sdma_v3_0.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  56. MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
  57. MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
  58. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  59. {
  60. SDMA0_REGISTER_OFFSET,
  61. SDMA1_REGISTER_OFFSET
  62. };
  63. static const u32 golden_settings_tonga_a11[] =
  64. {
  65. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  66. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  67. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  69. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  70. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  71. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  72. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  73. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  74. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  75. };
  76. static const u32 tonga_mgcg_cgcg_init[] =
  77. {
  78. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  79. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  80. };
  81. static const u32 golden_settings_fiji_a10[] =
  82. {
  83. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  84. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  85. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  86. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  88. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  89. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  90. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  91. };
  92. static const u32 fiji_mgcg_cgcg_init[] =
  93. {
  94. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  95. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  96. };
  97. static const u32 golden_settings_polaris11_a11[] =
  98. {
  99. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  100. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  101. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  102. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  103. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  104. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  105. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  106. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  107. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  108. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  109. };
  110. static const u32 golden_settings_polaris10_a11[] =
  111. {
  112. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  113. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  114. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  115. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  116. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  117. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  118. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  119. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  120. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  121. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  122. };
  123. static const u32 cz_golden_settings_a11[] =
  124. {
  125. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  126. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  127. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  128. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  129. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  130. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  131. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  132. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  133. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  134. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  135. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  136. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  137. };
  138. static const u32 cz_mgcg_cgcg_init[] =
  139. {
  140. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  141. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  142. };
  143. static const u32 stoney_golden_settings_a11[] =
  144. {
  145. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  146. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  147. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  148. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  149. };
  150. static const u32 stoney_mgcg_cgcg_init[] =
  151. {
  152. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  153. };
  154. /*
  155. * sDMA - System DMA
  156. * Starting with CIK, the GPU has new asynchronous
  157. * DMA engines. These engines are used for compute
  158. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  159. * and each one supports 1 ring buffer used for gfx
  160. * and 2 queues used for compute.
  161. *
  162. * The programming model is very similar to the CP
  163. * (ring buffer, IBs, etc.), but sDMA has it's own
  164. * packet format that is different from the PM4 format
  165. * used by the CP. sDMA supports copying data, writing
  166. * embedded data, solid fills, and a number of other
  167. * things. It also has support for tiling/detiling of
  168. * buffers.
  169. */
  170. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  171. {
  172. switch (adev->asic_type) {
  173. case CHIP_FIJI:
  174. amdgpu_device_program_register_sequence(adev,
  175. fiji_mgcg_cgcg_init,
  176. ARRAY_SIZE(fiji_mgcg_cgcg_init));
  177. amdgpu_device_program_register_sequence(adev,
  178. golden_settings_fiji_a10,
  179. ARRAY_SIZE(golden_settings_fiji_a10));
  180. break;
  181. case CHIP_TONGA:
  182. amdgpu_device_program_register_sequence(adev,
  183. tonga_mgcg_cgcg_init,
  184. ARRAY_SIZE(tonga_mgcg_cgcg_init));
  185. amdgpu_device_program_register_sequence(adev,
  186. golden_settings_tonga_a11,
  187. ARRAY_SIZE(golden_settings_tonga_a11));
  188. break;
  189. case CHIP_POLARIS11:
  190. case CHIP_POLARIS12:
  191. amdgpu_device_program_register_sequence(adev,
  192. golden_settings_polaris11_a11,
  193. ARRAY_SIZE(golden_settings_polaris11_a11));
  194. break;
  195. case CHIP_POLARIS10:
  196. amdgpu_device_program_register_sequence(adev,
  197. golden_settings_polaris10_a11,
  198. ARRAY_SIZE(golden_settings_polaris10_a11));
  199. break;
  200. case CHIP_CARRIZO:
  201. amdgpu_device_program_register_sequence(adev,
  202. cz_mgcg_cgcg_init,
  203. ARRAY_SIZE(cz_mgcg_cgcg_init));
  204. amdgpu_device_program_register_sequence(adev,
  205. cz_golden_settings_a11,
  206. ARRAY_SIZE(cz_golden_settings_a11));
  207. break;
  208. case CHIP_STONEY:
  209. amdgpu_device_program_register_sequence(adev,
  210. stoney_mgcg_cgcg_init,
  211. ARRAY_SIZE(stoney_mgcg_cgcg_init));
  212. amdgpu_device_program_register_sequence(adev,
  213. stoney_golden_settings_a11,
  214. ARRAY_SIZE(stoney_golden_settings_a11));
  215. break;
  216. default:
  217. break;
  218. }
  219. }
  220. static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
  221. {
  222. int i;
  223. for (i = 0; i < adev->sdma.num_instances; i++) {
  224. release_firmware(adev->sdma.instance[i].fw);
  225. adev->sdma.instance[i].fw = NULL;
  226. }
  227. }
  228. /**
  229. * sdma_v3_0_init_microcode - load ucode images from disk
  230. *
  231. * @adev: amdgpu_device pointer
  232. *
  233. * Use the firmware interface to load the ucode images into
  234. * the driver (not loaded into hw).
  235. * Returns 0 on success, error on failure.
  236. */
  237. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  238. {
  239. const char *chip_name;
  240. char fw_name[30];
  241. int err = 0, i;
  242. struct amdgpu_firmware_info *info = NULL;
  243. const struct common_firmware_header *header = NULL;
  244. const struct sdma_firmware_header_v1_0 *hdr;
  245. DRM_DEBUG("\n");
  246. switch (adev->asic_type) {
  247. case CHIP_TONGA:
  248. chip_name = "tonga";
  249. break;
  250. case CHIP_FIJI:
  251. chip_name = "fiji";
  252. break;
  253. case CHIP_POLARIS11:
  254. chip_name = "polaris11";
  255. break;
  256. case CHIP_POLARIS10:
  257. chip_name = "polaris10";
  258. break;
  259. case CHIP_POLARIS12:
  260. chip_name = "polaris12";
  261. break;
  262. case CHIP_CARRIZO:
  263. chip_name = "carrizo";
  264. break;
  265. case CHIP_STONEY:
  266. chip_name = "stoney";
  267. break;
  268. default: BUG();
  269. }
  270. for (i = 0; i < adev->sdma.num_instances; i++) {
  271. if (i == 0)
  272. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  273. else
  274. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  275. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  276. if (err)
  277. goto out;
  278. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  279. if (err)
  280. goto out;
  281. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  282. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  283. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  284. if (adev->sdma.instance[i].feature_version >= 20)
  285. adev->sdma.instance[i].burst_nop = true;
  286. if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
  287. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  288. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  289. info->fw = adev->sdma.instance[i].fw;
  290. header = (const struct common_firmware_header *)info->fw->data;
  291. adev->firmware.fw_size +=
  292. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  293. }
  294. }
  295. out:
  296. if (err) {
  297. pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
  298. for (i = 0; i < adev->sdma.num_instances; i++) {
  299. release_firmware(adev->sdma.instance[i].fw);
  300. adev->sdma.instance[i].fw = NULL;
  301. }
  302. }
  303. return err;
  304. }
  305. /**
  306. * sdma_v3_0_ring_get_rptr - get the current read pointer
  307. *
  308. * @ring: amdgpu ring pointer
  309. *
  310. * Get the current rptr from the hardware (VI+).
  311. */
  312. static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  313. {
  314. /* XXX check if swapping is necessary on BE */
  315. return ring->adev->wb.wb[ring->rptr_offs] >> 2;
  316. }
  317. /**
  318. * sdma_v3_0_ring_get_wptr - get the current write pointer
  319. *
  320. * @ring: amdgpu ring pointer
  321. *
  322. * Get the current wptr from the hardware (VI+).
  323. */
  324. static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  325. {
  326. struct amdgpu_device *adev = ring->adev;
  327. u32 wptr;
  328. if (ring->use_doorbell || ring->use_pollmem) {
  329. /* XXX check if swapping is necessary on BE */
  330. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  331. } else {
  332. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  333. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  334. }
  335. return wptr;
  336. }
  337. /**
  338. * sdma_v3_0_ring_set_wptr - commit the write pointer
  339. *
  340. * @ring: amdgpu ring pointer
  341. *
  342. * Write the wptr back to the hardware (VI+).
  343. */
  344. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  345. {
  346. struct amdgpu_device *adev = ring->adev;
  347. if (ring->use_doorbell) {
  348. u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
  349. /* XXX check if swapping is necessary on BE */
  350. WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
  351. WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
  352. } else if (ring->use_pollmem) {
  353. u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
  354. WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
  355. } else {
  356. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  357. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], lower_32_bits(ring->wptr) << 2);
  358. }
  359. }
  360. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  361. {
  362. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  363. int i;
  364. for (i = 0; i < count; i++)
  365. if (sdma && sdma->burst_nop && (i == 0))
  366. amdgpu_ring_write(ring, ring->funcs->nop |
  367. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  368. else
  369. amdgpu_ring_write(ring, ring->funcs->nop);
  370. }
  371. /**
  372. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  373. *
  374. * @ring: amdgpu ring pointer
  375. * @ib: IB object to schedule
  376. *
  377. * Schedule an IB in the DMA ring (VI).
  378. */
  379. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  380. struct amdgpu_ib *ib,
  381. unsigned vmid, bool ctx_switch)
  382. {
  383. /* IB packet must end on a 8 DW boundary */
  384. sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  385. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  386. SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
  387. /* base must be 32 byte aligned */
  388. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  389. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  390. amdgpu_ring_write(ring, ib->length_dw);
  391. amdgpu_ring_write(ring, 0);
  392. amdgpu_ring_write(ring, 0);
  393. }
  394. /**
  395. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  396. *
  397. * @ring: amdgpu ring pointer
  398. *
  399. * Emit an hdp flush packet on the requested DMA ring.
  400. */
  401. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  402. {
  403. u32 ref_and_mask = 0;
  404. if (ring == &ring->adev->sdma.instance[0].ring)
  405. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  406. else
  407. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  408. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  409. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  410. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  411. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  412. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  413. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  414. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  415. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  416. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  417. }
  418. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  419. {
  420. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  421. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  422. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  423. amdgpu_ring_write(ring, 1);
  424. }
  425. /**
  426. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  427. *
  428. * @ring: amdgpu ring pointer
  429. * @fence: amdgpu fence object
  430. *
  431. * Add a DMA fence packet to the ring to write
  432. * the fence seq number and DMA trap packet to generate
  433. * an interrupt if needed (VI).
  434. */
  435. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  436. unsigned flags)
  437. {
  438. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  439. /* write the fence */
  440. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  441. amdgpu_ring_write(ring, lower_32_bits(addr));
  442. amdgpu_ring_write(ring, upper_32_bits(addr));
  443. amdgpu_ring_write(ring, lower_32_bits(seq));
  444. /* optionally write high bits as well */
  445. if (write64bit) {
  446. addr += 4;
  447. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  448. amdgpu_ring_write(ring, lower_32_bits(addr));
  449. amdgpu_ring_write(ring, upper_32_bits(addr));
  450. amdgpu_ring_write(ring, upper_32_bits(seq));
  451. }
  452. /* generate an interrupt */
  453. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  454. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  455. }
  456. /**
  457. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  458. *
  459. * @adev: amdgpu_device pointer
  460. *
  461. * Stop the gfx async dma ring buffers (VI).
  462. */
  463. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  464. {
  465. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  466. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  467. u32 rb_cntl, ib_cntl;
  468. int i;
  469. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  470. (adev->mman.buffer_funcs_ring == sdma1))
  471. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  472. for (i = 0; i < adev->sdma.num_instances; i++) {
  473. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  474. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  475. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  476. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  477. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  478. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  479. }
  480. sdma0->ready = false;
  481. sdma1->ready = false;
  482. }
  483. /**
  484. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  485. *
  486. * @adev: amdgpu_device pointer
  487. *
  488. * Stop the compute async dma queues (VI).
  489. */
  490. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  491. {
  492. /* XXX todo */
  493. }
  494. /**
  495. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  496. *
  497. * @adev: amdgpu_device pointer
  498. * @enable: enable/disable the DMA MEs context switch.
  499. *
  500. * Halt or unhalt the async dma engines context switch (VI).
  501. */
  502. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  503. {
  504. u32 f32_cntl, phase_quantum = 0;
  505. int i;
  506. if (amdgpu_sdma_phase_quantum) {
  507. unsigned value = amdgpu_sdma_phase_quantum;
  508. unsigned unit = 0;
  509. while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  510. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
  511. value = (value + 1) >> 1;
  512. unit++;
  513. }
  514. if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  515. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
  516. value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  517. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
  518. unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  519. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
  520. WARN_ONCE(1,
  521. "clamping sdma_phase_quantum to %uK clock cycles\n",
  522. value << unit);
  523. }
  524. phase_quantum =
  525. value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
  526. unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
  527. }
  528. for (i = 0; i < adev->sdma.num_instances; i++) {
  529. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  530. if (enable) {
  531. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  532. AUTO_CTXSW_ENABLE, 1);
  533. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  534. ATC_L1_ENABLE, 1);
  535. if (amdgpu_sdma_phase_quantum) {
  536. WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
  537. phase_quantum);
  538. WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
  539. phase_quantum);
  540. }
  541. } else {
  542. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  543. AUTO_CTXSW_ENABLE, 0);
  544. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  545. ATC_L1_ENABLE, 1);
  546. }
  547. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  548. }
  549. }
  550. /**
  551. * sdma_v3_0_enable - stop the async dma engines
  552. *
  553. * @adev: amdgpu_device pointer
  554. * @enable: enable/disable the DMA MEs.
  555. *
  556. * Halt or unhalt the async dma engines (VI).
  557. */
  558. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  559. {
  560. u32 f32_cntl;
  561. int i;
  562. if (!enable) {
  563. sdma_v3_0_gfx_stop(adev);
  564. sdma_v3_0_rlc_stop(adev);
  565. }
  566. for (i = 0; i < adev->sdma.num_instances; i++) {
  567. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  568. if (enable)
  569. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  570. else
  571. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  572. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  573. }
  574. }
  575. /**
  576. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  577. *
  578. * @adev: amdgpu_device pointer
  579. *
  580. * Set up the gfx DMA ring buffers and enable them (VI).
  581. * Returns 0 for success, error for failure.
  582. */
  583. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  584. {
  585. struct amdgpu_ring *ring;
  586. u32 rb_cntl, ib_cntl, wptr_poll_cntl;
  587. u32 rb_bufsz;
  588. u32 wb_offset;
  589. u32 doorbell;
  590. u64 wptr_gpu_addr;
  591. int i, j, r;
  592. for (i = 0; i < adev->sdma.num_instances; i++) {
  593. ring = &adev->sdma.instance[i].ring;
  594. amdgpu_ring_clear_ring(ring);
  595. wb_offset = (ring->rptr_offs * 4);
  596. mutex_lock(&adev->srbm_mutex);
  597. for (j = 0; j < 16; j++) {
  598. vi_srbm_select(adev, 0, 0, 0, j);
  599. /* SDMA GFX */
  600. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  601. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  602. }
  603. vi_srbm_select(adev, 0, 0, 0, 0);
  604. mutex_unlock(&adev->srbm_mutex);
  605. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  606. adev->gfx.config.gb_addr_config & 0x70);
  607. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  608. /* Set ring buffer size in dwords */
  609. rb_bufsz = order_base_2(ring->ring_size / 4);
  610. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  611. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  612. #ifdef __BIG_ENDIAN
  613. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  614. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  615. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  616. #endif
  617. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  618. /* Initialize the ring buffer's read and write pointers */
  619. ring->wptr = 0;
  620. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  621. sdma_v3_0_ring_set_wptr(ring);
  622. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  623. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  624. /* set the wb address whether it's enabled or not */
  625. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  626. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  627. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  628. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  629. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  630. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  631. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  632. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  633. if (ring->use_doorbell) {
  634. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  635. OFFSET, ring->doorbell_index);
  636. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  637. } else {
  638. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  639. }
  640. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  641. /* setup the wptr shadow polling */
  642. wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
  643. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
  644. lower_32_bits(wptr_gpu_addr));
  645. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
  646. upper_32_bits(wptr_gpu_addr));
  647. wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
  648. if (ring->use_pollmem)
  649. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
  650. SDMA0_GFX_RB_WPTR_POLL_CNTL,
  651. ENABLE, 1);
  652. else
  653. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
  654. SDMA0_GFX_RB_WPTR_POLL_CNTL,
  655. ENABLE, 0);
  656. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
  657. /* enable DMA RB */
  658. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  659. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  660. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  661. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  662. #ifdef __BIG_ENDIAN
  663. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  664. #endif
  665. /* enable DMA IBs */
  666. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  667. ring->ready = true;
  668. }
  669. /* unhalt the MEs */
  670. sdma_v3_0_enable(adev, true);
  671. /* enable sdma ring preemption */
  672. sdma_v3_0_ctx_switch_enable(adev, true);
  673. for (i = 0; i < adev->sdma.num_instances; i++) {
  674. ring = &adev->sdma.instance[i].ring;
  675. r = amdgpu_ring_test_ring(ring);
  676. if (r) {
  677. ring->ready = false;
  678. return r;
  679. }
  680. if (adev->mman.buffer_funcs_ring == ring)
  681. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  682. }
  683. return 0;
  684. }
  685. /**
  686. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  687. *
  688. * @adev: amdgpu_device pointer
  689. *
  690. * Set up the compute DMA queues and enable them (VI).
  691. * Returns 0 for success, error for failure.
  692. */
  693. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  694. {
  695. /* XXX todo */
  696. return 0;
  697. }
  698. /**
  699. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  700. *
  701. * @adev: amdgpu_device pointer
  702. *
  703. * Loads the sDMA0/1 ucode.
  704. * Returns 0 for success, -EINVAL if the ucode is not available.
  705. */
  706. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  707. {
  708. const struct sdma_firmware_header_v1_0 *hdr;
  709. const __le32 *fw_data;
  710. u32 fw_size;
  711. int i, j;
  712. /* halt the MEs */
  713. sdma_v3_0_enable(adev, false);
  714. for (i = 0; i < adev->sdma.num_instances; i++) {
  715. if (!adev->sdma.instance[i].fw)
  716. return -EINVAL;
  717. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  718. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  719. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  720. fw_data = (const __le32 *)
  721. (adev->sdma.instance[i].fw->data +
  722. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  723. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  724. for (j = 0; j < fw_size; j++)
  725. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  726. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  727. }
  728. return 0;
  729. }
  730. /**
  731. * sdma_v3_0_start - setup and start the async dma engines
  732. *
  733. * @adev: amdgpu_device pointer
  734. *
  735. * Set up the DMA engines and enable them (VI).
  736. * Returns 0 for success, error for failure.
  737. */
  738. static int sdma_v3_0_start(struct amdgpu_device *adev)
  739. {
  740. int r;
  741. if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
  742. r = sdma_v3_0_load_microcode(adev);
  743. if (r)
  744. return r;
  745. }
  746. /* disable sdma engine before programing it */
  747. sdma_v3_0_ctx_switch_enable(adev, false);
  748. sdma_v3_0_enable(adev, false);
  749. /* start the gfx rings and rlc compute queues */
  750. r = sdma_v3_0_gfx_resume(adev);
  751. if (r)
  752. return r;
  753. r = sdma_v3_0_rlc_resume(adev);
  754. if (r)
  755. return r;
  756. return 0;
  757. }
  758. /**
  759. * sdma_v3_0_ring_test_ring - simple async dma engine test
  760. *
  761. * @ring: amdgpu_ring structure holding ring information
  762. *
  763. * Test the DMA engine by writing using it to write an
  764. * value to memory. (VI).
  765. * Returns 0 for success, error for failure.
  766. */
  767. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  768. {
  769. struct amdgpu_device *adev = ring->adev;
  770. unsigned i;
  771. unsigned index;
  772. int r;
  773. u32 tmp;
  774. u64 gpu_addr;
  775. r = amdgpu_device_wb_get(adev, &index);
  776. if (r) {
  777. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  778. return r;
  779. }
  780. gpu_addr = adev->wb.gpu_addr + (index * 4);
  781. tmp = 0xCAFEDEAD;
  782. adev->wb.wb[index] = cpu_to_le32(tmp);
  783. r = amdgpu_ring_alloc(ring, 5);
  784. if (r) {
  785. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  786. amdgpu_device_wb_free(adev, index);
  787. return r;
  788. }
  789. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  790. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  791. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  792. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  793. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  794. amdgpu_ring_write(ring, 0xDEADBEEF);
  795. amdgpu_ring_commit(ring);
  796. for (i = 0; i < adev->usec_timeout; i++) {
  797. tmp = le32_to_cpu(adev->wb.wb[index]);
  798. if (tmp == 0xDEADBEEF)
  799. break;
  800. DRM_UDELAY(1);
  801. }
  802. if (i < adev->usec_timeout) {
  803. DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  804. } else {
  805. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  806. ring->idx, tmp);
  807. r = -EINVAL;
  808. }
  809. amdgpu_device_wb_free(adev, index);
  810. return r;
  811. }
  812. /**
  813. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  814. *
  815. * @ring: amdgpu_ring structure holding ring information
  816. *
  817. * Test a simple IB in the DMA ring (VI).
  818. * Returns 0 on success, error on failure.
  819. */
  820. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  821. {
  822. struct amdgpu_device *adev = ring->adev;
  823. struct amdgpu_ib ib;
  824. struct dma_fence *f = NULL;
  825. unsigned index;
  826. u32 tmp = 0;
  827. u64 gpu_addr;
  828. long r;
  829. r = amdgpu_device_wb_get(adev, &index);
  830. if (r) {
  831. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  832. return r;
  833. }
  834. gpu_addr = adev->wb.gpu_addr + (index * 4);
  835. tmp = 0xCAFEDEAD;
  836. adev->wb.wb[index] = cpu_to_le32(tmp);
  837. memset(&ib, 0, sizeof(ib));
  838. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  839. if (r) {
  840. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  841. goto err0;
  842. }
  843. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  844. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  845. ib.ptr[1] = lower_32_bits(gpu_addr);
  846. ib.ptr[2] = upper_32_bits(gpu_addr);
  847. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  848. ib.ptr[4] = 0xDEADBEEF;
  849. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  850. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  851. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  852. ib.length_dw = 8;
  853. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  854. if (r)
  855. goto err1;
  856. r = dma_fence_wait_timeout(f, false, timeout);
  857. if (r == 0) {
  858. DRM_ERROR("amdgpu: IB test timed out\n");
  859. r = -ETIMEDOUT;
  860. goto err1;
  861. } else if (r < 0) {
  862. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  863. goto err1;
  864. }
  865. tmp = le32_to_cpu(adev->wb.wb[index]);
  866. if (tmp == 0xDEADBEEF) {
  867. DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
  868. r = 0;
  869. } else {
  870. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  871. r = -EINVAL;
  872. }
  873. err1:
  874. amdgpu_ib_free(adev, &ib, NULL);
  875. dma_fence_put(f);
  876. err0:
  877. amdgpu_device_wb_free(adev, index);
  878. return r;
  879. }
  880. /**
  881. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  882. *
  883. * @ib: indirect buffer to fill with commands
  884. * @pe: addr of the page entry
  885. * @src: src addr to copy from
  886. * @count: number of page entries to update
  887. *
  888. * Update PTEs by copying them from the GART using sDMA (CIK).
  889. */
  890. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  891. uint64_t pe, uint64_t src,
  892. unsigned count)
  893. {
  894. unsigned bytes = count * 8;
  895. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  896. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  897. ib->ptr[ib->length_dw++] = bytes;
  898. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  899. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  900. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  901. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  902. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  903. }
  904. /**
  905. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  906. *
  907. * @ib: indirect buffer to fill with commands
  908. * @pe: addr of the page entry
  909. * @value: dst addr to write into pe
  910. * @count: number of page entries to update
  911. * @incr: increase next addr by incr bytes
  912. *
  913. * Update PTEs by writing them manually using sDMA (CIK).
  914. */
  915. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  916. uint64_t value, unsigned count,
  917. uint32_t incr)
  918. {
  919. unsigned ndw = count * 2;
  920. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  921. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  922. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  923. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  924. ib->ptr[ib->length_dw++] = ndw;
  925. for (; ndw > 0; ndw -= 2) {
  926. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  927. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  928. value += incr;
  929. }
  930. }
  931. /**
  932. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  933. *
  934. * @ib: indirect buffer to fill with commands
  935. * @pe: addr of the page entry
  936. * @addr: dst addr to write into pe
  937. * @count: number of page entries to update
  938. * @incr: increase next addr by incr bytes
  939. * @flags: access flags
  940. *
  941. * Update the page tables using sDMA (CIK).
  942. */
  943. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
  944. uint64_t addr, unsigned count,
  945. uint32_t incr, uint64_t flags)
  946. {
  947. /* for physically contiguous pages (vram) */
  948. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  949. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  950. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  951. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  952. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  953. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  954. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  955. ib->ptr[ib->length_dw++] = incr; /* increment size */
  956. ib->ptr[ib->length_dw++] = 0;
  957. ib->ptr[ib->length_dw++] = count; /* number of entries */
  958. }
  959. /**
  960. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  961. *
  962. * @ib: indirect buffer to fill with padding
  963. *
  964. */
  965. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  966. {
  967. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  968. u32 pad_count;
  969. int i;
  970. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  971. for (i = 0; i < pad_count; i++)
  972. if (sdma && sdma->burst_nop && (i == 0))
  973. ib->ptr[ib->length_dw++] =
  974. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  975. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  976. else
  977. ib->ptr[ib->length_dw++] =
  978. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  979. }
  980. /**
  981. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  982. *
  983. * @ring: amdgpu_ring pointer
  984. *
  985. * Make sure all previous operations are completed (CIK).
  986. */
  987. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  988. {
  989. uint32_t seq = ring->fence_drv.sync_seq;
  990. uint64_t addr = ring->fence_drv.gpu_addr;
  991. /* wait for idle */
  992. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  993. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  994. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  995. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  996. amdgpu_ring_write(ring, addr & 0xfffffffc);
  997. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  998. amdgpu_ring_write(ring, seq); /* reference */
  999. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  1000. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1001. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  1002. }
  1003. /**
  1004. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  1005. *
  1006. * @ring: amdgpu_ring pointer
  1007. * @vm: amdgpu_vm pointer
  1008. *
  1009. * Update the page table base and flush the VM TLB
  1010. * using sDMA (VI).
  1011. */
  1012. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1013. unsigned vmid, uint64_t pd_addr)
  1014. {
  1015. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1016. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1017. if (vmid < 8) {
  1018. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vmid));
  1019. } else {
  1020. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8));
  1021. }
  1022. amdgpu_ring_write(ring, pd_addr >> 12);
  1023. /* flush TLB */
  1024. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1025. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1026. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  1027. amdgpu_ring_write(ring, 1 << vmid);
  1028. /* wait for flush */
  1029. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1030. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1031. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  1032. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  1033. amdgpu_ring_write(ring, 0);
  1034. amdgpu_ring_write(ring, 0); /* reference */
  1035. amdgpu_ring_write(ring, 0); /* mask */
  1036. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1037. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  1038. }
  1039. static int sdma_v3_0_early_init(void *handle)
  1040. {
  1041. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1042. switch (adev->asic_type) {
  1043. case CHIP_STONEY:
  1044. adev->sdma.num_instances = 1;
  1045. break;
  1046. default:
  1047. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1048. break;
  1049. }
  1050. sdma_v3_0_set_ring_funcs(adev);
  1051. sdma_v3_0_set_buffer_funcs(adev);
  1052. sdma_v3_0_set_vm_pte_funcs(adev);
  1053. sdma_v3_0_set_irq_funcs(adev);
  1054. return 0;
  1055. }
  1056. static int sdma_v3_0_sw_init(void *handle)
  1057. {
  1058. struct amdgpu_ring *ring;
  1059. int r, i;
  1060. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1061. /* SDMA trap event */
  1062. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224,
  1063. &adev->sdma.trap_irq);
  1064. if (r)
  1065. return r;
  1066. /* SDMA Privileged inst */
  1067. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
  1068. &adev->sdma.illegal_inst_irq);
  1069. if (r)
  1070. return r;
  1071. /* SDMA Privileged inst */
  1072. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247,
  1073. &adev->sdma.illegal_inst_irq);
  1074. if (r)
  1075. return r;
  1076. r = sdma_v3_0_init_microcode(adev);
  1077. if (r) {
  1078. DRM_ERROR("Failed to load sdma firmware!\n");
  1079. return r;
  1080. }
  1081. for (i = 0; i < adev->sdma.num_instances; i++) {
  1082. ring = &adev->sdma.instance[i].ring;
  1083. ring->ring_obj = NULL;
  1084. if (!amdgpu_sriov_vf(adev)) {
  1085. ring->use_doorbell = true;
  1086. ring->doorbell_index = (i == 0) ?
  1087. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1088. } else {
  1089. ring->use_pollmem = true;
  1090. }
  1091. sprintf(ring->name, "sdma%d", i);
  1092. r = amdgpu_ring_init(adev, ring, 1024,
  1093. &adev->sdma.trap_irq,
  1094. (i == 0) ?
  1095. AMDGPU_SDMA_IRQ_TRAP0 :
  1096. AMDGPU_SDMA_IRQ_TRAP1);
  1097. if (r)
  1098. return r;
  1099. }
  1100. return r;
  1101. }
  1102. static int sdma_v3_0_sw_fini(void *handle)
  1103. {
  1104. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1105. int i;
  1106. for (i = 0; i < adev->sdma.num_instances; i++)
  1107. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1108. sdma_v3_0_free_microcode(adev);
  1109. return 0;
  1110. }
  1111. static int sdma_v3_0_hw_init(void *handle)
  1112. {
  1113. int r;
  1114. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1115. sdma_v3_0_init_golden_registers(adev);
  1116. r = sdma_v3_0_start(adev);
  1117. if (r)
  1118. return r;
  1119. return r;
  1120. }
  1121. static int sdma_v3_0_hw_fini(void *handle)
  1122. {
  1123. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1124. sdma_v3_0_ctx_switch_enable(adev, false);
  1125. sdma_v3_0_enable(adev, false);
  1126. return 0;
  1127. }
  1128. static int sdma_v3_0_suspend(void *handle)
  1129. {
  1130. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1131. return sdma_v3_0_hw_fini(adev);
  1132. }
  1133. static int sdma_v3_0_resume(void *handle)
  1134. {
  1135. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1136. return sdma_v3_0_hw_init(adev);
  1137. }
  1138. static bool sdma_v3_0_is_idle(void *handle)
  1139. {
  1140. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1141. u32 tmp = RREG32(mmSRBM_STATUS2);
  1142. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1143. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1144. return false;
  1145. return true;
  1146. }
  1147. static int sdma_v3_0_wait_for_idle(void *handle)
  1148. {
  1149. unsigned i;
  1150. u32 tmp;
  1151. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1152. for (i = 0; i < adev->usec_timeout; i++) {
  1153. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1154. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1155. if (!tmp)
  1156. return 0;
  1157. udelay(1);
  1158. }
  1159. return -ETIMEDOUT;
  1160. }
  1161. static bool sdma_v3_0_check_soft_reset(void *handle)
  1162. {
  1163. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1164. u32 srbm_soft_reset = 0;
  1165. u32 tmp = RREG32(mmSRBM_STATUS2);
  1166. if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
  1167. (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
  1168. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1169. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1170. }
  1171. if (srbm_soft_reset) {
  1172. adev->sdma.srbm_soft_reset = srbm_soft_reset;
  1173. return true;
  1174. } else {
  1175. adev->sdma.srbm_soft_reset = 0;
  1176. return false;
  1177. }
  1178. }
  1179. static int sdma_v3_0_pre_soft_reset(void *handle)
  1180. {
  1181. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1182. u32 srbm_soft_reset = 0;
  1183. if (!adev->sdma.srbm_soft_reset)
  1184. return 0;
  1185. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1186. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1187. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1188. sdma_v3_0_ctx_switch_enable(adev, false);
  1189. sdma_v3_0_enable(adev, false);
  1190. }
  1191. return 0;
  1192. }
  1193. static int sdma_v3_0_post_soft_reset(void *handle)
  1194. {
  1195. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1196. u32 srbm_soft_reset = 0;
  1197. if (!adev->sdma.srbm_soft_reset)
  1198. return 0;
  1199. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1200. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1201. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1202. sdma_v3_0_gfx_resume(adev);
  1203. sdma_v3_0_rlc_resume(adev);
  1204. }
  1205. return 0;
  1206. }
  1207. static int sdma_v3_0_soft_reset(void *handle)
  1208. {
  1209. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1210. u32 srbm_soft_reset = 0;
  1211. u32 tmp;
  1212. if (!adev->sdma.srbm_soft_reset)
  1213. return 0;
  1214. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1215. if (srbm_soft_reset) {
  1216. tmp = RREG32(mmSRBM_SOFT_RESET);
  1217. tmp |= srbm_soft_reset;
  1218. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1219. WREG32(mmSRBM_SOFT_RESET, tmp);
  1220. tmp = RREG32(mmSRBM_SOFT_RESET);
  1221. udelay(50);
  1222. tmp &= ~srbm_soft_reset;
  1223. WREG32(mmSRBM_SOFT_RESET, tmp);
  1224. tmp = RREG32(mmSRBM_SOFT_RESET);
  1225. /* Wait a little for things to settle down */
  1226. udelay(50);
  1227. }
  1228. return 0;
  1229. }
  1230. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1231. struct amdgpu_irq_src *source,
  1232. unsigned type,
  1233. enum amdgpu_interrupt_state state)
  1234. {
  1235. u32 sdma_cntl;
  1236. switch (type) {
  1237. case AMDGPU_SDMA_IRQ_TRAP0:
  1238. switch (state) {
  1239. case AMDGPU_IRQ_STATE_DISABLE:
  1240. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1241. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1242. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1243. break;
  1244. case AMDGPU_IRQ_STATE_ENABLE:
  1245. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1246. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1247. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1248. break;
  1249. default:
  1250. break;
  1251. }
  1252. break;
  1253. case AMDGPU_SDMA_IRQ_TRAP1:
  1254. switch (state) {
  1255. case AMDGPU_IRQ_STATE_DISABLE:
  1256. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1257. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1258. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1259. break;
  1260. case AMDGPU_IRQ_STATE_ENABLE:
  1261. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1262. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1263. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1264. break;
  1265. default:
  1266. break;
  1267. }
  1268. break;
  1269. default:
  1270. break;
  1271. }
  1272. return 0;
  1273. }
  1274. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1275. struct amdgpu_irq_src *source,
  1276. struct amdgpu_iv_entry *entry)
  1277. {
  1278. u8 instance_id, queue_id;
  1279. instance_id = (entry->ring_id & 0x3) >> 0;
  1280. queue_id = (entry->ring_id & 0xc) >> 2;
  1281. DRM_DEBUG("IH: SDMA trap\n");
  1282. switch (instance_id) {
  1283. case 0:
  1284. switch (queue_id) {
  1285. case 0:
  1286. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1287. break;
  1288. case 1:
  1289. /* XXX compute */
  1290. break;
  1291. case 2:
  1292. /* XXX compute */
  1293. break;
  1294. }
  1295. break;
  1296. case 1:
  1297. switch (queue_id) {
  1298. case 0:
  1299. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1300. break;
  1301. case 1:
  1302. /* XXX compute */
  1303. break;
  1304. case 2:
  1305. /* XXX compute */
  1306. break;
  1307. }
  1308. break;
  1309. }
  1310. return 0;
  1311. }
  1312. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1313. struct amdgpu_irq_src *source,
  1314. struct amdgpu_iv_entry *entry)
  1315. {
  1316. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1317. schedule_work(&adev->reset_work);
  1318. return 0;
  1319. }
  1320. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1321. struct amdgpu_device *adev,
  1322. bool enable)
  1323. {
  1324. uint32_t temp, data;
  1325. int i;
  1326. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1327. for (i = 0; i < adev->sdma.num_instances; i++) {
  1328. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1329. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1330. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1331. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1332. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1333. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1334. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1335. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1336. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1337. if (data != temp)
  1338. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1339. }
  1340. } else {
  1341. for (i = 0; i < adev->sdma.num_instances; i++) {
  1342. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1343. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1344. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1345. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1346. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1347. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1348. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1349. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1350. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1351. if (data != temp)
  1352. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1353. }
  1354. }
  1355. }
  1356. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1357. struct amdgpu_device *adev,
  1358. bool enable)
  1359. {
  1360. uint32_t temp, data;
  1361. int i;
  1362. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1363. for (i = 0; i < adev->sdma.num_instances; i++) {
  1364. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1365. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1366. if (temp != data)
  1367. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1368. }
  1369. } else {
  1370. for (i = 0; i < adev->sdma.num_instances; i++) {
  1371. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1372. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1373. if (temp != data)
  1374. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1375. }
  1376. }
  1377. }
  1378. static int sdma_v3_0_set_clockgating_state(void *handle,
  1379. enum amd_clockgating_state state)
  1380. {
  1381. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1382. if (amdgpu_sriov_vf(adev))
  1383. return 0;
  1384. switch (adev->asic_type) {
  1385. case CHIP_FIJI:
  1386. case CHIP_CARRIZO:
  1387. case CHIP_STONEY:
  1388. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1389. state == AMD_CG_STATE_GATE);
  1390. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1391. state == AMD_CG_STATE_GATE);
  1392. break;
  1393. default:
  1394. break;
  1395. }
  1396. return 0;
  1397. }
  1398. static int sdma_v3_0_set_powergating_state(void *handle,
  1399. enum amd_powergating_state state)
  1400. {
  1401. return 0;
  1402. }
  1403. static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
  1404. {
  1405. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1406. int data;
  1407. if (amdgpu_sriov_vf(adev))
  1408. *flags = 0;
  1409. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1410. data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
  1411. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
  1412. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1413. /* AMD_CG_SUPPORT_SDMA_LS */
  1414. data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
  1415. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1416. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1417. }
  1418. static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1419. .name = "sdma_v3_0",
  1420. .early_init = sdma_v3_0_early_init,
  1421. .late_init = NULL,
  1422. .sw_init = sdma_v3_0_sw_init,
  1423. .sw_fini = sdma_v3_0_sw_fini,
  1424. .hw_init = sdma_v3_0_hw_init,
  1425. .hw_fini = sdma_v3_0_hw_fini,
  1426. .suspend = sdma_v3_0_suspend,
  1427. .resume = sdma_v3_0_resume,
  1428. .is_idle = sdma_v3_0_is_idle,
  1429. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1430. .check_soft_reset = sdma_v3_0_check_soft_reset,
  1431. .pre_soft_reset = sdma_v3_0_pre_soft_reset,
  1432. .post_soft_reset = sdma_v3_0_post_soft_reset,
  1433. .soft_reset = sdma_v3_0_soft_reset,
  1434. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1435. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1436. .get_clockgating_state = sdma_v3_0_get_clockgating_state,
  1437. };
  1438. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1439. .type = AMDGPU_RING_TYPE_SDMA,
  1440. .align_mask = 0xf,
  1441. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1442. .support_64bit_ptrs = false,
  1443. .get_rptr = sdma_v3_0_ring_get_rptr,
  1444. .get_wptr = sdma_v3_0_ring_get_wptr,
  1445. .set_wptr = sdma_v3_0_ring_set_wptr,
  1446. .emit_frame_size =
  1447. 6 + /* sdma_v3_0_ring_emit_hdp_flush */
  1448. 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
  1449. 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
  1450. 12 + /* sdma_v3_0_ring_emit_vm_flush */
  1451. 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
  1452. .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
  1453. .emit_ib = sdma_v3_0_ring_emit_ib,
  1454. .emit_fence = sdma_v3_0_ring_emit_fence,
  1455. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1456. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1457. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1458. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1459. .test_ring = sdma_v3_0_ring_test_ring,
  1460. .test_ib = sdma_v3_0_ring_test_ib,
  1461. .insert_nop = sdma_v3_0_ring_insert_nop,
  1462. .pad_ib = sdma_v3_0_ring_pad_ib,
  1463. };
  1464. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1465. {
  1466. int i;
  1467. for (i = 0; i < adev->sdma.num_instances; i++)
  1468. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1469. }
  1470. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1471. .set = sdma_v3_0_set_trap_irq_state,
  1472. .process = sdma_v3_0_process_trap_irq,
  1473. };
  1474. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1475. .process = sdma_v3_0_process_illegal_inst_irq,
  1476. };
  1477. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1478. {
  1479. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1480. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1481. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1482. }
  1483. /**
  1484. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1485. *
  1486. * @ring: amdgpu_ring structure holding ring information
  1487. * @src_offset: src GPU address
  1488. * @dst_offset: dst GPU address
  1489. * @byte_count: number of bytes to xfer
  1490. *
  1491. * Copy GPU buffers using the DMA engine (VI).
  1492. * Used by the amdgpu ttm implementation to move pages if
  1493. * registered as the asic copy callback.
  1494. */
  1495. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1496. uint64_t src_offset,
  1497. uint64_t dst_offset,
  1498. uint32_t byte_count)
  1499. {
  1500. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1501. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1502. ib->ptr[ib->length_dw++] = byte_count;
  1503. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1504. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1505. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1506. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1507. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1508. }
  1509. /**
  1510. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1511. *
  1512. * @ring: amdgpu_ring structure holding ring information
  1513. * @src_data: value to write to buffer
  1514. * @dst_offset: dst GPU address
  1515. * @byte_count: number of bytes to xfer
  1516. *
  1517. * Fill GPU buffers using the DMA engine (VI).
  1518. */
  1519. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1520. uint32_t src_data,
  1521. uint64_t dst_offset,
  1522. uint32_t byte_count)
  1523. {
  1524. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1525. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1526. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1527. ib->ptr[ib->length_dw++] = src_data;
  1528. ib->ptr[ib->length_dw++] = byte_count;
  1529. }
  1530. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1531. .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
  1532. .copy_num_dw = 7,
  1533. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1534. .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
  1535. .fill_num_dw = 5,
  1536. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1537. };
  1538. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1539. {
  1540. if (adev->mman.buffer_funcs == NULL) {
  1541. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1542. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1543. }
  1544. }
  1545. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1546. .copy_pte_num_dw = 7,
  1547. .copy_pte = sdma_v3_0_vm_copy_pte,
  1548. .write_pte = sdma_v3_0_vm_write_pte,
  1549. /* not 0x3fffff due to HW limitation */
  1550. .set_max_nums_pte_pde = 0x3fffe0 >> 3,
  1551. .set_pte_pde_num_dw = 10,
  1552. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1553. };
  1554. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1555. {
  1556. unsigned i;
  1557. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1558. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1559. for (i = 0; i < adev->sdma.num_instances; i++)
  1560. adev->vm_manager.vm_pte_rings[i] =
  1561. &adev->sdma.instance[i].ring;
  1562. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1563. }
  1564. }
  1565. const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
  1566. {
  1567. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1568. .major = 3,
  1569. .minor = 0,
  1570. .rev = 0,
  1571. .funcs = &sdma_v3_0_ip_funcs,
  1572. };
  1573. const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
  1574. {
  1575. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1576. .major = 3,
  1577. .minor = 1,
  1578. .rev = 0,
  1579. .funcs = &sdma_v3_0_ip_funcs,
  1580. };