }
  1916. if (engine->cleanup)
  1917. engine->cleanup(engine);
  1918. if (I915_NEED_GFX_HWS(engine->dev)) {
  1919. cleanup_status_page(engine);
  1920. } else {
  1921. WARN_ON(engine->id != RCS);
  1922. cleanup_phys_status_page(engine);
  1923. }
  1924. i915_cmd_parser_fini_ring(engine);
  1925. i915_gem_batch_pool_fini(&engine->batch_pool);
  1926. engine->dev = NULL;
  1927. }
  1928. static int ring_wait_for_space(struct intel_engine_cs *engine, int n)
  1929. {
  1930. struct intel_ringbuffer *ringbuf = engine->buffer;
  1931. struct drm_i915_gem_request *request;
  1932. unsigned space;
  1933. int ret;
  1934. if (intel_ring_space(ringbuf) >= n)
  1935. return 0;
  1936. /* The whole point of reserving space is to not wait! */
  1937. WARN_ON(ringbuf->reserved_in_use);
  1938. list_for_each_entry(request, &engine->request_list, list) {
  1939. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1940. ringbuf->size);
  1941. if (space >= n)
  1942. break;
  1943. }
  1944. if (WARN_ON(&request->list == &engine->request_list))
  1945. return -ENOSPC;
  1946. ret = i915_wait_request(request);
  1947. if (ret)
  1948. return ret;
  1949. ringbuf->space = space;
  1950. return 0;
  1951. }
  1952. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1953. {
  1954. uint32_t __iomem *virt;
  1955. int rem = ringbuf->size - ringbuf->tail;
  1956. virt = ringbuf->virtual_start + ringbuf->tail;
  1957. rem /= 4;
  1958. while (rem--)
  1959. iowrite32(MI_NOOP, virt++);
  1960. ringbuf->tail = 0;
  1961. intel_ring_update_space(ringbuf);
  1962. }
  1963. int intel_engine_idle(struct intel_engine_cs *engine)
  1964. {
  1965. struct drm_i915_gem_request *req;
  1966. /* Wait upon the last request to be completed */
  1967. if (list_empty(&engine->request_list))
  1968. return 0;
  1969. req = list_entry(engine->request_list.prev,
  1970. struct drm_i915_gem_request,
  1971. list);
  1972. /* Make sure we do not trigger any retires */
  1973. return __i915_wait_request(req,
  1974. req->i915->mm.interruptible,
  1975. NULL, NULL);
  1976. }
  1977. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1978. {
  1979. request->ringbuf = request->engine->buffer;
  1980. return 0;
  1981. }
  1982. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1983. {
  1984. /*
  1985. * The first call merely notes the reserve request and is common for
  1986. * all back ends. The subsequent localised _begin() call actually
  1987. * ensures that the reservation is available. Without the begin, if
  1988. * the request creator immediately submitted the request without
  1989. * adding any commands to it then there might not actually be
  1990. * sufficient room for the submission commands.
  1991. */
  1992. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1993. return intel_ring_begin(request, 0);
  1994. }
  1995. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1996. {
  1997. WARN_ON(ringbuf->reserved_size);
  1998. WARN_ON(ringbuf->reserved_in_use);
  1999. ringbuf->reserved_size = size;
  2000. }
  2001. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  2002. {
  2003. WARN_ON(ringbuf->reserved_in_use);
  2004. ringbuf->reserved_size = 0;
  2005. ringbuf->reserved_in_use = false;
  2006. }
  2007. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  2008. {
  2009. WARN_ON(ringbuf->reserved_in_use);
  2010. ringbuf->reserved_in_use = true;
  2011. ringbuf->reserved_tail = ringbuf->tail;
  2012. }
  2013. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  2014. {
  2015. WARN_ON(!ringbuf->reserved_in_use);
  2016. if (ringbuf->tail > ringbuf->reserved_tail) {
  2017. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  2018. "request reserved size too small: %d vs %d!\n",
  2019. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  2020. } else {
  2021. /*
  2022. * The ring was wrapped while the reserved space was in use.
  2023. * That means that some unknown amount of the ring tail was
  2024. * no-op filled and skipped. Thus simply adding the ring size
  2025. * to the tail and doing the above space check will not work.
  2026. * Rather than attempt to track how much tail was skipped,
  2027. * it is much simpler to say that also skipping the sanity
  2028. * check every once in a while is not a big issue.
  2029. */
  2030. }
  2031. ringbuf->reserved_size = 0;
  2032. ringbuf->reserved_in_use = false;
  2033. }
  2034. static int __intel_ring_prepare(struct intel_engine_cs *engine, int bytes)
  2035. {
  2036. struct intel_ringbuffer *ringbuf = engine->buffer;
  2037. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  2038. int remain_actual = ringbuf->size - ringbuf->tail;
  2039. int ret, total_bytes, wait_bytes = 0;
  2040. bool need_wrap = false;
  2041. if (ringbuf->reserved_in_use)
  2042. total_bytes = bytes;
  2043. else
  2044. total_bytes = bytes + ringbuf->reserved_size;
  2045. if (unlikely(bytes > remain_usable)) {
  2046. /*
  2047. * Not enough space for the basic request. So need to flush
  2048. * out the remainder and then wait for base + reserved.
  2049. */
  2050. wait_bytes = remain_actual + total_bytes;
  2051. need_wrap = true;
  2052. } else {
  2053. if (unlikely(total_bytes > remain_usable)) {
  2054. /*
  2055. * The base request will fit but the reserved space
  2056. * falls off the end. So don't need an immediate wrap
  2057. * and only need to effectively wait for the reserved
  2058. * size space from the start of ringbuffer.
  2059. */
  2060. wait_bytes = remain_actual + ringbuf->reserved_size;
  2061. } else if (total_bytes > ringbuf->space) {
  2062. /* No wrapping required, just waiting. */
  2063. wait_bytes = total_bytes;
  2064. }
  2065. }
  2066. if (wait_bytes) {
  2067. ret = ring_wait_for_space(engine, wait_bytes);
  2068. if (unlikely(ret))
  2069. return ret;
  2070. if (need_wrap)
  2071. __wrap_ring_buffer(ringbuf);
  2072. }
  2073. return 0;
  2074. }
  2075. int intel_ring_begin(struct drm_i915_gem_request *req,
  2076. int num_dwords)
  2077. {
  2078. struct intel_engine_cs *engine;
  2079. struct drm_i915_private *dev_priv;
  2080. int ret;
  2081. WARN_ON(req == NULL);
  2082. engine = req->engine;
  2083. dev_priv = req->i915;
  2084. ret = __intel_ring_prepare(engine, num_dwords * sizeof(uint32_t));
  2085. if (ret)
  2086. return ret;
  2087. engine->buffer->space -= num_dwords * sizeof(uint32_t);
  2088. return 0;
  2089. }
  2090. /* Align the ring tail to a cacheline boundary */
  2091. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2092. {
  2093. struct intel_engine_cs *engine = req->engine;
  2094. int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2095. int ret;
  2096. if (num_dwords == 0)
  2097. return 0;
  2098. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2099. ret = intel_ring_begin(req, num_dwords);
  2100. if (ret)
  2101. return ret;
  2102. while (num_dwords--)
  2103. intel_ring_emit(engine, MI_NOOP);
  2104. intel_ring_advance(engine);
  2105. return 0;
  2106. }
  2107. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2108. {
  2109. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  2110. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2111. * so long as the semaphore value in the register/page is greater
  2112. * than the sync value), so whenever we reset the seqno,
  2113. * so long as we reset the tracking semaphore value to 0, it will
  2114. * always be before the next request's seqno. If we don't reset
  2115. * the semaphore value, then when the seqno moves backwards all
  2116. * future waits will complete instantly (causing rendering corruption).
  2117. */
  2118. if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
  2119. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2120. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2121. if (HAS_VEBOX(dev_priv))
  2122. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2123. }
  2124. if (dev_priv->semaphore_obj) {
  2125. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2126. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2127. void *semaphores = kmap(page);
  2128. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2129. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2130. kunmap(page);
  2131. }
  2132. memset(engine->semaphore.sync_seqno, 0,
  2133. sizeof(engine->semaphore.sync_seqno));
  2134. engine->set_seqno(engine, seqno);
  2135. engine->last_submitted_seqno = seqno;
  2136. engine->hangcheck.seqno = seqno;
  2137. }
  2138. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2139. u32 value)
  2140. {
  2141. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  2142. /* Every tail move must follow the sequence below */
  2143. /* Disable notification that the ring is IDLE. The GT
  2144. * will then assume that it is busy and bring it out of rc6.
  2145. */
  2146. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2147. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2148. /* Clear the context id. Here be magic! */
  2149. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2150. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2151. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2152. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2153. 50))
  2154. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2155. /* Now that the ring is fully powered up, update the tail */
  2156. I915_WRITE_TAIL(engine, value);
  2157. POSTING_READ(RING_TAIL(engine->mmio_base));
  2158. /* Let the ring send IDLE messages to the GT again,
  2159. * and so let it sleep to conserve power when idle.
  2160. */
  2161. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2162. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2163. }
  2164. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2165. u32 invalidate, u32 flush)
  2166. {
  2167. struct intel_engine_cs *engine = req->engine;
  2168. uint32_t cmd;
  2169. int ret;
  2170. ret = intel_ring_begin(req, 4);
  2171. if (ret)
  2172. return ret;
  2173. cmd = MI_FLUSH_DW;
  2174. if (INTEL_INFO(engine->dev)->gen >= 8)
  2175. cmd += 1;
  2176. /* We always require a command barrier so that subsequent
  2177. * commands, such as breadcrumb interrupts, are strictly ordered
  2178. * wrt the contents of the write cache being flushed to memory
  2179. * (and thus being coherent from the CPU).
  2180. */
  2181. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2182. /*
  2183. * Bspec vol 1c.5 - video engine command streamer:
  2184. * "If ENABLED, all TLBs will be invalidated once the flush
  2185. * operation is complete. This bit is only valid when the
  2186. * Post-Sync Operation field is a value of 1h or 3h."
  2187. */
  2188. if (invalidate & I915_GEM_GPU_DOMAINS)
  2189. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2190. intel_ring_emit(engine, cmd);
  2191. intel_ring_emit(engine,
  2192. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2193. if (INTEL_INFO(engine->dev)->gen >= 8) {
  2194. intel_ring_emit(engine, 0); /* upper addr */
  2195. intel_ring_emit(engine, 0); /* value */
  2196. } else {
  2197. intel_ring_emit(engine, 0);
  2198. intel_ring_emit(engine, MI_NOOP);
  2199. }
  2200. intel_ring_advance(engine);
  2201. return 0;
  2202. }
  2203. static int
  2204. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2205. u64 offset, u32 len,
  2206. unsigned dispatch_flags)
  2207. {
  2208. struct intel_engine_cs *engine = req->engine;
  2209. bool ppgtt = USES_PPGTT(engine->dev) &&
  2210. !(dispatch_flags & I915_DISPATCH_SECURE);
  2211. int ret;
  2212. ret = intel_ring_begin(req, 4);
  2213. if (ret)
  2214. return ret;
  2215. /* FIXME(BDW): Address space and security selectors. */
  2216. intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2217. (dispatch_flags & I915_DISPATCH_RS ?
  2218. MI_BATCH_RESOURCE_STREAMER : 0));
  2219. intel_ring_emit(engine, lower_32_bits(offset));
  2220. intel_ring_emit(engine, upper_32_bits(offset));
  2221. intel_ring_emit(engine, MI_NOOP);
  2222. intel_ring_advance(engine);
  2223. return 0;
  2224. }
  2225. static int
  2226. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2227. u64 offset, u32 len,
  2228. unsigned dispatch_flags)
  2229. {
  2230. struct intel_engine_cs *engine = req->engine;
  2231. int ret;
  2232. ret = intel_ring_begin(req, 2);
  2233. if (ret)
  2234. return ret;
  2235. intel_ring_emit(engine,
  2236. MI_BATCH_BUFFER_START |
  2237. (dispatch_flags & I915_DISPATCH_SECURE ?
  2238. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2239. (dispatch_flags & I915_DISPATCH_RS ?
  2240. MI_BATCH_RESOURCE_STREAMER : 0));
  2241. /* bit0-7 is the length on GEN6+ */
  2242. intel_ring_emit(engine, offset);
  2243. intel_ring_advance(engine);
  2244. return 0;
  2245. }
  2246. static int
  2247. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2248. u64 offset, u32 len,
  2249. unsigned dispatch_flags)
  2250. {
  2251. struct intel_engine_cs *engine = req->engine;
  2252. int ret;
  2253. ret = intel_ring_begin(req, 2);
  2254. if (ret)
  2255. return ret;
  2256. intel_ring_emit(engine,
  2257. MI_BATCH_BUFFER_START |
  2258. (dispatch_flags & I915_DISPATCH_SECURE ?
  2259. 0 : MI_BATCH_NON_SECURE_I965));
  2260. /* bit0-7 is the length on GEN6+ */
  2261. intel_ring_emit(engine, offset);
  2262. intel_ring_advance(engine);
  2263. return 0;
  2264. }
  2265. /* Blitter support (SandyBridge+) */
  2266. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2267. u32 invalidate, u32 flush)
  2268. {
  2269. struct intel_engine_cs *engine = req->engine;
  2270. struct drm_device *dev = engine->dev;
  2271. uint32_t cmd;
  2272. int ret;
  2273. ret = intel_ring_begin(req, 4);
  2274. if (ret)
  2275. return ret;
  2276. cmd = MI_FLUSH_DW;
  2277. if (INTEL_INFO(dev)->gen >= 8)
  2278. cmd += 1;
  2279. /* We always require a command barrier so that subsequent
  2280. * commands, such as breadcrumb interrupts, are strictly ordered
  2281. * wrt the contents of the write cache being flushed to memory
  2282. * (and thus being coherent from the CPU).
  2283. */
  2284. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2285. /*
  2286. * Bspec vol 1c.3 - blitter engine command streamer:
  2287. * "If ENABLED, all TLBs will be invalidated once the flush
  2288. * operation is complete. This bit is only valid when the
  2289. * Post-Sync Operation field is a value of 1h or 3h."
  2290. */
  2291. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2292. cmd |= MI_INVALIDATE_TLB;
  2293. intel_ring_emit(engine, cmd);
  2294. intel_ring_emit(engine,
  2295. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2296. if (INTEL_INFO(dev)->gen >= 8) {
  2297. intel_ring_emit(engine, 0); /* upper addr */
  2298. intel_ring_emit(engine, 0); /* value */
  2299. } else {
  2300. intel_ring_emit(engine, 0);
  2301. intel_ring_emit(engine, MI_NOOP);
  2302. }
  2303. intel_ring_advance(engine);
  2304. return 0;
  2305. }
  2306. int intel_init_render_ring_buffer(struct drm_device *dev)
  2307. {
  2308. struct drm_i915_private *dev_priv = dev->dev_private;
  2309. struct intel_engine_cs *engine = &dev_priv->engine[RCS];
  2310. struct drm_i915_gem_object *obj;
  2311. int ret;
  2312. engine->name = "render ring";
  2313. engine->id = RCS;
  2314. engine->exec_id = I915_EXEC_RENDER;
  2315. engine->mmio_base = RENDER_RING_BASE;
  2316. if (INTEL_INFO(dev)->gen >= 8) {
  2317. if (i915_semaphore_is_enabled(dev)) {
  2318. obj = i915_gem_alloc_object(dev, 4096);
  2319. if (obj == NULL) {
  2320. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2321. i915.semaphores = 0;
  2322. } else {
  2323. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2324. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2325. if (ret != 0) {
  2326. drm_gem_object_unreference(&obj->base);
  2327. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2328. i915.semaphores = 0;
  2329. } else
  2330. dev_priv->semaphore_obj = obj;
  2331. }
  2332. }
  2333. engine->init_context = intel_rcs_ctx_init;
  2334. engine->add_request = gen6_add_request;
  2335. engine->flush = gen8_render_ring_flush;
  2336. engine->irq_get = gen8_ring_get_irq;
  2337. engine->irq_put = gen8_ring_put_irq;
  2338. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2339. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2340. engine->get_seqno = ring_get_seqno;
  2341. engine->set_seqno = ring_set_seqno;
  2342. if (i915_semaphore_is_enabled(dev)) {
  2343. WARN_ON(!dev_priv->semaphore_obj);
  2344. engine->semaphore.sync_to = gen8_ring_sync;
  2345. engine->semaphore.signal = gen8_rcs_signal;
  2346. GEN8_RING_SEMAPHORE_INIT(engine);
  2347. }
  2348. } else if (INTEL_INFO(dev)->gen >= 6) {
  2349. engine->init_context = intel_rcs_ctx_init;
  2350. engine->add_request = gen6_add_request;
  2351. engine->flush = gen7_render_ring_flush;
  2352. if (INTEL_INFO(dev)->gen == 6)
  2353. engine->flush = gen6_render_ring_flush;
  2354. engine->irq_get = gen6_ring_get_irq;
  2355. engine->irq_put = gen6_ring_put_irq;
  2356. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2357. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2358. engine->get_seqno = ring_get_seqno;
  2359. engine->set_seqno = ring_set_seqno;
  2360. if (i915_semaphore_is_enabled(dev)) {
  2361. engine->semaphore.sync_to = gen6_ring_sync;
  2362. engine->semaphore.signal = gen6_signal;
  2363. /*
  2364. * The current semaphore is only applied on pre-gen8
  2365. * platform. And there is no VCS2 ring on the pre-gen8
  2366. * platform. So the semaphore between RCS and VCS2 is
  2367. * initialized as INVALID. Gen8 will initialize the
  2368. * sema between VCS2 and RCS later.
  2369. */
  2370. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2371. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2372. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2373. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2374. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2375. engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2376. engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2377. engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2378. engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2379. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2380. }
  2381. } else if (IS_GEN5(dev)) {
  2382. engine->add_request = pc_render_add_request;
  2383. engine->flush = gen4_render_ring_flush;
  2384. engine->get_seqno = pc_render_get_seqno;
  2385. engine->set_seqno = pc_render_set_seqno;
  2386. engine->irq_get = gen5_ring_get_irq;
  2387. engine->irq_put = gen5_ring_put_irq;
  2388. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2389. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2390. } else {
  2391. engine->add_request = i9xx_add_request;
  2392. if (INTEL_INFO(dev)->gen < 4)
  2393. engine->flush = gen2_render_ring_flush;
  2394. else
  2395. engine->flush = gen4_render_ring_flush;
  2396. engine->get_seqno = ring_get_seqno;
  2397. engine->set_seqno = ring_set_seqno;
  2398. if (IS_GEN2(dev)) {
  2399. engine->irq_get = i8xx_ring_get_irq;
  2400. engine->irq_put = i8xx_ring_put_irq;
  2401. } else {
  2402. engine->irq_get = i9xx_ring_get_irq;
  2403. engine->irq_put = i9xx_ring_put_irq;
  2404. }
  2405. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2406. }
  2407. engine->write_tail = ring_write_tail;
  2408. if (IS_HASWELL(dev))
  2409. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2410. else if (IS_GEN8(dev))
  2411. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2412. else if (INTEL_INFO(dev)->gen >= 6)
  2413. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2414. else if (INTEL_INFO(dev)->gen >= 4)
  2415. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2416. else if (IS_I830(dev) || IS_845G(dev))
  2417. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2418. else
  2419. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2420. engine->init_hw = init_render_ring;
  2421. engine->cleanup = render_ring_cleanup;
  2422. /* Workaround batchbuffer to combat CS tlb bug. */
  2423. if (HAS_BROKEN_CS_TLB(dev)) {
  2424. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2425. if (obj == NULL) {
  2426. DRM_ERROR("Failed to allocate batch bo\n");
  2427. return -ENOMEM;
  2428. }
  2429. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2430. if (ret != 0) {
  2431. drm_gem_object_unreference(&obj->base);
  2432. DRM_ERROR("Failed to ping batch bo\n");
  2433. return ret;
  2434. }
  2435. engine->scratch.obj = obj;
  2436. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2437. }
  2438. ret = intel_init_ring_buffer(dev, engine);
  2439. if (ret)
  2440. return ret;
  2441. if (INTEL_INFO(dev)->gen >= 5) {
  2442. ret = intel_init_pipe_control(engine);
  2443. if (ret)
  2444. return ret;
  2445. }
  2446. return 0;
  2447. }
  2448. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2449. {
  2450. struct drm_i915_private *dev_priv = dev->dev_private;
  2451. struct intel_engine_cs *engine = &dev_priv->engine[VCS];
  2452. engine->name = "bsd ring";
  2453. engine->id = VCS;
  2454. engine->exec_id = I915_EXEC_BSD;
  2455. engine->write_tail = ring_write_tail;
  2456. if (INTEL_INFO(dev)->gen >= 6) {
  2457. engine->mmio_base = GEN6_BSD_RING_BASE;
  2458. /* gen6 bsd needs a special wa for tail updates */
  2459. if (IS_GEN6(dev))
  2460. engine->write_tail = gen6_bsd_ring_write_tail;
  2461. engine->flush = gen6_bsd_ring_flush;
  2462. engine->add_request = gen6_add_request;
  2463. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2464. engine->get_seqno = ring_get_seqno;
  2465. engine->set_seqno = ring_set_seqno;
  2466. if (INTEL_INFO(dev)->gen >= 8) {
  2467. engine->irq_enable_mask =
  2468. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2469. engine->irq_get = gen8_ring_get_irq;
  2470. engine->irq_put = gen8_ring_put_irq;
  2471. engine->dispatch_execbuffer =
  2472. gen8_ring_dispatch_execbuffer;
  2473. if (i915_semaphore_is_enabled(dev)) {
  2474. engine->semaphore.sync_to = gen8_ring_sync;
  2475. engine->semaphore.signal = gen8_xcs_signal;
  2476. GEN8_RING_SEMAPHORE_INIT(engine);
  2477. }
  2478. } else {
  2479. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2480. engine->irq_get = gen6_ring_get_irq;
  2481. engine->irq_put = gen6_ring_put_irq;
  2482. engine->dispatch_execbuffer =
  2483. gen6_ring_dispatch_execbuffer;
  2484. if (i915_semaphore_is_enabled(dev)) {
  2485. engine->semaphore.sync_to = gen6_ring_sync;
  2486. engine->semaphore.signal = gen6_signal;
  2487. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2488. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2489. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2490. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2491. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2492. engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2493. engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2494. engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2495. engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2496. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2497. }
  2498. }
  2499. } else {
  2500. engine->mmio_base = BSD_RING_BASE;
  2501. engine->flush = bsd_ring_flush;
  2502. engine->add_request = i9xx_add_request;
  2503. engine->get_seqno = ring_get_seqno;
  2504. engine->set_seqno = ring_set_seqno;
  2505. if (IS_GEN5(dev)) {
  2506. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2507. engine->irq_get = gen5_ring_get_irq;
  2508. engine->irq_put = gen5_ring_put_irq;
  2509. } else {
  2510. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2511. engine->irq_get = i9xx_ring_get_irq;
  2512. engine->irq_put = i9xx_ring_put_irq;
  2513. }
  2514. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2515. }
  2516. engine->init_hw = init_ring_common;
  2517. return intel_init_ring_buffer(dev, engine);
  2518. }
  2519. /**
  2520. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2521. */
  2522. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2523. {
  2524. struct drm_i915_private *dev_priv = dev->dev_private;
  2525. struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
  2526. engine->name = "bsd2 ring";
  2527. engine->id = VCS2;
  2528. engine->exec_id = I915_EXEC_BSD;
  2529. engine->write_tail = ring_write_tail;
  2530. engine->mmio_base = GEN8_BSD2_RING_BASE;
  2531. engine->flush = gen6_bsd_ring_flush;
  2532. engine->add_request = gen6_add_request;
  2533. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2534. engine->get_seqno = ring_get_seqno;
  2535. engine->set_seqno = ring_set_seqno;
  2536. engine->irq_enable_mask =
  2537. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2538. engine->irq_get = gen8_ring_get_irq;
  2539. engine->irq_put = gen8_ring_put_irq;
  2540. engine->dispatch_execbuffer =
  2541. gen8_ring_dispatch_execbuffer;
  2542. if (i915_semaphore_is_enabled(dev)) {
  2543. engine->semaphore.sync_to = gen8_ring_sync;
  2544. engine->semaphore.signal = gen8_xcs_signal;
  2545. GEN8_RING_SEMAPHORE_INIT(engine);
  2546. }
  2547. engine->init_hw = init_ring_common;
  2548. return intel_init_ring_buffer(dev, engine);
  2549. }
  2550. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2551. {
  2552. struct drm_i915_private *dev_priv = dev->dev_private;
  2553. struct intel_engine_cs *engine = &dev_priv->engine[BCS];
  2554. engine->name = "blitter ring";
  2555. engine->id = BCS;
  2556. engine->exec_id = I915_EXEC_BLT;
  2557. engine->mmio_base = BLT_RING_BASE;
  2558. engine->write_tail = ring_write_tail;
  2559. engine->flush = gen6_ring_flush;
  2560. engine->add_request = gen6_add_request;
  2561. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2562. engine->get_seqno = ring_get_seqno;
  2563. engine->set_seqno = ring_set_seqno;
  2564. if (INTEL_INFO(dev)->gen >= 8) {
  2565. engine->irq_enable_mask =
  2566. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2567. engine->irq_get = gen8_ring_get_irq;
  2568. engine->irq_put = gen8_ring_put_irq;
  2569. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2570. if (i915_semaphore_is_enabled(dev)) {
  2571. engine->semaphore.sync_to = gen8_ring_sync;
  2572. engine->semaphore.signal = gen8_xcs_signal;
  2573. GEN8_RING_SEMAPHORE_INIT(engine);
  2574. }
  2575. } else {
  2576. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2577. engine->irq_get = gen6_ring_get_irq;
  2578. engine->irq_put = gen6_ring_put_irq;
  2579. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2580. if (i915_semaphore_is_enabled(dev)) {
  2581. engine->semaphore.signal = gen6_signal;
  2582. engine->semaphore.sync_to = gen6_ring_sync;
  2583. /*
  2584. * The current semaphore is only applied on pre-gen8
  2585. * platform. And there is no VCS2 ring on the pre-gen8
  2586. * platform. So the semaphore between BCS and VCS2 is
  2587. * initialized as INVALID. Gen8 will initialize the
  2588. * sema between BCS and VCS2 later.
  2589. */
  2590. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2591. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2592. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2593. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2594. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2595. engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2596. engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2597. engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2598. engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2599. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2600. }
  2601. }
  2602. engine->init_hw = init_ring_common;
  2603. return intel_init_ring_buffer(dev, engine);
  2604. }
  2605. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2606. {
  2607. struct drm_i915_private *dev_priv = dev->dev_private;
  2608. struct intel_engine_cs *engine = &dev_priv->engine[VECS];
  2609. engine->name = "video enhancement ring";
  2610. engine->id = VECS;
  2611. engine->exec_id = I915_EXEC_VEBOX;
  2612. engine->mmio_base = VEBOX_RING_BASE;
  2613. engine->write_tail = ring_write_tail;
  2614. engine->flush = gen6_ring_flush;
  2615. engine->add_request = gen6_add_request;
  2616. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2617. engine->get_seqno = ring_get_seqno;
  2618. engine->set_seqno = ring_set_seqno;
  2619. if (INTEL_INFO(dev)->gen >= 8) {
  2620. engine->irq_enable_mask =
  2621. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2622. engine->irq_get = gen8_ring_get_irq;
  2623. engine->irq_put = gen8_ring_put_irq;
  2624. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2625. if (i915_semaphore_is_enabled(dev)) {
  2626. engine->semaphore.sync_to = gen8_ring_sync;
  2627. engine->semaphore.signal = gen8_xcs_signal;
  2628. GEN8_RING_SEMAPHORE_INIT(engine);
  2629. }
  2630. } else {
  2631. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2632. engine->irq_get = hsw_vebox_get_irq;
  2633. engine->irq_put = hsw_vebox_put_irq;
  2634. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2635. if (i915_semaphore_is_enabled(dev)) {
  2636. engine->semaphore.sync_to = gen6_ring_sync;
  2637. engine->semaphore.signal = gen6_signal;
  2638. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2639. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2640. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2641. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2642. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2643. engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2644. engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2645. engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2646. engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2647. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2648. }
  2649. }
  2650. engine->init_hw = init_ring_common;
  2651. return intel_init_ring_buffer(dev, engine);
  2652. }
  2653. int
  2654. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2655. {
  2656. struct intel_engine_cs *engine = req->engine;
  2657. int ret;
  2658. if (!engine->gpu_caches_dirty)
  2659. return 0;
  2660. ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2661. if (ret)
  2662. return ret;
  2663. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2664. engine->gpu_caches_dirty = false;
  2665. return 0;
  2666. }
  2667. int
  2668. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2669. {
  2670. struct intel_engine_cs *engine = req->engine;
  2671. uint32_t flush_domains;
  2672. int ret;
  2673. flush_domains = 0;
  2674. if (engine->gpu_caches_dirty)
  2675. flush_domains = I915_GEM_GPU_DOMAINS;
  2676. ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2677. if (ret)
  2678. return ret;
  2679. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2680. engine->gpu_caches_dirty = false;
  2681. return 0;
  2682. }
  2683. void
  2684. intel_stop_engine(struct intel_engine_cs *engine)
  2685. {
  2686. int ret;
  2687. if (!intel_engine_initialized(engine))
  2688. return;
  2689. ret = intel_engine_idle(engine);
  2690. if (ret)
  2691. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2692. engine->name, ret);
  2693. stop_ring(engine);
  2694. }