process.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/errno.h>
  3. #include <linux/kernel.h>
  4. #include <linux/mm.h>
  5. #include <linux/smp.h>
  6. #include <linux/prctl.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched.h>
  9. #include <linux/module.h>
  10. #include <linux/pm.h>
  11. #include <linux/tick.h>
  12. #include <linux/random.h>
  13. #include <linux/user-return-notifier.h>
  14. #include <linux/dmi.h>
  15. #include <linux/utsname.h>
  16. #include <linux/stackprotector.h>
  17. #include <linux/tick.h>
  18. #include <linux/cpuidle.h>
  19. #include <trace/events/power.h>
  20. #include <linux/hw_breakpoint.h>
  21. #include <asm/cpu.h>
  22. #include <asm/apic.h>
  23. #include <asm/syscalls.h>
  24. #include <asm/idle.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/mwait.h>
  27. #include <asm/fpu/internal.h>
  28. #include <asm/debugreg.h>
  29. #include <asm/nmi.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/mce.h>
  32. #include <asm/vm86.h>
  33. /*
  34. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  35. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  36. * so they are allowed to end up in the .data..cacheline_aligned
  37. * section. Since TSS's are completely CPU-local, we want them
  38. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  39. */
  40. __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
  41. .x86_tss = {
  42. .sp0 = TOP_OF_INIT_STACK,
  43. #ifdef CONFIG_X86_32
  44. .ss0 = __KERNEL_DS,
  45. .ss1 = __KERNEL_CS,
  46. .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  47. #endif
  48. },
  49. #ifdef CONFIG_X86_32
  50. /*
  51. * Note that the .io_bitmap member must be extra-big. This is because
  52. * the CPU will access an additional byte beyond the end of the IO
  53. * permission bitmap. The extra byte must be all 1 bits, and must
  54. * be within the limit.
  55. */
  56. .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
  57. #endif
  58. };
  59. EXPORT_PER_CPU_SYMBOL(cpu_tss);
  60. #ifdef CONFIG_X86_64
  61. static DEFINE_PER_CPU(unsigned char, is_idle);
  62. static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  63. void idle_notifier_register(struct notifier_block *n)
  64. {
  65. atomic_notifier_chain_register(&idle_notifier, n);
  66. }
  67. EXPORT_SYMBOL_GPL(idle_notifier_register);
  68. void idle_notifier_unregister(struct notifier_block *n)
  69. {
  70. atomic_notifier_chain_unregister(&idle_notifier, n);
  71. }
  72. EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  73. #endif
  74. /*
  75. * this gets called so that we can store lazy state into memory and copy the
  76. * current task into the new thread.
  77. */
  78. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  79. {
  80. memcpy(dst, src, arch_task_struct_size);
  81. return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
  82. }
  83. /*
  84. * Free current thread data structures etc..
  85. */
  86. void exit_thread(void)
  87. {
  88. struct task_struct *me = current;
  89. struct thread_struct *t = &me->thread;
  90. unsigned long *bp = t->io_bitmap_ptr;
  91. struct fpu *fpu = &t->fpu;
  92. if (bp) {
  93. struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
  94. t->io_bitmap_ptr = NULL;
  95. clear_thread_flag(TIF_IO_BITMAP);
  96. /*
  97. * Careful, clear this in the TSS too:
  98. */
  99. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  100. t->io_bitmap_max = 0;
  101. put_cpu();
  102. kfree(bp);
  103. }
  104. free_vm86(t);
  105. fpu__drop(fpu);
  106. }
  107. void flush_thread(void)
  108. {
  109. struct task_struct *tsk = current;
  110. flush_ptrace_hw_breakpoint(tsk);
  111. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  112. fpu__clear(&tsk->thread.fpu);
  113. }
  114. static void hard_disable_TSC(void)
  115. {
  116. cr4_set_bits(X86_CR4_TSD);
  117. }
  118. void disable_TSC(void)
  119. {
  120. preempt_disable();
  121. if (!test_and_set_thread_flag(TIF_NOTSC))
  122. /*
  123. * Must flip the CPU state synchronously with
  124. * TIF_NOTSC in the current running context.
  125. */
  126. hard_disable_TSC();
  127. preempt_enable();
  128. }
  129. static void hard_enable_TSC(void)
  130. {
  131. cr4_clear_bits(X86_CR4_TSD);
  132. }
  133. static void enable_TSC(void)
  134. {
  135. preempt_disable();
  136. if (test_and_clear_thread_flag(TIF_NOTSC))
  137. /*
  138. * Must flip the CPU state synchronously with
  139. * TIF_NOTSC in the current running context.
  140. */
  141. hard_enable_TSC();
  142. preempt_enable();
  143. }
  144. int get_tsc_mode(unsigned long adr)
  145. {
  146. unsigned int val;
  147. if (test_thread_flag(TIF_NOTSC))
  148. val = PR_TSC_SIGSEGV;
  149. else
  150. val = PR_TSC_ENABLE;
  151. return put_user(val, (unsigned int __user *)adr);
  152. }
  153. int set_tsc_mode(unsigned int val)
  154. {
  155. if (val == PR_TSC_SIGSEGV)
  156. disable_TSC();
  157. else if (val == PR_TSC_ENABLE)
  158. enable_TSC();
  159. else
  160. return -EINVAL;
  161. return 0;
  162. }
  163. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  164. struct tss_struct *tss)
  165. {
  166. struct thread_struct *prev, *next;
  167. prev = &prev_p->thread;
  168. next = &next_p->thread;
  169. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  170. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  171. unsigned long debugctl = get_debugctlmsr();
  172. debugctl &= ~DEBUGCTLMSR_BTF;
  173. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  174. debugctl |= DEBUGCTLMSR_BTF;
  175. update_debugctlmsr(debugctl);
  176. }
  177. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  178. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  179. /* prev and next are different */
  180. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  181. hard_disable_TSC();
  182. else
  183. hard_enable_TSC();
  184. }
  185. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  186. /*
  187. * Copy the relevant range of the IO bitmap.
  188. * Normally this is 128 bytes or less:
  189. */
  190. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  191. max(prev->io_bitmap_max, next->io_bitmap_max));
  192. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  193. /*
  194. * Clear any possible leftover bits:
  195. */
  196. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  197. }
  198. propagate_user_return_notify(prev_p, next_p);
  199. }
  200. /*
  201. * Idle related variables and functions
  202. */
  203. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  204. EXPORT_SYMBOL(boot_option_idle_override);
  205. static void (*x86_idle)(void);
  206. #ifndef CONFIG_SMP
  207. static inline void play_dead(void)
  208. {
  209. BUG();
  210. }
  211. #endif
  212. #ifdef CONFIG_X86_64
  213. void enter_idle(void)
  214. {
  215. this_cpu_write(is_idle, 1);
  216. atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
  217. }
  218. static void __exit_idle(void)
  219. {
  220. if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
  221. return;
  222. atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
  223. }
  224. /* Called from interrupts to signify idle end */
  225. void exit_idle(void)
  226. {
  227. /* idle loop has pid 0 */
  228. if (current->pid)
  229. return;
  230. __exit_idle();
  231. }
  232. #endif
  233. void arch_cpu_idle_enter(void)
  234. {
  235. local_touch_nmi();
  236. enter_idle();
  237. }
  238. void arch_cpu_idle_exit(void)
  239. {
  240. __exit_idle();
  241. }
  242. void arch_cpu_idle_dead(void)
  243. {
  244. play_dead();
  245. }
  246. /*
  247. * Called from the generic idle code.
  248. */
  249. void arch_cpu_idle(void)
  250. {
  251. x86_idle();
  252. }
  253. /*
  254. * We use this if we don't have any better idle routine..
  255. */
  256. void default_idle(void)
  257. {
  258. trace_cpu_idle_rcuidle(1, smp_processor_id());
  259. safe_halt();
  260. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  261. }
  262. #ifdef CONFIG_APM_MODULE
  263. EXPORT_SYMBOL(default_idle);
  264. #endif
  265. #ifdef CONFIG_XEN
  266. bool xen_set_default_idle(void)
  267. {
  268. bool ret = !!x86_idle;
  269. x86_idle = default_idle;
  270. return ret;
  271. }
  272. #endif
  273. void stop_this_cpu(void *dummy)
  274. {
  275. local_irq_disable();
  276. /*
  277. * Remove this CPU:
  278. */
  279. set_cpu_online(smp_processor_id(), false);
  280. disable_local_APIC();
  281. mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
  282. for (;;)
  283. halt();
  284. }
  285. bool amd_e400_c1e_detected;
  286. EXPORT_SYMBOL(amd_e400_c1e_detected);
  287. static cpumask_var_t amd_e400_c1e_mask;
  288. void amd_e400_remove_cpu(int cpu)
  289. {
  290. if (amd_e400_c1e_mask != NULL)
  291. cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
  292. }
  293. /*
  294. * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
  295. * pending message MSR. If we detect C1E, then we handle it the same
  296. * way as C3 power states (local apic timer and TSC stop)
  297. */
  298. static void amd_e400_idle(void)
  299. {
  300. if (!amd_e400_c1e_detected) {
  301. u32 lo, hi;
  302. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  303. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  304. amd_e400_c1e_detected = true;
  305. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  306. mark_tsc_unstable("TSC halt in AMD C1E");
  307. pr_info("System has AMD C1E enabled\n");
  308. }
  309. }
  310. if (amd_e400_c1e_detected) {
  311. int cpu = smp_processor_id();
  312. if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
  313. cpumask_set_cpu(cpu, amd_e400_c1e_mask);
  314. /* Force broadcast so ACPI can not interfere. */
  315. tick_broadcast_force();
  316. pr_info("Switch to broadcast mode on CPU%d\n", cpu);
  317. }
  318. tick_broadcast_enter();
  319. default_idle();
  320. /*
  321. * The switch back from broadcast mode needs to be
  322. * called with interrupts disabled.
  323. */
  324. local_irq_disable();
  325. tick_broadcast_exit();
  326. local_irq_enable();
  327. } else
  328. default_idle();
  329. }
  330. /*
  331. * Intel Core2 and older machines prefer MWAIT over HALT for C1.
  332. * We can't rely on cpuidle installing MWAIT, because it will not load
  333. * on systems that support only C1 -- so the boot default must be MWAIT.
  334. *
  335. * Some AMD machines are the opposite, they depend on using HALT.
  336. *
  337. * So for default C1, which is used during boot until cpuidle loads,
  338. * use MWAIT-C1 on Intel HW that has it, else use HALT.
  339. */
  340. static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
  341. {
  342. if (c->x86_vendor != X86_VENDOR_INTEL)
  343. return 0;
  344. if (!cpu_has(c, X86_FEATURE_MWAIT))
  345. return 0;
  346. return 1;
  347. }
  348. /*
  349. * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
  350. * with interrupts enabled and no flags, which is backwards compatible with the
  351. * original MWAIT implementation.
  352. */
  353. static void mwait_idle(void)
  354. {
  355. if (!current_set_polling_and_test()) {
  356. trace_cpu_idle_rcuidle(1, smp_processor_id());
  357. if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
  358. smp_mb(); /* quirk */
  359. clflush((void *)&current_thread_info()->flags);
  360. smp_mb(); /* quirk */
  361. }
  362. __monitor((void *)&current_thread_info()->flags, 0, 0);
  363. if (!need_resched())
  364. __sti_mwait(0, 0);
  365. else
  366. local_irq_enable();
  367. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  368. } else {
  369. local_irq_enable();
  370. }
  371. __current_clr_polling();
  372. }
  373. void select_idle_routine(const struct cpuinfo_x86 *c)
  374. {
  375. #ifdef CONFIG_SMP
  376. if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
  377. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  378. #endif
  379. if (x86_idle || boot_option_idle_override == IDLE_POLL)
  380. return;
  381. if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
  382. /* E400: APIC timer interrupt does not wake up CPU from C1e */
  383. pr_info("using AMD E400 aware idle routine\n");
  384. x86_idle = amd_e400_idle;
  385. } else if (prefer_mwait_c1_over_halt(c)) {
  386. pr_info("using mwait in idle threads\n");
  387. x86_idle = mwait_idle;
  388. } else
  389. x86_idle = default_idle;
  390. }
  391. void __init init_amd_e400_c1e_mask(void)
  392. {
  393. /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
  394. if (x86_idle == amd_e400_idle)
  395. zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
  396. }
  397. static int __init idle_setup(char *str)
  398. {
  399. if (!str)
  400. return -EINVAL;
  401. if (!strcmp(str, "poll")) {
  402. pr_info("using polling idle threads\n");
  403. boot_option_idle_override = IDLE_POLL;
  404. cpu_idle_poll_ctrl(true);
  405. } else if (!strcmp(str, "halt")) {
  406. /*
  407. * When the boot option of idle=halt is added, halt is
  408. * forced to be used for CPU idle. In such case CPU C2/C3
  409. * won't be used again.
  410. * To continue to load the CPU idle driver, don't touch
  411. * the boot_option_idle_override.
  412. */
  413. x86_idle = default_idle;
  414. boot_option_idle_override = IDLE_HALT;
  415. } else if (!strcmp(str, "nomwait")) {
  416. /*
  417. * If the boot option of "idle=nomwait" is added,
  418. * it means that mwait will be disabled for CPU C2/C3
  419. * states. In such case it won't touch the variable
  420. * of boot_option_idle_override.
  421. */
  422. boot_option_idle_override = IDLE_NOMWAIT;
  423. } else
  424. return -1;
  425. return 0;
  426. }
  427. early_param("idle", idle_setup);
  428. unsigned long arch_align_stack(unsigned long sp)
  429. {
  430. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  431. sp -= get_random_int() % 8192;
  432. return sp & ~0xf;
  433. }
  434. unsigned long arch_randomize_brk(struct mm_struct *mm)
  435. {
  436. unsigned long range_end = mm->brk + 0x02000000;
  437. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  438. }