intel_ringbuffer.c 78 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ring *ring)
  47. {
  48. if (ring->last_retired_head != -1) {
  49. ring->head = ring->last_retired_head;
  50. ring->last_retired_head = -1;
  51. }
  52. ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
  53. ring->tail, ring->size);
  54. }
  55. static int
  56. gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  57. {
  58. struct intel_ring *ring = req->ring;
  59. u32 cmd;
  60. int ret;
  61. cmd = MI_FLUSH;
  62. if (mode & EMIT_INVALIDATE)
  63. cmd |= MI_READ_FLUSH;
  64. ret = intel_ring_begin(req, 2);
  65. if (ret)
  66. return ret;
  67. intel_ring_emit(ring, cmd);
  68. intel_ring_emit(ring, MI_NOOP);
  69. intel_ring_advance(ring);
  70. return 0;
  71. }
  72. static int
  73. gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  74. {
  75. struct intel_ring *ring = req->ring;
  76. u32 cmd;
  77. int ret;
  78. /*
  79. * read/write caches:
  80. *
  81. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  82. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  83. * also flushed at 2d versus 3d pipeline switches.
  84. *
  85. * read-only caches:
  86. *
  87. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  88. * MI_READ_FLUSH is set, and is always flushed on 965.
  89. *
  90. * I915_GEM_DOMAIN_COMMAND may not exist?
  91. *
  92. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  93. * invalidated when MI_EXE_FLUSH is set.
  94. *
  95. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  96. * invalidated with every MI_FLUSH.
  97. *
  98. * TLBs:
  99. *
  100. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  101. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  102. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  103. * are flushed at any MI_FLUSH.
  104. */
  105. cmd = MI_FLUSH;
  106. if (mode & EMIT_INVALIDATE) {
  107. cmd |= MI_EXE_FLUSH;
  108. if (IS_G4X(req->i915) || IS_GEN5(req->i915))
  109. cmd |= MI_INVALIDATE_ISP;
  110. }
  111. ret = intel_ring_begin(req, 2);
  112. if (ret)
  113. return ret;
  114. intel_ring_emit(ring, cmd);
  115. intel_ring_emit(ring, MI_NOOP);
  116. intel_ring_advance(ring);
  117. return 0;
  118. }
  119. /**
  120. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  121. * implementing two workarounds on gen6. From section 1.4.7.1
  122. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  123. *
  124. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  125. * produced by non-pipelined state commands), software needs to first
  126. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  127. * 0.
  128. *
  129. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  130. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  131. *
  132. * And the workaround for these two requires this workaround first:
  133. *
  134. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  135. * BEFORE the pipe-control with a post-sync op and no write-cache
  136. * flushes.
  137. *
  138. * And this last workaround is tricky because of the requirements on
  139. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  140. * volume 2 part 1:
  141. *
  142. * "1 of the following must also be set:
  143. * - Render Target Cache Flush Enable ([12] of DW1)
  144. * - Depth Cache Flush Enable ([0] of DW1)
  145. * - Stall at Pixel Scoreboard ([1] of DW1)
  146. * - Depth Stall ([13] of DW1)
  147. * - Post-Sync Operation ([13] of DW1)
  148. * - Notify Enable ([8] of DW1)"
  149. *
  150. * The cache flushes require the workaround flush that triggered this
  151. * one, so we can't use it. Depth stall would trigger the same.
  152. * Post-sync nonzero is what triggered this second workaround, so we
  153. * can't use that one either. Notify enable is IRQs, which aren't
  154. * really our business. That leaves only stall at scoreboard.
  155. */
  156. static int
  157. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  158. {
  159. struct intel_ring *ring = req->ring;
  160. u32 scratch_addr =
  161. req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  162. int ret;
  163. ret = intel_ring_begin(req, 6);
  164. if (ret)
  165. return ret;
  166. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  167. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  168. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  169. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  170. intel_ring_emit(ring, 0); /* low dword */
  171. intel_ring_emit(ring, 0); /* high dword */
  172. intel_ring_emit(ring, MI_NOOP);
  173. intel_ring_advance(ring);
  174. ret = intel_ring_begin(req, 6);
  175. if (ret)
  176. return ret;
  177. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  178. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  179. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  180. intel_ring_emit(ring, 0);
  181. intel_ring_emit(ring, 0);
  182. intel_ring_emit(ring, MI_NOOP);
  183. intel_ring_advance(ring);
  184. return 0;
  185. }
  186. static int
  187. gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  188. {
  189. struct intel_ring *ring = req->ring;
  190. u32 scratch_addr =
  191. req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  192. u32 flags = 0;
  193. int ret;
  194. /* Force SNB workarounds for PIPE_CONTROL flushes */
  195. ret = intel_emit_post_sync_nonzero_flush(req);
  196. if (ret)
  197. return ret;
  198. /* Just flush everything. Experiments have shown that reducing the
  199. * number of bits based on the write domains has little performance
  200. * impact.
  201. */
  202. if (mode & EMIT_FLUSH) {
  203. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  204. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  205. /*
  206. * Ensure that any following seqno writes only happen
  207. * when the render cache is indeed flushed.
  208. */
  209. flags |= PIPE_CONTROL_CS_STALL;
  210. }
  211. if (mode & EMIT_INVALIDATE) {
  212. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  213. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  214. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  215. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  216. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  217. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  218. /*
  219. * TLB invalidate requires a post-sync write.
  220. */
  221. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  222. }
  223. ret = intel_ring_begin(req, 4);
  224. if (ret)
  225. return ret;
  226. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  227. intel_ring_emit(ring, flags);
  228. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  229. intel_ring_emit(ring, 0);
  230. intel_ring_advance(ring);
  231. return 0;
  232. }
  233. static int
  234. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  235. {
  236. struct intel_ring *ring = req->ring;
  237. int ret;
  238. ret = intel_ring_begin(req, 4);
  239. if (ret)
  240. return ret;
  241. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  242. intel_ring_emit(ring,
  243. PIPE_CONTROL_CS_STALL |
  244. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  245. intel_ring_emit(ring, 0);
  246. intel_ring_emit(ring, 0);
  247. intel_ring_advance(ring);
  248. return 0;
  249. }
  250. static int
  251. gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  252. {
  253. struct intel_ring *ring = req->ring;
  254. u32 scratch_addr =
  255. req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  256. u32 flags = 0;
  257. int ret;
  258. /*
  259. * Ensure that any following seqno writes only happen when the render
  260. * cache is indeed flushed.
  261. *
  262. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  263. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  264. * don't try to be clever and just set it unconditionally.
  265. */
  266. flags |= PIPE_CONTROL_CS_STALL;
  267. /* Just flush everything. Experiments have shown that reducing the
  268. * number of bits based on the write domains has little performance
  269. * impact.
  270. */
  271. if (mode & EMIT_FLUSH) {
  272. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  273. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  274. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  275. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  276. }
  277. if (mode & EMIT_INVALIDATE) {
  278. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  279. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  280. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  281. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  282. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  283. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  284. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  285. /*
  286. * TLB invalidate requires a post-sync write.
  287. */
  288. flags |= PIPE_CONTROL_QW_WRITE;
  289. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  290. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  291. /* Workaround: we must issue a pipe_control with CS-stall bit
  292. * set before a pipe_control command that has the state cache
  293. * invalidate bit set. */
  294. gen7_render_ring_cs_stall_wa(req);
  295. }
  296. ret = intel_ring_begin(req, 4);
  297. if (ret)
  298. return ret;
  299. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  300. intel_ring_emit(ring, flags);
  301. intel_ring_emit(ring, scratch_addr);
  302. intel_ring_emit(ring, 0);
  303. intel_ring_advance(ring);
  304. return 0;
  305. }
  306. static int
  307. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  308. u32 flags, u32 scratch_addr)
  309. {
  310. struct intel_ring *ring = req->ring;
  311. int ret;
  312. ret = intel_ring_begin(req, 6);
  313. if (ret)
  314. return ret;
  315. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  316. intel_ring_emit(ring, flags);
  317. intel_ring_emit(ring, scratch_addr);
  318. intel_ring_emit(ring, 0);
  319. intel_ring_emit(ring, 0);
  320. intel_ring_emit(ring, 0);
  321. intel_ring_advance(ring);
  322. return 0;
  323. }
  324. static int
  325. gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  326. {
  327. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  328. u32 flags = 0;
  329. int ret;
  330. flags |= PIPE_CONTROL_CS_STALL;
  331. if (mode & EMIT_FLUSH) {
  332. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  333. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  334. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  335. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  336. }
  337. if (mode & EMIT_INVALIDATE) {
  338. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  339. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  340. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  341. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  342. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  343. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  344. flags |= PIPE_CONTROL_QW_WRITE;
  345. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  346. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  347. ret = gen8_emit_pipe_control(req,
  348. PIPE_CONTROL_CS_STALL |
  349. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  350. 0);
  351. if (ret)
  352. return ret;
  353. }
  354. return gen8_emit_pipe_control(req, flags, scratch_addr);
  355. }
  356. u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
  357. {
  358. struct drm_i915_private *dev_priv = engine->i915;
  359. u64 acthd;
  360. if (INTEL_GEN(dev_priv) >= 8)
  361. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  362. RING_ACTHD_UDW(engine->mmio_base));
  363. else if (INTEL_GEN(dev_priv) >= 4)
  364. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  365. else
  366. acthd = I915_READ(ACTHD);
  367. return acthd;
  368. }
  369. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  370. {
  371. struct drm_i915_private *dev_priv = engine->i915;
  372. u32 addr;
  373. addr = dev_priv->status_page_dmah->busaddr;
  374. if (INTEL_GEN(dev_priv) >= 4)
  375. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  376. I915_WRITE(HWS_PGA, addr);
  377. }
  378. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  379. {
  380. struct drm_i915_private *dev_priv = engine->i915;
  381. i915_reg_t mmio;
  382. /* The ring status page addresses are no longer next to the rest of
  383. * the ring registers as of gen7.
  384. */
  385. if (IS_GEN7(dev_priv)) {
  386. switch (engine->id) {
  387. case RCS:
  388. mmio = RENDER_HWS_PGA_GEN7;
  389. break;
  390. case BCS:
  391. mmio = BLT_HWS_PGA_GEN7;
  392. break;
  393. /*
  394. * VCS2 actually doesn't exist on Gen7. Only shut up
  395. * gcc switch check warning
  396. */
  397. case VCS2:
  398. case VCS:
  399. mmio = BSD_HWS_PGA_GEN7;
  400. break;
  401. case VECS:
  402. mmio = VEBOX_HWS_PGA_GEN7;
  403. break;
  404. }
  405. } else if (IS_GEN6(dev_priv)) {
  406. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  407. } else {
  408. /* XXX: gen8 returns to sanity */
  409. mmio = RING_HWS_PGA(engine->mmio_base);
  410. }
  411. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  412. POSTING_READ(mmio);
  413. /*
  414. * Flush the TLB for this page
  415. *
  416. * FIXME: These two bits have disappeared on gen8, so a question
  417. * arises: do we still need this and if so how should we go about
  418. * invalidating the TLB?
  419. */
  420. if (IS_GEN(dev_priv, 6, 7)) {
  421. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  422. /* ring should be idle before issuing a sync flush*/
  423. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  424. I915_WRITE(reg,
  425. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  426. INSTPM_SYNC_FLUSH));
  427. if (intel_wait_for_register(dev_priv,
  428. reg, INSTPM_SYNC_FLUSH, 0,
  429. 1000))
  430. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  431. engine->name);
  432. }
  433. }
  434. static bool stop_ring(struct intel_engine_cs *engine)
  435. {
  436. struct drm_i915_private *dev_priv = engine->i915;
  437. if (!IS_GEN2(dev_priv)) {
  438. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  439. if (intel_wait_for_register(dev_priv,
  440. RING_MI_MODE(engine->mmio_base),
  441. MODE_IDLE,
  442. MODE_IDLE,
  443. 1000)) {
  444. DRM_ERROR("%s : timed out trying to stop ring\n",
  445. engine->name);
  446. /* Sometimes we observe that the idle flag is not
  447. * set even though the ring is empty. So double
  448. * check before giving up.
  449. */
  450. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  451. return false;
  452. }
  453. }
  454. I915_WRITE_CTL(engine, 0);
  455. I915_WRITE_HEAD(engine, 0);
  456. I915_WRITE_TAIL(engine, 0);
  457. if (!IS_GEN2(dev_priv)) {
  458. (void)I915_READ_CTL(engine);
  459. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  460. }
  461. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  462. }
  463. static int init_ring_common(struct intel_engine_cs *engine)
  464. {
  465. struct drm_i915_private *dev_priv = engine->i915;
  466. struct intel_ring *ring = engine->buffer;
  467. struct drm_i915_gem_object *obj = ring->obj;
  468. int ret = 0;
  469. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  470. if (!stop_ring(engine)) {
  471. /* G45 ring initialization often fails to reset head to zero */
  472. DRM_DEBUG_KMS("%s head not reset to zero "
  473. "ctl %08x head %08x tail %08x start %08x\n",
  474. engine->name,
  475. I915_READ_CTL(engine),
  476. I915_READ_HEAD(engine),
  477. I915_READ_TAIL(engine),
  478. I915_READ_START(engine));
  479. if (!stop_ring(engine)) {
  480. DRM_ERROR("failed to set %s head to zero "
  481. "ctl %08x head %08x tail %08x start %08x\n",
  482. engine->name,
  483. I915_READ_CTL(engine),
  484. I915_READ_HEAD(engine),
  485. I915_READ_TAIL(engine),
  486. I915_READ_START(engine));
  487. ret = -EIO;
  488. goto out;
  489. }
  490. }
  491. if (I915_NEED_GFX_HWS(dev_priv))
  492. intel_ring_setup_status_page(engine);
  493. else
  494. ring_setup_phys_status_page(engine);
  495. /* Enforce ordering by reading HEAD register back */
  496. I915_READ_HEAD(engine);
  497. /* Initialize the ring. This must happen _after_ we've cleared the ring
  498. * registers with the above sequence (the readback of the HEAD registers
  499. * also enforces ordering), otherwise the hw might lose the new ring
  500. * register values. */
  501. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  502. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  503. if (I915_READ_HEAD(engine))
  504. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  505. engine->name, I915_READ_HEAD(engine));
  506. I915_WRITE_HEAD(engine, 0);
  507. (void)I915_READ_HEAD(engine);
  508. I915_WRITE_CTL(engine,
  509. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  510. | RING_VALID);
  511. /* If the head is still not zero, the ring is dead */
  512. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  513. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  514. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  515. DRM_ERROR("%s initialization failed "
  516. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  517. engine->name,
  518. I915_READ_CTL(engine),
  519. I915_READ_CTL(engine) & RING_VALID,
  520. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  521. I915_READ_START(engine),
  522. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  523. ret = -EIO;
  524. goto out;
  525. }
  526. ring->last_retired_head = -1;
  527. ring->head = I915_READ_HEAD(engine);
  528. ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  529. intel_ring_update_space(ring);
  530. intel_engine_init_hangcheck(engine);
  531. out:
  532. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  533. return ret;
  534. }
  535. void intel_fini_pipe_control(struct intel_engine_cs *engine)
  536. {
  537. if (engine->scratch.obj == NULL)
  538. return;
  539. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  540. i915_gem_object_put(engine->scratch.obj);
  541. engine->scratch.obj = NULL;
  542. }
  543. int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
  544. {
  545. struct drm_i915_gem_object *obj;
  546. int ret;
  547. WARN_ON(engine->scratch.obj);
  548. obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
  549. if (!obj)
  550. obj = i915_gem_object_create(&engine->i915->drm, size);
  551. if (IS_ERR(obj)) {
  552. DRM_ERROR("Failed to allocate scratch page\n");
  553. ret = PTR_ERR(obj);
  554. goto err;
  555. }
  556. ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 4096, PIN_HIGH);
  557. if (ret)
  558. goto err_unref;
  559. engine->scratch.obj = obj;
  560. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  561. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  562. engine->name, engine->scratch.gtt_offset);
  563. return 0;
  564. err_unref:
  565. i915_gem_object_put(engine->scratch.obj);
  566. err:
  567. return ret;
  568. }
  569. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  570. {
  571. struct intel_ring *ring = req->ring;
  572. struct i915_workarounds *w = &req->i915->workarounds;
  573. int ret, i;
  574. if (w->count == 0)
  575. return 0;
  576. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  577. if (ret)
  578. return ret;
  579. ret = intel_ring_begin(req, (w->count * 2 + 2));
  580. if (ret)
  581. return ret;
  582. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  583. for (i = 0; i < w->count; i++) {
  584. intel_ring_emit_reg(ring, w->reg[i].addr);
  585. intel_ring_emit(ring, w->reg[i].value);
  586. }
  587. intel_ring_emit(ring, MI_NOOP);
  588. intel_ring_advance(ring);
  589. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  590. if (ret)
  591. return ret;
  592. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  593. return 0;
  594. }
  595. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  596. {
  597. int ret;
  598. ret = intel_ring_workarounds_emit(req);
  599. if (ret != 0)
  600. return ret;
  601. ret = i915_gem_render_state_init(req);
  602. if (ret)
  603. return ret;
  604. return 0;
  605. }
  606. static int wa_add(struct drm_i915_private *dev_priv,
  607. i915_reg_t addr,
  608. const u32 mask, const u32 val)
  609. {
  610. const u32 idx = dev_priv->workarounds.count;
  611. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  612. return -ENOSPC;
  613. dev_priv->workarounds.reg[idx].addr = addr;
  614. dev_priv->workarounds.reg[idx].value = val;
  615. dev_priv->workarounds.reg[idx].mask = mask;
  616. dev_priv->workarounds.count++;
  617. return 0;
  618. }
  619. #define WA_REG(addr, mask, val) do { \
  620. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  621. if (r) \
  622. return r; \
  623. } while (0)
  624. #define WA_SET_BIT_MASKED(addr, mask) \
  625. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  626. #define WA_CLR_BIT_MASKED(addr, mask) \
  627. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  628. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  629. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  630. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  631. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  632. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  633. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  634. i915_reg_t reg)
  635. {
  636. struct drm_i915_private *dev_priv = engine->i915;
  637. struct i915_workarounds *wa = &dev_priv->workarounds;
  638. const uint32_t index = wa->hw_whitelist_count[engine->id];
  639. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  640. return -EINVAL;
  641. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  642. i915_mmio_reg_offset(reg));
  643. wa->hw_whitelist_count[engine->id]++;
  644. return 0;
  645. }
  646. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  647. {
  648. struct drm_i915_private *dev_priv = engine->i915;
  649. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  650. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  651. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  652. /* WaDisablePartialInstShootdown:bdw,chv */
  653. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  654. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  655. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  656. * workaround for for a possible hang in the unlikely event a TLB
  657. * invalidation occurs during a PSD flush.
  658. */
  659. /* WaForceEnableNonCoherent:bdw,chv */
  660. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  661. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  662. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  663. HDC_FORCE_NON_COHERENT);
  664. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  665. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  666. * polygons in the same 8x4 pixel/sample area to be processed without
  667. * stalling waiting for the earlier ones to write to Hierarchical Z
  668. * buffer."
  669. *
  670. * This optimization is off by default for BDW and CHV; turn it on.
  671. */
  672. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  673. /* Wa4x4STCOptimizationDisable:bdw,chv */
  674. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  675. /*
  676. * BSpec recommends 8x4 when MSAA is used,
  677. * however in practice 16x4 seems fastest.
  678. *
  679. * Note that PS/WM thread counts depend on the WIZ hashing
  680. * disable bit, which we don't touch here, but it's good
  681. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  682. */
  683. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  684. GEN6_WIZ_HASHING_MASK,
  685. GEN6_WIZ_HASHING_16x4);
  686. return 0;
  687. }
  688. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  689. {
  690. struct drm_i915_private *dev_priv = engine->i915;
  691. int ret;
  692. ret = gen8_init_workarounds(engine);
  693. if (ret)
  694. return ret;
  695. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  696. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  697. /* WaDisableDopClockGating:bdw */
  698. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  699. DOP_CLOCK_GATING_DISABLE);
  700. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  701. GEN8_SAMPLER_POWER_BYPASS_DIS);
  702. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  703. /* WaForceContextSaveRestoreNonCoherent:bdw */
  704. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  705. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  706. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  707. return 0;
  708. }
  709. static int chv_init_workarounds(struct intel_engine_cs *engine)
  710. {
  711. struct drm_i915_private *dev_priv = engine->i915;
  712. int ret;
  713. ret = gen8_init_workarounds(engine);
  714. if (ret)
  715. return ret;
  716. /* WaDisableThreadStallDopClockGating:chv */
  717. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  718. /* Improve HiZ throughput on CHV. */
  719. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  720. return 0;
  721. }
  722. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  723. {
  724. struct drm_i915_private *dev_priv = engine->i915;
  725. int ret;
  726. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  727. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  728. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  729. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  730. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  731. /* WaDisableKillLogic:bxt,skl,kbl */
  732. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  733. ECOCHK_DIS_TLB);
  734. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  735. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  736. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  737. FLOW_CONTROL_ENABLE |
  738. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  739. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  740. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  741. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  742. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  743. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  744. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  745. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  746. GEN9_DG_MIRROR_FIX_ENABLE);
  747. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  748. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  749. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  750. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  751. GEN9_RHWO_OPTIMIZATION_DISABLE);
  752. /*
  753. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  754. * but we do that in per ctx batchbuffer as there is an issue
  755. * with this register not getting restored on ctx restore
  756. */
  757. }
  758. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
  759. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  760. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  761. GEN9_ENABLE_YV12_BUGFIX |
  762. GEN9_ENABLE_GPGPU_PREEMPTION);
  763. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  764. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  765. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  766. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  767. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  768. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  769. GEN9_CCS_TLB_PREFETCH_ENABLE);
  770. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  771. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
  772. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  773. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  774. PIXEL_MASK_CAMMING_DISABLE);
  775. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  776. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  777. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  778. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  779. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  780. * both tied to WaForceContextSaveRestoreNonCoherent
  781. * in some hsds for skl. We keep the tie for all gen9. The
  782. * documentation is a bit hazy and so we want to get common behaviour,
  783. * even though there is no clear evidence we would need both on kbl/bxt.
  784. * This area has been source of system hangs so we play it safe
  785. * and mimic the skl regardless of what bspec says.
  786. *
  787. * Use Force Non-Coherent whenever executing a 3D context. This
  788. * is a workaround for a possible hang in the unlikely event
  789. * a TLB invalidation occurs during a PSD flush.
  790. */
  791. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  792. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  793. HDC_FORCE_NON_COHERENT);
  794. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  795. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  796. BDW_DISABLE_HDC_INVALIDATION);
  797. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  798. if (IS_SKYLAKE(dev_priv) ||
  799. IS_KABYLAKE(dev_priv) ||
  800. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  801. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  802. GEN8_SAMPLER_POWER_BYPASS_DIS);
  803. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  804. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  805. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  806. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  807. GEN8_LQSC_FLUSH_COHERENT_LINES));
  808. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  809. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  810. if (ret)
  811. return ret;
  812. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  813. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  814. if (ret)
  815. return ret;
  816. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  817. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  818. if (ret)
  819. return ret;
  820. return 0;
  821. }
  822. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  823. {
  824. struct drm_i915_private *dev_priv = engine->i915;
  825. u8 vals[3] = { 0, 0, 0 };
  826. unsigned int i;
  827. for (i = 0; i < 3; i++) {
  828. u8 ss;
  829. /*
  830. * Only consider slices where one, and only one, subslice has 7
  831. * EUs
  832. */
  833. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  834. continue;
  835. /*
  836. * subslice_7eu[i] != 0 (because of the check above) and
  837. * ss_max == 4 (maximum number of subslices possible per slice)
  838. *
  839. * -> 0 <= ss <= 3;
  840. */
  841. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  842. vals[i] = 3 - ss;
  843. }
  844. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  845. return 0;
  846. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  847. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  848. GEN9_IZ_HASHING_MASK(2) |
  849. GEN9_IZ_HASHING_MASK(1) |
  850. GEN9_IZ_HASHING_MASK(0),
  851. GEN9_IZ_HASHING(2, vals[2]) |
  852. GEN9_IZ_HASHING(1, vals[1]) |
  853. GEN9_IZ_HASHING(0, vals[0]));
  854. return 0;
  855. }
  856. static int skl_init_workarounds(struct intel_engine_cs *engine)
  857. {
  858. struct drm_i915_private *dev_priv = engine->i915;
  859. int ret;
  860. ret = gen9_init_workarounds(engine);
  861. if (ret)
  862. return ret;
  863. /*
  864. * Actual WA is to disable percontext preemption granularity control
  865. * until D0 which is the default case so this is equivalent to
  866. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  867. */
  868. if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
  869. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  870. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  871. }
  872. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
  873. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  874. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  875. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  876. }
  877. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  878. * involving this register should also be added to WA batch as required.
  879. */
  880. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
  881. /* WaDisableLSQCROPERFforOCL:skl */
  882. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  883. GEN8_LQSC_RO_PERF_DIS);
  884. /* WaEnableGapsTsvCreditFix:skl */
  885. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
  886. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  887. GEN9_GAPS_TSV_CREDIT_DISABLE));
  888. }
  889. /* WaDisablePowerCompilerClockGating:skl */
  890. if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
  891. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  892. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  893. /* WaBarrierPerformanceFixDisable:skl */
  894. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
  895. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  896. HDC_FENCE_DEST_SLM_DISABLE |
  897. HDC_BARRIER_PERFORMANCE_DISABLE);
  898. /* WaDisableSbeCacheDispatchPortSharing:skl */
  899. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
  900. WA_SET_BIT_MASKED(
  901. GEN7_HALF_SLICE_CHICKEN1,
  902. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  903. /* WaDisableGafsUnitClkGating:skl */
  904. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  905. /* WaInPlaceDecompressionHang:skl */
  906. if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
  907. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  908. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  909. /* WaDisableLSQCROPERFforOCL:skl */
  910. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  911. if (ret)
  912. return ret;
  913. return skl_tune_iz_hashing(engine);
  914. }
  915. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  916. {
  917. struct drm_i915_private *dev_priv = engine->i915;
  918. int ret;
  919. ret = gen9_init_workarounds(engine);
  920. if (ret)
  921. return ret;
  922. /* WaStoreMultiplePTEenable:bxt */
  923. /* This is a requirement according to Hardware specification */
  924. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  925. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  926. /* WaSetClckGatingDisableMedia:bxt */
  927. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  928. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  929. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  930. }
  931. /* WaDisableThreadStallDopClockGating:bxt */
  932. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  933. STALL_DOP_GATING_DISABLE);
  934. /* WaDisablePooledEuLoadBalancingFix:bxt */
  935. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  936. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  937. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  938. }
  939. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  940. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  941. WA_SET_BIT_MASKED(
  942. GEN7_HALF_SLICE_CHICKEN1,
  943. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  944. }
  945. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  946. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  947. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  948. /* WaDisableLSQCROPERFforOCL:bxt */
  949. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  950. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  951. if (ret)
  952. return ret;
  953. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  954. if (ret)
  955. return ret;
  956. }
  957. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  958. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  959. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  960. L3_HIGH_PRIO_CREDITS(2));
  961. /* WaToEnableHwFixForPushConstHWBug:bxt */
  962. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  963. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  964. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  965. /* WaInPlaceDecompressionHang:bxt */
  966. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  967. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  968. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  969. return 0;
  970. }
  971. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  972. {
  973. struct drm_i915_private *dev_priv = engine->i915;
  974. int ret;
  975. ret = gen9_init_workarounds(engine);
  976. if (ret)
  977. return ret;
  978. /* WaEnableGapsTsvCreditFix:kbl */
  979. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  980. GEN9_GAPS_TSV_CREDIT_DISABLE));
  981. /* WaDisableDynamicCreditSharing:kbl */
  982. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  983. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  984. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  985. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  986. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  987. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  988. HDC_FENCE_DEST_SLM_DISABLE);
  989. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  990. * involving this register should also be added to WA batch as required.
  991. */
  992. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
  993. /* WaDisableLSQCROPERFforOCL:kbl */
  994. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  995. GEN8_LQSC_RO_PERF_DIS);
  996. /* WaToEnableHwFixForPushConstHWBug:kbl */
  997. if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
  998. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  999. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  1000. /* WaDisableGafsUnitClkGating:kbl */
  1001. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  1002. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  1003. WA_SET_BIT_MASKED(
  1004. GEN7_HALF_SLICE_CHICKEN1,
  1005. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  1006. /* WaInPlaceDecompressionHang:kbl */
  1007. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  1008. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  1009. /* WaDisableLSQCROPERFforOCL:kbl */
  1010. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  1011. if (ret)
  1012. return ret;
  1013. return 0;
  1014. }
  1015. int init_workarounds_ring(struct intel_engine_cs *engine)
  1016. {
  1017. struct drm_i915_private *dev_priv = engine->i915;
  1018. WARN_ON(engine->id != RCS);
  1019. dev_priv->workarounds.count = 0;
  1020. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  1021. if (IS_BROADWELL(dev_priv))
  1022. return bdw_init_workarounds(engine);
  1023. if (IS_CHERRYVIEW(dev_priv))
  1024. return chv_init_workarounds(engine);
  1025. if (IS_SKYLAKE(dev_priv))
  1026. return skl_init_workarounds(engine);
  1027. if (IS_BROXTON(dev_priv))
  1028. return bxt_init_workarounds(engine);
  1029. if (IS_KABYLAKE(dev_priv))
  1030. return kbl_init_workarounds(engine);
  1031. return 0;
  1032. }
  1033. static int init_render_ring(struct intel_engine_cs *engine)
  1034. {
  1035. struct drm_i915_private *dev_priv = engine->i915;
  1036. int ret = init_ring_common(engine);
  1037. if (ret)
  1038. return ret;
  1039. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1040. if (IS_GEN(dev_priv, 4, 6))
  1041. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1042. /* We need to disable the AsyncFlip performance optimisations in order
  1043. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1044. * programmed to '1' on all products.
  1045. *
  1046. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1047. */
  1048. if (IS_GEN(dev_priv, 6, 7))
  1049. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1050. /* Required for the hardware to program scanline values for waiting */
  1051. /* WaEnableFlushTlbInvalidationMode:snb */
  1052. if (IS_GEN6(dev_priv))
  1053. I915_WRITE(GFX_MODE,
  1054. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1055. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1056. if (IS_GEN7(dev_priv))
  1057. I915_WRITE(GFX_MODE_GEN7,
  1058. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1059. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1060. if (IS_GEN6(dev_priv)) {
  1061. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1062. * "If this bit is set, STCunit will have LRA as replacement
  1063. * policy. [...] This bit must be reset. LRA replacement
  1064. * policy is not supported."
  1065. */
  1066. I915_WRITE(CACHE_MODE_0,
  1067. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1068. }
  1069. if (IS_GEN(dev_priv, 6, 7))
  1070. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1071. if (INTEL_INFO(dev_priv)->gen >= 6)
  1072. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1073. return init_workarounds_ring(engine);
  1074. }
  1075. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1076. {
  1077. struct drm_i915_private *dev_priv = engine->i915;
  1078. if (dev_priv->semaphore_obj) {
  1079. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1080. i915_gem_object_put(dev_priv->semaphore_obj);
  1081. dev_priv->semaphore_obj = NULL;
  1082. }
  1083. intel_fini_pipe_control(engine);
  1084. }
  1085. static int gen8_rcs_signal(struct drm_i915_gem_request *req)
  1086. {
  1087. struct intel_ring *ring = req->ring;
  1088. struct drm_i915_private *dev_priv = req->i915;
  1089. struct intel_engine_cs *waiter;
  1090. enum intel_engine_id id;
  1091. int ret, num_rings;
  1092. num_rings = INTEL_INFO(dev_priv)->num_rings;
  1093. ret = intel_ring_begin(req, (num_rings-1) * 8);
  1094. if (ret)
  1095. return ret;
  1096. for_each_engine_id(waiter, dev_priv, id) {
  1097. u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
  1098. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1099. continue;
  1100. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  1101. intel_ring_emit(ring,
  1102. PIPE_CONTROL_GLOBAL_GTT_IVB |
  1103. PIPE_CONTROL_QW_WRITE |
  1104. PIPE_CONTROL_CS_STALL);
  1105. intel_ring_emit(ring, lower_32_bits(gtt_offset));
  1106. intel_ring_emit(ring, upper_32_bits(gtt_offset));
  1107. intel_ring_emit(ring, req->fence.seqno);
  1108. intel_ring_emit(ring, 0);
  1109. intel_ring_emit(ring,
  1110. MI_SEMAPHORE_SIGNAL |
  1111. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1112. intel_ring_emit(ring, 0);
  1113. }
  1114. intel_ring_advance(ring);
  1115. return 0;
  1116. }
  1117. static int gen8_xcs_signal(struct drm_i915_gem_request *req)
  1118. {
  1119. struct intel_ring *ring = req->ring;
  1120. struct drm_i915_private *dev_priv = req->i915;
  1121. struct intel_engine_cs *waiter;
  1122. enum intel_engine_id id;
  1123. int ret, num_rings;
  1124. num_rings = INTEL_INFO(dev_priv)->num_rings;
  1125. ret = intel_ring_begin(req, (num_rings-1) * 6);
  1126. if (ret)
  1127. return ret;
  1128. for_each_engine_id(waiter, dev_priv, id) {
  1129. u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
  1130. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1131. continue;
  1132. intel_ring_emit(ring,
  1133. (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
  1134. intel_ring_emit(ring,
  1135. lower_32_bits(gtt_offset) |
  1136. MI_FLUSH_DW_USE_GTT);
  1137. intel_ring_emit(ring, upper_32_bits(gtt_offset));
  1138. intel_ring_emit(ring, req->fence.seqno);
  1139. intel_ring_emit(ring,
  1140. MI_SEMAPHORE_SIGNAL |
  1141. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1142. intel_ring_emit(ring, 0);
  1143. }
  1144. intel_ring_advance(ring);
  1145. return 0;
  1146. }
  1147. static int gen6_signal(struct drm_i915_gem_request *req)
  1148. {
  1149. struct intel_ring *ring = req->ring;
  1150. struct drm_i915_private *dev_priv = req->i915;
  1151. struct intel_engine_cs *useless;
  1152. enum intel_engine_id id;
  1153. int ret, num_rings;
  1154. num_rings = INTEL_INFO(dev_priv)->num_rings;
  1155. ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
  1156. if (ret)
  1157. return ret;
  1158. for_each_engine_id(useless, dev_priv, id) {
  1159. i915_reg_t mbox_reg = req->engine->semaphore.mbox.signal[id];
  1160. if (i915_mmio_reg_valid(mbox_reg)) {
  1161. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  1162. intel_ring_emit_reg(ring, mbox_reg);
  1163. intel_ring_emit(ring, req->fence.seqno);
  1164. }
  1165. }
  1166. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1167. if (num_rings % 2 == 0)
  1168. intel_ring_emit(ring, MI_NOOP);
  1169. intel_ring_advance(ring);
  1170. return 0;
  1171. }
  1172. static void i9xx_submit_request(struct drm_i915_gem_request *request)
  1173. {
  1174. struct drm_i915_private *dev_priv = request->i915;
  1175. I915_WRITE_TAIL(request->engine,
  1176. intel_ring_offset(request->ring, request->tail));
  1177. }
  1178. static int i9xx_emit_request(struct drm_i915_gem_request *req)
  1179. {
  1180. struct intel_ring *ring = req->ring;
  1181. int ret;
  1182. ret = intel_ring_begin(req, 4);
  1183. if (ret)
  1184. return ret;
  1185. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1186. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1187. intel_ring_emit(ring, req->fence.seqno);
  1188. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1189. intel_ring_advance(ring);
  1190. req->tail = ring->tail;
  1191. return 0;
  1192. }
  1193. /**
  1194. * gen6_sema_emit_request - Update the semaphore mailbox registers
  1195. *
  1196. * @request - request to write to the ring
  1197. *
  1198. * Update the mailbox registers in the *other* rings with the current seqno.
  1199. * This acts like a signal in the canonical semaphore.
  1200. */
  1201. static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
  1202. {
  1203. int ret;
  1204. ret = req->engine->semaphore.signal(req);
  1205. if (ret)
  1206. return ret;
  1207. return i9xx_emit_request(req);
  1208. }
  1209. static int gen8_render_emit_request(struct drm_i915_gem_request *req)
  1210. {
  1211. struct intel_engine_cs *engine = req->engine;
  1212. struct intel_ring *ring = req->ring;
  1213. int ret;
  1214. if (engine->semaphore.signal) {
  1215. ret = engine->semaphore.signal(req);
  1216. if (ret)
  1217. return ret;
  1218. }
  1219. ret = intel_ring_begin(req, 8);
  1220. if (ret)
  1221. return ret;
  1222. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  1223. intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1224. PIPE_CONTROL_CS_STALL |
  1225. PIPE_CONTROL_QW_WRITE));
  1226. intel_ring_emit(ring, intel_hws_seqno_address(engine));
  1227. intel_ring_emit(ring, 0);
  1228. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1229. /* We're thrashing one dword of HWS. */
  1230. intel_ring_emit(ring, 0);
  1231. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1232. intel_ring_emit(ring, MI_NOOP);
  1233. intel_ring_advance(ring);
  1234. req->tail = ring->tail;
  1235. return 0;
  1236. }
  1237. /**
  1238. * intel_ring_sync - sync the waiter to the signaller on seqno
  1239. *
  1240. * @waiter - ring that is waiting
  1241. * @signaller - ring which has, or will signal
  1242. * @seqno - seqno which the waiter will block on
  1243. */
  1244. static int
  1245. gen8_ring_sync_to(struct drm_i915_gem_request *req,
  1246. struct drm_i915_gem_request *signal)
  1247. {
  1248. struct intel_ring *ring = req->ring;
  1249. struct drm_i915_private *dev_priv = req->i915;
  1250. u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
  1251. struct i915_hw_ppgtt *ppgtt;
  1252. int ret;
  1253. ret = intel_ring_begin(req, 4);
  1254. if (ret)
  1255. return ret;
  1256. intel_ring_emit(ring,
  1257. MI_SEMAPHORE_WAIT |
  1258. MI_SEMAPHORE_GLOBAL_GTT |
  1259. MI_SEMAPHORE_SAD_GTE_SDD);
  1260. intel_ring_emit(ring, signal->fence.seqno);
  1261. intel_ring_emit(ring, lower_32_bits(offset));
  1262. intel_ring_emit(ring, upper_32_bits(offset));
  1263. intel_ring_advance(ring);
  1264. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1265. * pagetables and we must reload them before executing the batch.
  1266. * We do this on the i915_switch_context() following the wait and
  1267. * before the dispatch.
  1268. */
  1269. ppgtt = req->ctx->ppgtt;
  1270. if (ppgtt && req->engine->id != RCS)
  1271. ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
  1272. return 0;
  1273. }
  1274. static int
  1275. gen6_ring_sync_to(struct drm_i915_gem_request *req,
  1276. struct drm_i915_gem_request *signal)
  1277. {
  1278. struct intel_ring *ring = req->ring;
  1279. u32 dw1 = MI_SEMAPHORE_MBOX |
  1280. MI_SEMAPHORE_COMPARE |
  1281. MI_SEMAPHORE_REGISTER;
  1282. u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->id];
  1283. int ret;
  1284. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1285. ret = intel_ring_begin(req, 4);
  1286. if (ret)
  1287. return ret;
  1288. intel_ring_emit(ring, dw1 | wait_mbox);
  1289. /* Throughout all of the GEM code, seqno passed implies our current
  1290. * seqno is >= the last seqno executed. However for hardware the
  1291. * comparison is strictly greater than.
  1292. */
  1293. intel_ring_emit(ring, signal->fence.seqno - 1);
  1294. intel_ring_emit(ring, 0);
  1295. intel_ring_emit(ring, MI_NOOP);
  1296. intel_ring_advance(ring);
  1297. return 0;
  1298. }
  1299. static void
  1300. gen5_seqno_barrier(struct intel_engine_cs *engine)
  1301. {
  1302. /* MI_STORE are internally buffered by the GPU and not flushed
  1303. * either by MI_FLUSH or SyncFlush or any other combination of
  1304. * MI commands.
  1305. *
  1306. * "Only the submission of the store operation is guaranteed.
  1307. * The write result will be complete (coherent) some time later
  1308. * (this is practically a finite period but there is no guaranteed
  1309. * latency)."
  1310. *
  1311. * Empirically, we observe that we need a delay of at least 75us to
  1312. * be sure that the seqno write is visible by the CPU.
  1313. */
  1314. usleep_range(125, 250);
  1315. }
  1316. static void
  1317. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1318. {
  1319. struct drm_i915_private *dev_priv = engine->i915;
  1320. /* Workaround to force correct ordering between irq and seqno writes on
  1321. * ivb (and maybe also on snb) by reading from a CS register (like
  1322. * ACTHD) before reading the status page.
  1323. *
  1324. * Note that this effectively stalls the read by the time it takes to
  1325. * do a memory transaction, which more or less ensures that the write
  1326. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1327. * Alternatively we could delay the interrupt from the CS ring to give
  1328. * the write time to land, but that would incur a delay after every
  1329. * batch i.e. much more frequent than a delay when waiting for the
  1330. * interrupt (with the same net latency).
  1331. *
  1332. * Also note that to prevent whole machine hangs on gen7, we have to
  1333. * take the spinlock to guard against concurrent cacheline access.
  1334. */
  1335. spin_lock_irq(&dev_priv->uncore.lock);
  1336. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1337. spin_unlock_irq(&dev_priv->uncore.lock);
  1338. }
  1339. static void
  1340. gen5_irq_enable(struct intel_engine_cs *engine)
  1341. {
  1342. gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
  1343. }
  1344. static void
  1345. gen5_irq_disable(struct intel_engine_cs *engine)
  1346. {
  1347. gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
  1348. }
  1349. static void
  1350. i9xx_irq_enable(struct intel_engine_cs *engine)
  1351. {
  1352. struct drm_i915_private *dev_priv = engine->i915;
  1353. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1354. I915_WRITE(IMR, dev_priv->irq_mask);
  1355. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1356. }
  1357. static void
  1358. i9xx_irq_disable(struct intel_engine_cs *engine)
  1359. {
  1360. struct drm_i915_private *dev_priv = engine->i915;
  1361. dev_priv->irq_mask |= engine->irq_enable_mask;
  1362. I915_WRITE(IMR, dev_priv->irq_mask);
  1363. }
  1364. static void
  1365. i8xx_irq_enable(struct intel_engine_cs *engine)
  1366. {
  1367. struct drm_i915_private *dev_priv = engine->i915;
  1368. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1369. I915_WRITE16(IMR, dev_priv->irq_mask);
  1370. POSTING_READ16(RING_IMR(engine->mmio_base));
  1371. }
  1372. static void
  1373. i8xx_irq_disable(struct intel_engine_cs *engine)
  1374. {
  1375. struct drm_i915_private *dev_priv = engine->i915;
  1376. dev_priv->irq_mask |= engine->irq_enable_mask;
  1377. I915_WRITE16(IMR, dev_priv->irq_mask);
  1378. }
  1379. static int
  1380. bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1381. {
  1382. struct intel_ring *ring = req->ring;
  1383. int ret;
  1384. ret = intel_ring_begin(req, 2);
  1385. if (ret)
  1386. return ret;
  1387. intel_ring_emit(ring, MI_FLUSH);
  1388. intel_ring_emit(ring, MI_NOOP);
  1389. intel_ring_advance(ring);
  1390. return 0;
  1391. }
  1392. static void
  1393. gen6_irq_enable(struct intel_engine_cs *engine)
  1394. {
  1395. struct drm_i915_private *dev_priv = engine->i915;
  1396. I915_WRITE_IMR(engine,
  1397. ~(engine->irq_enable_mask |
  1398. engine->irq_keep_mask));
  1399. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1400. }
  1401. static void
  1402. gen6_irq_disable(struct intel_engine_cs *engine)
  1403. {
  1404. struct drm_i915_private *dev_priv = engine->i915;
  1405. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1406. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1407. }
  1408. static void
  1409. hsw_vebox_irq_enable(struct intel_engine_cs *engine)
  1410. {
  1411. struct drm_i915_private *dev_priv = engine->i915;
  1412. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1413. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1414. }
  1415. static void
  1416. hsw_vebox_irq_disable(struct intel_engine_cs *engine)
  1417. {
  1418. struct drm_i915_private *dev_priv = engine->i915;
  1419. I915_WRITE_IMR(engine, ~0);
  1420. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1421. }
  1422. static void
  1423. gen8_irq_enable(struct intel_engine_cs *engine)
  1424. {
  1425. struct drm_i915_private *dev_priv = engine->i915;
  1426. I915_WRITE_IMR(engine,
  1427. ~(engine->irq_enable_mask |
  1428. engine->irq_keep_mask));
  1429. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1430. }
  1431. static void
  1432. gen8_irq_disable(struct intel_engine_cs *engine)
  1433. {
  1434. struct drm_i915_private *dev_priv = engine->i915;
  1435. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1436. }
  1437. static int
  1438. i965_emit_bb_start(struct drm_i915_gem_request *req,
  1439. u64 offset, u32 length,
  1440. unsigned int dispatch_flags)
  1441. {
  1442. struct intel_ring *ring = req->ring;
  1443. int ret;
  1444. ret = intel_ring_begin(req, 2);
  1445. if (ret)
  1446. return ret;
  1447. intel_ring_emit(ring,
  1448. MI_BATCH_BUFFER_START |
  1449. MI_BATCH_GTT |
  1450. (dispatch_flags & I915_DISPATCH_SECURE ?
  1451. 0 : MI_BATCH_NON_SECURE_I965));
  1452. intel_ring_emit(ring, offset);
  1453. intel_ring_advance(ring);
  1454. return 0;
  1455. }
  1456. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1457. #define I830_BATCH_LIMIT (256*1024)
  1458. #define I830_TLB_ENTRIES (2)
  1459. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1460. static int
  1461. i830_emit_bb_start(struct drm_i915_gem_request *req,
  1462. u64 offset, u32 len,
  1463. unsigned int dispatch_flags)
  1464. {
  1465. struct intel_ring *ring = req->ring;
  1466. u32 cs_offset = req->engine->scratch.gtt_offset;
  1467. int ret;
  1468. ret = intel_ring_begin(req, 6);
  1469. if (ret)
  1470. return ret;
  1471. /* Evict the invalid PTE TLBs */
  1472. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1473. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1474. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1475. intel_ring_emit(ring, cs_offset);
  1476. intel_ring_emit(ring, 0xdeadbeef);
  1477. intel_ring_emit(ring, MI_NOOP);
  1478. intel_ring_advance(ring);
  1479. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1480. if (len > I830_BATCH_LIMIT)
  1481. return -ENOSPC;
  1482. ret = intel_ring_begin(req, 6 + 2);
  1483. if (ret)
  1484. return ret;
  1485. /* Blit the batch (which has now all relocs applied) to the
  1486. * stable batch scratch bo area (so that the CS never
  1487. * stumbles over its tlb invalidation bug) ...
  1488. */
  1489. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1490. intel_ring_emit(ring,
  1491. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1492. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1493. intel_ring_emit(ring, cs_offset);
  1494. intel_ring_emit(ring, 4096);
  1495. intel_ring_emit(ring, offset);
  1496. intel_ring_emit(ring, MI_FLUSH);
  1497. intel_ring_emit(ring, MI_NOOP);
  1498. intel_ring_advance(ring);
  1499. /* ... and execute it. */
  1500. offset = cs_offset;
  1501. }
  1502. ret = intel_ring_begin(req, 2);
  1503. if (ret)
  1504. return ret;
  1505. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1506. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1507. 0 : MI_BATCH_NON_SECURE));
  1508. intel_ring_advance(ring);
  1509. return 0;
  1510. }
  1511. static int
  1512. i915_emit_bb_start(struct drm_i915_gem_request *req,
  1513. u64 offset, u32 len,
  1514. unsigned int dispatch_flags)
  1515. {
  1516. struct intel_ring *ring = req->ring;
  1517. int ret;
  1518. ret = intel_ring_begin(req, 2);
  1519. if (ret)
  1520. return ret;
  1521. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1522. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1523. 0 : MI_BATCH_NON_SECURE));
  1524. intel_ring_advance(ring);
  1525. return 0;
  1526. }
  1527. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1528. {
  1529. struct drm_i915_private *dev_priv = engine->i915;
  1530. if (!dev_priv->status_page_dmah)
  1531. return;
  1532. drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
  1533. engine->status_page.page_addr = NULL;
  1534. }
  1535. static void cleanup_status_page(struct intel_engine_cs *engine)
  1536. {
  1537. struct drm_i915_gem_object *obj;
  1538. obj = engine->status_page.obj;
  1539. if (obj == NULL)
  1540. return;
  1541. kunmap(sg_page(obj->pages->sgl));
  1542. i915_gem_object_ggtt_unpin(obj);
  1543. i915_gem_object_put(obj);
  1544. engine->status_page.obj = NULL;
  1545. }
  1546. static int init_status_page(struct intel_engine_cs *engine)
  1547. {
  1548. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1549. if (obj == NULL) {
  1550. unsigned flags;
  1551. int ret;
  1552. obj = i915_gem_object_create(&engine->i915->drm, 4096);
  1553. if (IS_ERR(obj)) {
  1554. DRM_ERROR("Failed to allocate status page\n");
  1555. return PTR_ERR(obj);
  1556. }
  1557. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1558. if (ret)
  1559. goto err_unref;
  1560. flags = 0;
  1561. if (!HAS_LLC(engine->i915))
  1562. /* On g33, we cannot place HWS above 256MiB, so
  1563. * restrict its pinning to the low mappable arena.
  1564. * Though this restriction is not documented for
  1565. * gen4, gen5, or byt, they also behave similarly
  1566. * and hang if the HWS is placed at the top of the
  1567. * GTT. To generalise, it appears that all !llc
  1568. * platforms have issues with us placing the HWS
  1569. * above the mappable region (even though we never
  1570. * actualy map it).
  1571. */
  1572. flags |= PIN_MAPPABLE;
  1573. ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 4096, flags);
  1574. if (ret) {
  1575. err_unref:
  1576. i915_gem_object_put(obj);
  1577. return ret;
  1578. }
  1579. engine->status_page.obj = obj;
  1580. }
  1581. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1582. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1583. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1584. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1585. engine->name, engine->status_page.gfx_addr);
  1586. return 0;
  1587. }
  1588. static int init_phys_status_page(struct intel_engine_cs *engine)
  1589. {
  1590. struct drm_i915_private *dev_priv = engine->i915;
  1591. if (!dev_priv->status_page_dmah) {
  1592. dev_priv->status_page_dmah =
  1593. drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
  1594. if (!dev_priv->status_page_dmah)
  1595. return -ENOMEM;
  1596. }
  1597. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1598. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1599. return 0;
  1600. }
  1601. int intel_ring_pin(struct intel_ring *ring)
  1602. {
  1603. struct drm_i915_private *dev_priv = ring->engine->i915;
  1604. struct drm_i915_gem_object *obj = ring->obj;
  1605. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1606. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1607. void *addr;
  1608. int ret;
  1609. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1610. ret = i915_gem_object_ggtt_pin(obj, NULL, 0, PAGE_SIZE, flags);
  1611. if (ret)
  1612. return ret;
  1613. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1614. if (ret)
  1615. goto err_unpin;
  1616. addr = i915_gem_object_pin_map(obj, I915_MAP_WB);
  1617. if (IS_ERR(addr)) {
  1618. ret = PTR_ERR(addr);
  1619. goto err_unpin;
  1620. }
  1621. } else {
  1622. ret = i915_gem_object_ggtt_pin(obj, NULL, 0, PAGE_SIZE,
  1623. flags | PIN_MAPPABLE);
  1624. if (ret)
  1625. return ret;
  1626. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1627. if (ret)
  1628. goto err_unpin;
  1629. /* Access through the GTT requires the device to be awake. */
  1630. assert_rpm_wakelock_held(dev_priv);
  1631. addr = (void __force *)
  1632. i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1633. if (IS_ERR(addr)) {
  1634. ret = PTR_ERR(addr);
  1635. goto err_unpin;
  1636. }
  1637. }
  1638. ring->vaddr = addr;
  1639. ring->vma = i915_gem_obj_to_ggtt(obj);
  1640. return 0;
  1641. err_unpin:
  1642. i915_gem_object_ggtt_unpin(obj);
  1643. return ret;
  1644. }
  1645. void intel_ring_unpin(struct intel_ring *ring)
  1646. {
  1647. GEM_BUG_ON(!ring->vma);
  1648. GEM_BUG_ON(!ring->vaddr);
  1649. if (HAS_LLC(ring->engine->i915) && !ring->obj->stolen)
  1650. i915_gem_object_unpin_map(ring->obj);
  1651. else
  1652. i915_vma_unpin_iomap(ring->vma);
  1653. ring->vaddr = NULL;
  1654. i915_gem_object_ggtt_unpin(ring->obj);
  1655. ring->vma = NULL;
  1656. }
  1657. static void intel_destroy_ringbuffer_obj(struct intel_ring *ring)
  1658. {
  1659. i915_gem_object_put(ring->obj);
  1660. ring->obj = NULL;
  1661. }
  1662. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1663. struct intel_ring *ring)
  1664. {
  1665. struct drm_i915_gem_object *obj;
  1666. obj = NULL;
  1667. if (!HAS_LLC(dev))
  1668. obj = i915_gem_object_create_stolen(dev, ring->size);
  1669. if (obj == NULL)
  1670. obj = i915_gem_object_create(dev, ring->size);
  1671. if (IS_ERR(obj))
  1672. return PTR_ERR(obj);
  1673. /* mark ring buffers as read-only from GPU side by default */
  1674. obj->gt_ro = 1;
  1675. ring->obj = obj;
  1676. return 0;
  1677. }
  1678. struct intel_ring *
  1679. intel_engine_create_ring(struct intel_engine_cs *engine, int size)
  1680. {
  1681. struct intel_ring *ring;
  1682. int ret;
  1683. GEM_BUG_ON(!is_power_of_2(size));
  1684. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1685. if (ring == NULL) {
  1686. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1687. engine->name);
  1688. return ERR_PTR(-ENOMEM);
  1689. }
  1690. ring->engine = engine;
  1691. list_add(&ring->link, &engine->buffers);
  1692. INIT_LIST_HEAD(&ring->request_list);
  1693. ring->size = size;
  1694. /* Workaround an erratum on the i830 which causes a hang if
  1695. * the TAIL pointer points to within the last 2 cachelines
  1696. * of the buffer.
  1697. */
  1698. ring->effective_size = size;
  1699. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1700. ring->effective_size -= 2 * CACHELINE_BYTES;
  1701. ring->last_retired_head = -1;
  1702. intel_ring_update_space(ring);
  1703. ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
  1704. if (ret) {
  1705. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1706. engine->name, ret);
  1707. list_del(&ring->link);
  1708. kfree(ring);
  1709. return ERR_PTR(ret);
  1710. }
  1711. return ring;
  1712. }
  1713. void
  1714. intel_ring_free(struct intel_ring *ring)
  1715. {
  1716. intel_destroy_ringbuffer_obj(ring);
  1717. list_del(&ring->link);
  1718. kfree(ring);
  1719. }
  1720. static int intel_ring_context_pin(struct i915_gem_context *ctx,
  1721. struct intel_engine_cs *engine)
  1722. {
  1723. struct intel_context *ce = &ctx->engine[engine->id];
  1724. int ret;
  1725. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1726. if (ce->pin_count++)
  1727. return 0;
  1728. if (ce->state) {
  1729. ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
  1730. PIN_GLOBAL | PIN_HIGH);
  1731. if (ret)
  1732. goto error;
  1733. }
  1734. /* The kernel context is only used as a placeholder for flushing the
  1735. * active context. It is never used for submitting user rendering and
  1736. * as such never requires the golden render context, and so we can skip
  1737. * emitting it when we switch to the kernel context. This is required
  1738. * as during eviction we cannot allocate and pin the renderstate in
  1739. * order to initialise the context.
  1740. */
  1741. if (ctx == ctx->i915->kernel_context)
  1742. ce->initialised = true;
  1743. i915_gem_context_get(ctx);
  1744. return 0;
  1745. error:
  1746. ce->pin_count = 0;
  1747. return ret;
  1748. }
  1749. static void intel_ring_context_unpin(struct i915_gem_context *ctx,
  1750. struct intel_engine_cs *engine)
  1751. {
  1752. struct intel_context *ce = &ctx->engine[engine->id];
  1753. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1754. if (--ce->pin_count)
  1755. return;
  1756. if (ce->state)
  1757. i915_vma_unpin(ce->state);
  1758. i915_gem_context_put(ctx);
  1759. }
  1760. static int intel_init_ring_buffer(struct intel_engine_cs *engine)
  1761. {
  1762. struct drm_i915_private *dev_priv = engine->i915;
  1763. struct intel_ring *ring;
  1764. int ret;
  1765. WARN_ON(engine->buffer);
  1766. intel_engine_setup_common(engine);
  1767. memset(engine->semaphore.sync_seqno, 0,
  1768. sizeof(engine->semaphore.sync_seqno));
  1769. ret = intel_engine_init_common(engine);
  1770. if (ret)
  1771. goto error;
  1772. /* We may need to do things with the shrinker which
  1773. * require us to immediately switch back to the default
  1774. * context. This can cause a problem as pinning the
  1775. * default context also requires GTT space which may not
  1776. * be available. To avoid this we always pin the default
  1777. * context.
  1778. */
  1779. ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
  1780. if (ret)
  1781. goto error;
  1782. ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
  1783. if (IS_ERR(ring)) {
  1784. ret = PTR_ERR(ring);
  1785. goto error;
  1786. }
  1787. engine->buffer = ring;
  1788. if (I915_NEED_GFX_HWS(dev_priv)) {
  1789. ret = init_status_page(engine);
  1790. if (ret)
  1791. goto error;
  1792. } else {
  1793. WARN_ON(engine->id != RCS);
  1794. ret = init_phys_status_page(engine);
  1795. if (ret)
  1796. goto error;
  1797. }
  1798. ret = intel_ring_pin(ring);
  1799. if (ret) {
  1800. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1801. engine->name, ret);
  1802. intel_destroy_ringbuffer_obj(ring);
  1803. goto error;
  1804. }
  1805. return 0;
  1806. error:
  1807. intel_engine_cleanup(engine);
  1808. return ret;
  1809. }
  1810. void intel_engine_cleanup(struct intel_engine_cs *engine)
  1811. {
  1812. struct drm_i915_private *dev_priv;
  1813. if (!intel_engine_initialized(engine))
  1814. return;
  1815. dev_priv = engine->i915;
  1816. if (engine->buffer) {
  1817. WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1818. intel_ring_unpin(engine->buffer);
  1819. intel_ring_free(engine->buffer);
  1820. engine->buffer = NULL;
  1821. }
  1822. if (engine->cleanup)
  1823. engine->cleanup(engine);
  1824. if (I915_NEED_GFX_HWS(dev_priv)) {
  1825. cleanup_status_page(engine);
  1826. } else {
  1827. WARN_ON(engine->id != RCS);
  1828. cleanup_phys_status_page(engine);
  1829. }
  1830. intel_engine_cleanup_common(engine);
  1831. intel_ring_context_unpin(dev_priv->kernel_context, engine);
  1832. engine->i915 = NULL;
  1833. }
  1834. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1835. {
  1836. int ret;
  1837. /* Flush enough space to reduce the likelihood of waiting after
  1838. * we start building the request - in which case we will just
  1839. * have to repeat work.
  1840. */
  1841. request->reserved_space += LEGACY_REQUEST_SIZE;
  1842. request->ring = request->engine->buffer;
  1843. ret = intel_ring_begin(request, 0);
  1844. if (ret)
  1845. return ret;
  1846. request->reserved_space -= LEGACY_REQUEST_SIZE;
  1847. return 0;
  1848. }
  1849. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1850. {
  1851. struct intel_ring *ring = req->ring;
  1852. struct drm_i915_gem_request *target;
  1853. int ret;
  1854. intel_ring_update_space(ring);
  1855. if (ring->space >= bytes)
  1856. return 0;
  1857. /*
  1858. * Space is reserved in the ringbuffer for finalising the request,
  1859. * as that cannot be allowed to fail. During request finalisation,
  1860. * reserved_space is set to 0 to stop the overallocation and the
  1861. * assumption is that then we never need to wait (which has the
  1862. * risk of failing with EINTR).
  1863. *
  1864. * See also i915_gem_request_alloc() and i915_add_request().
  1865. */
  1866. GEM_BUG_ON(!req->reserved_space);
  1867. list_for_each_entry(target, &ring->request_list, ring_link) {
  1868. unsigned space;
  1869. /* Would completion of this request free enough space? */
  1870. space = __intel_ring_space(target->postfix, ring->tail,
  1871. ring->size);
  1872. if (space >= bytes)
  1873. break;
  1874. }
  1875. if (WARN_ON(&target->ring_link == &ring->request_list))
  1876. return -ENOSPC;
  1877. ret = i915_wait_request(target, true, NULL, NO_WAITBOOST);
  1878. if (ret)
  1879. return ret;
  1880. if (i915_reset_in_progress(&target->i915->gpu_error))
  1881. return -EAGAIN;
  1882. i915_gem_request_retire_upto(target);
  1883. intel_ring_update_space(ring);
  1884. GEM_BUG_ON(ring->space < bytes);
  1885. return 0;
  1886. }
  1887. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  1888. {
  1889. struct intel_ring *ring = req->ring;
  1890. int remain_actual = ring->size - ring->tail;
  1891. int remain_usable = ring->effective_size - ring->tail;
  1892. int bytes = num_dwords * sizeof(u32);
  1893. int total_bytes, wait_bytes;
  1894. bool need_wrap = false;
  1895. total_bytes = bytes + req->reserved_space;
  1896. if (unlikely(bytes > remain_usable)) {
  1897. /*
  1898. * Not enough space for the basic request. So need to flush
  1899. * out the remainder and then wait for base + reserved.
  1900. */
  1901. wait_bytes = remain_actual + total_bytes;
  1902. need_wrap = true;
  1903. } else if (unlikely(total_bytes > remain_usable)) {
  1904. /*
  1905. * The base request will fit but the reserved space
  1906. * falls off the end. So we don't need an immediate wrap
  1907. * and only need to effectively wait for the reserved
  1908. * size space from the start of ringbuffer.
  1909. */
  1910. wait_bytes = remain_actual + req->reserved_space;
  1911. } else {
  1912. /* No wrapping required, just waiting. */
  1913. wait_bytes = total_bytes;
  1914. }
  1915. if (wait_bytes > ring->space) {
  1916. int ret = wait_for_space(req, wait_bytes);
  1917. if (unlikely(ret))
  1918. return ret;
  1919. }
  1920. if (unlikely(need_wrap)) {
  1921. GEM_BUG_ON(remain_actual > ring->space);
  1922. GEM_BUG_ON(ring->tail + remain_actual > ring->size);
  1923. /* Fill the tail with MI_NOOP */
  1924. memset(ring->vaddr + ring->tail, 0, remain_actual);
  1925. ring->tail = 0;
  1926. ring->space -= remain_actual;
  1927. }
  1928. ring->space -= bytes;
  1929. GEM_BUG_ON(ring->space < 0);
  1930. return 0;
  1931. }
  1932. /* Align the ring tail to a cacheline boundary */
  1933. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1934. {
  1935. struct intel_ring *ring = req->ring;
  1936. int num_dwords =
  1937. (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1938. int ret;
  1939. if (num_dwords == 0)
  1940. return 0;
  1941. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1942. ret = intel_ring_begin(req, num_dwords);
  1943. if (ret)
  1944. return ret;
  1945. while (num_dwords--)
  1946. intel_ring_emit(ring, MI_NOOP);
  1947. intel_ring_advance(ring);
  1948. return 0;
  1949. }
  1950. void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  1951. {
  1952. struct drm_i915_private *dev_priv = engine->i915;
  1953. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  1954. * so long as the semaphore value in the register/page is greater
  1955. * than the sync value), so whenever we reset the seqno,
  1956. * so long as we reset the tracking semaphore value to 0, it will
  1957. * always be before the next request's seqno. If we don't reset
  1958. * the semaphore value, then when the seqno moves backwards all
  1959. * future waits will complete instantly (causing rendering corruption).
  1960. */
  1961. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  1962. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  1963. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  1964. if (HAS_VEBOX(dev_priv))
  1965. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  1966. }
  1967. if (dev_priv->semaphore_obj) {
  1968. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  1969. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  1970. void *semaphores = kmap(page);
  1971. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  1972. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  1973. kunmap(page);
  1974. }
  1975. memset(engine->semaphore.sync_seqno, 0,
  1976. sizeof(engine->semaphore.sync_seqno));
  1977. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  1978. if (engine->irq_seqno_barrier)
  1979. engine->irq_seqno_barrier(engine);
  1980. engine->last_submitted_seqno = seqno;
  1981. engine->hangcheck.seqno = seqno;
  1982. /* After manually advancing the seqno, fake the interrupt in case
  1983. * there are any waiters for that seqno.
  1984. */
  1985. intel_engine_wakeup(engine);
  1986. }
  1987. static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
  1988. {
  1989. struct drm_i915_private *dev_priv = request->i915;
  1990. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1991. /* Every tail move must follow the sequence below */
  1992. /* Disable notification that the ring is IDLE. The GT
  1993. * will then assume that it is busy and bring it out of rc6.
  1994. */
  1995. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1996. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1997. /* Clear the context id. Here be magic! */
  1998. I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
  1999. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2000. if (intel_wait_for_register_fw(dev_priv,
  2001. GEN6_BSD_SLEEP_PSMI_CONTROL,
  2002. GEN6_BSD_SLEEP_INDICATOR,
  2003. 0,
  2004. 50))
  2005. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2006. /* Now that the ring is fully powered up, update the tail */
  2007. i9xx_submit_request(request);
  2008. /* Let the ring send IDLE messages to the GT again,
  2009. * and so let it sleep to conserve power when idle.
  2010. */
  2011. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2012. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2013. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  2014. }
  2015. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  2016. {
  2017. struct intel_ring *ring = req->ring;
  2018. uint32_t cmd;
  2019. int ret;
  2020. ret = intel_ring_begin(req, 4);
  2021. if (ret)
  2022. return ret;
  2023. cmd = MI_FLUSH_DW;
  2024. if (INTEL_GEN(req->i915) >= 8)
  2025. cmd += 1;
  2026. /* We always require a command barrier so that subsequent
  2027. * commands, such as breadcrumb interrupts, are strictly ordered
  2028. * wrt the contents of the write cache being flushed to memory
  2029. * (and thus being coherent from the CPU).
  2030. */
  2031. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2032. /*
  2033. * Bspec vol 1c.5 - video engine command streamer:
  2034. * "If ENABLED, all TLBs will be invalidated once the flush
  2035. * operation is complete. This bit is only valid when the
  2036. * Post-Sync Operation field is a value of 1h or 3h."
  2037. */
  2038. if (mode & EMIT_INVALIDATE)
  2039. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2040. intel_ring_emit(ring, cmd);
  2041. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2042. if (INTEL_GEN(req->i915) >= 8) {
  2043. intel_ring_emit(ring, 0); /* upper addr */
  2044. intel_ring_emit(ring, 0); /* value */
  2045. } else {
  2046. intel_ring_emit(ring, 0);
  2047. intel_ring_emit(ring, MI_NOOP);
  2048. }
  2049. intel_ring_advance(ring);
  2050. return 0;
  2051. }
  2052. static int
  2053. gen8_emit_bb_start(struct drm_i915_gem_request *req,
  2054. u64 offset, u32 len,
  2055. unsigned int dispatch_flags)
  2056. {
  2057. struct intel_ring *ring = req->ring;
  2058. bool ppgtt = USES_PPGTT(req->i915) &&
  2059. !(dispatch_flags & I915_DISPATCH_SECURE);
  2060. int ret;
  2061. ret = intel_ring_begin(req, 4);
  2062. if (ret)
  2063. return ret;
  2064. /* FIXME(BDW): Address space and security selectors. */
  2065. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2066. (dispatch_flags & I915_DISPATCH_RS ?
  2067. MI_BATCH_RESOURCE_STREAMER : 0));
  2068. intel_ring_emit(ring, lower_32_bits(offset));
  2069. intel_ring_emit(ring, upper_32_bits(offset));
  2070. intel_ring_emit(ring, MI_NOOP);
  2071. intel_ring_advance(ring);
  2072. return 0;
  2073. }
  2074. static int
  2075. hsw_emit_bb_start(struct drm_i915_gem_request *req,
  2076. u64 offset, u32 len,
  2077. unsigned int dispatch_flags)
  2078. {
  2079. struct intel_ring *ring = req->ring;
  2080. int ret;
  2081. ret = intel_ring_begin(req, 2);
  2082. if (ret)
  2083. return ret;
  2084. intel_ring_emit(ring,
  2085. MI_BATCH_BUFFER_START |
  2086. (dispatch_flags & I915_DISPATCH_SECURE ?
  2087. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2088. (dispatch_flags & I915_DISPATCH_RS ?
  2089. MI_BATCH_RESOURCE_STREAMER : 0));
  2090. /* bit0-7 is the length on GEN6+ */
  2091. intel_ring_emit(ring, offset);
  2092. intel_ring_advance(ring);
  2093. return 0;
  2094. }
  2095. static int
  2096. gen6_emit_bb_start(struct drm_i915_gem_request *req,
  2097. u64 offset, u32 len,
  2098. unsigned int dispatch_flags)
  2099. {
  2100. struct intel_ring *ring = req->ring;
  2101. int ret;
  2102. ret = intel_ring_begin(req, 2);
  2103. if (ret)
  2104. return ret;
  2105. intel_ring_emit(ring,
  2106. MI_BATCH_BUFFER_START |
  2107. (dispatch_flags & I915_DISPATCH_SECURE ?
  2108. 0 : MI_BATCH_NON_SECURE_I965));
  2109. /* bit0-7 is the length on GEN6+ */
  2110. intel_ring_emit(ring, offset);
  2111. intel_ring_advance(ring);
  2112. return 0;
  2113. }
  2114. /* Blitter support (SandyBridge+) */
  2115. static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  2116. {
  2117. struct intel_ring *ring = req->ring;
  2118. uint32_t cmd;
  2119. int ret;
  2120. ret = intel_ring_begin(req, 4);
  2121. if (ret)
  2122. return ret;
  2123. cmd = MI_FLUSH_DW;
  2124. if (INTEL_GEN(req->i915) >= 8)
  2125. cmd += 1;
  2126. /* We always require a command barrier so that subsequent
  2127. * commands, such as breadcrumb interrupts, are strictly ordered
  2128. * wrt the contents of the write cache being flushed to memory
  2129. * (and thus being coherent from the CPU).
  2130. */
  2131. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2132. /*
  2133. * Bspec vol 1c.3 - blitter engine command streamer:
  2134. * "If ENABLED, all TLBs will be invalidated once the flush
  2135. * operation is complete. This bit is only valid when the
  2136. * Post-Sync Operation field is a value of 1h or 3h."
  2137. */
  2138. if (mode & EMIT_INVALIDATE)
  2139. cmd |= MI_INVALIDATE_TLB;
  2140. intel_ring_emit(ring, cmd);
  2141. intel_ring_emit(ring,
  2142. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2143. if (INTEL_GEN(req->i915) >= 8) {
  2144. intel_ring_emit(ring, 0); /* upper addr */
  2145. intel_ring_emit(ring, 0); /* value */
  2146. } else {
  2147. intel_ring_emit(ring, 0);
  2148. intel_ring_emit(ring, MI_NOOP);
  2149. }
  2150. intel_ring_advance(ring);
  2151. return 0;
  2152. }
  2153. static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
  2154. struct intel_engine_cs *engine)
  2155. {
  2156. struct drm_i915_gem_object *obj;
  2157. int ret, i;
  2158. if (!i915.semaphores)
  2159. return;
  2160. if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
  2161. obj = i915_gem_object_create(&dev_priv->drm, 4096);
  2162. if (IS_ERR(obj)) {
  2163. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2164. i915.semaphores = 0;
  2165. } else {
  2166. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2167. ret = i915_gem_object_ggtt_pin(obj, NULL,
  2168. 0, 0, PIN_HIGH);
  2169. if (ret != 0) {
  2170. i915_gem_object_put(obj);
  2171. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2172. i915.semaphores = 0;
  2173. } else {
  2174. dev_priv->semaphore_obj = obj;
  2175. }
  2176. }
  2177. }
  2178. if (!i915.semaphores)
  2179. return;
  2180. if (INTEL_GEN(dev_priv) >= 8) {
  2181. u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
  2182. engine->semaphore.sync_to = gen8_ring_sync_to;
  2183. engine->semaphore.signal = gen8_xcs_signal;
  2184. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2185. u64 ring_offset;
  2186. if (i != engine->id)
  2187. ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
  2188. else
  2189. ring_offset = MI_SEMAPHORE_SYNC_INVALID;
  2190. engine->semaphore.signal_ggtt[i] = ring_offset;
  2191. }
  2192. } else if (INTEL_GEN(dev_priv) >= 6) {
  2193. engine->semaphore.sync_to = gen6_ring_sync_to;
  2194. engine->semaphore.signal = gen6_signal;
  2195. /*
  2196. * The current semaphore is only applied on pre-gen8
  2197. * platform. And there is no VCS2 ring on the pre-gen8
  2198. * platform. So the semaphore between RCS and VCS2 is
  2199. * initialized as INVALID. Gen8 will initialize the
  2200. * sema between VCS2 and RCS later.
  2201. */
  2202. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2203. static const struct {
  2204. u32 wait_mbox;
  2205. i915_reg_t mbox_reg;
  2206. } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
  2207. [RCS] = {
  2208. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
  2209. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
  2210. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
  2211. },
  2212. [VCS] = {
  2213. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
  2214. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
  2215. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
  2216. },
  2217. [BCS] = {
  2218. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
  2219. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
  2220. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
  2221. },
  2222. [VECS] = {
  2223. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
  2224. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
  2225. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
  2226. },
  2227. };
  2228. u32 wait_mbox;
  2229. i915_reg_t mbox_reg;
  2230. if (i == engine->id || i == VCS2) {
  2231. wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
  2232. mbox_reg = GEN6_NOSYNC;
  2233. } else {
  2234. wait_mbox = sem_data[engine->id][i].wait_mbox;
  2235. mbox_reg = sem_data[engine->id][i].mbox_reg;
  2236. }
  2237. engine->semaphore.mbox.wait[i] = wait_mbox;
  2238. engine->semaphore.mbox.signal[i] = mbox_reg;
  2239. }
  2240. }
  2241. }
  2242. static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
  2243. struct intel_engine_cs *engine)
  2244. {
  2245. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
  2246. if (INTEL_GEN(dev_priv) >= 8) {
  2247. engine->irq_enable = gen8_irq_enable;
  2248. engine->irq_disable = gen8_irq_disable;
  2249. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2250. } else if (INTEL_GEN(dev_priv) >= 6) {
  2251. engine->irq_enable = gen6_irq_enable;
  2252. engine->irq_disable = gen6_irq_disable;
  2253. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2254. } else if (INTEL_GEN(dev_priv) >= 5) {
  2255. engine->irq_enable = gen5_irq_enable;
  2256. engine->irq_disable = gen5_irq_disable;
  2257. engine->irq_seqno_barrier = gen5_seqno_barrier;
  2258. } else if (INTEL_GEN(dev_priv) >= 3) {
  2259. engine->irq_enable = i9xx_irq_enable;
  2260. engine->irq_disable = i9xx_irq_disable;
  2261. } else {
  2262. engine->irq_enable = i8xx_irq_enable;
  2263. engine->irq_disable = i8xx_irq_disable;
  2264. }
  2265. }
  2266. static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
  2267. struct intel_engine_cs *engine)
  2268. {
  2269. intel_ring_init_irq(dev_priv, engine);
  2270. intel_ring_init_semaphores(dev_priv, engine);
  2271. engine->init_hw = init_ring_common;
  2272. engine->emit_request = i9xx_emit_request;
  2273. if (i915.semaphores)
  2274. engine->emit_request = gen6_sema_emit_request;
  2275. engine->submit_request = i9xx_submit_request;
  2276. if (INTEL_GEN(dev_priv) >= 8)
  2277. engine->emit_bb_start = gen8_emit_bb_start;
  2278. else if (INTEL_GEN(dev_priv) >= 6)
  2279. engine->emit_bb_start = gen6_emit_bb_start;
  2280. else if (INTEL_GEN(dev_priv) >= 4)
  2281. engine->emit_bb_start = i965_emit_bb_start;
  2282. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2283. engine->emit_bb_start = i830_emit_bb_start;
  2284. else
  2285. engine->emit_bb_start = i915_emit_bb_start;
  2286. }
  2287. int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
  2288. {
  2289. struct drm_i915_private *dev_priv = engine->i915;
  2290. int ret;
  2291. intel_ring_default_vfuncs(dev_priv, engine);
  2292. if (HAS_L3_DPF(dev_priv))
  2293. engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  2294. if (INTEL_GEN(dev_priv) >= 8) {
  2295. engine->init_context = intel_rcs_ctx_init;
  2296. engine->emit_request = gen8_render_emit_request;
  2297. engine->emit_flush = gen8_render_ring_flush;
  2298. if (i915.semaphores)
  2299. engine->semaphore.signal = gen8_rcs_signal;
  2300. } else if (INTEL_GEN(dev_priv) >= 6) {
  2301. engine->init_context = intel_rcs_ctx_init;
  2302. engine->emit_flush = gen7_render_ring_flush;
  2303. if (IS_GEN6(dev_priv))
  2304. engine->emit_flush = gen6_render_ring_flush;
  2305. } else if (IS_GEN5(dev_priv)) {
  2306. engine->emit_flush = gen4_render_ring_flush;
  2307. } else {
  2308. if (INTEL_GEN(dev_priv) < 4)
  2309. engine->emit_flush = gen2_render_ring_flush;
  2310. else
  2311. engine->emit_flush = gen4_render_ring_flush;
  2312. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2313. }
  2314. if (IS_HASWELL(dev_priv))
  2315. engine->emit_bb_start = hsw_emit_bb_start;
  2316. engine->init_hw = init_render_ring;
  2317. engine->cleanup = render_ring_cleanup;
  2318. ret = intel_init_ring_buffer(engine);
  2319. if (ret)
  2320. return ret;
  2321. if (INTEL_GEN(dev_priv) >= 6) {
  2322. ret = intel_init_pipe_control(engine, 4096);
  2323. if (ret)
  2324. return ret;
  2325. } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2326. ret = intel_init_pipe_control(engine, I830_WA_SIZE);
  2327. if (ret)
  2328. return ret;
  2329. }
  2330. return 0;
  2331. }
  2332. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
  2333. {
  2334. struct drm_i915_private *dev_priv = engine->i915;
  2335. intel_ring_default_vfuncs(dev_priv, engine);
  2336. if (INTEL_GEN(dev_priv) >= 6) {
  2337. /* gen6 bsd needs a special wa for tail updates */
  2338. if (IS_GEN6(dev_priv))
  2339. engine->submit_request = gen6_bsd_submit_request;
  2340. engine->emit_flush = gen6_bsd_ring_flush;
  2341. if (INTEL_GEN(dev_priv) < 8)
  2342. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2343. } else {
  2344. engine->mmio_base = BSD_RING_BASE;
  2345. engine->emit_flush = bsd_ring_flush;
  2346. if (IS_GEN5(dev_priv))
  2347. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2348. else
  2349. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2350. }
  2351. return intel_init_ring_buffer(engine);
  2352. }
  2353. /**
  2354. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2355. */
  2356. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
  2357. {
  2358. struct drm_i915_private *dev_priv = engine->i915;
  2359. intel_ring_default_vfuncs(dev_priv, engine);
  2360. engine->emit_flush = gen6_bsd_ring_flush;
  2361. return intel_init_ring_buffer(engine);
  2362. }
  2363. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
  2364. {
  2365. struct drm_i915_private *dev_priv = engine->i915;
  2366. intel_ring_default_vfuncs(dev_priv, engine);
  2367. engine->emit_flush = gen6_ring_flush;
  2368. if (INTEL_GEN(dev_priv) < 8)
  2369. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2370. return intel_init_ring_buffer(engine);
  2371. }
  2372. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
  2373. {
  2374. struct drm_i915_private *dev_priv = engine->i915;
  2375. intel_ring_default_vfuncs(dev_priv, engine);
  2376. engine->emit_flush = gen6_ring_flush;
  2377. if (INTEL_GEN(dev_priv) < 8) {
  2378. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2379. engine->irq_enable = hsw_vebox_irq_enable;
  2380. engine->irq_disable = hsw_vebox_irq_disable;
  2381. }
  2382. return intel_init_ring_buffer(engine);
  2383. }