stm32-timer-trigger.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882
  1. /*
  2. * Copyright (C) STMicroelectronics 2016
  3. *
  4. * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
  5. *
  6. * License terms: GNU General Public License (GPL), version 2
  7. */
  8. #include <linux/iio/iio.h>
  9. #include <linux/iio/sysfs.h>
  10. #include <linux/iio/timer/stm32-timer-trigger.h>
  11. #include <linux/iio/trigger.h>
  12. #include <linux/mfd/stm32-timers.h>
  13. #include <linux/module.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/of_device.h>
  16. #define MAX_TRIGGERS 7
  17. #define MAX_VALIDS 5
  18. /* List the triggers created by each timer */
  19. static const void *triggers_table[][MAX_TRIGGERS] = {
  20. { TIM1_TRGO, TIM1_TRGO2, TIM1_CH1, TIM1_CH2, TIM1_CH3, TIM1_CH4,},
  21. { TIM2_TRGO, TIM2_CH1, TIM2_CH2, TIM2_CH3, TIM2_CH4,},
  22. { TIM3_TRGO, TIM3_CH1, TIM3_CH2, TIM3_CH3, TIM3_CH4,},
  23. { TIM4_TRGO, TIM4_CH1, TIM4_CH2, TIM4_CH3, TIM4_CH4,},
  24. { TIM5_TRGO, TIM5_CH1, TIM5_CH2, TIM5_CH3, TIM5_CH4,},
  25. { TIM6_TRGO,},
  26. { TIM7_TRGO,},
  27. { TIM8_TRGO, TIM8_TRGO2, TIM8_CH1, TIM8_CH2, TIM8_CH3, TIM8_CH4,},
  28. { TIM9_TRGO, TIM9_CH1, TIM9_CH2,},
  29. { TIM10_OC1,},
  30. { TIM11_OC1,},
  31. { TIM12_TRGO, TIM12_CH1, TIM12_CH2,},
  32. { TIM13_OC1,},
  33. { TIM14_OC1,},
  34. { TIM15_TRGO,},
  35. { TIM16_OC1,},
  36. { TIM17_OC1,},
  37. };
  38. /* List the triggers accepted by each timer */
  39. static const void *valids_table[][MAX_VALIDS] = {
  40. { TIM5_TRGO, TIM2_TRGO, TIM3_TRGO, TIM4_TRGO,},
  41. { TIM1_TRGO, TIM8_TRGO, TIM3_TRGO, TIM4_TRGO,},
  42. { TIM1_TRGO, TIM2_TRGO, TIM5_TRGO, TIM4_TRGO,},
  43. { TIM1_TRGO, TIM2_TRGO, TIM3_TRGO, TIM8_TRGO,},
  44. { TIM2_TRGO, TIM3_TRGO, TIM4_TRGO, TIM8_TRGO,},
  45. { }, /* timer 6 */
  46. { }, /* timer 7 */
  47. { TIM1_TRGO, TIM2_TRGO, TIM4_TRGO, TIM5_TRGO,},
  48. { TIM2_TRGO, TIM3_TRGO, TIM10_OC1, TIM11_OC1,},
  49. { }, /* timer 10 */
  50. { }, /* timer 11 */
  51. { TIM4_TRGO, TIM5_TRGO, TIM13_OC1, TIM14_OC1,},
  52. };
  53. static const void *stm32h7_valids_table[][MAX_VALIDS] = {
  54. { TIM15_TRGO, TIM2_TRGO, TIM3_TRGO, TIM4_TRGO,},
  55. { TIM1_TRGO, TIM8_TRGO, TIM3_TRGO, TIM4_TRGO,},
  56. { TIM1_TRGO, TIM2_TRGO, TIM15_TRGO, TIM4_TRGO,},
  57. { TIM1_TRGO, TIM2_TRGO, TIM3_TRGO, TIM8_TRGO,},
  58. { TIM1_TRGO, TIM8_TRGO, TIM3_TRGO, TIM4_TRGO,},
  59. { }, /* timer 6 */
  60. { }, /* timer 7 */
  61. { TIM1_TRGO, TIM2_TRGO, TIM4_TRGO, TIM5_TRGO,},
  62. { }, /* timer 9 */
  63. { }, /* timer 10 */
  64. { }, /* timer 11 */
  65. { TIM4_TRGO, TIM5_TRGO, TIM13_OC1, TIM14_OC1,},
  66. { }, /* timer 13 */
  67. { }, /* timer 14 */
  68. { TIM1_TRGO, TIM3_TRGO, TIM16_OC1, TIM17_OC1,},
  69. { }, /* timer 16 */
  70. { }, /* timer 17 */
  71. };
  72. struct stm32_timer_trigger {
  73. struct device *dev;
  74. struct regmap *regmap;
  75. struct clk *clk;
  76. u32 max_arr;
  77. const void *triggers;
  78. const void *valids;
  79. bool has_trgo2;
  80. };
  81. struct stm32_timer_trigger_cfg {
  82. const void *(*valids_table)[MAX_VALIDS];
  83. const unsigned int num_valids_table;
  84. };
  85. static bool stm32_timer_is_trgo2_name(const char *name)
  86. {
  87. return !!strstr(name, "trgo2");
  88. }
  89. static bool stm32_timer_is_trgo_name(const char *name)
  90. {
  91. return (!!strstr(name, "trgo") && !strstr(name, "trgo2"));
  92. }
  93. static int stm32_timer_start(struct stm32_timer_trigger *priv,
  94. struct iio_trigger *trig,
  95. unsigned int frequency)
  96. {
  97. unsigned long long prd, div;
  98. int prescaler = 0;
  99. u32 ccer, cr1;
  100. /* Period and prescaler values depends of clock rate */
  101. div = (unsigned long long)clk_get_rate(priv->clk);
  102. do_div(div, frequency);
  103. prd = div;
  104. /*
  105. * Increase prescaler value until we get a result that fit
  106. * with auto reload register maximum value.
  107. */
  108. while (div > priv->max_arr) {
  109. prescaler++;
  110. div = prd;
  111. do_div(div, (prescaler + 1));
  112. }
  113. prd = div;
  114. if (prescaler > MAX_TIM_PSC) {
  115. dev_err(priv->dev, "prescaler exceeds the maximum value\n");
  116. return -EINVAL;
  117. }
  118. /* Check if nobody else use the timer */
  119. regmap_read(priv->regmap, TIM_CCER, &ccer);
  120. if (ccer & TIM_CCER_CCXE)
  121. return -EBUSY;
  122. regmap_read(priv->regmap, TIM_CR1, &cr1);
  123. if (!(cr1 & TIM_CR1_CEN))
  124. clk_enable(priv->clk);
  125. regmap_write(priv->regmap, TIM_PSC, prescaler);
  126. regmap_write(priv->regmap, TIM_ARR, prd - 1);
  127. regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
  128. /* Force master mode to update mode */
  129. if (stm32_timer_is_trgo2_name(trig->name))
  130. regmap_update_bits(priv->regmap, TIM_CR2, TIM_CR2_MMS2,
  131. 0x2 << TIM_CR2_MMS2_SHIFT);
  132. else
  133. regmap_update_bits(priv->regmap, TIM_CR2, TIM_CR2_MMS,
  134. 0x2 << TIM_CR2_MMS_SHIFT);
  135. /* Make sure that registers are updated */
  136. regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
  137. /* Enable controller */
  138. regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
  139. return 0;
  140. }
  141. static void stm32_timer_stop(struct stm32_timer_trigger *priv)
  142. {
  143. u32 ccer, cr1;
  144. regmap_read(priv->regmap, TIM_CCER, &ccer);
  145. if (ccer & TIM_CCER_CCXE)
  146. return;
  147. regmap_read(priv->regmap, TIM_CR1, &cr1);
  148. if (cr1 & TIM_CR1_CEN)
  149. clk_disable(priv->clk);
  150. /* Stop timer */
  151. regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
  152. regmap_write(priv->regmap, TIM_PSC, 0);
  153. regmap_write(priv->regmap, TIM_ARR, 0);
  154. /* Make sure that registers are updated */
  155. regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
  156. }
  157. static ssize_t stm32_tt_store_frequency(struct device *dev,
  158. struct device_attribute *attr,
  159. const char *buf, size_t len)
  160. {
  161. struct iio_trigger *trig = to_iio_trigger(dev);
  162. struct stm32_timer_trigger *priv = iio_trigger_get_drvdata(trig);
  163. unsigned int freq;
  164. int ret;
  165. ret = kstrtouint(buf, 10, &freq);
  166. if (ret)
  167. return ret;
  168. if (freq == 0) {
  169. stm32_timer_stop(priv);
  170. } else {
  171. ret = stm32_timer_start(priv, trig, freq);
  172. if (ret)
  173. return ret;
  174. }
  175. return len;
  176. }
  177. static ssize_t stm32_tt_read_frequency(struct device *dev,
  178. struct device_attribute *attr, char *buf)
  179. {
  180. struct iio_trigger *trig = to_iio_trigger(dev);
  181. struct stm32_timer_trigger *priv = iio_trigger_get_drvdata(trig);
  182. u32 psc, arr, cr1;
  183. unsigned long long freq = 0;
  184. regmap_read(priv->regmap, TIM_CR1, &cr1);
  185. regmap_read(priv->regmap, TIM_PSC, &psc);
  186. regmap_read(priv->regmap, TIM_ARR, &arr);
  187. if (cr1 & TIM_CR1_CEN) {
  188. freq = (unsigned long long)clk_get_rate(priv->clk);
  189. do_div(freq, psc + 1);
  190. do_div(freq, arr + 1);
  191. }
  192. return sprintf(buf, "%d\n", (unsigned int)freq);
  193. }
  194. static IIO_DEV_ATTR_SAMP_FREQ(0660,
  195. stm32_tt_read_frequency,
  196. stm32_tt_store_frequency);
  197. #define MASTER_MODE_MAX 7
  198. #define MASTER_MODE2_MAX 15
  199. static char *master_mode_table[] = {
  200. "reset",
  201. "enable",
  202. "update",
  203. "compare_pulse",
  204. "OC1REF",
  205. "OC2REF",
  206. "OC3REF",
  207. "OC4REF",
  208. /* Master mode selection 2 only */
  209. "OC5REF",
  210. "OC6REF",
  211. "compare_pulse_OC4REF",
  212. "compare_pulse_OC6REF",
  213. "compare_pulse_OC4REF_r_or_OC6REF_r",
  214. "compare_pulse_OC4REF_r_or_OC6REF_f",
  215. "compare_pulse_OC5REF_r_or_OC6REF_r",
  216. "compare_pulse_OC5REF_r_or_OC6REF_f",
  217. };
  218. static ssize_t stm32_tt_show_master_mode(struct device *dev,
  219. struct device_attribute *attr,
  220. char *buf)
  221. {
  222. struct stm32_timer_trigger *priv = dev_get_drvdata(dev);
  223. struct iio_trigger *trig = to_iio_trigger(dev);
  224. u32 cr2;
  225. regmap_read(priv->regmap, TIM_CR2, &cr2);
  226. if (stm32_timer_is_trgo2_name(trig->name))
  227. cr2 = (cr2 & TIM_CR2_MMS2) >> TIM_CR2_MMS2_SHIFT;
  228. else
  229. cr2 = (cr2 & TIM_CR2_MMS) >> TIM_CR2_MMS_SHIFT;
  230. return snprintf(buf, PAGE_SIZE, "%s\n", master_mode_table[cr2]);
  231. }
  232. static ssize_t stm32_tt_store_master_mode(struct device *dev,
  233. struct device_attribute *attr,
  234. const char *buf, size_t len)
  235. {
  236. struct stm32_timer_trigger *priv = dev_get_drvdata(dev);
  237. struct iio_trigger *trig = to_iio_trigger(dev);
  238. u32 mask, shift, master_mode_max;
  239. int i;
  240. if (stm32_timer_is_trgo2_name(trig->name)) {
  241. mask = TIM_CR2_MMS2;
  242. shift = TIM_CR2_MMS2_SHIFT;
  243. master_mode_max = MASTER_MODE2_MAX;
  244. } else {
  245. mask = TIM_CR2_MMS;
  246. shift = TIM_CR2_MMS_SHIFT;
  247. master_mode_max = MASTER_MODE_MAX;
  248. }
  249. for (i = 0; i <= master_mode_max; i++) {
  250. if (!strncmp(master_mode_table[i], buf,
  251. strlen(master_mode_table[i]))) {
  252. regmap_update_bits(priv->regmap, TIM_CR2, mask,
  253. i << shift);
  254. /* Make sure that registers are updated */
  255. regmap_update_bits(priv->regmap, TIM_EGR,
  256. TIM_EGR_UG, TIM_EGR_UG);
  257. return len;
  258. }
  259. }
  260. return -EINVAL;
  261. }
  262. static ssize_t stm32_tt_show_master_mode_avail(struct device *dev,
  263. struct device_attribute *attr,
  264. char *buf)
  265. {
  266. struct iio_trigger *trig = to_iio_trigger(dev);
  267. unsigned int i, master_mode_max;
  268. size_t len = 0;
  269. if (stm32_timer_is_trgo2_name(trig->name))
  270. master_mode_max = MASTER_MODE2_MAX;
  271. else
  272. master_mode_max = MASTER_MODE_MAX;
  273. for (i = 0; i <= master_mode_max; i++)
  274. len += scnprintf(buf + len, PAGE_SIZE - len,
  275. "%s ", master_mode_table[i]);
  276. /* replace trailing space by newline */
  277. buf[len - 1] = '\n';
  278. return len;
  279. }
  280. static IIO_DEVICE_ATTR(master_mode_available, 0444,
  281. stm32_tt_show_master_mode_avail, NULL, 0);
  282. static IIO_DEVICE_ATTR(master_mode, 0660,
  283. stm32_tt_show_master_mode,
  284. stm32_tt_store_master_mode,
  285. 0);
  286. static struct attribute *stm32_trigger_attrs[] = {
  287. &iio_dev_attr_sampling_frequency.dev_attr.attr,
  288. &iio_dev_attr_master_mode.dev_attr.attr,
  289. &iio_dev_attr_master_mode_available.dev_attr.attr,
  290. NULL,
  291. };
  292. static const struct attribute_group stm32_trigger_attr_group = {
  293. .attrs = stm32_trigger_attrs,
  294. };
  295. static const struct attribute_group *stm32_trigger_attr_groups[] = {
  296. &stm32_trigger_attr_group,
  297. NULL,
  298. };
  299. static const struct iio_trigger_ops timer_trigger_ops = {
  300. .owner = THIS_MODULE,
  301. };
  302. static int stm32_setup_iio_triggers(struct stm32_timer_trigger *priv)
  303. {
  304. int ret;
  305. const char * const *cur = priv->triggers;
  306. while (cur && *cur) {
  307. struct iio_trigger *trig;
  308. bool cur_is_trgo = stm32_timer_is_trgo_name(*cur);
  309. bool cur_is_trgo2 = stm32_timer_is_trgo2_name(*cur);
  310. if (cur_is_trgo2 && !priv->has_trgo2) {
  311. cur++;
  312. continue;
  313. }
  314. trig = devm_iio_trigger_alloc(priv->dev, "%s", *cur);
  315. if (!trig)
  316. return -ENOMEM;
  317. trig->dev.parent = priv->dev->parent;
  318. trig->ops = &timer_trigger_ops;
  319. /*
  320. * sampling frequency and master mode attributes
  321. * should only be available on trgo/trgo2 triggers
  322. */
  323. if (cur_is_trgo || cur_is_trgo2)
  324. trig->dev.groups = stm32_trigger_attr_groups;
  325. iio_trigger_set_drvdata(trig, priv);
  326. ret = devm_iio_trigger_register(priv->dev, trig);
  327. if (ret)
  328. return ret;
  329. cur++;
  330. }
  331. return 0;
  332. }
  333. static int stm32_counter_read_raw(struct iio_dev *indio_dev,
  334. struct iio_chan_spec const *chan,
  335. int *val, int *val2, long mask)
  336. {
  337. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  338. u32 dat;
  339. switch (mask) {
  340. case IIO_CHAN_INFO_RAW:
  341. regmap_read(priv->regmap, TIM_CNT, &dat);
  342. *val = dat;
  343. return IIO_VAL_INT;
  344. case IIO_CHAN_INFO_ENABLE:
  345. regmap_read(priv->regmap, TIM_CR1, &dat);
  346. *val = (dat & TIM_CR1_CEN) ? 1 : 0;
  347. return IIO_VAL_INT;
  348. case IIO_CHAN_INFO_SCALE:
  349. regmap_read(priv->regmap, TIM_SMCR, &dat);
  350. dat &= TIM_SMCR_SMS;
  351. *val = 1;
  352. *val2 = 0;
  353. /* in quadrature case scale = 0.25 */
  354. if (dat == 3)
  355. *val2 = 2;
  356. return IIO_VAL_FRACTIONAL_LOG2;
  357. }
  358. return -EINVAL;
  359. }
  360. static int stm32_counter_write_raw(struct iio_dev *indio_dev,
  361. struct iio_chan_spec const *chan,
  362. int val, int val2, long mask)
  363. {
  364. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  365. u32 dat;
  366. switch (mask) {
  367. case IIO_CHAN_INFO_RAW:
  368. return regmap_write(priv->regmap, TIM_CNT, val);
  369. case IIO_CHAN_INFO_SCALE:
  370. /* fixed scale */
  371. return -EINVAL;
  372. case IIO_CHAN_INFO_ENABLE:
  373. if (val) {
  374. regmap_read(priv->regmap, TIM_CR1, &dat);
  375. if (!(dat & TIM_CR1_CEN))
  376. clk_enable(priv->clk);
  377. regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
  378. TIM_CR1_CEN);
  379. } else {
  380. regmap_read(priv->regmap, TIM_CR1, &dat);
  381. regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
  382. 0);
  383. if (dat & TIM_CR1_CEN)
  384. clk_disable(priv->clk);
  385. }
  386. return 0;
  387. }
  388. return -EINVAL;
  389. }
  390. static int stm32_counter_validate_trigger(struct iio_dev *indio_dev,
  391. struct iio_trigger *trig)
  392. {
  393. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  394. const char * const *cur = priv->valids;
  395. unsigned int i = 0;
  396. if (!is_stm32_timer_trigger(trig))
  397. return -EINVAL;
  398. while (cur && *cur) {
  399. if (!strncmp(trig->name, *cur, strlen(trig->name))) {
  400. regmap_update_bits(priv->regmap,
  401. TIM_SMCR, TIM_SMCR_TS,
  402. i << TIM_SMCR_TS_SHIFT);
  403. return 0;
  404. }
  405. cur++;
  406. i++;
  407. }
  408. return -EINVAL;
  409. }
  410. static const struct iio_info stm32_trigger_info = {
  411. .driver_module = THIS_MODULE,
  412. .validate_trigger = stm32_counter_validate_trigger,
  413. .read_raw = stm32_counter_read_raw,
  414. .write_raw = stm32_counter_write_raw
  415. };
  416. static const char *const stm32_trigger_modes[] = {
  417. "trigger",
  418. };
  419. static int stm32_set_trigger_mode(struct iio_dev *indio_dev,
  420. const struct iio_chan_spec *chan,
  421. unsigned int mode)
  422. {
  423. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  424. regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, TIM_SMCR_SMS);
  425. return 0;
  426. }
  427. static int stm32_get_trigger_mode(struct iio_dev *indio_dev,
  428. const struct iio_chan_spec *chan)
  429. {
  430. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  431. u32 smcr;
  432. regmap_read(priv->regmap, TIM_SMCR, &smcr);
  433. return (smcr & TIM_SMCR_SMS) == TIM_SMCR_SMS ? 0 : -EINVAL;
  434. }
  435. static const struct iio_enum stm32_trigger_mode_enum = {
  436. .items = stm32_trigger_modes,
  437. .num_items = ARRAY_SIZE(stm32_trigger_modes),
  438. .set = stm32_set_trigger_mode,
  439. .get = stm32_get_trigger_mode
  440. };
  441. static const char *const stm32_enable_modes[] = {
  442. "always",
  443. "gated",
  444. "triggered",
  445. };
  446. static int stm32_enable_mode2sms(int mode)
  447. {
  448. switch (mode) {
  449. case 0:
  450. return 0;
  451. case 1:
  452. return 5;
  453. case 2:
  454. return 6;
  455. }
  456. return -EINVAL;
  457. }
  458. static int stm32_set_enable_mode(struct iio_dev *indio_dev,
  459. const struct iio_chan_spec *chan,
  460. unsigned int mode)
  461. {
  462. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  463. int sms = stm32_enable_mode2sms(mode);
  464. u32 val;
  465. if (sms < 0)
  466. return sms;
  467. /*
  468. * Triggered mode sets CEN bit automatically by hardware. So, first
  469. * enable counter clock, so it can use it. Keeps it in sync with CEN.
  470. */
  471. if (sms == 6) {
  472. regmap_read(priv->regmap, TIM_CR1, &val);
  473. if (!(val & TIM_CR1_CEN))
  474. clk_enable(priv->clk);
  475. }
  476. regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
  477. return 0;
  478. }
  479. static int stm32_sms2enable_mode(int mode)
  480. {
  481. switch (mode) {
  482. case 0:
  483. return 0;
  484. case 5:
  485. return 1;
  486. case 6:
  487. return 2;
  488. }
  489. return -EINVAL;
  490. }
  491. static int stm32_get_enable_mode(struct iio_dev *indio_dev,
  492. const struct iio_chan_spec *chan)
  493. {
  494. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  495. u32 smcr;
  496. regmap_read(priv->regmap, TIM_SMCR, &smcr);
  497. smcr &= TIM_SMCR_SMS;
  498. return stm32_sms2enable_mode(smcr);
  499. }
  500. static const struct iio_enum stm32_enable_mode_enum = {
  501. .items = stm32_enable_modes,
  502. .num_items = ARRAY_SIZE(stm32_enable_modes),
  503. .set = stm32_set_enable_mode,
  504. .get = stm32_get_enable_mode
  505. };
  506. static const char *const stm32_quadrature_modes[] = {
  507. "channel_A",
  508. "channel_B",
  509. "quadrature",
  510. };
  511. static int stm32_set_quadrature_mode(struct iio_dev *indio_dev,
  512. const struct iio_chan_spec *chan,
  513. unsigned int mode)
  514. {
  515. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  516. regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, mode + 1);
  517. return 0;
  518. }
  519. static int stm32_get_quadrature_mode(struct iio_dev *indio_dev,
  520. const struct iio_chan_spec *chan)
  521. {
  522. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  523. u32 smcr;
  524. int mode;
  525. regmap_read(priv->regmap, TIM_SMCR, &smcr);
  526. mode = (smcr & TIM_SMCR_SMS) - 1;
  527. if ((mode < 0) || (mode > ARRAY_SIZE(stm32_quadrature_modes)))
  528. return -EINVAL;
  529. return mode;
  530. }
  531. static const struct iio_enum stm32_quadrature_mode_enum = {
  532. .items = stm32_quadrature_modes,
  533. .num_items = ARRAY_SIZE(stm32_quadrature_modes),
  534. .set = stm32_set_quadrature_mode,
  535. .get = stm32_get_quadrature_mode
  536. };
  537. static const char *const stm32_count_direction_states[] = {
  538. "up",
  539. "down"
  540. };
  541. static int stm32_set_count_direction(struct iio_dev *indio_dev,
  542. const struct iio_chan_spec *chan,
  543. unsigned int dir)
  544. {
  545. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  546. u32 val;
  547. int mode;
  548. /* In encoder mode, direction is RO (given by TI1/TI2 signals) */
  549. regmap_read(priv->regmap, TIM_SMCR, &val);
  550. mode = (val & TIM_SMCR_SMS) - 1;
  551. if ((mode >= 0) || (mode < ARRAY_SIZE(stm32_quadrature_modes)))
  552. return -EBUSY;
  553. return regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_DIR,
  554. dir ? TIM_CR1_DIR : 0);
  555. }
  556. static int stm32_get_count_direction(struct iio_dev *indio_dev,
  557. const struct iio_chan_spec *chan)
  558. {
  559. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  560. u32 cr1;
  561. regmap_read(priv->regmap, TIM_CR1, &cr1);
  562. return ((cr1 & TIM_CR1_DIR) ? 1 : 0);
  563. }
  564. static const struct iio_enum stm32_count_direction_enum = {
  565. .items = stm32_count_direction_states,
  566. .num_items = ARRAY_SIZE(stm32_count_direction_states),
  567. .set = stm32_set_count_direction,
  568. .get = stm32_get_count_direction
  569. };
  570. static ssize_t stm32_count_get_preset(struct iio_dev *indio_dev,
  571. uintptr_t private,
  572. const struct iio_chan_spec *chan,
  573. char *buf)
  574. {
  575. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  576. u32 arr;
  577. regmap_read(priv->regmap, TIM_ARR, &arr);
  578. return snprintf(buf, PAGE_SIZE, "%u\n", arr);
  579. }
  580. static ssize_t stm32_count_set_preset(struct iio_dev *indio_dev,
  581. uintptr_t private,
  582. const struct iio_chan_spec *chan,
  583. const char *buf, size_t len)
  584. {
  585. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  586. unsigned int preset;
  587. int ret;
  588. ret = kstrtouint(buf, 0, &preset);
  589. if (ret)
  590. return ret;
  591. regmap_write(priv->regmap, TIM_ARR, preset);
  592. regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
  593. return len;
  594. }
  595. static const struct iio_chan_spec_ext_info stm32_trigger_count_info[] = {
  596. {
  597. .name = "preset",
  598. .shared = IIO_SEPARATE,
  599. .read = stm32_count_get_preset,
  600. .write = stm32_count_set_preset
  601. },
  602. IIO_ENUM("count_direction", IIO_SEPARATE, &stm32_count_direction_enum),
  603. IIO_ENUM_AVAILABLE("count_direction", &stm32_count_direction_enum),
  604. IIO_ENUM("quadrature_mode", IIO_SEPARATE, &stm32_quadrature_mode_enum),
  605. IIO_ENUM_AVAILABLE("quadrature_mode", &stm32_quadrature_mode_enum),
  606. IIO_ENUM("enable_mode", IIO_SEPARATE, &stm32_enable_mode_enum),
  607. IIO_ENUM_AVAILABLE("enable_mode", &stm32_enable_mode_enum),
  608. IIO_ENUM("trigger_mode", IIO_SEPARATE, &stm32_trigger_mode_enum),
  609. IIO_ENUM_AVAILABLE("trigger_mode", &stm32_trigger_mode_enum),
  610. {}
  611. };
  612. static const struct iio_chan_spec stm32_trigger_channel = {
  613. .type = IIO_COUNT,
  614. .channel = 0,
  615. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
  616. BIT(IIO_CHAN_INFO_ENABLE) |
  617. BIT(IIO_CHAN_INFO_SCALE),
  618. .ext_info = stm32_trigger_count_info,
  619. .indexed = 1
  620. };
  621. static struct stm32_timer_trigger *stm32_setup_counter_device(struct device *dev)
  622. {
  623. struct iio_dev *indio_dev;
  624. int ret;
  625. indio_dev = devm_iio_device_alloc(dev,
  626. sizeof(struct stm32_timer_trigger));
  627. if (!indio_dev)
  628. return NULL;
  629. indio_dev->name = dev_name(dev);
  630. indio_dev->dev.parent = dev;
  631. indio_dev->info = &stm32_trigger_info;
  632. indio_dev->modes = INDIO_HARDWARE_TRIGGERED;
  633. indio_dev->num_channels = 1;
  634. indio_dev->channels = &stm32_trigger_channel;
  635. indio_dev->dev.of_node = dev->of_node;
  636. ret = devm_iio_device_register(dev, indio_dev);
  637. if (ret)
  638. return NULL;
  639. return iio_priv(indio_dev);
  640. }
  641. /**
  642. * is_stm32_timer_trigger
  643. * @trig: trigger to be checked
  644. *
  645. * return true if the trigger is a valid stm32 iio timer trigger
  646. * either return false
  647. */
  648. bool is_stm32_timer_trigger(struct iio_trigger *trig)
  649. {
  650. return (trig->ops == &timer_trigger_ops);
  651. }
  652. EXPORT_SYMBOL(is_stm32_timer_trigger);
  653. static void stm32_timer_detect_trgo2(struct stm32_timer_trigger *priv)
  654. {
  655. u32 val;
  656. /*
  657. * Master mode selection 2 bits can only be written and read back when
  658. * timer supports it.
  659. */
  660. regmap_update_bits(priv->regmap, TIM_CR2, TIM_CR2_MMS2, TIM_CR2_MMS2);
  661. regmap_read(priv->regmap, TIM_CR2, &val);
  662. regmap_update_bits(priv->regmap, TIM_CR2, TIM_CR2_MMS2, 0);
  663. priv->has_trgo2 = !!val;
  664. }
  665. static int stm32_timer_trigger_probe(struct platform_device *pdev)
  666. {
  667. struct device *dev = &pdev->dev;
  668. struct stm32_timer_trigger *priv;
  669. struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
  670. const struct stm32_timer_trigger_cfg *cfg;
  671. unsigned int index;
  672. int ret;
  673. if (of_property_read_u32(dev->of_node, "reg", &index))
  674. return -EINVAL;
  675. cfg = (const struct stm32_timer_trigger_cfg *)
  676. of_match_device(dev->driver->of_match_table, dev)->data;
  677. if (index >= ARRAY_SIZE(triggers_table) ||
  678. index >= cfg->num_valids_table)
  679. return -EINVAL;
  680. /* Create an IIO device only if we have triggers to be validated */
  681. if (*cfg->valids_table[index])
  682. priv = stm32_setup_counter_device(dev);
  683. else
  684. priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
  685. if (!priv)
  686. return -ENOMEM;
  687. priv->dev = dev;
  688. priv->regmap = ddata->regmap;
  689. priv->clk = ddata->clk;
  690. priv->max_arr = ddata->max_arr;
  691. priv->triggers = triggers_table[index];
  692. priv->valids = cfg->valids_table[index];
  693. stm32_timer_detect_trgo2(priv);
  694. ret = stm32_setup_iio_triggers(priv);
  695. if (ret)
  696. return ret;
  697. platform_set_drvdata(pdev, priv);
  698. return 0;
  699. }
  700. static const struct stm32_timer_trigger_cfg stm32_timer_trg_cfg = {
  701. .valids_table = valids_table,
  702. .num_valids_table = ARRAY_SIZE(valids_table),
  703. };
  704. static const struct stm32_timer_trigger_cfg stm32h7_timer_trg_cfg = {
  705. .valids_table = stm32h7_valids_table,
  706. .num_valids_table = ARRAY_SIZE(stm32h7_valids_table),
  707. };
  708. static const struct of_device_id stm32_trig_of_match[] = {
  709. {
  710. .compatible = "st,stm32-timer-trigger",
  711. .data = (void *)&stm32_timer_trg_cfg,
  712. }, {
  713. .compatible = "st,stm32h7-timer-trigger",
  714. .data = (void *)&stm32h7_timer_trg_cfg,
  715. },
  716. { /* end node */ },
  717. };
  718. MODULE_DEVICE_TABLE(of, stm32_trig_of_match);
  719. static struct platform_driver stm32_timer_trigger_driver = {
  720. .probe = stm32_timer_trigger_probe,
  721. .driver = {
  722. .name = "stm32-timer-trigger",
  723. .of_match_table = stm32_trig_of_match,
  724. },
  725. };
  726. module_platform_driver(stm32_timer_trigger_driver);
  727. MODULE_ALIAS("platform: stm32-timer-trigger");
  728. MODULE_DESCRIPTION("STMicroelectronics STM32 Timer Trigger driver");
  729. MODULE_LICENSE("GPL v2");