amdgpu_amdkfd_gfx_v8.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/fdtable.h>
  24. #include <linux/uaccess.h>
  25. #include <linux/firmware.h>
  26. #include <drm/drmP.h>
  27. #include "amdgpu.h"
  28. #include "amdgpu_amdkfd.h"
  29. #include "amdgpu_ucode.h"
  30. #include "gfx_v8_0.h"
  31. #include "gca/gfx_8_0_sh_mask.h"
  32. #include "gca/gfx_8_0_d.h"
  33. #include "gca/gfx_8_0_enum.h"
  34. #include "oss/oss_3_0_sh_mask.h"
  35. #include "oss/oss_3_0_d.h"
  36. #include "gmc/gmc_8_1_sh_mask.h"
  37. #include "gmc/gmc_8_1_d.h"
  38. #include "vi_structs.h"
  39. #include "vid.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. struct vi_sdma_mqd;
  46. /*
  47. * Register access functions
  48. */
  49. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  50. uint32_t sh_mem_config,
  51. uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
  52. uint32_t sh_mem_bases);
  53. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  54. unsigned int vmid);
  55. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  56. uint32_t hpd_size, uint64_t hpd_gpu_addr);
  57. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  58. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  59. uint32_t queue_id, uint32_t __user *wptr,
  60. uint32_t wptr_shift, uint32_t wptr_mask,
  61. struct mm_struct *mm);
  62. static int kgd_hqd_dump(struct kgd_dev *kgd,
  63. uint32_t pipe_id, uint32_t queue_id,
  64. uint32_t (**dump)[2], uint32_t *n_regs);
  65. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  66. uint32_t __user *wptr, struct mm_struct *mm);
  67. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  68. uint32_t engine_id, uint32_t queue_id,
  69. uint32_t (**dump)[2], uint32_t *n_regs);
  70. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  71. uint32_t pipe_id, uint32_t queue_id);
  72. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  73. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  74. enum kfd_preempt_type reset_type,
  75. unsigned int utimeout, uint32_t pipe_id,
  76. uint32_t queue_id);
  77. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  78. unsigned int utimeout);
  79. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  80. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  81. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  82. unsigned int watch_point_id,
  83. uint32_t cntl_val,
  84. uint32_t addr_hi,
  85. uint32_t addr_lo);
  86. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  87. uint32_t gfx_index_val,
  88. uint32_t sq_cmd);
  89. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  90. unsigned int watch_point_id,
  91. unsigned int reg_offset);
  92. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  93. uint8_t vmid);
  94. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  95. uint8_t vmid);
  96. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  97. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  98. static void set_scratch_backing_va(struct kgd_dev *kgd,
  99. uint64_t va, uint32_t vmid);
  100. /* Because of REG_GET_FIELD() being used, we put this function in the
  101. * asic specific file.
  102. */
  103. static int get_tile_config(struct kgd_dev *kgd,
  104. struct tile_config *config)
  105. {
  106. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  107. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  108. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  109. MC_ARB_RAMCFG, NOOFBANK);
  110. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  111. MC_ARB_RAMCFG, NOOFRANKS);
  112. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  113. config->num_tile_configs =
  114. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  115. config->macro_tile_config_ptr =
  116. adev->gfx.config.macrotile_mode_array;
  117. config->num_macro_tile_configs =
  118. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  119. return 0;
  120. }
  121. static const struct kfd2kgd_calls kfd2kgd = {
  122. .init_gtt_mem_allocation = alloc_gtt_mem,
  123. .free_gtt_mem = free_gtt_mem,
  124. .get_local_mem_info = get_local_mem_info,
  125. .get_gpu_clock_counter = get_gpu_clock_counter,
  126. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  127. .alloc_pasid = amdgpu_pasid_alloc,
  128. .free_pasid = amdgpu_pasid_free,
  129. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  130. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  131. .init_pipeline = kgd_init_pipeline,
  132. .init_interrupts = kgd_init_interrupts,
  133. .hqd_load = kgd_hqd_load,
  134. .hqd_sdma_load = kgd_hqd_sdma_load,
  135. .hqd_dump = kgd_hqd_dump,
  136. .hqd_sdma_dump = kgd_hqd_sdma_dump,
  137. .hqd_is_occupied = kgd_hqd_is_occupied,
  138. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  139. .hqd_destroy = kgd_hqd_destroy,
  140. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  141. .address_watch_disable = kgd_address_watch_disable,
  142. .address_watch_execute = kgd_address_watch_execute,
  143. .wave_control_execute = kgd_wave_control_execute,
  144. .address_watch_get_offset = kgd_address_watch_get_offset,
  145. .get_atc_vmid_pasid_mapping_pasid =
  146. get_atc_vmid_pasid_mapping_pasid,
  147. .get_atc_vmid_pasid_mapping_valid =
  148. get_atc_vmid_pasid_mapping_valid,
  149. .write_vmid_invalidate_request = write_vmid_invalidate_request,
  150. .get_fw_version = get_fw_version,
  151. .set_scratch_backing_va = set_scratch_backing_va,
  152. .get_tile_config = get_tile_config,
  153. .get_cu_info = get_cu_info,
  154. .get_vram_usage = amdgpu_amdkfd_get_vram_usage
  155. };
  156. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
  157. {
  158. return (struct kfd2kgd_calls *)&kfd2kgd;
  159. }
  160. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  161. {
  162. return (struct amdgpu_device *)kgd;
  163. }
  164. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  165. uint32_t queue, uint32_t vmid)
  166. {
  167. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  168. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  169. mutex_lock(&adev->srbm_mutex);
  170. WREG32(mmSRBM_GFX_CNTL, value);
  171. }
  172. static void unlock_srbm(struct kgd_dev *kgd)
  173. {
  174. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  175. WREG32(mmSRBM_GFX_CNTL, 0);
  176. mutex_unlock(&adev->srbm_mutex);
  177. }
  178. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  179. uint32_t queue_id)
  180. {
  181. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  182. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  183. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  184. lock_srbm(kgd, mec, pipe, queue_id, 0);
  185. }
  186. static void release_queue(struct kgd_dev *kgd)
  187. {
  188. unlock_srbm(kgd);
  189. }
  190. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  191. uint32_t sh_mem_config,
  192. uint32_t sh_mem_ape1_base,
  193. uint32_t sh_mem_ape1_limit,
  194. uint32_t sh_mem_bases)
  195. {
  196. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  197. lock_srbm(kgd, 0, 0, 0, vmid);
  198. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  199. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  200. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  201. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  202. unlock_srbm(kgd);
  203. }
  204. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  205. unsigned int vmid)
  206. {
  207. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  208. /*
  209. * We have to assume that there is no outstanding mapping.
  210. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  211. * a mapping is in progress or because a mapping finished
  212. * and the SW cleared it.
  213. * So the protocol is to always wait & clear.
  214. */
  215. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  216. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  217. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  218. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  219. cpu_relax();
  220. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  221. /* Mapping vmid to pasid also for IH block */
  222. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  223. return 0;
  224. }
  225. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  226. uint32_t hpd_size, uint64_t hpd_gpu_addr)
  227. {
  228. /* amdgpu owns the per-pipe state */
  229. return 0;
  230. }
  231. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  232. {
  233. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  234. uint32_t mec;
  235. uint32_t pipe;
  236. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  237. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  238. lock_srbm(kgd, mec, pipe, 0, 0);
  239. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
  240. unlock_srbm(kgd);
  241. return 0;
  242. }
  243. static inline uint32_t get_sdma_base_addr(struct vi_sdma_mqd *m)
  244. {
  245. uint32_t retval;
  246. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  247. m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
  248. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  249. return retval;
  250. }
  251. static inline struct vi_mqd *get_mqd(void *mqd)
  252. {
  253. return (struct vi_mqd *)mqd;
  254. }
  255. static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
  256. {
  257. return (struct vi_sdma_mqd *)mqd;
  258. }
  259. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  260. uint32_t queue_id, uint32_t __user *wptr,
  261. uint32_t wptr_shift, uint32_t wptr_mask,
  262. struct mm_struct *mm)
  263. {
  264. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  265. struct vi_mqd *m;
  266. uint32_t *mqd_hqd;
  267. uint32_t reg, wptr_val, data;
  268. bool valid_wptr = false;
  269. m = get_mqd(mqd);
  270. acquire_queue(kgd, pipe_id, queue_id);
  271. /* HIQ is set during driver init period with vmid set to 0*/
  272. if (m->cp_hqd_vmid == 0) {
  273. uint32_t value, mec, pipe;
  274. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  275. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  276. pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
  277. mec, pipe, queue_id);
  278. value = RREG32(mmRLC_CP_SCHEDULERS);
  279. value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
  280. ((mec << 5) | (pipe << 3) | queue_id | 0x80));
  281. WREG32(mmRLC_CP_SCHEDULERS, value);
  282. }
  283. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
  284. mqd_hqd = &m->cp_mqd_base_addr_lo;
  285. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
  286. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  287. /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
  288. * This is safe since EOP RPTR==WPTR for any inactive HQD
  289. * on ASICs that do not support context-save.
  290. * EOP writes/reads can start anywhere in the ring.
  291. */
  292. if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
  293. WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
  294. WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
  295. WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
  296. }
  297. for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
  298. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  299. /* Copy userspace write pointer value to register.
  300. * Activate doorbell logic to monitor subsequent changes.
  301. */
  302. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  303. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  304. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  305. /* read_user_ptr may take the mm->mmap_sem.
  306. * release srbm_mutex to avoid circular dependency between
  307. * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
  308. */
  309. release_queue(kgd);
  310. valid_wptr = read_user_wptr(mm, wptr, wptr_val);
  311. acquire_queue(kgd, pipe_id, queue_id);
  312. if (valid_wptr)
  313. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  314. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  315. WREG32(mmCP_HQD_ACTIVE, data);
  316. release_queue(kgd);
  317. return 0;
  318. }
  319. static int kgd_hqd_dump(struct kgd_dev *kgd,
  320. uint32_t pipe_id, uint32_t queue_id,
  321. uint32_t (**dump)[2], uint32_t *n_regs)
  322. {
  323. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  324. uint32_t i = 0, reg;
  325. #define HQD_N_REGS (54+4)
  326. #define DUMP_REG(addr) do { \
  327. if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
  328. break; \
  329. (*dump)[i][0] = (addr) << 2; \
  330. (*dump)[i++][1] = RREG32(addr); \
  331. } while (0)
  332. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  333. if (*dump == NULL)
  334. return -ENOMEM;
  335. acquire_queue(kgd, pipe_id, queue_id);
  336. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
  337. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
  338. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
  339. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
  340. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
  341. DUMP_REG(reg);
  342. release_queue(kgd);
  343. WARN_ON_ONCE(i != HQD_N_REGS);
  344. *n_regs = i;
  345. return 0;
  346. }
  347. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  348. uint32_t __user *wptr, struct mm_struct *mm)
  349. {
  350. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  351. struct vi_sdma_mqd *m;
  352. unsigned long end_jiffies;
  353. uint32_t sdma_base_addr;
  354. uint32_t data;
  355. m = get_sdma_mqd(mqd);
  356. sdma_base_addr = get_sdma_base_addr(m);
  357. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  358. m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
  359. end_jiffies = msecs_to_jiffies(2000) + jiffies;
  360. while (true) {
  361. data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  362. if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  363. break;
  364. if (time_after(jiffies, end_jiffies))
  365. return -ETIME;
  366. usleep_range(500, 1000);
  367. }
  368. if (m->sdma_engine_id) {
  369. data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
  370. data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
  371. RESUME_CTX, 0);
  372. WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
  373. } else {
  374. data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
  375. data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
  376. RESUME_CTX, 0);
  377. WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
  378. }
  379. data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
  380. ENABLE, 1);
  381. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
  382. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
  383. if (read_user_wptr(mm, wptr, data))
  384. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
  385. else
  386. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
  387. m->sdmax_rlcx_rb_rptr);
  388. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  389. m->sdmax_rlcx_virtual_addr);
  390. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
  391. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  392. m->sdmax_rlcx_rb_base_hi);
  393. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  394. m->sdmax_rlcx_rb_rptr_addr_lo);
  395. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  396. m->sdmax_rlcx_rb_rptr_addr_hi);
  397. data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
  398. RB_ENABLE, 1);
  399. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
  400. return 0;
  401. }
  402. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  403. uint32_t engine_id, uint32_t queue_id,
  404. uint32_t (**dump)[2], uint32_t *n_regs)
  405. {
  406. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  407. uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
  408. queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
  409. uint32_t i = 0, reg;
  410. #undef HQD_N_REGS
  411. #define HQD_N_REGS (19+4+2+3+7)
  412. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  413. if (*dump == NULL)
  414. return -ENOMEM;
  415. for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
  416. DUMP_REG(sdma_offset + reg);
  417. for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
  418. reg++)
  419. DUMP_REG(sdma_offset + reg);
  420. for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
  421. reg++)
  422. DUMP_REG(sdma_offset + reg);
  423. for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
  424. reg++)
  425. DUMP_REG(sdma_offset + reg);
  426. for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
  427. reg++)
  428. DUMP_REG(sdma_offset + reg);
  429. WARN_ON_ONCE(i != HQD_N_REGS);
  430. *n_regs = i;
  431. return 0;
  432. }
  433. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  434. uint32_t pipe_id, uint32_t queue_id)
  435. {
  436. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  437. uint32_t act;
  438. bool retval = false;
  439. uint32_t low, high;
  440. acquire_queue(kgd, pipe_id, queue_id);
  441. act = RREG32(mmCP_HQD_ACTIVE);
  442. if (act) {
  443. low = lower_32_bits(queue_address >> 8);
  444. high = upper_32_bits(queue_address >> 8);
  445. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  446. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  447. retval = true;
  448. }
  449. release_queue(kgd);
  450. return retval;
  451. }
  452. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  453. {
  454. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  455. struct vi_sdma_mqd *m;
  456. uint32_t sdma_base_addr;
  457. uint32_t sdma_rlc_rb_cntl;
  458. m = get_sdma_mqd(mqd);
  459. sdma_base_addr = get_sdma_base_addr(m);
  460. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  461. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  462. return true;
  463. return false;
  464. }
  465. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  466. enum kfd_preempt_type reset_type,
  467. unsigned int utimeout, uint32_t pipe_id,
  468. uint32_t queue_id)
  469. {
  470. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  471. uint32_t temp;
  472. enum hqd_dequeue_request_type type;
  473. unsigned long flags, end_jiffies;
  474. int retry;
  475. struct vi_mqd *m = get_mqd(mqd);
  476. acquire_queue(kgd, pipe_id, queue_id);
  477. if (m->cp_hqd_vmid == 0)
  478. WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
  479. switch (reset_type) {
  480. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  481. type = DRAIN_PIPE;
  482. break;
  483. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  484. type = RESET_WAVES;
  485. break;
  486. default:
  487. type = DRAIN_PIPE;
  488. break;
  489. }
  490. /* Workaround: If IQ timer is active and the wait time is close to or
  491. * equal to 0, dequeueing is not safe. Wait until either the wait time
  492. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  493. * cleared before continuing. Also, ensure wait times are set to at
  494. * least 0x3.
  495. */
  496. local_irq_save(flags);
  497. preempt_disable();
  498. retry = 5000; /* wait for 500 usecs at maximum */
  499. while (true) {
  500. temp = RREG32(mmCP_HQD_IQ_TIMER);
  501. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  502. pr_debug("HW is processing IQ\n");
  503. goto loop;
  504. }
  505. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  506. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  507. == 3) /* SEM-rearm is safe */
  508. break;
  509. /* Wait time 3 is safe for CP, but our MMIO read/write
  510. * time is close to 1 microsecond, so check for 10 to
  511. * leave more buffer room
  512. */
  513. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  514. >= 10)
  515. break;
  516. pr_debug("IQ timer is active\n");
  517. } else
  518. break;
  519. loop:
  520. if (!retry) {
  521. pr_err("CP HQD IQ timer status time out\n");
  522. break;
  523. }
  524. ndelay(100);
  525. --retry;
  526. }
  527. retry = 1000;
  528. while (true) {
  529. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  530. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  531. break;
  532. pr_debug("Dequeue request is pending\n");
  533. if (!retry) {
  534. pr_err("CP HQD dequeue request time out\n");
  535. break;
  536. }
  537. ndelay(100);
  538. --retry;
  539. }
  540. local_irq_restore(flags);
  541. preempt_enable();
  542. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  543. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  544. while (true) {
  545. temp = RREG32(mmCP_HQD_ACTIVE);
  546. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  547. break;
  548. if (time_after(jiffies, end_jiffies)) {
  549. pr_err("cp queue preemption time out.\n");
  550. release_queue(kgd);
  551. return -ETIME;
  552. }
  553. usleep_range(500, 1000);
  554. }
  555. release_queue(kgd);
  556. return 0;
  557. }
  558. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  559. unsigned int utimeout)
  560. {
  561. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  562. struct vi_sdma_mqd *m;
  563. uint32_t sdma_base_addr;
  564. uint32_t temp;
  565. unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
  566. m = get_sdma_mqd(mqd);
  567. sdma_base_addr = get_sdma_base_addr(m);
  568. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  569. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  570. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  571. while (true) {
  572. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  573. if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  574. break;
  575. if (time_after(jiffies, end_jiffies))
  576. return -ETIME;
  577. usleep_range(500, 1000);
  578. }
  579. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  580. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  581. RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
  582. SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
  583. m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
  584. return 0;
  585. }
  586. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  587. uint8_t vmid)
  588. {
  589. uint32_t reg;
  590. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  591. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  592. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  593. }
  594. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  595. uint8_t vmid)
  596. {
  597. uint32_t reg;
  598. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  599. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  600. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  601. }
  602. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
  603. {
  604. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  605. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  606. }
  607. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  608. {
  609. return 0;
  610. }
  611. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  612. unsigned int watch_point_id,
  613. uint32_t cntl_val,
  614. uint32_t addr_hi,
  615. uint32_t addr_lo)
  616. {
  617. return 0;
  618. }
  619. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  620. uint32_t gfx_index_val,
  621. uint32_t sq_cmd)
  622. {
  623. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  624. uint32_t data = 0;
  625. mutex_lock(&adev->grbm_idx_mutex);
  626. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  627. WREG32(mmSQ_CMD, sq_cmd);
  628. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  629. INSTANCE_BROADCAST_WRITES, 1);
  630. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  631. SH_BROADCAST_WRITES, 1);
  632. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  633. SE_BROADCAST_WRITES, 1);
  634. WREG32(mmGRBM_GFX_INDEX, data);
  635. mutex_unlock(&adev->grbm_idx_mutex);
  636. return 0;
  637. }
  638. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  639. unsigned int watch_point_id,
  640. unsigned int reg_offset)
  641. {
  642. return 0;
  643. }
  644. static void set_scratch_backing_va(struct kgd_dev *kgd,
  645. uint64_t va, uint32_t vmid)
  646. {
  647. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  648. lock_srbm(kgd, 0, 0, 0, vmid);
  649. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  650. unlock_srbm(kgd);
  651. }
  652. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  653. {
  654. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  655. const union amdgpu_firmware_header *hdr;
  656. BUG_ON(kgd == NULL);
  657. switch (type) {
  658. case KGD_ENGINE_PFP:
  659. hdr = (const union amdgpu_firmware_header *)
  660. adev->gfx.pfp_fw->data;
  661. break;
  662. case KGD_ENGINE_ME:
  663. hdr = (const union amdgpu_firmware_header *)
  664. adev->gfx.me_fw->data;
  665. break;
  666. case KGD_ENGINE_CE:
  667. hdr = (const union amdgpu_firmware_header *)
  668. adev->gfx.ce_fw->data;
  669. break;
  670. case KGD_ENGINE_MEC1:
  671. hdr = (const union amdgpu_firmware_header *)
  672. adev->gfx.mec_fw->data;
  673. break;
  674. case KGD_ENGINE_MEC2:
  675. hdr = (const union amdgpu_firmware_header *)
  676. adev->gfx.mec2_fw->data;
  677. break;
  678. case KGD_ENGINE_RLC:
  679. hdr = (const union amdgpu_firmware_header *)
  680. adev->gfx.rlc_fw->data;
  681. break;
  682. case KGD_ENGINE_SDMA1:
  683. hdr = (const union amdgpu_firmware_header *)
  684. adev->sdma.instance[0].fw->data;
  685. break;
  686. case KGD_ENGINE_SDMA2:
  687. hdr = (const union amdgpu_firmware_header *)
  688. adev->sdma.instance[1].fw->data;
  689. break;
  690. default:
  691. return 0;
  692. }
  693. if (hdr == NULL)
  694. return 0;
  695. /* Only 12 bit in use*/
  696. return hdr->common.ucode_version;
  697. }