cppi41.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048
  1. #include <linux/dmaengine.h>
  2. #include <linux/dma-mapping.h>
  3. #include <linux/platform_device.h>
  4. #include <linux/module.h>
  5. #include <linux/of.h>
  6. #include <linux/slab.h>
  7. #include <linux/of_dma.h>
  8. #include <linux/of_irq.h>
  9. #include <linux/dmapool.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/of_address.h>
  12. #include "dmaengine.h"
  13. #define DESC_TYPE 27
  14. #define DESC_TYPE_HOST 0x10
  15. #define DESC_TYPE_TEARD 0x13
  16. #define TD_DESC_IS_RX (1 << 16)
  17. #define TD_DESC_DMA_NUM 10
  18. #define DESC_LENGTH_BITS_NUM 21
  19. #define DESC_TYPE_USB (5 << 26)
  20. #define DESC_PD_COMPLETE (1 << 31)
  21. /* DMA engine */
  22. #define DMA_TDFDQ 4
  23. #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
  24. #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
  25. #define RXHPCRA0 4
  26. #define GCR_CHAN_ENABLE (1 << 31)
  27. #define GCR_TEARDOWN (1 << 30)
  28. #define GCR_STARV_RETRY (1 << 24)
  29. #define GCR_DESC_TYPE_HOST (1 << 14)
  30. /* DMA scheduler */
  31. #define DMA_SCHED_CTRL 0
  32. #define DMA_SCHED_CTRL_EN (1 << 31)
  33. #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
  34. #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
  35. #define SCHED_ENTRY0_IS_RX (1 << 7)
  36. #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
  37. #define SCHED_ENTRY1_IS_RX (1 << 15)
  38. #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
  39. #define SCHED_ENTRY2_IS_RX (1 << 23)
  40. #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
  41. #define SCHED_ENTRY3_IS_RX (1 << 31)
  42. /* Queue manager */
  43. /* 4 KiB of memory for descriptors, 2 for each endpoint */
  44. #define ALLOC_DECS_NUM 128
  45. #define DESCS_AREAS 1
  46. #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
  47. #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
  48. #define QMGR_LRAM0_BASE 0x80
  49. #define QMGR_LRAM_SIZE 0x84
  50. #define QMGR_LRAM1_BASE 0x88
  51. #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
  52. #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
  53. #define QMGR_MEMCTRL_IDX_SH 16
  54. #define QMGR_MEMCTRL_DESC_SH 8
  55. #define QMGR_NUM_PEND 5
  56. #define QMGR_PEND(x) (0x90 + (x) * 4)
  57. #define QMGR_PENDING_SLOT_Q(x) (x / 32)
  58. #define QMGR_PENDING_BIT_Q(x) (x % 32)
  59. #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
  60. #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
  61. #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
  62. #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
  63. /* Glue layer specific */
  64. /* USBSS / USB AM335x */
  65. #define USBSS_IRQ_STATUS 0x28
  66. #define USBSS_IRQ_ENABLER 0x2c
  67. #define USBSS_IRQ_CLEARR 0x30
  68. #define USBSS_IRQ_PD_COMP (1 << 2)
  69. struct cppi41_channel {
  70. struct dma_chan chan;
  71. struct dma_async_tx_descriptor txd;
  72. struct cppi41_dd *cdd;
  73. struct cppi41_desc *desc;
  74. dma_addr_t desc_phys;
  75. void __iomem *gcr_reg;
  76. int is_tx;
  77. u32 residue;
  78. unsigned int q_num;
  79. unsigned int q_comp_num;
  80. unsigned int port_num;
  81. unsigned td_retry;
  82. unsigned td_queued:1;
  83. unsigned td_seen:1;
  84. unsigned td_desc_seen:1;
  85. };
  86. struct cppi41_desc {
  87. u32 pd0;
  88. u32 pd1;
  89. u32 pd2;
  90. u32 pd3;
  91. u32 pd4;
  92. u32 pd5;
  93. u32 pd6;
  94. u32 pd7;
  95. } __aligned(32);
  96. struct chan_queues {
  97. u16 submit;
  98. u16 complete;
  99. };
  100. struct cppi41_dd {
  101. struct dma_device ddev;
  102. void *qmgr_scratch;
  103. dma_addr_t scratch_phys;
  104. struct cppi41_desc *cd;
  105. dma_addr_t descs_phys;
  106. u32 first_td_desc;
  107. struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
  108. void __iomem *usbss_mem;
  109. void __iomem *ctrl_mem;
  110. void __iomem *sched_mem;
  111. void __iomem *qmgr_mem;
  112. unsigned int irq;
  113. const struct chan_queues *queues_rx;
  114. const struct chan_queues *queues_tx;
  115. struct chan_queues td_queue;
  116. };
  117. #define FIST_COMPLETION_QUEUE 93
  118. static struct chan_queues usb_queues_tx[] = {
  119. /* USB0 ENDP 1 */
  120. [ 0] = { .submit = 32, .complete = 93},
  121. [ 1] = { .submit = 34, .complete = 94},
  122. [ 2] = { .submit = 36, .complete = 95},
  123. [ 3] = { .submit = 38, .complete = 96},
  124. [ 4] = { .submit = 40, .complete = 97},
  125. [ 5] = { .submit = 42, .complete = 98},
  126. [ 6] = { .submit = 44, .complete = 99},
  127. [ 7] = { .submit = 46, .complete = 100},
  128. [ 8] = { .submit = 48, .complete = 101},
  129. [ 9] = { .submit = 50, .complete = 102},
  130. [10] = { .submit = 52, .complete = 103},
  131. [11] = { .submit = 54, .complete = 104},
  132. [12] = { .submit = 56, .complete = 105},
  133. [13] = { .submit = 58, .complete = 106},
  134. [14] = { .submit = 60, .complete = 107},
  135. /* USB1 ENDP1 */
  136. [15] = { .submit = 62, .complete = 125},
  137. [16] = { .submit = 64, .complete = 126},
  138. [17] = { .submit = 66, .complete = 127},
  139. [18] = { .submit = 68, .complete = 128},
  140. [19] = { .submit = 70, .complete = 129},
  141. [20] = { .submit = 72, .complete = 130},
  142. [21] = { .submit = 74, .complete = 131},
  143. [22] = { .submit = 76, .complete = 132},
  144. [23] = { .submit = 78, .complete = 133},
  145. [24] = { .submit = 80, .complete = 134},
  146. [25] = { .submit = 82, .complete = 135},
  147. [26] = { .submit = 84, .complete = 136},
  148. [27] = { .submit = 86, .complete = 137},
  149. [28] = { .submit = 88, .complete = 138},
  150. [29] = { .submit = 90, .complete = 139},
  151. };
  152. static const struct chan_queues usb_queues_rx[] = {
  153. /* USB0 ENDP 1 */
  154. [ 0] = { .submit = 1, .complete = 109},
  155. [ 1] = { .submit = 2, .complete = 110},
  156. [ 2] = { .submit = 3, .complete = 111},
  157. [ 3] = { .submit = 4, .complete = 112},
  158. [ 4] = { .submit = 5, .complete = 113},
  159. [ 5] = { .submit = 6, .complete = 114},
  160. [ 6] = { .submit = 7, .complete = 115},
  161. [ 7] = { .submit = 8, .complete = 116},
  162. [ 8] = { .submit = 9, .complete = 117},
  163. [ 9] = { .submit = 10, .complete = 118},
  164. [10] = { .submit = 11, .complete = 119},
  165. [11] = { .submit = 12, .complete = 120},
  166. [12] = { .submit = 13, .complete = 121},
  167. [13] = { .submit = 14, .complete = 122},
  168. [14] = { .submit = 15, .complete = 123},
  169. /* USB1 ENDP 1 */
  170. [15] = { .submit = 16, .complete = 141},
  171. [16] = { .submit = 17, .complete = 142},
  172. [17] = { .submit = 18, .complete = 143},
  173. [18] = { .submit = 19, .complete = 144},
  174. [19] = { .submit = 20, .complete = 145},
  175. [20] = { .submit = 21, .complete = 146},
  176. [21] = { .submit = 22, .complete = 147},
  177. [22] = { .submit = 23, .complete = 148},
  178. [23] = { .submit = 24, .complete = 149},
  179. [24] = { .submit = 25, .complete = 150},
  180. [25] = { .submit = 26, .complete = 151},
  181. [26] = { .submit = 27, .complete = 152},
  182. [27] = { .submit = 28, .complete = 153},
  183. [28] = { .submit = 29, .complete = 154},
  184. [29] = { .submit = 30, .complete = 155},
  185. };
  186. struct cppi_glue_infos {
  187. irqreturn_t (*isr)(int irq, void *data);
  188. const struct chan_queues *queues_rx;
  189. const struct chan_queues *queues_tx;
  190. struct chan_queues td_queue;
  191. };
  192. static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
  193. {
  194. return container_of(c, struct cppi41_channel, chan);
  195. }
  196. static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
  197. {
  198. struct cppi41_channel *c;
  199. u32 descs_size;
  200. u32 desc_num;
  201. descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
  202. if (!((desc >= cdd->descs_phys) &&
  203. (desc < (cdd->descs_phys + descs_size)))) {
  204. return NULL;
  205. }
  206. desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
  207. BUG_ON(desc_num > ALLOC_DECS_NUM);
  208. c = cdd->chan_busy[desc_num];
  209. cdd->chan_busy[desc_num] = NULL;
  210. return c;
  211. }
  212. static void cppi_writel(u32 val, void *__iomem *mem)
  213. {
  214. __raw_writel(val, mem);
  215. }
  216. static u32 cppi_readl(void *__iomem *mem)
  217. {
  218. return __raw_readl(mem);
  219. }
  220. static u32 pd_trans_len(u32 val)
  221. {
  222. return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
  223. }
  224. static irqreturn_t cppi41_irq(int irq, void *data)
  225. {
  226. struct cppi41_dd *cdd = data;
  227. struct cppi41_channel *c;
  228. u32 status;
  229. int i;
  230. status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
  231. if (!(status & USBSS_IRQ_PD_COMP))
  232. return IRQ_NONE;
  233. cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
  234. for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
  235. i++) {
  236. u32 val;
  237. u32 q_num;
  238. val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
  239. if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
  240. u32 mask;
  241. /* set corresponding bit for completetion Q 93 */
  242. mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
  243. /* not set all bits for queues less than Q 93 */
  244. mask--;
  245. /* now invert and keep only Q 93+ set */
  246. val &= ~mask;
  247. }
  248. if (val)
  249. __iormb();
  250. while (val) {
  251. u32 desc;
  252. q_num = __fls(val);
  253. val &= ~(1 << q_num);
  254. q_num += 32 * i;
  255. desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(q_num));
  256. desc &= ~0x1f;
  257. c = desc_to_chan(cdd, desc);
  258. if (WARN_ON(!c)) {
  259. pr_err("%s() q %d desc %08x\n", __func__,
  260. q_num, desc);
  261. continue;
  262. }
  263. c->residue = pd_trans_len(c->desc->pd6) -
  264. pd_trans_len(c->desc->pd0);
  265. dma_cookie_complete(&c->txd);
  266. c->txd.callback(c->txd.callback_param);
  267. }
  268. }
  269. return IRQ_HANDLED;
  270. }
  271. static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
  272. {
  273. dma_cookie_t cookie;
  274. cookie = dma_cookie_assign(tx);
  275. return cookie;
  276. }
  277. static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
  278. {
  279. struct cppi41_channel *c = to_cpp41_chan(chan);
  280. dma_cookie_init(chan);
  281. dma_async_tx_descriptor_init(&c->txd, chan);
  282. c->txd.tx_submit = cppi41_tx_submit;
  283. if (!c->is_tx)
  284. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  285. return 0;
  286. }
  287. static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
  288. {
  289. }
  290. static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
  291. dma_cookie_t cookie, struct dma_tx_state *txstate)
  292. {
  293. struct cppi41_channel *c = to_cpp41_chan(chan);
  294. enum dma_status ret;
  295. /* lock */
  296. ret = dma_cookie_status(chan, cookie, txstate);
  297. if (txstate && ret == DMA_SUCCESS)
  298. txstate->residue = c->residue;
  299. /* unlock */
  300. return ret;
  301. }
  302. static void push_desc_queue(struct cppi41_channel *c)
  303. {
  304. struct cppi41_dd *cdd = c->cdd;
  305. u32 desc_num;
  306. u32 desc_phys;
  307. u32 reg;
  308. desc_phys = lower_32_bits(c->desc_phys);
  309. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  310. WARN_ON(cdd->chan_busy[desc_num]);
  311. cdd->chan_busy[desc_num] = c;
  312. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  313. reg |= desc_phys;
  314. cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
  315. }
  316. static void cppi41_dma_issue_pending(struct dma_chan *chan)
  317. {
  318. struct cppi41_channel *c = to_cpp41_chan(chan);
  319. u32 reg;
  320. c->residue = 0;
  321. reg = GCR_CHAN_ENABLE;
  322. if (!c->is_tx) {
  323. reg |= GCR_STARV_RETRY;
  324. reg |= GCR_DESC_TYPE_HOST;
  325. reg |= c->q_comp_num;
  326. }
  327. cppi_writel(reg, c->gcr_reg);
  328. /*
  329. * We don't use writel() but __raw_writel() so we have to make sure
  330. * that the DMA descriptor in coherent memory made to the main memory
  331. * before starting the dma engine.
  332. */
  333. __iowmb();
  334. push_desc_queue(c);
  335. }
  336. static u32 get_host_pd0(u32 length)
  337. {
  338. u32 reg;
  339. reg = DESC_TYPE_HOST << DESC_TYPE;
  340. reg |= length;
  341. return reg;
  342. }
  343. static u32 get_host_pd1(struct cppi41_channel *c)
  344. {
  345. u32 reg;
  346. reg = 0;
  347. return reg;
  348. }
  349. static u32 get_host_pd2(struct cppi41_channel *c)
  350. {
  351. u32 reg;
  352. reg = DESC_TYPE_USB;
  353. reg |= c->q_comp_num;
  354. return reg;
  355. }
  356. static u32 get_host_pd3(u32 length)
  357. {
  358. u32 reg;
  359. /* PD3 = packet size */
  360. reg = length;
  361. return reg;
  362. }
  363. static u32 get_host_pd6(u32 length)
  364. {
  365. u32 reg;
  366. /* PD6 buffer size */
  367. reg = DESC_PD_COMPLETE;
  368. reg |= length;
  369. return reg;
  370. }
  371. static u32 get_host_pd4_or_7(u32 addr)
  372. {
  373. u32 reg;
  374. reg = addr;
  375. return reg;
  376. }
  377. static u32 get_host_pd5(void)
  378. {
  379. u32 reg;
  380. reg = 0;
  381. return reg;
  382. }
  383. static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
  384. struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
  385. enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
  386. {
  387. struct cppi41_channel *c = to_cpp41_chan(chan);
  388. struct cppi41_desc *d;
  389. struct scatterlist *sg;
  390. unsigned int i;
  391. unsigned int num;
  392. num = 0;
  393. d = c->desc;
  394. for_each_sg(sgl, sg, sg_len, i) {
  395. u32 addr;
  396. u32 len;
  397. /* We need to use more than one desc once musb supports sg */
  398. BUG_ON(num > 0);
  399. addr = lower_32_bits(sg_dma_address(sg));
  400. len = sg_dma_len(sg);
  401. d->pd0 = get_host_pd0(len);
  402. d->pd1 = get_host_pd1(c);
  403. d->pd2 = get_host_pd2(c);
  404. d->pd3 = get_host_pd3(len);
  405. d->pd4 = get_host_pd4_or_7(addr);
  406. d->pd5 = get_host_pd5();
  407. d->pd6 = get_host_pd6(len);
  408. d->pd7 = get_host_pd4_or_7(addr);
  409. d++;
  410. }
  411. return &c->txd;
  412. }
  413. static int cpp41_cfg_chan(struct cppi41_channel *c,
  414. struct dma_slave_config *cfg)
  415. {
  416. return 0;
  417. }
  418. static void cppi41_compute_td_desc(struct cppi41_desc *d)
  419. {
  420. d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
  421. }
  422. static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
  423. {
  424. u32 desc;
  425. desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
  426. desc &= ~0x1f;
  427. return desc;
  428. }
  429. static int cppi41_tear_down_chan(struct cppi41_channel *c)
  430. {
  431. struct cppi41_dd *cdd = c->cdd;
  432. struct cppi41_desc *td;
  433. u32 reg;
  434. u32 desc_phys;
  435. u32 td_desc_phys;
  436. td = cdd->cd;
  437. td += cdd->first_td_desc;
  438. td_desc_phys = cdd->descs_phys;
  439. td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
  440. if (!c->td_queued) {
  441. cppi41_compute_td_desc(td);
  442. __iowmb();
  443. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  444. reg |= td_desc_phys;
  445. cppi_writel(reg, cdd->qmgr_mem +
  446. QMGR_QUEUE_D(cdd->td_queue.submit));
  447. reg = GCR_CHAN_ENABLE;
  448. if (!c->is_tx) {
  449. reg |= GCR_STARV_RETRY;
  450. reg |= GCR_DESC_TYPE_HOST;
  451. reg |= c->q_comp_num;
  452. }
  453. reg |= GCR_TEARDOWN;
  454. cppi_writel(reg, c->gcr_reg);
  455. c->td_queued = 1;
  456. c->td_retry = 100;
  457. }
  458. if (!c->td_seen) {
  459. unsigned td_comp_queue;
  460. if (c->is_tx)
  461. td_comp_queue = cdd->td_queue.complete;
  462. else
  463. td_comp_queue = c->q_comp_num;
  464. desc_phys = cppi41_pop_desc(cdd, td_comp_queue);
  465. if (desc_phys) {
  466. __iormb();
  467. if (desc_phys == td_desc_phys) {
  468. u32 pd0;
  469. pd0 = td->pd0;
  470. WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
  471. WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
  472. WARN_ON((pd0 & 0x1f) != c->port_num);
  473. } else {
  474. WARN_ON_ONCE(1);
  475. }
  476. c->td_seen = 1;
  477. }
  478. }
  479. if (!c->td_desc_seen) {
  480. desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
  481. if (desc_phys) {
  482. __iormb();
  483. WARN_ON(c->desc_phys != desc_phys);
  484. c->td_desc_seen = 1;
  485. }
  486. }
  487. c->td_retry--;
  488. /*
  489. * If the TX descriptor / channel is in use, the caller needs to poke
  490. * his TD bit multiple times. After that he hardware releases the
  491. * transfer descriptor followed by TD descriptor. Waiting seems not to
  492. * cause any difference.
  493. * RX seems to be thrown out right away. However once the TearDown
  494. * descriptor gets through we are done. If we have seens the transfer
  495. * descriptor before the TD we fetch it from enqueue, it has to be
  496. * there waiting for us.
  497. */
  498. if (!c->td_seen && c->td_retry)
  499. return -EAGAIN;
  500. WARN_ON(!c->td_retry);
  501. if (!c->td_desc_seen) {
  502. desc_phys = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
  503. WARN_ON(!desc_phys);
  504. }
  505. c->td_queued = 0;
  506. c->td_seen = 0;
  507. c->td_desc_seen = 0;
  508. cppi_writel(0, c->gcr_reg);
  509. return 0;
  510. }
  511. static int cppi41_stop_chan(struct dma_chan *chan)
  512. {
  513. struct cppi41_channel *c = to_cpp41_chan(chan);
  514. struct cppi41_dd *cdd = c->cdd;
  515. u32 desc_num;
  516. u32 desc_phys;
  517. int ret;
  518. ret = cppi41_tear_down_chan(c);
  519. if (ret)
  520. return ret;
  521. desc_phys = lower_32_bits(c->desc_phys);
  522. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  523. WARN_ON(!cdd->chan_busy[desc_num]);
  524. cdd->chan_busy[desc_num] = NULL;
  525. return 0;
  526. }
  527. static int cppi41_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  528. unsigned long arg)
  529. {
  530. struct cppi41_channel *c = to_cpp41_chan(chan);
  531. int ret;
  532. switch (cmd) {
  533. case DMA_SLAVE_CONFIG:
  534. ret = cpp41_cfg_chan(c, (struct dma_slave_config *) arg);
  535. break;
  536. case DMA_TERMINATE_ALL:
  537. ret = cppi41_stop_chan(chan);
  538. break;
  539. default:
  540. ret = -ENXIO;
  541. break;
  542. }
  543. return ret;
  544. }
  545. static void cleanup_chans(struct cppi41_dd *cdd)
  546. {
  547. while (!list_empty(&cdd->ddev.channels)) {
  548. struct cppi41_channel *cchan;
  549. cchan = list_first_entry(&cdd->ddev.channels,
  550. struct cppi41_channel, chan.device_node);
  551. list_del(&cchan->chan.device_node);
  552. kfree(cchan);
  553. }
  554. }
  555. static int cppi41_add_chans(struct platform_device *pdev, struct cppi41_dd *cdd)
  556. {
  557. struct cppi41_channel *cchan;
  558. int i;
  559. int ret;
  560. u32 n_chans;
  561. ret = of_property_read_u32(pdev->dev.of_node, "#dma-channels",
  562. &n_chans);
  563. if (ret)
  564. return ret;
  565. /*
  566. * The channels can only be used as TX or as RX. So we add twice
  567. * that much dma channels because USB can only do RX or TX.
  568. */
  569. n_chans *= 2;
  570. for (i = 0; i < n_chans; i++) {
  571. cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
  572. if (!cchan)
  573. goto err;
  574. cchan->cdd = cdd;
  575. if (i & 1) {
  576. cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
  577. cchan->is_tx = 1;
  578. } else {
  579. cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
  580. cchan->is_tx = 0;
  581. }
  582. cchan->port_num = i >> 1;
  583. cchan->desc = &cdd->cd[i];
  584. cchan->desc_phys = cdd->descs_phys;
  585. cchan->desc_phys += i * sizeof(struct cppi41_desc);
  586. cchan->chan.device = &cdd->ddev;
  587. list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
  588. }
  589. cdd->first_td_desc = n_chans;
  590. return 0;
  591. err:
  592. cleanup_chans(cdd);
  593. return -ENOMEM;
  594. }
  595. static void purge_descs(struct platform_device *pdev, struct cppi41_dd *cdd)
  596. {
  597. unsigned int mem_decs;
  598. int i;
  599. mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
  600. for (i = 0; i < DESCS_AREAS; i++) {
  601. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
  602. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  603. dma_free_coherent(&pdev->dev, mem_decs, cdd->cd,
  604. cdd->descs_phys);
  605. }
  606. }
  607. static void disable_sched(struct cppi41_dd *cdd)
  608. {
  609. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  610. }
  611. static void deinit_cpii41(struct platform_device *pdev, struct cppi41_dd *cdd)
  612. {
  613. disable_sched(cdd);
  614. purge_descs(pdev, cdd);
  615. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  616. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  617. dma_free_coherent(&pdev->dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
  618. cdd->scratch_phys);
  619. }
  620. static int init_descs(struct platform_device *pdev, struct cppi41_dd *cdd)
  621. {
  622. unsigned int desc_size;
  623. unsigned int mem_decs;
  624. int i;
  625. u32 reg;
  626. u32 idx;
  627. BUILD_BUG_ON(sizeof(struct cppi41_desc) &
  628. (sizeof(struct cppi41_desc) - 1));
  629. BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
  630. BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
  631. desc_size = sizeof(struct cppi41_desc);
  632. mem_decs = ALLOC_DECS_NUM * desc_size;
  633. idx = 0;
  634. for (i = 0; i < DESCS_AREAS; i++) {
  635. reg = idx << QMGR_MEMCTRL_IDX_SH;
  636. reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
  637. reg |= ilog2(ALLOC_DECS_NUM) - 5;
  638. BUILD_BUG_ON(DESCS_AREAS != 1);
  639. cdd->cd = dma_alloc_coherent(&pdev->dev, mem_decs,
  640. &cdd->descs_phys, GFP_KERNEL);
  641. if (!cdd->cd)
  642. return -ENOMEM;
  643. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  644. cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  645. idx += ALLOC_DECS_NUM;
  646. }
  647. return 0;
  648. }
  649. static void init_sched(struct cppi41_dd *cdd)
  650. {
  651. unsigned ch;
  652. unsigned word;
  653. u32 reg;
  654. word = 0;
  655. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  656. for (ch = 0; ch < 15 * 2; ch += 2) {
  657. reg = SCHED_ENTRY0_CHAN(ch);
  658. reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
  659. reg |= SCHED_ENTRY2_CHAN(ch + 1);
  660. reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
  661. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
  662. word++;
  663. }
  664. reg = 15 * 2 * 2 - 1;
  665. reg |= DMA_SCHED_CTRL_EN;
  666. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
  667. }
  668. static int init_cppi41(struct platform_device *pdev, struct cppi41_dd *cdd)
  669. {
  670. int ret;
  671. BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
  672. cdd->qmgr_scratch = dma_alloc_coherent(&pdev->dev, QMGR_SCRATCH_SIZE,
  673. &cdd->scratch_phys, GFP_KERNEL);
  674. if (!cdd->qmgr_scratch)
  675. return -ENOMEM;
  676. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  677. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  678. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  679. ret = init_descs(pdev, cdd);
  680. if (ret)
  681. goto err_td;
  682. cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
  683. init_sched(cdd);
  684. return 0;
  685. err_td:
  686. deinit_cpii41(pdev, cdd);
  687. return ret;
  688. }
  689. static struct platform_driver cpp41_dma_driver;
  690. /*
  691. * The param format is:
  692. * X Y
  693. * X: Port
  694. * Y: 0 = RX else TX
  695. */
  696. #define INFO_PORT 0
  697. #define INFO_IS_TX 1
  698. static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
  699. {
  700. struct cppi41_channel *cchan;
  701. struct cppi41_dd *cdd;
  702. const struct chan_queues *queues;
  703. u32 *num = param;
  704. if (chan->device->dev->driver != &cpp41_dma_driver.driver)
  705. return false;
  706. cchan = to_cpp41_chan(chan);
  707. if (cchan->port_num != num[INFO_PORT])
  708. return false;
  709. if (cchan->is_tx && !num[INFO_IS_TX])
  710. return false;
  711. cdd = cchan->cdd;
  712. if (cchan->is_tx)
  713. queues = cdd->queues_tx;
  714. else
  715. queues = cdd->queues_rx;
  716. BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
  717. if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
  718. return false;
  719. cchan->q_num = queues[cchan->port_num].submit;
  720. cchan->q_comp_num = queues[cchan->port_num].complete;
  721. return true;
  722. }
  723. static struct of_dma_filter_info cpp41_dma_info = {
  724. .filter_fn = cpp41_dma_filter_fn,
  725. };
  726. static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
  727. struct of_dma *ofdma)
  728. {
  729. int count = dma_spec->args_count;
  730. struct of_dma_filter_info *info = ofdma->of_dma_data;
  731. if (!info || !info->filter_fn)
  732. return NULL;
  733. if (count != 2)
  734. return NULL;
  735. return dma_request_channel(info->dma_cap, info->filter_fn,
  736. &dma_spec->args[0]);
  737. }
  738. static const struct cppi_glue_infos usb_infos = {
  739. .isr = cppi41_irq,
  740. .queues_rx = usb_queues_rx,
  741. .queues_tx = usb_queues_tx,
  742. .td_queue = { .submit = 31, .complete = 0 },
  743. };
  744. static const struct of_device_id cppi41_dma_ids[] = {
  745. { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
  746. {},
  747. };
  748. MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
  749. static const struct cppi_glue_infos *get_glue_info(struct platform_device *pdev)
  750. {
  751. const struct of_device_id *of_id;
  752. of_id = of_match_node(cppi41_dma_ids, pdev->dev.of_node);
  753. if (!of_id)
  754. return NULL;
  755. return of_id->data;
  756. }
  757. static int cppi41_dma_probe(struct platform_device *pdev)
  758. {
  759. struct cppi41_dd *cdd;
  760. const struct cppi_glue_infos *glue_info;
  761. int irq;
  762. int ret;
  763. glue_info = get_glue_info(pdev);
  764. if (!glue_info)
  765. return -EINVAL;
  766. cdd = kzalloc(sizeof(*cdd), GFP_KERNEL);
  767. if (!cdd)
  768. return -ENOMEM;
  769. dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
  770. cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
  771. cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
  772. cdd->ddev.device_tx_status = cppi41_dma_tx_status;
  773. cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
  774. cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
  775. cdd->ddev.device_control = cppi41_dma_control;
  776. cdd->ddev.dev = &pdev->dev;
  777. INIT_LIST_HEAD(&cdd->ddev.channels);
  778. cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
  779. cdd->usbss_mem = of_iomap(pdev->dev.of_node, 0);
  780. cdd->ctrl_mem = of_iomap(pdev->dev.of_node, 1);
  781. cdd->sched_mem = of_iomap(pdev->dev.of_node, 2);
  782. cdd->qmgr_mem = of_iomap(pdev->dev.of_node, 3);
  783. if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
  784. !cdd->qmgr_mem) {
  785. ret = -ENXIO;
  786. goto err_remap;
  787. }
  788. cdd->queues_rx = glue_info->queues_rx;
  789. cdd->queues_tx = glue_info->queues_tx;
  790. cdd->td_queue = glue_info->td_queue;
  791. ret = init_cppi41(pdev, cdd);
  792. if (ret)
  793. goto err_init_cppi;
  794. ret = cppi41_add_chans(pdev, cdd);
  795. if (ret)
  796. goto err_chans;
  797. irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
  798. if (!irq)
  799. goto err_irq;
  800. cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
  801. ret = request_irq(irq, glue_info->isr, IRQF_SHARED,
  802. dev_name(&pdev->dev), cdd);
  803. if (ret)
  804. goto err_irq;
  805. cdd->irq = irq;
  806. ret = dma_async_device_register(&cdd->ddev);
  807. if (ret)
  808. goto err_dma_reg;
  809. ret = of_dma_controller_register(pdev->dev.of_node,
  810. cppi41_dma_xlate, &cpp41_dma_info);
  811. if (ret)
  812. goto err_of;
  813. platform_set_drvdata(pdev, cdd);
  814. return 0;
  815. err_of:
  816. dma_async_device_unregister(&cdd->ddev);
  817. err_dma_reg:
  818. free_irq(irq, cdd);
  819. err_irq:
  820. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  821. cleanup_chans(cdd);
  822. err_chans:
  823. deinit_cpii41(pdev, cdd);
  824. err_init_cppi:
  825. iounmap(cdd->usbss_mem);
  826. iounmap(cdd->ctrl_mem);
  827. iounmap(cdd->sched_mem);
  828. iounmap(cdd->qmgr_mem);
  829. err_remap:
  830. kfree(cdd);
  831. return ret;
  832. }
  833. static int cppi41_dma_remove(struct platform_device *pdev)
  834. {
  835. struct cppi41_dd *cdd = platform_get_drvdata(pdev);
  836. of_dma_controller_free(pdev->dev.of_node);
  837. dma_async_device_unregister(&cdd->ddev);
  838. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  839. free_irq(cdd->irq, cdd);
  840. cleanup_chans(cdd);
  841. deinit_cpii41(pdev, cdd);
  842. iounmap(cdd->usbss_mem);
  843. iounmap(cdd->ctrl_mem);
  844. iounmap(cdd->sched_mem);
  845. iounmap(cdd->qmgr_mem);
  846. kfree(cdd);
  847. return 0;
  848. }
  849. static struct platform_driver cpp41_dma_driver = {
  850. .probe = cppi41_dma_probe,
  851. .remove = cppi41_dma_remove,
  852. .driver = {
  853. .name = "cppi41-dma-engine",
  854. .owner = THIS_MODULE,
  855. .of_match_table = of_match_ptr(cppi41_dma_ids),
  856. },
  857. };
  858. module_platform_driver(cpp41_dma_driver);
  859. MODULE_LICENSE("GPL");
  860. MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");