intel_ringbuffer.c 88 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. int __intel_ring_space(int head, int tail, int size)
  36. {
  37. int space = head - tail;
  38. if (space <= 0)
  39. space += size;
  40. return space - I915_RING_FREE_SPACE;
  41. }
  42. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  43. {
  44. if (ringbuf->last_retired_head != -1) {
  45. ringbuf->head = ringbuf->last_retired_head;
  46. ringbuf->last_retired_head = -1;
  47. }
  48. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  49. ringbuf->tail, ringbuf->size);
  50. }
  51. bool intel_engine_stopped(struct intel_engine_cs *engine)
  52. {
  53. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  54. return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
  55. }
  56. static void __intel_ring_advance(struct intel_engine_cs *engine)
  57. {
  58. struct intel_ringbuffer *ringbuf = engine->buffer;
  59. ringbuf->tail &= ringbuf->size - 1;
  60. if (intel_engine_stopped(engine))
  61. return;
  62. engine->write_tail(engine, ringbuf->tail);
  63. }
  64. static int
  65. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  66. u32 invalidate_domains,
  67. u32 flush_domains)
  68. {
  69. struct intel_engine_cs *engine = req->engine;
  70. u32 cmd;
  71. int ret;
  72. cmd = MI_FLUSH;
  73. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  74. cmd |= MI_NO_WRITE_FLUSH;
  75. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  76. cmd |= MI_READ_FLUSH;
  77. ret = intel_ring_begin(req, 2);
  78. if (ret)
  79. return ret;
  80. intel_ring_emit(engine, cmd);
  81. intel_ring_emit(engine, MI_NOOP);
  82. intel_ring_advance(engine);
  83. return 0;
  84. }
  85. static int
  86. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  87. u32 invalidate_domains,
  88. u32 flush_domains)
  89. {
  90. struct intel_engine_cs *engine = req->engine;
  91. struct drm_device *dev = engine->dev;
  92. u32 cmd;
  93. int ret;
  94. /*
  95. * read/write caches:
  96. *
  97. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  98. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  99. * also flushed at 2d versus 3d pipeline switches.
  100. *
  101. * read-only caches:
  102. *
  103. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  104. * MI_READ_FLUSH is set, and is always flushed on 965.
  105. *
  106. * I915_GEM_DOMAIN_COMMAND may not exist?
  107. *
  108. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  109. * invalidated when MI_EXE_FLUSH is set.
  110. *
  111. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  112. * invalidated with every MI_FLUSH.
  113. *
  114. * TLBs:
  115. *
  116. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  117. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  118. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  119. * are flushed at any MI_FLUSH.
  120. */
  121. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  122. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  123. cmd &= ~MI_NO_WRITE_FLUSH;
  124. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  125. cmd |= MI_EXE_FLUSH;
  126. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  127. (IS_G4X(dev) || IS_GEN5(dev)))
  128. cmd |= MI_INVALIDATE_ISP;
  129. ret = intel_ring_begin(req, 2);
  130. if (ret)
  131. return ret;
  132. intel_ring_emit(engine, cmd);
  133. intel_ring_emit(engine, MI_NOOP);
  134. intel_ring_advance(engine);
  135. return 0;
  136. }
  137. /**
  138. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  139. * implementing two workarounds on gen6. From section 1.4.7.1
  140. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  141. *
  142. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  143. * produced by non-pipelined state commands), software needs to first
  144. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  145. * 0.
  146. *
  147. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  148. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  149. *
  150. * And the workaround for these two requires this workaround first:
  151. *
  152. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  153. * BEFORE the pipe-control with a post-sync op and no write-cache
  154. * flushes.
  155. *
  156. * And this last workaround is tricky because of the requirements on
  157. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  158. * volume 2 part 1:
  159. *
  160. * "1 of the following must also be set:
  161. * - Render Target Cache Flush Enable ([12] of DW1)
  162. * - Depth Cache Flush Enable ([0] of DW1)
  163. * - Stall at Pixel Scoreboard ([1] of DW1)
  164. * - Depth Stall ([13] of DW1)
  165. * - Post-Sync Operation ([13] of DW1)
  166. * - Notify Enable ([8] of DW1)"
  167. *
  168. * The cache flushes require the workaround flush that triggered this
  169. * one, so we can't use it. Depth stall would trigger the same.
  170. * Post-sync nonzero is what triggered this second workaround, so we
  171. * can't use that one either. Notify enable is IRQs, which aren't
  172. * really our business. That leaves only stall at scoreboard.
  173. */
  174. static int
  175. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  176. {
  177. struct intel_engine_cs *engine = req->engine;
  178. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  179. int ret;
  180. ret = intel_ring_begin(req, 6);
  181. if (ret)
  182. return ret;
  183. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  184. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  185. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  186. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  187. intel_ring_emit(engine, 0); /* low dword */
  188. intel_ring_emit(engine, 0); /* high dword */
  189. intel_ring_emit(engine, MI_NOOP);
  190. intel_ring_advance(engine);
  191. ret = intel_ring_begin(req, 6);
  192. if (ret)
  193. return ret;
  194. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  195. intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
  196. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  197. intel_ring_emit(engine, 0);
  198. intel_ring_emit(engine, 0);
  199. intel_ring_emit(engine, MI_NOOP);
  200. intel_ring_advance(engine);
  201. return 0;
  202. }
  203. static int
  204. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  205. u32 invalidate_domains, u32 flush_domains)
  206. {
  207. struct intel_engine_cs *engine = req->engine;
  208. u32 flags = 0;
  209. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  210. int ret;
  211. /* Force SNB workarounds for PIPE_CONTROL flushes */
  212. ret = intel_emit_post_sync_nonzero_flush(req);
  213. if (ret)
  214. return ret;
  215. /* Just flush everything. Experiments have shown that reducing the
  216. * number of bits based on the write domains has little performance
  217. * impact.
  218. */
  219. if (flush_domains) {
  220. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  221. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  222. /*
  223. * Ensure that any following seqno writes only happen
  224. * when the render cache is indeed flushed.
  225. */
  226. flags |= PIPE_CONTROL_CS_STALL;
  227. }
  228. if (invalidate_domains) {
  229. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  230. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  231. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  232. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  233. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  234. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  235. /*
  236. * TLB invalidate requires a post-sync write.
  237. */
  238. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  239. }
  240. ret = intel_ring_begin(req, 4);
  241. if (ret)
  242. return ret;
  243. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  244. intel_ring_emit(engine, flags);
  245. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  246. intel_ring_emit(engine, 0);
  247. intel_ring_advance(engine);
  248. return 0;
  249. }
  250. static int
  251. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  252. {
  253. struct intel_engine_cs *engine = req->engine;
  254. int ret;
  255. ret = intel_ring_begin(req, 4);
  256. if (ret)
  257. return ret;
  258. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  259. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  260. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  261. intel_ring_emit(engine, 0);
  262. intel_ring_emit(engine, 0);
  263. intel_ring_advance(engine);
  264. return 0;
  265. }
  266. static int
  267. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  268. u32 invalidate_domains, u32 flush_domains)
  269. {
  270. struct intel_engine_cs *engine = req->engine;
  271. u32 flags = 0;
  272. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  273. int ret;
  274. /*
  275. * Ensure that any following seqno writes only happen when the render
  276. * cache is indeed flushed.
  277. *
  278. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  279. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  280. * don't try to be clever and just set it unconditionally.
  281. */
  282. flags |= PIPE_CONTROL_CS_STALL;
  283. /* Just flush everything. Experiments have shown that reducing the
  284. * number of bits based on the write domains has little performance
  285. * impact.
  286. */
  287. if (flush_domains) {
  288. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  289. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  290. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  291. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  292. }
  293. if (invalidate_domains) {
  294. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  295. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  296. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  297. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  298. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  299. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  300. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  301. /*
  302. * TLB invalidate requires a post-sync write.
  303. */
  304. flags |= PIPE_CONTROL_QW_WRITE;
  305. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  306. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  307. /* Workaround: we must issue a pipe_control with CS-stall bit
  308. * set before a pipe_control command that has the state cache
  309. * invalidate bit set. */
  310. gen7_render_ring_cs_stall_wa(req);
  311. }
  312. ret = intel_ring_begin(req, 4);
  313. if (ret)
  314. return ret;
  315. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  316. intel_ring_emit(engine, flags);
  317. intel_ring_emit(engine, scratch_addr);
  318. intel_ring_emit(engine, 0);
  319. intel_ring_advance(engine);
  320. return 0;
  321. }
  322. static int
  323. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  324. u32 flags, u32 scratch_addr)
  325. {
  326. struct intel_engine_cs *engine = req->engine;
  327. int ret;
  328. ret = intel_ring_begin(req, 6);
  329. if (ret)
  330. return ret;
  331. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  332. intel_ring_emit(engine, flags);
  333. intel_ring_emit(engine, scratch_addr);
  334. intel_ring_emit(engine, 0);
  335. intel_ring_emit(engine, 0);
  336. intel_ring_emit(engine, 0);
  337. intel_ring_advance(engine);
  338. return 0;
  339. }
  340. static int
  341. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  342. u32 invalidate_domains, u32 flush_domains)
  343. {
  344. u32 flags = 0;
  345. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  346. int ret;
  347. flags |= PIPE_CONTROL_CS_STALL;
  348. if (flush_domains) {
  349. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  350. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  351. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  352. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  353. }
  354. if (invalidate_domains) {
  355. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  356. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  357. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  358. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  359. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  360. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  361. flags |= PIPE_CONTROL_QW_WRITE;
  362. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  363. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  364. ret = gen8_emit_pipe_control(req,
  365. PIPE_CONTROL_CS_STALL |
  366. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  367. 0);
  368. if (ret)
  369. return ret;
  370. }
  371. return gen8_emit_pipe_control(req, flags, scratch_addr);
  372. }
  373. static void ring_write_tail(struct intel_engine_cs *engine,
  374. u32 value)
  375. {
  376. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  377. I915_WRITE_TAIL(engine, value);
  378. }
  379. u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
  380. {
  381. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  382. u64 acthd;
  383. if (INTEL_INFO(engine->dev)->gen >= 8)
  384. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  385. RING_ACTHD_UDW(engine->mmio_base));
  386. else if (INTEL_INFO(engine->dev)->gen >= 4)
  387. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  388. else
  389. acthd = I915_READ(ACTHD);
  390. return acthd;
  391. }
  392. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  393. {
  394. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  395. u32 addr;
  396. addr = dev_priv->status_page_dmah->busaddr;
  397. if (INTEL_INFO(engine->dev)->gen >= 4)
  398. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  399. I915_WRITE(HWS_PGA, addr);
  400. }
  401. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  402. {
  403. struct drm_device *dev = engine->dev;
  404. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  405. i915_reg_t mmio;
  406. /* The ring status page addresses are no longer next to the rest of
  407. * the ring registers as of gen7.
  408. */
  409. if (IS_GEN7(dev)) {
  410. switch (engine->id) {
  411. case RCS:
  412. mmio = RENDER_HWS_PGA_GEN7;
  413. break;
  414. case BCS:
  415. mmio = BLT_HWS_PGA_GEN7;
  416. break;
  417. /*
  418. * VCS2 actually doesn't exist on Gen7. Only shut up
  419. * gcc switch check warning
  420. */
  421. case VCS2:
  422. case VCS:
  423. mmio = BSD_HWS_PGA_GEN7;
  424. break;
  425. case VECS:
  426. mmio = VEBOX_HWS_PGA_GEN7;
  427. break;
  428. }
  429. } else if (IS_GEN6(engine->dev)) {
  430. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  431. } else {
  432. /* XXX: gen8 returns to sanity */
  433. mmio = RING_HWS_PGA(engine->mmio_base);
  434. }
  435. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  436. POSTING_READ(mmio);
  437. /*
  438. * Flush the TLB for this page
  439. *
  440. * FIXME: These two bits have disappeared on gen8, so a question
  441. * arises: do we still need this and if so how should we go about
  442. * invalidating the TLB?
  443. */
  444. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  445. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  446. /* ring should be idle before issuing a sync flush*/
  447. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  448. I915_WRITE(reg,
  449. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  450. INSTPM_SYNC_FLUSH));
  451. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  452. 1000))
  453. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  454. engine->name);
  455. }
  456. }
  457. static bool stop_ring(struct intel_engine_cs *engine)
  458. {
  459. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  460. if (!IS_GEN2(engine->dev)) {
  461. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  462. if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
  463. DRM_ERROR("%s : timed out trying to stop ring\n",
  464. engine->name);
  465. /* Sometimes we observe that the idle flag is not
  466. * set even though the ring is empty. So double
  467. * check before giving up.
  468. */
  469. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  470. return false;
  471. }
  472. }
  473. I915_WRITE_CTL(engine, 0);
  474. I915_WRITE_HEAD(engine, 0);
  475. engine->write_tail(engine, 0);
  476. if (!IS_GEN2(engine->dev)) {
  477. (void)I915_READ_CTL(engine);
  478. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  479. }
  480. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  481. }
  482. void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
  483. {
  484. memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
  485. }
  486. static int init_ring_common(struct intel_engine_cs *engine)
  487. {
  488. struct drm_device *dev = engine->dev;
  489. struct drm_i915_private *dev_priv = dev->dev_private;
  490. struct intel_ringbuffer *ringbuf = engine->buffer;
  491. struct drm_i915_gem_object *obj = ringbuf->obj;
  492. int ret = 0;
  493. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  494. if (!stop_ring(engine)) {
  495. /* G45 ring initialization often fails to reset head to zero */
  496. DRM_DEBUG_KMS("%s head not reset to zero "
  497. "ctl %08x head %08x tail %08x start %08x\n",
  498. engine->name,
  499. I915_READ_CTL(engine),
  500. I915_READ_HEAD(engine),
  501. I915_READ_TAIL(engine),
  502. I915_READ_START(engine));
  503. if (!stop_ring(engine)) {
  504. DRM_ERROR("failed to set %s head to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. engine->name,
  507. I915_READ_CTL(engine),
  508. I915_READ_HEAD(engine),
  509. I915_READ_TAIL(engine),
  510. I915_READ_START(engine));
  511. ret = -EIO;
  512. goto out;
  513. }
  514. }
  515. if (I915_NEED_GFX_HWS(dev))
  516. intel_ring_setup_status_page(engine);
  517. else
  518. ring_setup_phys_status_page(engine);
  519. /* Enforce ordering by reading HEAD register back */
  520. I915_READ_HEAD(engine);
  521. /* Initialize the ring. This must happen _after_ we've cleared the ring
  522. * registers with the above sequence (the readback of the HEAD registers
  523. * also enforces ordering), otherwise the hw might lose the new ring
  524. * register values. */
  525. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  526. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  527. if (I915_READ_HEAD(engine))
  528. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  529. engine->name, I915_READ_HEAD(engine));
  530. I915_WRITE_HEAD(engine, 0);
  531. (void)I915_READ_HEAD(engine);
  532. I915_WRITE_CTL(engine,
  533. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  534. | RING_VALID);
  535. /* If the head is still not zero, the ring is dead */
  536. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  537. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  538. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  539. DRM_ERROR("%s initialization failed "
  540. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  541. engine->name,
  542. I915_READ_CTL(engine),
  543. I915_READ_CTL(engine) & RING_VALID,
  544. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  545. I915_READ_START(engine),
  546. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  547. ret = -EIO;
  548. goto out;
  549. }
  550. ringbuf->last_retired_head = -1;
  551. ringbuf->head = I915_READ_HEAD(engine);
  552. ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  553. intel_ring_update_space(ringbuf);
  554. intel_engine_init_hangcheck(engine);
  555. out:
  556. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  557. return ret;
  558. }
  559. void
  560. intel_fini_pipe_control(struct intel_engine_cs *engine)
  561. {
  562. struct drm_device *dev = engine->dev;
  563. if (engine->scratch.obj == NULL)
  564. return;
  565. if (INTEL_INFO(dev)->gen >= 5) {
  566. kunmap(sg_page(engine->scratch.obj->pages->sgl));
  567. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  568. }
  569. drm_gem_object_unreference(&engine->scratch.obj->base);
  570. engine->scratch.obj = NULL;
  571. }
  572. int
  573. intel_init_pipe_control(struct intel_engine_cs *engine)
  574. {
  575. int ret;
  576. WARN_ON(engine->scratch.obj);
  577. engine->scratch.obj = i915_gem_object_create(engine->dev, 4096);
  578. if (IS_ERR(engine->scratch.obj)) {
  579. DRM_ERROR("Failed to allocate seqno page\n");
  580. ret = PTR_ERR(engine->scratch.obj);
  581. engine->scratch.obj = NULL;
  582. goto err;
  583. }
  584. ret = i915_gem_object_set_cache_level(engine->scratch.obj,
  585. I915_CACHE_LLC);
  586. if (ret)
  587. goto err_unref;
  588. ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
  589. if (ret)
  590. goto err_unref;
  591. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
  592. engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
  593. if (engine->scratch.cpu_page == NULL) {
  594. ret = -ENOMEM;
  595. goto err_unpin;
  596. }
  597. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  598. engine->name, engine->scratch.gtt_offset);
  599. return 0;
  600. err_unpin:
  601. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  602. err_unref:
  603. drm_gem_object_unreference(&engine->scratch.obj->base);
  604. err:
  605. return ret;
  606. }
  607. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  608. {
  609. int ret, i;
  610. struct intel_engine_cs *engine = req->engine;
  611. struct drm_device *dev = engine->dev;
  612. struct drm_i915_private *dev_priv = dev->dev_private;
  613. struct i915_workarounds *w = &dev_priv->workarounds;
  614. if (w->count == 0)
  615. return 0;
  616. engine->gpu_caches_dirty = true;
  617. ret = intel_ring_flush_all_caches(req);
  618. if (ret)
  619. return ret;
  620. ret = intel_ring_begin(req, (w->count * 2 + 2));
  621. if (ret)
  622. return ret;
  623. intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
  624. for (i = 0; i < w->count; i++) {
  625. intel_ring_emit_reg(engine, w->reg[i].addr);
  626. intel_ring_emit(engine, w->reg[i].value);
  627. }
  628. intel_ring_emit(engine, MI_NOOP);
  629. intel_ring_advance(engine);
  630. engine->gpu_caches_dirty = true;
  631. ret = intel_ring_flush_all_caches(req);
  632. if (ret)
  633. return ret;
  634. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  635. return 0;
  636. }
  637. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  638. {
  639. int ret;
  640. ret = intel_ring_workarounds_emit(req);
  641. if (ret != 0)
  642. return ret;
  643. ret = i915_gem_render_state_init(req);
  644. if (ret)
  645. return ret;
  646. return 0;
  647. }
  648. static int wa_add(struct drm_i915_private *dev_priv,
  649. i915_reg_t addr,
  650. const u32 mask, const u32 val)
  651. {
  652. const u32 idx = dev_priv->workarounds.count;
  653. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  654. return -ENOSPC;
  655. dev_priv->workarounds.reg[idx].addr = addr;
  656. dev_priv->workarounds.reg[idx].value = val;
  657. dev_priv->workarounds.reg[idx].mask = mask;
  658. dev_priv->workarounds.count++;
  659. return 0;
  660. }
  661. #define WA_REG(addr, mask, val) do { \
  662. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  663. if (r) \
  664. return r; \
  665. } while (0)
  666. #define WA_SET_BIT_MASKED(addr, mask) \
  667. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  668. #define WA_CLR_BIT_MASKED(addr, mask) \
  669. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  670. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  671. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  672. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  673. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  674. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  675. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  676. i915_reg_t reg)
  677. {
  678. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  679. struct i915_workarounds *wa = &dev_priv->workarounds;
  680. const uint32_t index = wa->hw_whitelist_count[engine->id];
  681. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  682. return -EINVAL;
  683. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  684. i915_mmio_reg_offset(reg));
  685. wa->hw_whitelist_count[engine->id]++;
  686. return 0;
  687. }
  688. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  689. {
  690. struct drm_device *dev = engine->dev;
  691. struct drm_i915_private *dev_priv = dev->dev_private;
  692. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  693. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  694. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  695. /* WaDisablePartialInstShootdown:bdw,chv */
  696. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  697. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  698. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  699. * workaround for for a possible hang in the unlikely event a TLB
  700. * invalidation occurs during a PSD flush.
  701. */
  702. /* WaForceEnableNonCoherent:bdw,chv */
  703. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  704. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  705. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  706. HDC_FORCE_NON_COHERENT);
  707. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  708. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  709. * polygons in the same 8x4 pixel/sample area to be processed without
  710. * stalling waiting for the earlier ones to write to Hierarchical Z
  711. * buffer."
  712. *
  713. * This optimization is off by default for BDW and CHV; turn it on.
  714. */
  715. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  716. /* Wa4x4STCOptimizationDisable:bdw,chv */
  717. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  718. /*
  719. * BSpec recommends 8x4 when MSAA is used,
  720. * however in practice 16x4 seems fastest.
  721. *
  722. * Note that PS/WM thread counts depend on the WIZ hashing
  723. * disable bit, which we don't touch here, but it's good
  724. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  725. */
  726. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  727. GEN6_WIZ_HASHING_MASK,
  728. GEN6_WIZ_HASHING_16x4);
  729. return 0;
  730. }
  731. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  732. {
  733. int ret;
  734. struct drm_device *dev = engine->dev;
  735. struct drm_i915_private *dev_priv = dev->dev_private;
  736. ret = gen8_init_workarounds(engine);
  737. if (ret)
  738. return ret;
  739. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  740. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  741. /* WaDisableDopClockGating:bdw */
  742. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  743. DOP_CLOCK_GATING_DISABLE);
  744. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  745. GEN8_SAMPLER_POWER_BYPASS_DIS);
  746. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  747. /* WaForceContextSaveRestoreNonCoherent:bdw */
  748. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  749. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  750. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  751. return 0;
  752. }
  753. static int chv_init_workarounds(struct intel_engine_cs *engine)
  754. {
  755. int ret;
  756. struct drm_device *dev = engine->dev;
  757. struct drm_i915_private *dev_priv = dev->dev_private;
  758. ret = gen8_init_workarounds(engine);
  759. if (ret)
  760. return ret;
  761. /* WaDisableThreadStallDopClockGating:chv */
  762. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  763. /* Improve HiZ throughput on CHV. */
  764. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  765. return 0;
  766. }
  767. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  768. {
  769. struct drm_device *dev = engine->dev;
  770. struct drm_i915_private *dev_priv = dev->dev_private;
  771. uint32_t tmp;
  772. int ret;
  773. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  774. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  775. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  776. /* WaDisableKillLogic:bxt,skl */
  777. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  778. ECOCHK_DIS_TLB);
  779. /* WaClearFlowControlGpgpuContextSave:skl,bxt */
  780. /* WaDisablePartialInstShootdown:skl,bxt */
  781. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  782. FLOW_CONTROL_ENABLE |
  783. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  784. /* Syncing dependencies between camera and graphics:skl,bxt */
  785. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  786. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  787. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  788. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  789. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  790. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  791. GEN9_DG_MIRROR_FIX_ENABLE);
  792. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  793. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  794. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  795. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  796. GEN9_RHWO_OPTIMIZATION_DISABLE);
  797. /*
  798. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  799. * but we do that in per ctx batchbuffer as there is an issue
  800. * with this register not getting restored on ctx restore
  801. */
  802. }
  803. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  804. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt */
  805. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  806. GEN9_ENABLE_YV12_BUGFIX |
  807. GEN9_ENABLE_GPGPU_PREEMPTION);
  808. /* Wa4x4STCOptimizationDisable:skl,bxt */
  809. /* WaDisablePartialResolveInVc:skl,bxt */
  810. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  811. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  812. /* WaCcsTlbPrefetchDisable:skl,bxt */
  813. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  814. GEN9_CCS_TLB_PREFETCH_ENABLE);
  815. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  816. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
  817. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  818. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  819. PIXEL_MASK_CAMMING_DISABLE);
  820. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  821. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  822. if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
  823. IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  824. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  825. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  826. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  827. if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
  828. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  829. GEN8_SAMPLER_POWER_BYPASS_DIS);
  830. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  831. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  832. /* WaOCLCoherentLineFlush:skl,bxt */
  833. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  834. GEN8_LQSC_FLUSH_COHERENT_LINES));
  835. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
  836. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  837. if (ret)
  838. return ret;
  839. /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
  840. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  841. if (ret)
  842. return ret;
  843. return 0;
  844. }
  845. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  846. {
  847. struct drm_device *dev = engine->dev;
  848. struct drm_i915_private *dev_priv = dev->dev_private;
  849. u8 vals[3] = { 0, 0, 0 };
  850. unsigned int i;
  851. for (i = 0; i < 3; i++) {
  852. u8 ss;
  853. /*
  854. * Only consider slices where one, and only one, subslice has 7
  855. * EUs
  856. */
  857. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  858. continue;
  859. /*
  860. * subslice_7eu[i] != 0 (because of the check above) and
  861. * ss_max == 4 (maximum number of subslices possible per slice)
  862. *
  863. * -> 0 <= ss <= 3;
  864. */
  865. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  866. vals[i] = 3 - ss;
  867. }
  868. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  869. return 0;
  870. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  871. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  872. GEN9_IZ_HASHING_MASK(2) |
  873. GEN9_IZ_HASHING_MASK(1) |
  874. GEN9_IZ_HASHING_MASK(0),
  875. GEN9_IZ_HASHING(2, vals[2]) |
  876. GEN9_IZ_HASHING(1, vals[1]) |
  877. GEN9_IZ_HASHING(0, vals[0]));
  878. return 0;
  879. }
  880. static int skl_init_workarounds(struct intel_engine_cs *engine)
  881. {
  882. int ret;
  883. struct drm_device *dev = engine->dev;
  884. struct drm_i915_private *dev_priv = dev->dev_private;
  885. ret = gen9_init_workarounds(engine);
  886. if (ret)
  887. return ret;
  888. /*
  889. * Actual WA is to disable percontext preemption granularity control
  890. * until D0 which is the default case so this is equivalent to
  891. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  892. */
  893. if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
  894. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  895. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  896. }
  897. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
  898. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  899. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  900. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  901. }
  902. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  903. * involving this register should also be added to WA batch as required.
  904. */
  905. if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
  906. /* WaDisableLSQCROPERFforOCL:skl */
  907. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  908. GEN8_LQSC_RO_PERF_DIS);
  909. /* WaEnableGapsTsvCreditFix:skl */
  910. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
  911. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  912. GEN9_GAPS_TSV_CREDIT_DISABLE));
  913. }
  914. /* WaDisablePowerCompilerClockGating:skl */
  915. if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
  916. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  917. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  918. /* This is tied to WaForceContextSaveRestoreNonCoherent */
  919. if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
  920. /*
  921. *Use Force Non-Coherent whenever executing a 3D context. This
  922. * is a workaround for a possible hang in the unlikely event
  923. * a TLB invalidation occurs during a PSD flush.
  924. */
  925. /* WaForceEnableNonCoherent:skl */
  926. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  927. HDC_FORCE_NON_COHERENT);
  928. /* WaDisableHDCInvalidation:skl */
  929. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  930. BDW_DISABLE_HDC_INVALIDATION);
  931. }
  932. /* WaBarrierPerformanceFixDisable:skl */
  933. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
  934. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  935. HDC_FENCE_DEST_SLM_DISABLE |
  936. HDC_BARRIER_PERFORMANCE_DISABLE);
  937. /* WaDisableSbeCacheDispatchPortSharing:skl */
  938. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
  939. WA_SET_BIT_MASKED(
  940. GEN7_HALF_SLICE_CHICKEN1,
  941. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  942. /* WaDisableLSQCROPERFforOCL:skl */
  943. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  944. if (ret)
  945. return ret;
  946. return skl_tune_iz_hashing(engine);
  947. }
  948. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  949. {
  950. int ret;
  951. struct drm_device *dev = engine->dev;
  952. struct drm_i915_private *dev_priv = dev->dev_private;
  953. ret = gen9_init_workarounds(engine);
  954. if (ret)
  955. return ret;
  956. /* WaStoreMultiplePTEenable:bxt */
  957. /* This is a requirement according to Hardware specification */
  958. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  959. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  960. /* WaSetClckGatingDisableMedia:bxt */
  961. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  962. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  963. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  964. }
  965. /* WaDisableThreadStallDopClockGating:bxt */
  966. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  967. STALL_DOP_GATING_DISABLE);
  968. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  969. if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
  970. WA_SET_BIT_MASKED(
  971. GEN7_HALF_SLICE_CHICKEN1,
  972. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  973. }
  974. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  975. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  976. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  977. /* WaDisableLSQCROPERFforOCL:bxt */
  978. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  979. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  980. if (ret)
  981. return ret;
  982. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  983. if (ret)
  984. return ret;
  985. }
  986. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  987. if (IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  988. I915_WRITE(GEN8_L3SQCREG1, BXT_WA_L3SQCREG1_DEFAULT);
  989. return 0;
  990. }
  991. int init_workarounds_ring(struct intel_engine_cs *engine)
  992. {
  993. struct drm_device *dev = engine->dev;
  994. struct drm_i915_private *dev_priv = dev->dev_private;
  995. WARN_ON(engine->id != RCS);
  996. dev_priv->workarounds.count = 0;
  997. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  998. if (IS_BROADWELL(dev))
  999. return bdw_init_workarounds(engine);
  1000. if (IS_CHERRYVIEW(dev))
  1001. return chv_init_workarounds(engine);
  1002. if (IS_SKYLAKE(dev))
  1003. return skl_init_workarounds(engine);
  1004. if (IS_BROXTON(dev))
  1005. return bxt_init_workarounds(engine);
  1006. return 0;
  1007. }
  1008. static int init_render_ring(struct intel_engine_cs *engine)
  1009. {
  1010. struct drm_device *dev = engine->dev;
  1011. struct drm_i915_private *dev_priv = dev->dev_private;
  1012. int ret = init_ring_common(engine);
  1013. if (ret)
  1014. return ret;
  1015. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1016. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  1017. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1018. /* We need to disable the AsyncFlip performance optimisations in order
  1019. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1020. * programmed to '1' on all products.
  1021. *
  1022. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1023. */
  1024. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  1025. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1026. /* Required for the hardware to program scanline values for waiting */
  1027. /* WaEnableFlushTlbInvalidationMode:snb */
  1028. if (INTEL_INFO(dev)->gen == 6)
  1029. I915_WRITE(GFX_MODE,
  1030. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1031. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1032. if (IS_GEN7(dev))
  1033. I915_WRITE(GFX_MODE_GEN7,
  1034. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1035. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1036. if (IS_GEN6(dev)) {
  1037. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1038. * "If this bit is set, STCunit will have LRA as replacement
  1039. * policy. [...] This bit must be reset. LRA replacement
  1040. * policy is not supported."
  1041. */
  1042. I915_WRITE(CACHE_MODE_0,
  1043. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1044. }
  1045. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  1046. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1047. if (HAS_L3_DPF(dev))
  1048. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
  1049. return init_workarounds_ring(engine);
  1050. }
  1051. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1052. {
  1053. struct drm_device *dev = engine->dev;
  1054. struct drm_i915_private *dev_priv = dev->dev_private;
  1055. if (dev_priv->semaphore_obj) {
  1056. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1057. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1058. dev_priv->semaphore_obj = NULL;
  1059. }
  1060. intel_fini_pipe_control(engine);
  1061. }
  1062. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1063. unsigned int num_dwords)
  1064. {
  1065. #define MBOX_UPDATE_DWORDS 8
  1066. struct intel_engine_cs *signaller = signaller_req->engine;
  1067. struct drm_device *dev = signaller->dev;
  1068. struct drm_i915_private *dev_priv = dev->dev_private;
  1069. struct intel_engine_cs *waiter;
  1070. enum intel_engine_id id;
  1071. int ret, num_rings;
  1072. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1073. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1074. #undef MBOX_UPDATE_DWORDS
  1075. ret = intel_ring_begin(signaller_req, num_dwords);
  1076. if (ret)
  1077. return ret;
  1078. for_each_engine_id(waiter, dev_priv, id) {
  1079. u32 seqno;
  1080. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1081. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1082. continue;
  1083. seqno = i915_gem_request_get_seqno(signaller_req);
  1084. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1085. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1086. PIPE_CONTROL_QW_WRITE |
  1087. PIPE_CONTROL_FLUSH_ENABLE);
  1088. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1089. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1090. intel_ring_emit(signaller, seqno);
  1091. intel_ring_emit(signaller, 0);
  1092. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1093. MI_SEMAPHORE_TARGET(waiter->id));
  1094. intel_ring_emit(signaller, 0);
  1095. }
  1096. return 0;
  1097. }
  1098. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1099. unsigned int num_dwords)
  1100. {
  1101. #define MBOX_UPDATE_DWORDS 6
  1102. struct intel_engine_cs *signaller = signaller_req->engine;
  1103. struct drm_device *dev = signaller->dev;
  1104. struct drm_i915_private *dev_priv = dev->dev_private;
  1105. struct intel_engine_cs *waiter;
  1106. enum intel_engine_id id;
  1107. int ret, num_rings;
  1108. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1109. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1110. #undef MBOX_UPDATE_DWORDS
  1111. ret = intel_ring_begin(signaller_req, num_dwords);
  1112. if (ret)
  1113. return ret;
  1114. for_each_engine_id(waiter, dev_priv, id) {
  1115. u32 seqno;
  1116. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1117. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1118. continue;
  1119. seqno = i915_gem_request_get_seqno(signaller_req);
  1120. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1121. MI_FLUSH_DW_OP_STOREDW);
  1122. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1123. MI_FLUSH_DW_USE_GTT);
  1124. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1125. intel_ring_emit(signaller, seqno);
  1126. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1127. MI_SEMAPHORE_TARGET(waiter->id));
  1128. intel_ring_emit(signaller, 0);
  1129. }
  1130. return 0;
  1131. }
  1132. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1133. unsigned int num_dwords)
  1134. {
  1135. struct intel_engine_cs *signaller = signaller_req->engine;
  1136. struct drm_device *dev = signaller->dev;
  1137. struct drm_i915_private *dev_priv = dev->dev_private;
  1138. struct intel_engine_cs *useless;
  1139. enum intel_engine_id id;
  1140. int ret, num_rings;
  1141. #define MBOX_UPDATE_DWORDS 3
  1142. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1143. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1144. #undef MBOX_UPDATE_DWORDS
  1145. ret = intel_ring_begin(signaller_req, num_dwords);
  1146. if (ret)
  1147. return ret;
  1148. for_each_engine_id(useless, dev_priv, id) {
  1149. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
  1150. if (i915_mmio_reg_valid(mbox_reg)) {
  1151. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1152. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1153. intel_ring_emit_reg(signaller, mbox_reg);
  1154. intel_ring_emit(signaller, seqno);
  1155. }
  1156. }
  1157. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1158. if (num_rings % 2 == 0)
  1159. intel_ring_emit(signaller, MI_NOOP);
  1160. return 0;
  1161. }
  1162. /**
  1163. * gen6_add_request - Update the semaphore mailbox registers
  1164. *
  1165. * @request - request to write to the ring
  1166. *
  1167. * Update the mailbox registers in the *other* rings with the current seqno.
  1168. * This acts like a signal in the canonical semaphore.
  1169. */
  1170. static int
  1171. gen6_add_request(struct drm_i915_gem_request *req)
  1172. {
  1173. struct intel_engine_cs *engine = req->engine;
  1174. int ret;
  1175. if (engine->semaphore.signal)
  1176. ret = engine->semaphore.signal(req, 4);
  1177. else
  1178. ret = intel_ring_begin(req, 4);
  1179. if (ret)
  1180. return ret;
  1181. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1182. intel_ring_emit(engine,
  1183. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1184. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1185. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1186. __intel_ring_advance(engine);
  1187. return 0;
  1188. }
  1189. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1190. u32 seqno)
  1191. {
  1192. struct drm_i915_private *dev_priv = dev->dev_private;
  1193. return dev_priv->last_seqno < seqno;
  1194. }
  1195. /**
  1196. * intel_ring_sync - sync the waiter to the signaller on seqno
  1197. *
  1198. * @waiter - ring that is waiting
  1199. * @signaller - ring which has, or will signal
  1200. * @seqno - seqno which the waiter will block on
  1201. */
  1202. static int
  1203. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1204. struct intel_engine_cs *signaller,
  1205. u32 seqno)
  1206. {
  1207. struct intel_engine_cs *waiter = waiter_req->engine;
  1208. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1209. int ret;
  1210. ret = intel_ring_begin(waiter_req, 4);
  1211. if (ret)
  1212. return ret;
  1213. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1214. MI_SEMAPHORE_GLOBAL_GTT |
  1215. MI_SEMAPHORE_POLL |
  1216. MI_SEMAPHORE_SAD_GTE_SDD);
  1217. intel_ring_emit(waiter, seqno);
  1218. intel_ring_emit(waiter,
  1219. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1220. intel_ring_emit(waiter,
  1221. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1222. intel_ring_advance(waiter);
  1223. return 0;
  1224. }
  1225. static int
  1226. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1227. struct intel_engine_cs *signaller,
  1228. u32 seqno)
  1229. {
  1230. struct intel_engine_cs *waiter = waiter_req->engine;
  1231. u32 dw1 = MI_SEMAPHORE_MBOX |
  1232. MI_SEMAPHORE_COMPARE |
  1233. MI_SEMAPHORE_REGISTER;
  1234. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1235. int ret;
  1236. /* Throughout all of the GEM code, seqno passed implies our current
  1237. * seqno is >= the last seqno executed. However for hardware the
  1238. * comparison is strictly greater than.
  1239. */
  1240. seqno -= 1;
  1241. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1242. ret = intel_ring_begin(waiter_req, 4);
  1243. if (ret)
  1244. return ret;
  1245. /* If seqno wrap happened, omit the wait with no-ops */
  1246. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1247. intel_ring_emit(waiter, dw1 | wait_mbox);
  1248. intel_ring_emit(waiter, seqno);
  1249. intel_ring_emit(waiter, 0);
  1250. intel_ring_emit(waiter, MI_NOOP);
  1251. } else {
  1252. intel_ring_emit(waiter, MI_NOOP);
  1253. intel_ring_emit(waiter, MI_NOOP);
  1254. intel_ring_emit(waiter, MI_NOOP);
  1255. intel_ring_emit(waiter, MI_NOOP);
  1256. }
  1257. intel_ring_advance(waiter);
  1258. return 0;
  1259. }
  1260. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1261. do { \
  1262. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1263. PIPE_CONTROL_DEPTH_STALL); \
  1264. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1265. intel_ring_emit(ring__, 0); \
  1266. intel_ring_emit(ring__, 0); \
  1267. } while (0)
  1268. static int
  1269. pc_render_add_request(struct drm_i915_gem_request *req)
  1270. {
  1271. struct intel_engine_cs *engine = req->engine;
  1272. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1273. int ret;
  1274. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1275. * incoherent with writes to memory, i.e. completely fubar,
  1276. * so we need to use PIPE_NOTIFY instead.
  1277. *
  1278. * However, we also need to workaround the qword write
  1279. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1280. * memory before requesting an interrupt.
  1281. */
  1282. ret = intel_ring_begin(req, 32);
  1283. if (ret)
  1284. return ret;
  1285. intel_ring_emit(engine,
  1286. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1287. PIPE_CONTROL_WRITE_FLUSH |
  1288. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1289. intel_ring_emit(engine,
  1290. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1291. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1292. intel_ring_emit(engine, 0);
  1293. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1294. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1295. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1296. scratch_addr += 2 * CACHELINE_BYTES;
  1297. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1298. scratch_addr += 2 * CACHELINE_BYTES;
  1299. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1300. scratch_addr += 2 * CACHELINE_BYTES;
  1301. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1302. scratch_addr += 2 * CACHELINE_BYTES;
  1303. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1304. intel_ring_emit(engine,
  1305. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1306. PIPE_CONTROL_WRITE_FLUSH |
  1307. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1308. PIPE_CONTROL_NOTIFY);
  1309. intel_ring_emit(engine,
  1310. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1311. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1312. intel_ring_emit(engine, 0);
  1313. __intel_ring_advance(engine);
  1314. return 0;
  1315. }
  1316. static void
  1317. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1318. {
  1319. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  1320. /* Workaround to force correct ordering between irq and seqno writes on
  1321. * ivb (and maybe also on snb) by reading from a CS register (like
  1322. * ACTHD) before reading the status page.
  1323. *
  1324. * Note that this effectively stalls the read by the time it takes to
  1325. * do a memory transaction, which more or less ensures that the write
  1326. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1327. * Alternatively we could delay the interrupt from the CS ring to give
  1328. * the write time to land, but that would incur a delay after every
  1329. * batch i.e. much more frequent than a delay when waiting for the
  1330. * interrupt (with the same net latency).
  1331. *
  1332. * Also note that to prevent whole machine hangs on gen7, we have to
  1333. * take the spinlock to guard against concurrent cacheline access.
  1334. */
  1335. spin_lock_irq(&dev_priv->uncore.lock);
  1336. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1337. spin_unlock_irq(&dev_priv->uncore.lock);
  1338. }
  1339. static u32
  1340. ring_get_seqno(struct intel_engine_cs *engine)
  1341. {
  1342. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  1343. }
  1344. static void
  1345. ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1346. {
  1347. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  1348. }
  1349. static u32
  1350. pc_render_get_seqno(struct intel_engine_cs *engine)
  1351. {
  1352. return engine->scratch.cpu_page[0];
  1353. }
  1354. static void
  1355. pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1356. {
  1357. engine->scratch.cpu_page[0] = seqno;
  1358. }
  1359. static bool
  1360. gen5_ring_get_irq(struct intel_engine_cs *engine)
  1361. {
  1362. struct drm_device *dev = engine->dev;
  1363. struct drm_i915_private *dev_priv = dev->dev_private;
  1364. unsigned long flags;
  1365. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1366. return false;
  1367. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1368. if (engine->irq_refcount++ == 0)
  1369. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1370. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1371. return true;
  1372. }
  1373. static void
  1374. gen5_ring_put_irq(struct intel_engine_cs *engine)
  1375. {
  1376. struct drm_device *dev = engine->dev;
  1377. struct drm_i915_private *dev_priv = dev->dev_private;
  1378. unsigned long flags;
  1379. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1380. if (--engine->irq_refcount == 0)
  1381. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1382. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1383. }
  1384. static bool
  1385. i9xx_ring_get_irq(struct intel_engine_cs *engine)
  1386. {
  1387. struct drm_device *dev = engine->dev;
  1388. struct drm_i915_private *dev_priv = dev->dev_private;
  1389. unsigned long flags;
  1390. if (!intel_irqs_enabled(dev_priv))
  1391. return false;
  1392. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1393. if (engine->irq_refcount++ == 0) {
  1394. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1395. I915_WRITE(IMR, dev_priv->irq_mask);
  1396. POSTING_READ(IMR);
  1397. }
  1398. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1399. return true;
  1400. }
  1401. static void
  1402. i9xx_ring_put_irq(struct intel_engine_cs *engine)
  1403. {
  1404. struct drm_device *dev = engine->dev;
  1405. struct drm_i915_private *dev_priv = dev->dev_private;
  1406. unsigned long flags;
  1407. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1408. if (--engine->irq_refcount == 0) {
  1409. dev_priv->irq_mask |= engine->irq_enable_mask;
  1410. I915_WRITE(IMR, dev_priv->irq_mask);
  1411. POSTING_READ(IMR);
  1412. }
  1413. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1414. }
  1415. static bool
  1416. i8xx_ring_get_irq(struct intel_engine_cs *engine)
  1417. {
  1418. struct drm_device *dev = engine->dev;
  1419. struct drm_i915_private *dev_priv = dev->dev_private;
  1420. unsigned long flags;
  1421. if (!intel_irqs_enabled(dev_priv))
  1422. return false;
  1423. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1424. if (engine->irq_refcount++ == 0) {
  1425. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1426. I915_WRITE16(IMR, dev_priv->irq_mask);
  1427. POSTING_READ16(IMR);
  1428. }
  1429. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1430. return true;
  1431. }
  1432. static void
  1433. i8xx_ring_put_irq(struct intel_engine_cs *engine)
  1434. {
  1435. struct drm_device *dev = engine->dev;
  1436. struct drm_i915_private *dev_priv = dev->dev_private;
  1437. unsigned long flags;
  1438. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1439. if (--engine->irq_refcount == 0) {
  1440. dev_priv->irq_mask |= engine->irq_enable_mask;
  1441. I915_WRITE16(IMR, dev_priv->irq_mask);
  1442. POSTING_READ16(IMR);
  1443. }
  1444. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1445. }
  1446. static int
  1447. bsd_ring_flush(struct drm_i915_gem_request *req,
  1448. u32 invalidate_domains,
  1449. u32 flush_domains)
  1450. {
  1451. struct intel_engine_cs *engine = req->engine;
  1452. int ret;
  1453. ret = intel_ring_begin(req, 2);
  1454. if (ret)
  1455. return ret;
  1456. intel_ring_emit(engine, MI_FLUSH);
  1457. intel_ring_emit(engine, MI_NOOP);
  1458. intel_ring_advance(engine);
  1459. return 0;
  1460. }
  1461. static int
  1462. i9xx_add_request(struct drm_i915_gem_request *req)
  1463. {
  1464. struct intel_engine_cs *engine = req->engine;
  1465. int ret;
  1466. ret = intel_ring_begin(req, 4);
  1467. if (ret)
  1468. return ret;
  1469. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1470. intel_ring_emit(engine,
  1471. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1472. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1473. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1474. __intel_ring_advance(engine);
  1475. return 0;
  1476. }
  1477. static bool
  1478. gen6_ring_get_irq(struct intel_engine_cs *engine)
  1479. {
  1480. struct drm_device *dev = engine->dev;
  1481. struct drm_i915_private *dev_priv = dev->dev_private;
  1482. unsigned long flags;
  1483. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1484. return false;
  1485. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1486. if (engine->irq_refcount++ == 0) {
  1487. if (HAS_L3_DPF(dev) && engine->id == RCS)
  1488. I915_WRITE_IMR(engine,
  1489. ~(engine->irq_enable_mask |
  1490. GT_PARITY_ERROR(dev)));
  1491. else
  1492. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1493. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1494. }
  1495. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1496. return true;
  1497. }
  1498. static void
  1499. gen6_ring_put_irq(struct intel_engine_cs *engine)
  1500. {
  1501. struct drm_device *dev = engine->dev;
  1502. struct drm_i915_private *dev_priv = dev->dev_private;
  1503. unsigned long flags;
  1504. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1505. if (--engine->irq_refcount == 0) {
  1506. if (HAS_L3_DPF(dev) && engine->id == RCS)
  1507. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
  1508. else
  1509. I915_WRITE_IMR(engine, ~0);
  1510. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1511. }
  1512. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1513. }
  1514. static bool
  1515. hsw_vebox_get_irq(struct intel_engine_cs *engine)
  1516. {
  1517. struct drm_device *dev = engine->dev;
  1518. struct drm_i915_private *dev_priv = dev->dev_private;
  1519. unsigned long flags;
  1520. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1521. return false;
  1522. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1523. if (engine->irq_refcount++ == 0) {
  1524. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1525. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1526. }
  1527. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1528. return true;
  1529. }
  1530. static void
  1531. hsw_vebox_put_irq(struct intel_engine_cs *engine)
  1532. {
  1533. struct drm_device *dev = engine->dev;
  1534. struct drm_i915_private *dev_priv = dev->dev_private;
  1535. unsigned long flags;
  1536. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1537. if (--engine->irq_refcount == 0) {
  1538. I915_WRITE_IMR(engine, ~0);
  1539. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1540. }
  1541. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1542. }
  1543. static bool
  1544. gen8_ring_get_irq(struct intel_engine_cs *engine)
  1545. {
  1546. struct drm_device *dev = engine->dev;
  1547. struct drm_i915_private *dev_priv = dev->dev_private;
  1548. unsigned long flags;
  1549. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1550. return false;
  1551. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1552. if (engine->irq_refcount++ == 0) {
  1553. if (HAS_L3_DPF(dev) && engine->id == RCS) {
  1554. I915_WRITE_IMR(engine,
  1555. ~(engine->irq_enable_mask |
  1556. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1557. } else {
  1558. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1559. }
  1560. POSTING_READ(RING_IMR(engine->mmio_base));
  1561. }
  1562. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1563. return true;
  1564. }
  1565. static void
  1566. gen8_ring_put_irq(struct intel_engine_cs *engine)
  1567. {
  1568. struct drm_device *dev = engine->dev;
  1569. struct drm_i915_private *dev_priv = dev->dev_private;
  1570. unsigned long flags;
  1571. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1572. if (--engine->irq_refcount == 0) {
  1573. if (HAS_L3_DPF(dev) && engine->id == RCS) {
  1574. I915_WRITE_IMR(engine,
  1575. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1576. } else {
  1577. I915_WRITE_IMR(engine, ~0);
  1578. }
  1579. POSTING_READ(RING_IMR(engine->mmio_base));
  1580. }
  1581. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1582. }
  1583. static int
  1584. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1585. u64 offset, u32 length,
  1586. unsigned dispatch_flags)
  1587. {
  1588. struct intel_engine_cs *engine = req->engine;
  1589. int ret;
  1590. ret = intel_ring_begin(req, 2);
  1591. if (ret)
  1592. return ret;
  1593. intel_ring_emit(engine,
  1594. MI_BATCH_BUFFER_START |
  1595. MI_BATCH_GTT |
  1596. (dispatch_flags & I915_DISPATCH_SECURE ?
  1597. 0 : MI_BATCH_NON_SECURE_I965));
  1598. intel_ring_emit(engine, offset);
  1599. intel_ring_advance(engine);
  1600. return 0;
  1601. }
  1602. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1603. #define I830_BATCH_LIMIT (256*1024)
  1604. #define I830_TLB_ENTRIES (2)
  1605. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1606. static int
  1607. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1608. u64 offset, u32 len,
  1609. unsigned dispatch_flags)
  1610. {
  1611. struct intel_engine_cs *engine = req->engine;
  1612. u32 cs_offset = engine->scratch.gtt_offset;
  1613. int ret;
  1614. ret = intel_ring_begin(req, 6);
  1615. if (ret)
  1616. return ret;
  1617. /* Evict the invalid PTE TLBs */
  1618. intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1619. intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1620. intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1621. intel_ring_emit(engine, cs_offset);
  1622. intel_ring_emit(engine, 0xdeadbeef);
  1623. intel_ring_emit(engine, MI_NOOP);
  1624. intel_ring_advance(engine);
  1625. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1626. if (len > I830_BATCH_LIMIT)
  1627. return -ENOSPC;
  1628. ret = intel_ring_begin(req, 6 + 2);
  1629. if (ret)
  1630. return ret;
  1631. /* Blit the batch (which has now all relocs applied) to the
  1632. * stable batch scratch bo area (so that the CS never
  1633. * stumbles over its tlb invalidation bug) ...
  1634. */
  1635. intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1636. intel_ring_emit(engine,
  1637. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1638. intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1639. intel_ring_emit(engine, cs_offset);
  1640. intel_ring_emit(engine, 4096);
  1641. intel_ring_emit(engine, offset);
  1642. intel_ring_emit(engine, MI_FLUSH);
  1643. intel_ring_emit(engine, MI_NOOP);
  1644. intel_ring_advance(engine);
  1645. /* ... and execute it. */
  1646. offset = cs_offset;
  1647. }
  1648. ret = intel_ring_begin(req, 2);
  1649. if (ret)
  1650. return ret;
  1651. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1652. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1653. 0 : MI_BATCH_NON_SECURE));
  1654. intel_ring_advance(engine);
  1655. return 0;
  1656. }
  1657. static int
  1658. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1659. u64 offset, u32 len,
  1660. unsigned dispatch_flags)
  1661. {
  1662. struct intel_engine_cs *engine = req->engine;
  1663. int ret;
  1664. ret = intel_ring_begin(req, 2);
  1665. if (ret)
  1666. return ret;
  1667. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1668. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1669. 0 : MI_BATCH_NON_SECURE));
  1670. intel_ring_advance(engine);
  1671. return 0;
  1672. }
  1673. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1674. {
  1675. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  1676. if (!dev_priv->status_page_dmah)
  1677. return;
  1678. drm_pci_free(engine->dev, dev_priv->status_page_dmah);
  1679. engine->status_page.page_addr = NULL;
  1680. }
  1681. static void cleanup_status_page(struct intel_engine_cs *engine)
  1682. {
  1683. struct drm_i915_gem_object *obj;
  1684. obj = engine->status_page.obj;
  1685. if (obj == NULL)
  1686. return;
  1687. kunmap(sg_page(obj->pages->sgl));
  1688. i915_gem_object_ggtt_unpin(obj);
  1689. drm_gem_object_unreference(&obj->base);
  1690. engine->status_page.obj = NULL;
  1691. }
  1692. static int init_status_page(struct intel_engine_cs *engine)
  1693. {
  1694. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1695. if (obj == NULL) {
  1696. unsigned flags;
  1697. int ret;
  1698. obj = i915_gem_object_create(engine->dev, 4096);
  1699. if (IS_ERR(obj)) {
  1700. DRM_ERROR("Failed to allocate status page\n");
  1701. return PTR_ERR(obj);
  1702. }
  1703. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1704. if (ret)
  1705. goto err_unref;
  1706. flags = 0;
  1707. if (!HAS_LLC(engine->dev))
  1708. /* On g33, we cannot place HWS above 256MiB, so
  1709. * restrict its pinning to the low mappable arena.
  1710. * Though this restriction is not documented for
  1711. * gen4, gen5, or byt, they also behave similarly
  1712. * and hang if the HWS is placed at the top of the
  1713. * GTT. To generalise, it appears that all !llc
  1714. * platforms have issues with us placing the HWS
  1715. * above the mappable region (even though we never
  1716. * actualy map it).
  1717. */
  1718. flags |= PIN_MAPPABLE;
  1719. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1720. if (ret) {
  1721. err_unref:
  1722. drm_gem_object_unreference(&obj->base);
  1723. return ret;
  1724. }
  1725. engine->status_page.obj = obj;
  1726. }
  1727. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1728. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1729. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1730. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1731. engine->name, engine->status_page.gfx_addr);
  1732. return 0;
  1733. }
  1734. static int init_phys_status_page(struct intel_engine_cs *engine)
  1735. {
  1736. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  1737. if (!dev_priv->status_page_dmah) {
  1738. dev_priv->status_page_dmah =
  1739. drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
  1740. if (!dev_priv->status_page_dmah)
  1741. return -ENOMEM;
  1742. }
  1743. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1744. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1745. return 0;
  1746. }
  1747. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1748. {
  1749. GEM_BUG_ON(ringbuf->vma == NULL);
  1750. GEM_BUG_ON(ringbuf->virtual_start == NULL);
  1751. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1752. i915_gem_object_unpin_map(ringbuf->obj);
  1753. else
  1754. i915_vma_unpin_iomap(ringbuf->vma);
  1755. ringbuf->virtual_start = NULL;
  1756. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1757. ringbuf->vma = NULL;
  1758. }
  1759. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1760. struct intel_ringbuffer *ringbuf)
  1761. {
  1762. struct drm_i915_private *dev_priv = to_i915(dev);
  1763. struct drm_i915_gem_object *obj = ringbuf->obj;
  1764. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1765. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1766. void *addr;
  1767. int ret;
  1768. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1769. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1770. if (ret)
  1771. return ret;
  1772. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1773. if (ret)
  1774. goto err_unpin;
  1775. addr = i915_gem_object_pin_map(obj);
  1776. if (IS_ERR(addr)) {
  1777. ret = PTR_ERR(addr);
  1778. goto err_unpin;
  1779. }
  1780. } else {
  1781. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1782. flags | PIN_MAPPABLE);
  1783. if (ret)
  1784. return ret;
  1785. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1786. if (ret)
  1787. goto err_unpin;
  1788. /* Access through the GTT requires the device to be awake. */
  1789. assert_rpm_wakelock_held(dev_priv);
  1790. addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1791. if (IS_ERR(addr)) {
  1792. ret = PTR_ERR(addr);
  1793. goto err_unpin;
  1794. }
  1795. }
  1796. ringbuf->virtual_start = addr;
  1797. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1798. return 0;
  1799. err_unpin:
  1800. i915_gem_object_ggtt_unpin(obj);
  1801. return ret;
  1802. }
  1803. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1804. {
  1805. drm_gem_object_unreference(&ringbuf->obj->base);
  1806. ringbuf->obj = NULL;
  1807. }
  1808. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1809. struct intel_ringbuffer *ringbuf)
  1810. {
  1811. struct drm_i915_gem_object *obj;
  1812. obj = NULL;
  1813. if (!HAS_LLC(dev))
  1814. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1815. if (obj == NULL)
  1816. obj = i915_gem_object_create(dev, ringbuf->size);
  1817. if (IS_ERR(obj))
  1818. return PTR_ERR(obj);
  1819. /* mark ring buffers as read-only from GPU side by default */
  1820. obj->gt_ro = 1;
  1821. ringbuf->obj = obj;
  1822. return 0;
  1823. }
  1824. struct intel_ringbuffer *
  1825. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1826. {
  1827. struct intel_ringbuffer *ring;
  1828. int ret;
  1829. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1830. if (ring == NULL) {
  1831. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1832. engine->name);
  1833. return ERR_PTR(-ENOMEM);
  1834. }
  1835. ring->engine = engine;
  1836. list_add(&ring->link, &engine->buffers);
  1837. ring->size = size;
  1838. /* Workaround an erratum on the i830 which causes a hang if
  1839. * the TAIL pointer points to within the last 2 cachelines
  1840. * of the buffer.
  1841. */
  1842. ring->effective_size = size;
  1843. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1844. ring->effective_size -= 2 * CACHELINE_BYTES;
  1845. ring->last_retired_head = -1;
  1846. intel_ring_update_space(ring);
  1847. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1848. if (ret) {
  1849. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1850. engine->name, ret);
  1851. list_del(&ring->link);
  1852. kfree(ring);
  1853. return ERR_PTR(ret);
  1854. }
  1855. return ring;
  1856. }
  1857. void
  1858. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1859. {
  1860. intel_destroy_ringbuffer_obj(ring);
  1861. list_del(&ring->link);
  1862. kfree(ring);
  1863. }
  1864. static int intel_init_ring_buffer(struct drm_device *dev,
  1865. struct intel_engine_cs *engine)
  1866. {
  1867. struct intel_ringbuffer *ringbuf;
  1868. int ret;
  1869. WARN_ON(engine->buffer);
  1870. engine->dev = dev;
  1871. INIT_LIST_HEAD(&engine->active_list);
  1872. INIT_LIST_HEAD(&engine->request_list);
  1873. INIT_LIST_HEAD(&engine->execlist_queue);
  1874. INIT_LIST_HEAD(&engine->buffers);
  1875. i915_gem_batch_pool_init(dev, &engine->batch_pool);
  1876. memset(engine->semaphore.sync_seqno, 0,
  1877. sizeof(engine->semaphore.sync_seqno));
  1878. init_waitqueue_head(&engine->irq_queue);
  1879. ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
  1880. if (IS_ERR(ringbuf)) {
  1881. ret = PTR_ERR(ringbuf);
  1882. goto error;
  1883. }
  1884. engine->buffer = ringbuf;
  1885. if (I915_NEED_GFX_HWS(dev)) {
  1886. ret = init_status_page(engine);
  1887. if (ret)
  1888. goto error;
  1889. } else {
  1890. WARN_ON(engine->id != RCS);
  1891. ret = init_phys_status_page(engine);
  1892. if (ret)
  1893. goto error;
  1894. }
  1895. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1896. if (ret) {
  1897. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1898. engine->name, ret);
  1899. intel_destroy_ringbuffer_obj(ringbuf);
  1900. goto error;
  1901. }
  1902. ret = i915_cmd_parser_init_ring(engine);
  1903. if (ret)
  1904. goto error;
  1905. return 0;
  1906. error:
  1907. intel_cleanup_engine(engine);
  1908. return ret;
  1909. }
  1910. void intel_cleanup_engine(struct intel_engine_cs *engine)
  1911. {
  1912. struct drm_i915_private *dev_priv;
  1913. if (!intel_engine_initialized(engine))
  1914. return;
  1915. dev_priv = to_i915(engine->dev);
  1916. if (engine->buffer) {
  1917. intel_stop_engine(engine);
  1918. WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1919. intel_unpin_ringbuffer_obj(engine->buffer);
  1920. intel_ringbuffer_free(engine->buffer);
  1921. engine->buffer = NULL;
  1922. }
  1923. if (engine->cleanup)
  1924. engine->cleanup(engine);
  1925. if (I915_NEED_GFX_HWS(engine->dev)) {
  1926. cleanup_status_page(engine);
  1927. } else {
  1928. WARN_ON(engine->id != RCS);
  1929. cleanup_phys_status_page(engine);
  1930. }
  1931. i915_cmd_parser_fini_ring(engine);
  1932. i915_gem_batch_pool_fini(&engine->batch_pool);
  1933. engine->dev = NULL;
  1934. }
  1935. int intel_engine_idle(struct intel_engine_cs *engine)
  1936. {
  1937. struct drm_i915_gem_request *req;
  1938. /* Wait upon the last request to be completed */
  1939. if (list_empty(&engine->request_list))
  1940. return 0;
  1941. req = list_entry(engine->request_list.prev,
  1942. struct drm_i915_gem_request,
  1943. list);
  1944. /* Make sure we do not trigger any retires */
  1945. return __i915_wait_request(req,
  1946. req->i915->mm.interruptible,
  1947. NULL, NULL);
  1948. }
  1949. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1950. {
  1951. request->ringbuf = request->engine->buffer;
  1952. return intel_ring_begin(request, 0);
  1953. }
  1954. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1955. {
  1956. struct intel_ringbuffer *ringbuf = req->ringbuf;
  1957. struct intel_engine_cs *engine = req->engine;
  1958. struct drm_i915_gem_request *target;
  1959. intel_ring_update_space(ringbuf);
  1960. if (ringbuf->space >= bytes)
  1961. return 0;
  1962. /*
  1963. * Space is reserved in the ringbuffer for finalising the request,
  1964. * as that cannot be allowed to fail. During request finalisation,
  1965. * reserved_space is set to 0 to stop the overallocation and the
  1966. * assumption is that then we never need to wait (which has the
  1967. * risk of failing with EINTR).
  1968. *
  1969. * See also i915_gem_request_alloc() and i915_add_request().
  1970. */
  1971. GEM_BUG_ON(!req->reserved_space);
  1972. list_for_each_entry(target, &engine->request_list, list) {
  1973. unsigned space;
  1974. /*
  1975. * The request queue is per-engine, so can contain requests
  1976. * from multiple ringbuffers. Here, we must ignore any that
  1977. * aren't from the ringbuffer we're considering.
  1978. */
  1979. if (target->ringbuf != ringbuf)
  1980. continue;
  1981. /* Would completion of this request free enough space? */
  1982. space = __intel_ring_space(target->postfix, ringbuf->tail,
  1983. ringbuf->size);
  1984. if (space >= bytes)
  1985. break;
  1986. }
  1987. if (WARN_ON(&target->list == &engine->request_list))
  1988. return -ENOSPC;
  1989. return i915_wait_request(target);
  1990. }
  1991. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  1992. {
  1993. struct intel_ringbuffer *ringbuf = req->ringbuf;
  1994. int remain_actual = ringbuf->size - ringbuf->tail;
  1995. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1996. int bytes = num_dwords * sizeof(u32);
  1997. int total_bytes, wait_bytes;
  1998. bool need_wrap = false;
  1999. total_bytes = bytes + req->reserved_space;
  2000. if (unlikely(bytes > remain_usable)) {
  2001. /*
  2002. * Not enough space for the basic request. So need to flush
  2003. * out the remainder and then wait for base + reserved.
  2004. */
  2005. wait_bytes = remain_actual + total_bytes;
  2006. need_wrap = true;
  2007. } else if (unlikely(total_bytes > remain_usable)) {
  2008. /*
  2009. * The base request will fit but the reserved space
  2010. * falls off the end. So we don't need an immediate wrap
  2011. * and only need to effectively wait for the reserved
  2012. * size space from the start of ringbuffer.
  2013. */
  2014. wait_bytes = remain_actual + req->reserved_space;
  2015. } else {
  2016. /* No wrapping required, just waiting. */
  2017. wait_bytes = total_bytes;
  2018. }
  2019. if (wait_bytes > ringbuf->space) {
  2020. int ret = wait_for_space(req, wait_bytes);
  2021. if (unlikely(ret))
  2022. return ret;
  2023. intel_ring_update_space(ringbuf);
  2024. }
  2025. if (unlikely(need_wrap)) {
  2026. GEM_BUG_ON(remain_actual > ringbuf->space);
  2027. GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
  2028. /* Fill the tail with MI_NOOP */
  2029. memset(ringbuf->virtual_start + ringbuf->tail,
  2030. 0, remain_actual);
  2031. ringbuf->tail = 0;
  2032. ringbuf->space -= remain_actual;
  2033. }
  2034. ringbuf->space -= bytes;
  2035. GEM_BUG_ON(ringbuf->space < 0);
  2036. return 0;
  2037. }
  2038. /* Align the ring tail to a cacheline boundary */
  2039. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2040. {
  2041. struct intel_engine_cs *engine = req->engine;
  2042. int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2043. int ret;
  2044. if (num_dwords == 0)
  2045. return 0;
  2046. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2047. ret = intel_ring_begin(req, num_dwords);
  2048. if (ret)
  2049. return ret;
  2050. while (num_dwords--)
  2051. intel_ring_emit(engine, MI_NOOP);
  2052. intel_ring_advance(engine);
  2053. return 0;
  2054. }
  2055. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2056. {
  2057. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  2058. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2059. * so long as the semaphore value in the register/page is greater
  2060. * than the sync value), so whenever we reset the seqno,
  2061. * so long as we reset the tracking semaphore value to 0, it will
  2062. * always be before the next request's seqno. If we don't reset
  2063. * the semaphore value, then when the seqno moves backwards all
  2064. * future waits will complete instantly (causing rendering corruption).
  2065. */
  2066. if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
  2067. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2068. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2069. if (HAS_VEBOX(dev_priv))
  2070. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2071. }
  2072. if (dev_priv->semaphore_obj) {
  2073. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2074. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2075. void *semaphores = kmap(page);
  2076. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2077. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2078. kunmap(page);
  2079. }
  2080. memset(engine->semaphore.sync_seqno, 0,
  2081. sizeof(engine->semaphore.sync_seqno));
  2082. engine->set_seqno(engine, seqno);
  2083. engine->last_submitted_seqno = seqno;
  2084. engine->hangcheck.seqno = seqno;
  2085. }
  2086. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2087. u32 value)
  2088. {
  2089. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  2090. /* Every tail move must follow the sequence below */
  2091. /* Disable notification that the ring is IDLE. The GT
  2092. * will then assume that it is busy and bring it out of rc6.
  2093. */
  2094. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2095. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2096. /* Clear the context id. Here be magic! */
  2097. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2098. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2099. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2100. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2101. 50))
  2102. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2103. /* Now that the ring is fully powered up, update the tail */
  2104. I915_WRITE_TAIL(engine, value);
  2105. POSTING_READ(RING_TAIL(engine->mmio_base));
  2106. /* Let the ring send IDLE messages to the GT again,
  2107. * and so let it sleep to conserve power when idle.
  2108. */
  2109. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2110. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2111. }
  2112. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2113. u32 invalidate, u32 flush)
  2114. {
  2115. struct intel_engine_cs *engine = req->engine;
  2116. uint32_t cmd;
  2117. int ret;
  2118. ret = intel_ring_begin(req, 4);
  2119. if (ret)
  2120. return ret;
  2121. cmd = MI_FLUSH_DW;
  2122. if (INTEL_INFO(engine->dev)->gen >= 8)
  2123. cmd += 1;
  2124. /* We always require a command barrier so that subsequent
  2125. * commands, such as breadcrumb interrupts, are strictly ordered
  2126. * wrt the contents of the write cache being flushed to memory
  2127. * (and thus being coherent from the CPU).
  2128. */
  2129. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2130. /*
  2131. * Bspec vol 1c.5 - video engine command streamer:
  2132. * "If ENABLED, all TLBs will be invalidated once the flush
  2133. * operation is complete. This bit is only valid when the
  2134. * Post-Sync Operation field is a value of 1h or 3h."
  2135. */
  2136. if (invalidate & I915_GEM_GPU_DOMAINS)
  2137. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2138. intel_ring_emit(engine, cmd);
  2139. intel_ring_emit(engine,
  2140. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2141. if (INTEL_INFO(engine->dev)->gen >= 8) {
  2142. intel_ring_emit(engine, 0); /* upper addr */
  2143. intel_ring_emit(engine, 0); /* value */
  2144. } else {
  2145. intel_ring_emit(engine, 0);
  2146. intel_ring_emit(engine, MI_NOOP);
  2147. }
  2148. intel_ring_advance(engine);
  2149. return 0;
  2150. }
  2151. static int
  2152. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2153. u64 offset, u32 len,
  2154. unsigned dispatch_flags)
  2155. {
  2156. struct intel_engine_cs *engine = req->engine;
  2157. bool ppgtt = USES_PPGTT(engine->dev) &&
  2158. !(dispatch_flags & I915_DISPATCH_SECURE);
  2159. int ret;
  2160. ret = intel_ring_begin(req, 4);
  2161. if (ret)
  2162. return ret;
  2163. /* FIXME(BDW): Address space and security selectors. */
  2164. intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2165. (dispatch_flags & I915_DISPATCH_RS ?
  2166. MI_BATCH_RESOURCE_STREAMER : 0));
  2167. intel_ring_emit(engine, lower_32_bits(offset));
  2168. intel_ring_emit(engine, upper_32_bits(offset));
  2169. intel_ring_emit(engine, MI_NOOP);
  2170. intel_ring_advance(engine);
  2171. return 0;
  2172. }
  2173. static int
  2174. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2175. u64 offset, u32 len,
  2176. unsigned dispatch_flags)
  2177. {
  2178. struct intel_engine_cs *engine = req->engine;
  2179. int ret;
  2180. ret = intel_ring_begin(req, 2);
  2181. if (ret)
  2182. return ret;
  2183. intel_ring_emit(engine,
  2184. MI_BATCH_BUFFER_START |
  2185. (dispatch_flags & I915_DISPATCH_SECURE ?
  2186. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2187. (dispatch_flags & I915_DISPATCH_RS ?
  2188. MI_BATCH_RESOURCE_STREAMER : 0));
  2189. /* bit0-7 is the length on GEN6+ */
  2190. intel_ring_emit(engine, offset);
  2191. intel_ring_advance(engine);
  2192. return 0;
  2193. }
  2194. static int
  2195. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2196. u64 offset, u32 len,
  2197. unsigned dispatch_flags)
  2198. {
  2199. struct intel_engine_cs *engine = req->engine;
  2200. int ret;
  2201. ret = intel_ring_begin(req, 2);
  2202. if (ret)
  2203. return ret;
  2204. intel_ring_emit(engine,
  2205. MI_BATCH_BUFFER_START |
  2206. (dispatch_flags & I915_DISPATCH_SECURE ?
  2207. 0 : MI_BATCH_NON_SECURE_I965));
  2208. /* bit0-7 is the length on GEN6+ */
  2209. intel_ring_emit(engine, offset);
  2210. intel_ring_advance(engine);
  2211. return 0;
  2212. }
  2213. /* Blitter support (SandyBridge+) */
  2214. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2215. u32 invalidate, u32 flush)
  2216. {
  2217. struct intel_engine_cs *engine = req->engine;
  2218. struct drm_device *dev = engine->dev;
  2219. uint32_t cmd;
  2220. int ret;
  2221. ret = intel_ring_begin(req, 4);
  2222. if (ret)
  2223. return ret;
  2224. cmd = MI_FLUSH_DW;
  2225. if (INTEL_INFO(dev)->gen >= 8)
  2226. cmd += 1;
  2227. /* We always require a command barrier so that subsequent
  2228. * commands, such as breadcrumb interrupts, are strictly ordered
  2229. * wrt the contents of the write cache being flushed to memory
  2230. * (and thus being coherent from the CPU).
  2231. */
  2232. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2233. /*
  2234. * Bspec vol 1c.3 - blitter engine command streamer:
  2235. * "If ENABLED, all TLBs will be invalidated once the flush
  2236. * operation is complete. This bit is only valid when the
  2237. * Post-Sync Operation field is a value of 1h or 3h."
  2238. */
  2239. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2240. cmd |= MI_INVALIDATE_TLB;
  2241. intel_ring_emit(engine, cmd);
  2242. intel_ring_emit(engine,
  2243. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2244. if (INTEL_INFO(dev)->gen >= 8) {
  2245. intel_ring_emit(engine, 0); /* upper addr */
  2246. intel_ring_emit(engine, 0); /* value */
  2247. } else {
  2248. intel_ring_emit(engine, 0);
  2249. intel_ring_emit(engine, MI_NOOP);
  2250. }
  2251. intel_ring_advance(engine);
  2252. return 0;
  2253. }
  2254. int intel_init_render_ring_buffer(struct drm_device *dev)
  2255. {
  2256. struct drm_i915_private *dev_priv = dev->dev_private;
  2257. struct intel_engine_cs *engine = &dev_priv->engine[RCS];
  2258. struct drm_i915_gem_object *obj;
  2259. int ret;
  2260. engine->name = "render ring";
  2261. engine->id = RCS;
  2262. engine->exec_id = I915_EXEC_RENDER;
  2263. engine->mmio_base = RENDER_RING_BASE;
  2264. if (INTEL_INFO(dev)->gen >= 8) {
  2265. if (i915_semaphore_is_enabled(dev)) {
  2266. obj = i915_gem_object_create(dev, 4096);
  2267. if (IS_ERR(obj)) {
  2268. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2269. i915.semaphores = 0;
  2270. } else {
  2271. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2272. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2273. if (ret != 0) {
  2274. drm_gem_object_unreference(&obj->base);
  2275. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2276. i915.semaphores = 0;
  2277. } else
  2278. dev_priv->semaphore_obj = obj;
  2279. }
  2280. }
  2281. engine->init_context = intel_rcs_ctx_init;
  2282. engine->add_request = gen6_add_request;
  2283. engine->flush = gen8_render_ring_flush;
  2284. engine->irq_get = gen8_ring_get_irq;
  2285. engine->irq_put = gen8_ring_put_irq;
  2286. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2287. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2288. engine->get_seqno = ring_get_seqno;
  2289. engine->set_seqno = ring_set_seqno;
  2290. if (i915_semaphore_is_enabled(dev)) {
  2291. WARN_ON(!dev_priv->semaphore_obj);
  2292. engine->semaphore.sync_to = gen8_ring_sync;
  2293. engine->semaphore.signal = gen8_rcs_signal;
  2294. GEN8_RING_SEMAPHORE_INIT(engine);
  2295. }
  2296. } else if (INTEL_INFO(dev)->gen >= 6) {
  2297. engine->init_context = intel_rcs_ctx_init;
  2298. engine->add_request = gen6_add_request;
  2299. engine->flush = gen7_render_ring_flush;
  2300. if (INTEL_INFO(dev)->gen == 6)
  2301. engine->flush = gen6_render_ring_flush;
  2302. engine->irq_get = gen6_ring_get_irq;
  2303. engine->irq_put = gen6_ring_put_irq;
  2304. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2305. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2306. engine->get_seqno = ring_get_seqno;
  2307. engine->set_seqno = ring_set_seqno;
  2308. if (i915_semaphore_is_enabled(dev)) {
  2309. engine->semaphore.sync_to = gen6_ring_sync;
  2310. engine->semaphore.signal = gen6_signal;
  2311. /*
  2312. * The current semaphore is only applied on pre-gen8
  2313. * platform. And there is no VCS2 ring on the pre-gen8
  2314. * platform. So the semaphore between RCS and VCS2 is
  2315. * initialized as INVALID. Gen8 will initialize the
  2316. * sema between VCS2 and RCS later.
  2317. */
  2318. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2319. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2320. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2321. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2322. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2323. engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2324. engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2325. engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2326. engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2327. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2328. }
  2329. } else if (IS_GEN5(dev)) {
  2330. engine->add_request = pc_render_add_request;
  2331. engine->flush = gen4_render_ring_flush;
  2332. engine->get_seqno = pc_render_get_seqno;
  2333. engine->set_seqno = pc_render_set_seqno;
  2334. engine->irq_get = gen5_ring_get_irq;
  2335. engine->irq_put = gen5_ring_put_irq;
  2336. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2337. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2338. } else {
  2339. engine->add_request = i9xx_add_request;
  2340. if (INTEL_INFO(dev)->gen < 4)
  2341. engine->flush = gen2_render_ring_flush;
  2342. else
  2343. engine->flush = gen4_render_ring_flush;
  2344. engine->get_seqno = ring_get_seqno;
  2345. engine->set_seqno = ring_set_seqno;
  2346. if (IS_GEN2(dev)) {
  2347. engine->irq_get = i8xx_ring_get_irq;
  2348. engine->irq_put = i8xx_ring_put_irq;
  2349. } else {
  2350. engine->irq_get = i9xx_ring_get_irq;
  2351. engine->irq_put = i9xx_ring_put_irq;
  2352. }
  2353. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2354. }
  2355. engine->write_tail = ring_write_tail;
  2356. if (IS_HASWELL(dev))
  2357. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2358. else if (IS_GEN8(dev))
  2359. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2360. else if (INTEL_INFO(dev)->gen >= 6)
  2361. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2362. else if (INTEL_INFO(dev)->gen >= 4)
  2363. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2364. else if (IS_I830(dev) || IS_845G(dev))
  2365. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2366. else
  2367. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2368. engine->init_hw = init_render_ring;
  2369. engine->cleanup = render_ring_cleanup;
  2370. /* Workaround batchbuffer to combat CS tlb bug. */
  2371. if (HAS_BROKEN_CS_TLB(dev)) {
  2372. obj = i915_gem_object_create(dev, I830_WA_SIZE);
  2373. if (IS_ERR(obj)) {
  2374. DRM_ERROR("Failed to allocate batch bo\n");
  2375. return PTR_ERR(obj);
  2376. }
  2377. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2378. if (ret != 0) {
  2379. drm_gem_object_unreference(&obj->base);
  2380. DRM_ERROR("Failed to ping batch bo\n");
  2381. return ret;
  2382. }
  2383. engine->scratch.obj = obj;
  2384. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2385. }
  2386. ret = intel_init_ring_buffer(dev, engine);
  2387. if (ret)
  2388. return ret;
  2389. if (INTEL_INFO(dev)->gen >= 5) {
  2390. ret = intel_init_pipe_control(engine);
  2391. if (ret)
  2392. return ret;
  2393. }
  2394. return 0;
  2395. }
  2396. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2397. {
  2398. struct drm_i915_private *dev_priv = dev->dev_private;
  2399. struct intel_engine_cs *engine = &dev_priv->engine[VCS];
  2400. engine->name = "bsd ring";
  2401. engine->id = VCS;
  2402. engine->exec_id = I915_EXEC_BSD;
  2403. engine->write_tail = ring_write_tail;
  2404. if (INTEL_INFO(dev)->gen >= 6) {
  2405. engine->mmio_base = GEN6_BSD_RING_BASE;
  2406. /* gen6 bsd needs a special wa for tail updates */
  2407. if (IS_GEN6(dev))
  2408. engine->write_tail = gen6_bsd_ring_write_tail;
  2409. engine->flush = gen6_bsd_ring_flush;
  2410. engine->add_request = gen6_add_request;
  2411. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2412. engine->get_seqno = ring_get_seqno;
  2413. engine->set_seqno = ring_set_seqno;
  2414. if (INTEL_INFO(dev)->gen >= 8) {
  2415. engine->irq_enable_mask =
  2416. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2417. engine->irq_get = gen8_ring_get_irq;
  2418. engine->irq_put = gen8_ring_put_irq;
  2419. engine->dispatch_execbuffer =
  2420. gen8_ring_dispatch_execbuffer;
  2421. if (i915_semaphore_is_enabled(dev)) {
  2422. engine->semaphore.sync_to = gen8_ring_sync;
  2423. engine->semaphore.signal = gen8_xcs_signal;
  2424. GEN8_RING_SEMAPHORE_INIT(engine);
  2425. }
  2426. } else {
  2427. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2428. engine->irq_get = gen6_ring_get_irq;
  2429. engine->irq_put = gen6_ring_put_irq;
  2430. engine->dispatch_execbuffer =
  2431. gen6_ring_dispatch_execbuffer;
  2432. if (i915_semaphore_is_enabled(dev)) {
  2433. engine->semaphore.sync_to = gen6_ring_sync;
  2434. engine->semaphore.signal = gen6_signal;
  2435. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2436. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2437. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2438. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2439. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2440. engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2441. engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2442. engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2443. engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2444. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2445. }
  2446. }
  2447. } else {
  2448. engine->mmio_base = BSD_RING_BASE;
  2449. engine->flush = bsd_ring_flush;
  2450. engine->add_request = i9xx_add_request;
  2451. engine->get_seqno = ring_get_seqno;
  2452. engine->set_seqno = ring_set_seqno;
  2453. if (IS_GEN5(dev)) {
  2454. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2455. engine->irq_get = gen5_ring_get_irq;
  2456. engine->irq_put = gen5_ring_put_irq;
  2457. } else {
  2458. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2459. engine->irq_get = i9xx_ring_get_irq;
  2460. engine->irq_put = i9xx_ring_put_irq;
  2461. }
  2462. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2463. }
  2464. engine->init_hw = init_ring_common;
  2465. return intel_init_ring_buffer(dev, engine);
  2466. }
  2467. /**
  2468. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2469. */
  2470. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2471. {
  2472. struct drm_i915_private *dev_priv = dev->dev_private;
  2473. struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
  2474. engine->name = "bsd2 ring";
  2475. engine->id = VCS2;
  2476. engine->exec_id = I915_EXEC_BSD;
  2477. engine->write_tail = ring_write_tail;
  2478. engine->mmio_base = GEN8_BSD2_RING_BASE;
  2479. engine->flush = gen6_bsd_ring_flush;
  2480. engine->add_request = gen6_add_request;
  2481. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2482. engine->get_seqno = ring_get_seqno;
  2483. engine->set_seqno = ring_set_seqno;
  2484. engine->irq_enable_mask =
  2485. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2486. engine->irq_get = gen8_ring_get_irq;
  2487. engine->irq_put = gen8_ring_put_irq;
  2488. engine->dispatch_execbuffer =
  2489. gen8_ring_dispatch_execbuffer;
  2490. if (i915_semaphore_is_enabled(dev)) {
  2491. engine->semaphore.sync_to = gen8_ring_sync;
  2492. engine->semaphore.signal = gen8_xcs_signal;
  2493. GEN8_RING_SEMAPHORE_INIT(engine);
  2494. }
  2495. engine->init_hw = init_ring_common;
  2496. return intel_init_ring_buffer(dev, engine);
  2497. }
  2498. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2499. {
  2500. struct drm_i915_private *dev_priv = dev->dev_private;
  2501. struct intel_engine_cs *engine = &dev_priv->engine[BCS];
  2502. engine->name = "blitter ring";
  2503. engine->id = BCS;
  2504. engine->exec_id = I915_EXEC_BLT;
  2505. engine->mmio_base = BLT_RING_BASE;
  2506. engine->write_tail = ring_write_tail;
  2507. engine->flush = gen6_ring_flush;
  2508. engine->add_request = gen6_add_request;
  2509. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2510. engine->get_seqno = ring_get_seqno;
  2511. engine->set_seqno = ring_set_seqno;
  2512. if (INTEL_INFO(dev)->gen >= 8) {
  2513. engine->irq_enable_mask =
  2514. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2515. engine->irq_get = gen8_ring_get_irq;
  2516. engine->irq_put = gen8_ring_put_irq;
  2517. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2518. if (i915_semaphore_is_enabled(dev)) {
  2519. engine->semaphore.sync_to = gen8_ring_sync;
  2520. engine->semaphore.signal = gen8_xcs_signal;
  2521. GEN8_RING_SEMAPHORE_INIT(engine);
  2522. }
  2523. } else {
  2524. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2525. engine->irq_get = gen6_ring_get_irq;
  2526. engine->irq_put = gen6_ring_put_irq;
  2527. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2528. if (i915_semaphore_is_enabled(dev)) {
  2529. engine->semaphore.signal = gen6_signal;
  2530. engine->semaphore.sync_to = gen6_ring_sync;
  2531. /*
  2532. * The current semaphore is only applied on pre-gen8
  2533. * platform. And there is no VCS2 ring on the pre-gen8
  2534. * platform. So the semaphore between BCS and VCS2 is
  2535. * initialized as INVALID. Gen8 will initialize the
  2536. * sema between BCS and VCS2 later.
  2537. */
  2538. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2539. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2540. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2541. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2542. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2543. engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2544. engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2545. engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2546. engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2547. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2548. }
  2549. }
  2550. engine->init_hw = init_ring_common;
  2551. return intel_init_ring_buffer(dev, engine);
  2552. }
  2553. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2554. {
  2555. struct drm_i915_private *dev_priv = dev->dev_private;
  2556. struct intel_engine_cs *engine = &dev_priv->engine[VECS];
  2557. engine->name = "video enhancement ring";
  2558. engine->id = VECS;
  2559. engine->exec_id = I915_EXEC_VEBOX;
  2560. engine->mmio_base = VEBOX_RING_BASE;
  2561. engine->write_tail = ring_write_tail;
  2562. engine->flush = gen6_ring_flush;
  2563. engine->add_request = gen6_add_request;
  2564. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2565. engine->get_seqno = ring_get_seqno;
  2566. engine->set_seqno = ring_set_seqno;
  2567. if (INTEL_INFO(dev)->gen >= 8) {
  2568. engine->irq_enable_mask =
  2569. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2570. engine->irq_get = gen8_ring_get_irq;
  2571. engine->irq_put = gen8_ring_put_irq;
  2572. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2573. if (i915_semaphore_is_enabled(dev)) {
  2574. engine->semaphore.sync_to = gen8_ring_sync;
  2575. engine->semaphore.signal = gen8_xcs_signal;
  2576. GEN8_RING_SEMAPHORE_INIT(engine);
  2577. }
  2578. } else {
  2579. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2580. engine->irq_get = hsw_vebox_get_irq;
  2581. engine->irq_put = hsw_vebox_put_irq;
  2582. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2583. if (i915_semaphore_is_enabled(dev)) {
  2584. engine->semaphore.sync_to = gen6_ring_sync;
  2585. engine->semaphore.signal = gen6_signal;
  2586. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2587. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2588. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2589. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2590. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2591. engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2592. engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2593. engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2594. engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2595. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2596. }
  2597. }
  2598. engine->init_hw = init_ring_common;
  2599. return intel_init_ring_buffer(dev, engine);
  2600. }
  2601. int
  2602. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2603. {
  2604. struct intel_engine_cs *engine = req->engine;
  2605. int ret;
  2606. if (!engine->gpu_caches_dirty)
  2607. return 0;
  2608. ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2609. if (ret)
  2610. return ret;
  2611. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2612. engine->gpu_caches_dirty = false;
  2613. return 0;
  2614. }
  2615. int
  2616. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2617. {
  2618. struct intel_engine_cs *engine = req->engine;
  2619. uint32_t flush_domains;
  2620. int ret;
  2621. flush_domains = 0;
  2622. if (engine->gpu_caches_dirty)
  2623. flush_domains = I915_GEM_GPU_DOMAINS;
  2624. ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2625. if (ret)
  2626. return ret;
  2627. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2628. engine->gpu_caches_dirty = false;
  2629. return 0;
  2630. }
  2631. void
  2632. intel_stop_engine(struct intel_engine_cs *engine)
  2633. {
  2634. int ret;
  2635. if (!intel_engine_initialized(engine))
  2636. return;
  2637. ret = intel_engine_idle(engine);
  2638. if (ret)
  2639. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2640. engine->name, ret);
  2641. stop_ring(engine);
  2642. }