tree_plugin.h 94 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion (tree-based version)
  3. * Internal non-public definitions that provide either classic
  4. * or preemptible semantics.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, you can access it online at
  18. * http://www.gnu.org/licenses/gpl-2.0.html.
  19. *
  20. * Copyright Red Hat, 2009
  21. * Copyright IBM Corporation, 2009
  22. *
  23. * Author: Ingo Molnar <mingo@elte.hu>
  24. * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/gfp.h>
  28. #include <linux/oom.h>
  29. #include <linux/smpboot.h>
  30. #include "../time/tick-internal.h"
  31. #ifdef CONFIG_RCU_BOOST
  32. #include "../locking/rtmutex_common.h"
  33. /* rcuc/rcub kthread realtime priority */
  34. static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
  35. module_param(kthread_prio, int, 0644);
  36. /*
  37. * Control variables for per-CPU and per-rcu_node kthreads. These
  38. * handle all flavors of RCU.
  39. */
  40. static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  41. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  42. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  43. DEFINE_PER_CPU(char, rcu_cpu_has_work);
  44. #endif /* #ifdef CONFIG_RCU_BOOST */
  45. #ifdef CONFIG_RCU_NOCB_CPU
  46. static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  47. static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
  48. static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
  49. static char __initdata nocb_buf[NR_CPUS * 5];
  50. #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  51. /*
  52. * Check the RCU kernel configuration parameters and print informative
  53. * messages about anything out of the ordinary. If you like #ifdef, you
  54. * will love this function.
  55. */
  56. static void __init rcu_bootup_announce_oddness(void)
  57. {
  58. #ifdef CONFIG_RCU_TRACE
  59. pr_info("\tRCU debugfs-based tracing is enabled.\n");
  60. #endif
  61. #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
  62. pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  63. CONFIG_RCU_FANOUT);
  64. #endif
  65. #ifdef CONFIG_RCU_FANOUT_EXACT
  66. pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  67. #endif
  68. #ifdef CONFIG_RCU_FAST_NO_HZ
  69. pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  70. #endif
  71. #ifdef CONFIG_PROVE_RCU
  72. pr_info("\tRCU lockdep checking is enabled.\n");
  73. #endif
  74. #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
  75. pr_info("\tRCU torture testing starts during boot.\n");
  76. #endif
  77. #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
  78. pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
  79. #endif
  80. #if defined(CONFIG_RCU_CPU_STALL_INFO)
  81. pr_info("\tAdditional per-CPU info printed with stalls.\n");
  82. #endif
  83. #if NUM_RCU_LVL_4 != 0
  84. pr_info("\tFour-level hierarchy is enabled.\n");
  85. #endif
  86. if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
  87. pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  88. if (nr_cpu_ids != NR_CPUS)
  89. pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  90. #ifdef CONFIG_RCU_BOOST
  91. pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
  92. #endif
  93. }
  94. #ifdef CONFIG_PREEMPT_RCU
  95. RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
  96. static struct rcu_state *rcu_state_p = &rcu_preempt_state;
  97. static int rcu_preempted_readers_exp(struct rcu_node *rnp);
  98. /*
  99. * Tell them what RCU they are running.
  100. */
  101. static void __init rcu_bootup_announce(void)
  102. {
  103. pr_info("Preemptible hierarchical RCU implementation.\n");
  104. rcu_bootup_announce_oddness();
  105. }
  106. /*
  107. * Return the number of RCU-preempt batches processed thus far
  108. * for debug and statistics.
  109. */
  110. static long rcu_batches_completed_preempt(void)
  111. {
  112. return rcu_preempt_state.completed;
  113. }
  114. EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
  115. /*
  116. * Return the number of RCU batches processed thus far for debug & stats.
  117. */
  118. long rcu_batches_completed(void)
  119. {
  120. return rcu_batches_completed_preempt();
  121. }
  122. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  123. /*
  124. * Record a preemptible-RCU quiescent state for the specified CPU. Note
  125. * that this just means that the task currently running on the CPU is
  126. * not in a quiescent state. There might be any number of tasks blocked
  127. * while in an RCU read-side critical section.
  128. *
  129. * As with the other rcu_*_qs() functions, callers to this function
  130. * must disable preemption.
  131. */
  132. static void rcu_preempt_qs(void)
  133. {
  134. if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
  135. trace_rcu_grace_period(TPS("rcu_preempt"),
  136. __this_cpu_read(rcu_preempt_data.gpnum),
  137. TPS("cpuqs"));
  138. __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
  139. barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
  140. current->rcu_read_unlock_special.b.need_qs = false;
  141. }
  142. }
  143. /*
  144. * We have entered the scheduler, and the current task might soon be
  145. * context-switched away from. If this task is in an RCU read-side
  146. * critical section, we will no longer be able to rely on the CPU to
  147. * record that fact, so we enqueue the task on the blkd_tasks list.
  148. * The task will dequeue itself when it exits the outermost enclosing
  149. * RCU read-side critical section. Therefore, the current grace period
  150. * cannot be permitted to complete until the blkd_tasks list entries
  151. * predating the current grace period drain, in other words, until
  152. * rnp->gp_tasks becomes NULL.
  153. *
  154. * Caller must disable preemption.
  155. */
  156. static void rcu_preempt_note_context_switch(int cpu)
  157. {
  158. struct task_struct *t = current;
  159. unsigned long flags;
  160. struct rcu_data *rdp;
  161. struct rcu_node *rnp;
  162. if (t->rcu_read_lock_nesting > 0 &&
  163. !t->rcu_read_unlock_special.b.blocked) {
  164. /* Possibly blocking in an RCU read-side critical section. */
  165. rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
  166. rnp = rdp->mynode;
  167. raw_spin_lock_irqsave(&rnp->lock, flags);
  168. smp_mb__after_unlock_lock();
  169. t->rcu_read_unlock_special.b.blocked = true;
  170. t->rcu_blocked_node = rnp;
  171. /*
  172. * If this CPU has already checked in, then this task
  173. * will hold up the next grace period rather than the
  174. * current grace period. Queue the task accordingly.
  175. * If the task is queued for the current grace period
  176. * (i.e., this CPU has not yet passed through a quiescent
  177. * state for the current grace period), then as long
  178. * as that task remains queued, the current grace period
  179. * cannot end. Note that there is some uncertainty as
  180. * to exactly when the current grace period started.
  181. * We take a conservative approach, which can result
  182. * in unnecessarily waiting on tasks that started very
  183. * slightly after the current grace period began. C'est
  184. * la vie!!!
  185. *
  186. * But first, note that the current CPU must still be
  187. * on line!
  188. */
  189. WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
  190. WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
  191. if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
  192. list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
  193. rnp->gp_tasks = &t->rcu_node_entry;
  194. #ifdef CONFIG_RCU_BOOST
  195. if (rnp->boost_tasks != NULL)
  196. rnp->boost_tasks = rnp->gp_tasks;
  197. #endif /* #ifdef CONFIG_RCU_BOOST */
  198. } else {
  199. list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
  200. if (rnp->qsmask & rdp->grpmask)
  201. rnp->gp_tasks = &t->rcu_node_entry;
  202. }
  203. trace_rcu_preempt_task(rdp->rsp->name,
  204. t->pid,
  205. (rnp->qsmask & rdp->grpmask)
  206. ? rnp->gpnum
  207. : rnp->gpnum + 1);
  208. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  209. } else if (t->rcu_read_lock_nesting < 0 &&
  210. t->rcu_read_unlock_special.s) {
  211. /*
  212. * Complete exit from RCU read-side critical section on
  213. * behalf of preempted instance of __rcu_read_unlock().
  214. */
  215. rcu_read_unlock_special(t);
  216. }
  217. /*
  218. * Either we were not in an RCU read-side critical section to
  219. * begin with, or we have now recorded that critical section
  220. * globally. Either way, we can now note a quiescent state
  221. * for this CPU. Again, if we were in an RCU read-side critical
  222. * section, and if that critical section was blocking the current
  223. * grace period, then the fact that the task has been enqueued
  224. * means that we continue to block the current grace period.
  225. */
  226. rcu_preempt_qs();
  227. }
  228. /*
  229. * Check for preempted RCU readers blocking the current grace period
  230. * for the specified rcu_node structure. If the caller needs a reliable
  231. * answer, it must hold the rcu_node's ->lock.
  232. */
  233. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  234. {
  235. return rnp->gp_tasks != NULL;
  236. }
  237. /*
  238. * Record a quiescent state for all tasks that were previously queued
  239. * on the specified rcu_node structure and that were blocking the current
  240. * RCU grace period. The caller must hold the specified rnp->lock with
  241. * irqs disabled, and this lock is released upon return, but irqs remain
  242. * disabled.
  243. */
  244. static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
  245. __releases(rnp->lock)
  246. {
  247. unsigned long mask;
  248. struct rcu_node *rnp_p;
  249. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  250. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  251. return; /* Still need more quiescent states! */
  252. }
  253. rnp_p = rnp->parent;
  254. if (rnp_p == NULL) {
  255. /*
  256. * Either there is only one rcu_node in the tree,
  257. * or tasks were kicked up to root rcu_node due to
  258. * CPUs going offline.
  259. */
  260. rcu_report_qs_rsp(&rcu_preempt_state, flags);
  261. return;
  262. }
  263. /* Report up the rest of the hierarchy. */
  264. mask = rnp->grpmask;
  265. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  266. raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
  267. smp_mb__after_unlock_lock();
  268. rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
  269. }
  270. /*
  271. * Advance a ->blkd_tasks-list pointer to the next entry, instead
  272. * returning NULL if at the end of the list.
  273. */
  274. static struct list_head *rcu_next_node_entry(struct task_struct *t,
  275. struct rcu_node *rnp)
  276. {
  277. struct list_head *np;
  278. np = t->rcu_node_entry.next;
  279. if (np == &rnp->blkd_tasks)
  280. np = NULL;
  281. return np;
  282. }
  283. /*
  284. * Handle special cases during rcu_read_unlock(), such as needing to
  285. * notify RCU core processing or task having blocked during the RCU
  286. * read-side critical section.
  287. */
  288. void rcu_read_unlock_special(struct task_struct *t)
  289. {
  290. int empty;
  291. int empty_exp;
  292. int empty_exp_now;
  293. unsigned long flags;
  294. struct list_head *np;
  295. #ifdef CONFIG_RCU_BOOST
  296. bool drop_boost_mutex = false;
  297. #endif /* #ifdef CONFIG_RCU_BOOST */
  298. struct rcu_node *rnp;
  299. union rcu_special special;
  300. /* NMI handlers cannot block and cannot safely manipulate state. */
  301. if (in_nmi())
  302. return;
  303. local_irq_save(flags);
  304. /*
  305. * If RCU core is waiting for this CPU to exit critical section,
  306. * let it know that we have done so. Because irqs are disabled,
  307. * t->rcu_read_unlock_special cannot change.
  308. */
  309. special = t->rcu_read_unlock_special;
  310. if (special.b.need_qs) {
  311. rcu_preempt_qs();
  312. if (!t->rcu_read_unlock_special.s) {
  313. local_irq_restore(flags);
  314. return;
  315. }
  316. }
  317. /* Hardware IRQ handlers cannot block, complain if they get here. */
  318. if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
  319. local_irq_restore(flags);
  320. return;
  321. }
  322. /* Clean up if blocked during RCU read-side critical section. */
  323. if (special.b.blocked) {
  324. t->rcu_read_unlock_special.b.blocked = false;
  325. /*
  326. * Remove this task from the list it blocked on. The
  327. * task can migrate while we acquire the lock, but at
  328. * most one time. So at most two passes through loop.
  329. */
  330. for (;;) {
  331. rnp = t->rcu_blocked_node;
  332. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  333. smp_mb__after_unlock_lock();
  334. if (rnp == t->rcu_blocked_node)
  335. break;
  336. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  337. }
  338. empty = !rcu_preempt_blocked_readers_cgp(rnp);
  339. empty_exp = !rcu_preempted_readers_exp(rnp);
  340. smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
  341. np = rcu_next_node_entry(t, rnp);
  342. list_del_init(&t->rcu_node_entry);
  343. t->rcu_blocked_node = NULL;
  344. trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
  345. rnp->gpnum, t->pid);
  346. if (&t->rcu_node_entry == rnp->gp_tasks)
  347. rnp->gp_tasks = np;
  348. if (&t->rcu_node_entry == rnp->exp_tasks)
  349. rnp->exp_tasks = np;
  350. #ifdef CONFIG_RCU_BOOST
  351. if (&t->rcu_node_entry == rnp->boost_tasks)
  352. rnp->boost_tasks = np;
  353. /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
  354. drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
  355. #endif /* #ifdef CONFIG_RCU_BOOST */
  356. /*
  357. * If this was the last task on the current list, and if
  358. * we aren't waiting on any CPUs, report the quiescent state.
  359. * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
  360. * so we must take a snapshot of the expedited state.
  361. */
  362. empty_exp_now = !rcu_preempted_readers_exp(rnp);
  363. if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
  364. trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
  365. rnp->gpnum,
  366. 0, rnp->qsmask,
  367. rnp->level,
  368. rnp->grplo,
  369. rnp->grphi,
  370. !!rnp->gp_tasks);
  371. rcu_report_unblock_qs_rnp(rnp, flags);
  372. } else {
  373. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  374. }
  375. #ifdef CONFIG_RCU_BOOST
  376. /* Unboost if we were boosted. */
  377. if (drop_boost_mutex) {
  378. rt_mutex_unlock(&rnp->boost_mtx);
  379. complete(&rnp->boost_completion);
  380. }
  381. #endif /* #ifdef CONFIG_RCU_BOOST */
  382. /*
  383. * If this was the last task on the expedited lists,
  384. * then we need to report up the rcu_node hierarchy.
  385. */
  386. if (!empty_exp && empty_exp_now)
  387. rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
  388. } else {
  389. local_irq_restore(flags);
  390. }
  391. }
  392. #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
  393. /*
  394. * Dump detailed information for all tasks blocking the current RCU
  395. * grace period on the specified rcu_node structure.
  396. */
  397. static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
  398. {
  399. unsigned long flags;
  400. struct task_struct *t;
  401. raw_spin_lock_irqsave(&rnp->lock, flags);
  402. if (!rcu_preempt_blocked_readers_cgp(rnp)) {
  403. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  404. return;
  405. }
  406. t = list_entry(rnp->gp_tasks,
  407. struct task_struct, rcu_node_entry);
  408. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
  409. sched_show_task(t);
  410. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  411. }
  412. /*
  413. * Dump detailed information for all tasks blocking the current RCU
  414. * grace period.
  415. */
  416. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  417. {
  418. struct rcu_node *rnp = rcu_get_root(rsp);
  419. rcu_print_detail_task_stall_rnp(rnp);
  420. rcu_for_each_leaf_node(rsp, rnp)
  421. rcu_print_detail_task_stall_rnp(rnp);
  422. }
  423. #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
  424. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  425. {
  426. }
  427. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
  428. #ifdef CONFIG_RCU_CPU_STALL_INFO
  429. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  430. {
  431. pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
  432. rnp->level, rnp->grplo, rnp->grphi);
  433. }
  434. static void rcu_print_task_stall_end(void)
  435. {
  436. pr_cont("\n");
  437. }
  438. #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
  439. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  440. {
  441. }
  442. static void rcu_print_task_stall_end(void)
  443. {
  444. }
  445. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
  446. /*
  447. * Scan the current list of tasks blocked within RCU read-side critical
  448. * sections, printing out the tid of each.
  449. */
  450. static int rcu_print_task_stall(struct rcu_node *rnp)
  451. {
  452. struct task_struct *t;
  453. int ndetected = 0;
  454. if (!rcu_preempt_blocked_readers_cgp(rnp))
  455. return 0;
  456. rcu_print_task_stall_begin(rnp);
  457. t = list_entry(rnp->gp_tasks,
  458. struct task_struct, rcu_node_entry);
  459. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
  460. pr_cont(" P%d", t->pid);
  461. ndetected++;
  462. }
  463. rcu_print_task_stall_end();
  464. return ndetected;
  465. }
  466. /*
  467. * Check that the list of blocked tasks for the newly completed grace
  468. * period is in fact empty. It is a serious bug to complete a grace
  469. * period that still has RCU readers blocked! This function must be
  470. * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
  471. * must be held by the caller.
  472. *
  473. * Also, if there are blocked tasks on the list, they automatically
  474. * block the newly created grace period, so set up ->gp_tasks accordingly.
  475. */
  476. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  477. {
  478. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  479. if (!list_empty(&rnp->blkd_tasks))
  480. rnp->gp_tasks = rnp->blkd_tasks.next;
  481. WARN_ON_ONCE(rnp->qsmask);
  482. }
  483. #ifdef CONFIG_HOTPLUG_CPU
  484. /*
  485. * Handle tasklist migration for case in which all CPUs covered by the
  486. * specified rcu_node have gone offline. Move them up to the root
  487. * rcu_node. The reason for not just moving them to the immediate
  488. * parent is to remove the need for rcu_read_unlock_special() to
  489. * make more than two attempts to acquire the target rcu_node's lock.
  490. * Returns true if there were tasks blocking the current RCU grace
  491. * period.
  492. *
  493. * Returns 1 if there was previously a task blocking the current grace
  494. * period on the specified rcu_node structure.
  495. *
  496. * The caller must hold rnp->lock with irqs disabled.
  497. */
  498. static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
  499. struct rcu_node *rnp,
  500. struct rcu_data *rdp)
  501. {
  502. struct list_head *lp;
  503. struct list_head *lp_root;
  504. int retval = 0;
  505. struct rcu_node *rnp_root = rcu_get_root(rsp);
  506. struct task_struct *t;
  507. if (rnp == rnp_root) {
  508. WARN_ONCE(1, "Last CPU thought to be offlined?");
  509. return 0; /* Shouldn't happen: at least one CPU online. */
  510. }
  511. /* If we are on an internal node, complain bitterly. */
  512. WARN_ON_ONCE(rnp != rdp->mynode);
  513. /*
  514. * Move tasks up to root rcu_node. Don't try to get fancy for
  515. * this corner-case operation -- just put this node's tasks
  516. * at the head of the root node's list, and update the root node's
  517. * ->gp_tasks and ->exp_tasks pointers to those of this node's,
  518. * if non-NULL. This might result in waiting for more tasks than
  519. * absolutely necessary, but this is a good performance/complexity
  520. * tradeoff.
  521. */
  522. if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
  523. retval |= RCU_OFL_TASKS_NORM_GP;
  524. if (rcu_preempted_readers_exp(rnp))
  525. retval |= RCU_OFL_TASKS_EXP_GP;
  526. lp = &rnp->blkd_tasks;
  527. lp_root = &rnp_root->blkd_tasks;
  528. while (!list_empty(lp)) {
  529. t = list_entry(lp->next, typeof(*t), rcu_node_entry);
  530. raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
  531. smp_mb__after_unlock_lock();
  532. list_del(&t->rcu_node_entry);
  533. t->rcu_blocked_node = rnp_root;
  534. list_add(&t->rcu_node_entry, lp_root);
  535. if (&t->rcu_node_entry == rnp->gp_tasks)
  536. rnp_root->gp_tasks = rnp->gp_tasks;
  537. if (&t->rcu_node_entry == rnp->exp_tasks)
  538. rnp_root->exp_tasks = rnp->exp_tasks;
  539. #ifdef CONFIG_RCU_BOOST
  540. if (&t->rcu_node_entry == rnp->boost_tasks)
  541. rnp_root->boost_tasks = rnp->boost_tasks;
  542. #endif /* #ifdef CONFIG_RCU_BOOST */
  543. raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
  544. }
  545. rnp->gp_tasks = NULL;
  546. rnp->exp_tasks = NULL;
  547. #ifdef CONFIG_RCU_BOOST
  548. rnp->boost_tasks = NULL;
  549. /*
  550. * In case root is being boosted and leaf was not. Make sure
  551. * that we boost the tasks blocking the current grace period
  552. * in this case.
  553. */
  554. raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
  555. smp_mb__after_unlock_lock();
  556. if (rnp_root->boost_tasks != NULL &&
  557. rnp_root->boost_tasks != rnp_root->gp_tasks &&
  558. rnp_root->boost_tasks != rnp_root->exp_tasks)
  559. rnp_root->boost_tasks = rnp_root->gp_tasks;
  560. raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
  561. #endif /* #ifdef CONFIG_RCU_BOOST */
  562. return retval;
  563. }
  564. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  565. /*
  566. * Check for a quiescent state from the current CPU. When a task blocks,
  567. * the task is recorded in the corresponding CPU's rcu_node structure,
  568. * which is checked elsewhere.
  569. *
  570. * Caller must disable hard irqs.
  571. */
  572. static void rcu_preempt_check_callbacks(int cpu)
  573. {
  574. struct task_struct *t = current;
  575. if (t->rcu_read_lock_nesting == 0) {
  576. rcu_preempt_qs();
  577. return;
  578. }
  579. if (t->rcu_read_lock_nesting > 0 &&
  580. per_cpu(rcu_preempt_data, cpu).qs_pending &&
  581. !per_cpu(rcu_preempt_data, cpu).passed_quiesce)
  582. t->rcu_read_unlock_special.b.need_qs = true;
  583. }
  584. #ifdef CONFIG_RCU_BOOST
  585. static void rcu_preempt_do_callbacks(void)
  586. {
  587. rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
  588. }
  589. #endif /* #ifdef CONFIG_RCU_BOOST */
  590. /*
  591. * Queue a preemptible-RCU callback for invocation after a grace period.
  592. */
  593. void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  594. {
  595. __call_rcu(head, func, &rcu_preempt_state, -1, 0);
  596. }
  597. EXPORT_SYMBOL_GPL(call_rcu);
  598. /**
  599. * synchronize_rcu - wait until a grace period has elapsed.
  600. *
  601. * Control will return to the caller some time after a full grace
  602. * period has elapsed, in other words after all currently executing RCU
  603. * read-side critical sections have completed. Note, however, that
  604. * upon return from synchronize_rcu(), the caller might well be executing
  605. * concurrently with new RCU read-side critical sections that began while
  606. * synchronize_rcu() was waiting. RCU read-side critical sections are
  607. * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
  608. *
  609. * See the description of synchronize_sched() for more detailed information
  610. * on memory ordering guarantees.
  611. */
  612. void synchronize_rcu(void)
  613. {
  614. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  615. !lock_is_held(&rcu_lock_map) &&
  616. !lock_is_held(&rcu_sched_lock_map),
  617. "Illegal synchronize_rcu() in RCU read-side critical section");
  618. if (!rcu_scheduler_active)
  619. return;
  620. if (rcu_expedited)
  621. synchronize_rcu_expedited();
  622. else
  623. wait_rcu_gp(call_rcu);
  624. }
  625. EXPORT_SYMBOL_GPL(synchronize_rcu);
  626. static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
  627. static unsigned long sync_rcu_preempt_exp_count;
  628. static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
  629. /*
  630. * Return non-zero if there are any tasks in RCU read-side critical
  631. * sections blocking the current preemptible-RCU expedited grace period.
  632. * If there is no preemptible-RCU expedited grace period currently in
  633. * progress, returns zero unconditionally.
  634. */
  635. static int rcu_preempted_readers_exp(struct rcu_node *rnp)
  636. {
  637. return rnp->exp_tasks != NULL;
  638. }
  639. /*
  640. * return non-zero if there is no RCU expedited grace period in progress
  641. * for the specified rcu_node structure, in other words, if all CPUs and
  642. * tasks covered by the specified rcu_node structure have done their bit
  643. * for the current expedited grace period. Works only for preemptible
  644. * RCU -- other RCU implementation use other means.
  645. *
  646. * Caller must hold sync_rcu_preempt_exp_mutex.
  647. */
  648. static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
  649. {
  650. return !rcu_preempted_readers_exp(rnp) &&
  651. ACCESS_ONCE(rnp->expmask) == 0;
  652. }
  653. /*
  654. * Report the exit from RCU read-side critical section for the last task
  655. * that queued itself during or before the current expedited preemptible-RCU
  656. * grace period. This event is reported either to the rcu_node structure on
  657. * which the task was queued or to one of that rcu_node structure's ancestors,
  658. * recursively up the tree. (Calm down, calm down, we do the recursion
  659. * iteratively!)
  660. *
  661. * Most callers will set the "wake" flag, but the task initiating the
  662. * expedited grace period need not wake itself.
  663. *
  664. * Caller must hold sync_rcu_preempt_exp_mutex.
  665. */
  666. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  667. bool wake)
  668. {
  669. unsigned long flags;
  670. unsigned long mask;
  671. raw_spin_lock_irqsave(&rnp->lock, flags);
  672. smp_mb__after_unlock_lock();
  673. for (;;) {
  674. if (!sync_rcu_preempt_exp_done(rnp)) {
  675. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  676. break;
  677. }
  678. if (rnp->parent == NULL) {
  679. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  680. if (wake) {
  681. smp_mb(); /* EGP done before wake_up(). */
  682. wake_up(&sync_rcu_preempt_exp_wq);
  683. }
  684. break;
  685. }
  686. mask = rnp->grpmask;
  687. raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
  688. rnp = rnp->parent;
  689. raw_spin_lock(&rnp->lock); /* irqs already disabled */
  690. smp_mb__after_unlock_lock();
  691. rnp->expmask &= ~mask;
  692. }
  693. }
  694. /*
  695. * Snapshot the tasks blocking the newly started preemptible-RCU expedited
  696. * grace period for the specified rcu_node structure. If there are no such
  697. * tasks, report it up the rcu_node hierarchy.
  698. *
  699. * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
  700. * CPU hotplug operations.
  701. */
  702. static void
  703. sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
  704. {
  705. unsigned long flags;
  706. int must_wait = 0;
  707. raw_spin_lock_irqsave(&rnp->lock, flags);
  708. smp_mb__after_unlock_lock();
  709. if (list_empty(&rnp->blkd_tasks)) {
  710. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  711. } else {
  712. rnp->exp_tasks = rnp->blkd_tasks.next;
  713. rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
  714. must_wait = 1;
  715. }
  716. if (!must_wait)
  717. rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
  718. }
  719. /**
  720. * synchronize_rcu_expedited - Brute-force RCU grace period
  721. *
  722. * Wait for an RCU-preempt grace period, but expedite it. The basic
  723. * idea is to invoke synchronize_sched_expedited() to push all the tasks to
  724. * the ->blkd_tasks lists and wait for this list to drain. This consumes
  725. * significant time on all CPUs and is unfriendly to real-time workloads,
  726. * so is thus not recommended for any sort of common-case code.
  727. * In fact, if you are using synchronize_rcu_expedited() in a loop,
  728. * please restructure your code to batch your updates, and then Use a
  729. * single synchronize_rcu() instead.
  730. */
  731. void synchronize_rcu_expedited(void)
  732. {
  733. unsigned long flags;
  734. struct rcu_node *rnp;
  735. struct rcu_state *rsp = &rcu_preempt_state;
  736. unsigned long snap;
  737. int trycount = 0;
  738. smp_mb(); /* Caller's modifications seen first by other CPUs. */
  739. snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
  740. smp_mb(); /* Above access cannot bleed into critical section. */
  741. /*
  742. * Block CPU-hotplug operations. This means that any CPU-hotplug
  743. * operation that finds an rcu_node structure with tasks in the
  744. * process of being boosted will know that all tasks blocking
  745. * this expedited grace period will already be in the process of
  746. * being boosted. This simplifies the process of moving tasks
  747. * from leaf to root rcu_node structures.
  748. */
  749. if (!try_get_online_cpus()) {
  750. /* CPU-hotplug operation in flight, fall back to normal GP. */
  751. wait_rcu_gp(call_rcu);
  752. return;
  753. }
  754. /*
  755. * Acquire lock, falling back to synchronize_rcu() if too many
  756. * lock-acquisition failures. Of course, if someone does the
  757. * expedited grace period for us, just leave.
  758. */
  759. while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
  760. if (ULONG_CMP_LT(snap,
  761. ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
  762. put_online_cpus();
  763. goto mb_ret; /* Others did our work for us. */
  764. }
  765. if (trycount++ < 10) {
  766. udelay(trycount * num_online_cpus());
  767. } else {
  768. put_online_cpus();
  769. wait_rcu_gp(call_rcu);
  770. return;
  771. }
  772. }
  773. if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
  774. put_online_cpus();
  775. goto unlock_mb_ret; /* Others did our work for us. */
  776. }
  777. /* force all RCU readers onto ->blkd_tasks lists. */
  778. synchronize_sched_expedited();
  779. /* Initialize ->expmask for all non-leaf rcu_node structures. */
  780. rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
  781. raw_spin_lock_irqsave(&rnp->lock, flags);
  782. smp_mb__after_unlock_lock();
  783. rnp->expmask = rnp->qsmaskinit;
  784. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  785. }
  786. /* Snapshot current state of ->blkd_tasks lists. */
  787. rcu_for_each_leaf_node(rsp, rnp)
  788. sync_rcu_preempt_exp_init(rsp, rnp);
  789. if (NUM_RCU_NODES > 1)
  790. sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
  791. put_online_cpus();
  792. /* Wait for snapshotted ->blkd_tasks lists to drain. */
  793. rnp = rcu_get_root(rsp);
  794. wait_event(sync_rcu_preempt_exp_wq,
  795. sync_rcu_preempt_exp_done(rnp));
  796. /* Clean up and exit. */
  797. smp_mb(); /* ensure expedited GP seen before counter increment. */
  798. ACCESS_ONCE(sync_rcu_preempt_exp_count) =
  799. sync_rcu_preempt_exp_count + 1;
  800. unlock_mb_ret:
  801. mutex_unlock(&sync_rcu_preempt_exp_mutex);
  802. mb_ret:
  803. smp_mb(); /* ensure subsequent action seen after grace period. */
  804. }
  805. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  806. /**
  807. * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
  808. *
  809. * Note that this primitive does not necessarily wait for an RCU grace period
  810. * to complete. For example, if there are no RCU callbacks queued anywhere
  811. * in the system, then rcu_barrier() is within its rights to return
  812. * immediately, without waiting for anything, much less an RCU grace period.
  813. */
  814. void rcu_barrier(void)
  815. {
  816. _rcu_barrier(&rcu_preempt_state);
  817. }
  818. EXPORT_SYMBOL_GPL(rcu_barrier);
  819. /*
  820. * Initialize preemptible RCU's state structures.
  821. */
  822. static void __init __rcu_init_preempt(void)
  823. {
  824. rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
  825. }
  826. /*
  827. * Check for a task exiting while in a preemptible-RCU read-side
  828. * critical section, clean up if so. No need to issue warnings,
  829. * as debug_check_no_locks_held() already does this if lockdep
  830. * is enabled.
  831. */
  832. void exit_rcu(void)
  833. {
  834. struct task_struct *t = current;
  835. if (likely(list_empty(&current->rcu_node_entry)))
  836. return;
  837. t->rcu_read_lock_nesting = 1;
  838. barrier();
  839. t->rcu_read_unlock_special.b.blocked = true;
  840. __rcu_read_unlock();
  841. }
  842. #else /* #ifdef CONFIG_PREEMPT_RCU */
  843. static struct rcu_state *rcu_state_p = &rcu_sched_state;
  844. /*
  845. * Tell them what RCU they are running.
  846. */
  847. static void __init rcu_bootup_announce(void)
  848. {
  849. pr_info("Hierarchical RCU implementation.\n");
  850. rcu_bootup_announce_oddness();
  851. }
  852. /*
  853. * Return the number of RCU batches processed thus far for debug & stats.
  854. */
  855. long rcu_batches_completed(void)
  856. {
  857. return rcu_batches_completed_sched();
  858. }
  859. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  860. /*
  861. * Because preemptible RCU does not exist, we never have to check for
  862. * CPUs being in quiescent states.
  863. */
  864. static void rcu_preempt_note_context_switch(int cpu)
  865. {
  866. }
  867. /*
  868. * Because preemptible RCU does not exist, there are never any preempted
  869. * RCU readers.
  870. */
  871. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  872. {
  873. return 0;
  874. }
  875. #ifdef CONFIG_HOTPLUG_CPU
  876. /* Because preemptible RCU does not exist, no quieting of tasks. */
  877. static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
  878. __releases(rnp->lock)
  879. {
  880. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  881. }
  882. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  883. /*
  884. * Because preemptible RCU does not exist, we never have to check for
  885. * tasks blocked within RCU read-side critical sections.
  886. */
  887. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  888. {
  889. }
  890. /*
  891. * Because preemptible RCU does not exist, we never have to check for
  892. * tasks blocked within RCU read-side critical sections.
  893. */
  894. static int rcu_print_task_stall(struct rcu_node *rnp)
  895. {
  896. return 0;
  897. }
  898. /*
  899. * Because there is no preemptible RCU, there can be no readers blocked,
  900. * so there is no need to check for blocked tasks. So check only for
  901. * bogus qsmask values.
  902. */
  903. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  904. {
  905. WARN_ON_ONCE(rnp->qsmask);
  906. }
  907. #ifdef CONFIG_HOTPLUG_CPU
  908. /*
  909. * Because preemptible RCU does not exist, it never needs to migrate
  910. * tasks that were blocked within RCU read-side critical sections, and
  911. * such non-existent tasks cannot possibly have been blocking the current
  912. * grace period.
  913. */
  914. static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
  915. struct rcu_node *rnp,
  916. struct rcu_data *rdp)
  917. {
  918. return 0;
  919. }
  920. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  921. /*
  922. * Because preemptible RCU does not exist, it never has any callbacks
  923. * to check.
  924. */
  925. static void rcu_preempt_check_callbacks(int cpu)
  926. {
  927. }
  928. /*
  929. * Wait for an rcu-preempt grace period, but make it happen quickly.
  930. * But because preemptible RCU does not exist, map to rcu-sched.
  931. */
  932. void synchronize_rcu_expedited(void)
  933. {
  934. synchronize_sched_expedited();
  935. }
  936. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  937. #ifdef CONFIG_HOTPLUG_CPU
  938. /*
  939. * Because preemptible RCU does not exist, there is never any need to
  940. * report on tasks preempted in RCU read-side critical sections during
  941. * expedited RCU grace periods.
  942. */
  943. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  944. bool wake)
  945. {
  946. }
  947. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  948. /*
  949. * Because preemptible RCU does not exist, rcu_barrier() is just
  950. * another name for rcu_barrier_sched().
  951. */
  952. void rcu_barrier(void)
  953. {
  954. rcu_barrier_sched();
  955. }
  956. EXPORT_SYMBOL_GPL(rcu_barrier);
  957. /*
  958. * Because preemptible RCU does not exist, it need not be initialized.
  959. */
  960. static void __init __rcu_init_preempt(void)
  961. {
  962. }
  963. /*
  964. * Because preemptible RCU does not exist, tasks cannot possibly exit
  965. * while in preemptible RCU read-side critical sections.
  966. */
  967. void exit_rcu(void)
  968. {
  969. }
  970. #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  971. #ifdef CONFIG_RCU_BOOST
  972. #include "../locking/rtmutex_common.h"
  973. #ifdef CONFIG_RCU_TRACE
  974. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  975. {
  976. if (list_empty(&rnp->blkd_tasks))
  977. rnp->n_balk_blkd_tasks++;
  978. else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
  979. rnp->n_balk_exp_gp_tasks++;
  980. else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
  981. rnp->n_balk_boost_tasks++;
  982. else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
  983. rnp->n_balk_notblocked++;
  984. else if (rnp->gp_tasks != NULL &&
  985. ULONG_CMP_LT(jiffies, rnp->boost_time))
  986. rnp->n_balk_notyet++;
  987. else
  988. rnp->n_balk_nos++;
  989. }
  990. #else /* #ifdef CONFIG_RCU_TRACE */
  991. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  992. {
  993. }
  994. #endif /* #else #ifdef CONFIG_RCU_TRACE */
  995. static void rcu_wake_cond(struct task_struct *t, int status)
  996. {
  997. /*
  998. * If the thread is yielding, only wake it when this
  999. * is invoked from idle
  1000. */
  1001. if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
  1002. wake_up_process(t);
  1003. }
  1004. /*
  1005. * Carry out RCU priority boosting on the task indicated by ->exp_tasks
  1006. * or ->boost_tasks, advancing the pointer to the next task in the
  1007. * ->blkd_tasks list.
  1008. *
  1009. * Note that irqs must be enabled: boosting the task can block.
  1010. * Returns 1 if there are more tasks needing to be boosted.
  1011. */
  1012. static int rcu_boost(struct rcu_node *rnp)
  1013. {
  1014. unsigned long flags;
  1015. struct task_struct *t;
  1016. struct list_head *tb;
  1017. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
  1018. return 0; /* Nothing left to boost. */
  1019. raw_spin_lock_irqsave(&rnp->lock, flags);
  1020. smp_mb__after_unlock_lock();
  1021. /*
  1022. * Recheck under the lock: all tasks in need of boosting
  1023. * might exit their RCU read-side critical sections on their own.
  1024. */
  1025. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
  1026. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1027. return 0;
  1028. }
  1029. /*
  1030. * Preferentially boost tasks blocking expedited grace periods.
  1031. * This cannot starve the normal grace periods because a second
  1032. * expedited grace period must boost all blocked tasks, including
  1033. * those blocking the pre-existing normal grace period.
  1034. */
  1035. if (rnp->exp_tasks != NULL) {
  1036. tb = rnp->exp_tasks;
  1037. rnp->n_exp_boosts++;
  1038. } else {
  1039. tb = rnp->boost_tasks;
  1040. rnp->n_normal_boosts++;
  1041. }
  1042. rnp->n_tasks_boosted++;
  1043. /*
  1044. * We boost task t by manufacturing an rt_mutex that appears to
  1045. * be held by task t. We leave a pointer to that rt_mutex where
  1046. * task t can find it, and task t will release the mutex when it
  1047. * exits its outermost RCU read-side critical section. Then
  1048. * simply acquiring this artificial rt_mutex will boost task
  1049. * t's priority. (Thanks to tglx for suggesting this approach!)
  1050. *
  1051. * Note that task t must acquire rnp->lock to remove itself from
  1052. * the ->blkd_tasks list, which it will do from exit() if from
  1053. * nowhere else. We therefore are guaranteed that task t will
  1054. * stay around at least until we drop rnp->lock. Note that
  1055. * rnp->lock also resolves races between our priority boosting
  1056. * and task t's exiting its outermost RCU read-side critical
  1057. * section.
  1058. */
  1059. t = container_of(tb, struct task_struct, rcu_node_entry);
  1060. rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
  1061. init_completion(&rnp->boost_completion);
  1062. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1063. /* Lock only for side effect: boosts task t's priority. */
  1064. rt_mutex_lock(&rnp->boost_mtx);
  1065. rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
  1066. /* Wait for boostee to be done w/boost_mtx before reinitializing. */
  1067. wait_for_completion(&rnp->boost_completion);
  1068. return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
  1069. ACCESS_ONCE(rnp->boost_tasks) != NULL;
  1070. }
  1071. /*
  1072. * Priority-boosting kthread. One per leaf rcu_node and one for the
  1073. * root rcu_node.
  1074. */
  1075. static int rcu_boost_kthread(void *arg)
  1076. {
  1077. struct rcu_node *rnp = (struct rcu_node *)arg;
  1078. int spincnt = 0;
  1079. int more2boost;
  1080. trace_rcu_utilization(TPS("Start boost kthread@init"));
  1081. for (;;) {
  1082. rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
  1083. trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
  1084. rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
  1085. trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
  1086. rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
  1087. more2boost = rcu_boost(rnp);
  1088. if (more2boost)
  1089. spincnt++;
  1090. else
  1091. spincnt = 0;
  1092. if (spincnt > 10) {
  1093. rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
  1094. trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
  1095. schedule_timeout_interruptible(2);
  1096. trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
  1097. spincnt = 0;
  1098. }
  1099. }
  1100. /* NOTREACHED */
  1101. trace_rcu_utilization(TPS("End boost kthread@notreached"));
  1102. return 0;
  1103. }
  1104. /*
  1105. * Check to see if it is time to start boosting RCU readers that are
  1106. * blocking the current grace period, and, if so, tell the per-rcu_node
  1107. * kthread to start boosting them. If there is an expedited grace
  1108. * period in progress, it is always time to boost.
  1109. *
  1110. * The caller must hold rnp->lock, which this function releases.
  1111. * The ->boost_kthread_task is immortal, so we don't need to worry
  1112. * about it going away.
  1113. */
  1114. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1115. __releases(rnp->lock)
  1116. {
  1117. struct task_struct *t;
  1118. if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
  1119. rnp->n_balk_exp_gp_tasks++;
  1120. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1121. return;
  1122. }
  1123. if (rnp->exp_tasks != NULL ||
  1124. (rnp->gp_tasks != NULL &&
  1125. rnp->boost_tasks == NULL &&
  1126. rnp->qsmask == 0 &&
  1127. ULONG_CMP_GE(jiffies, rnp->boost_time))) {
  1128. if (rnp->exp_tasks == NULL)
  1129. rnp->boost_tasks = rnp->gp_tasks;
  1130. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1131. t = rnp->boost_kthread_task;
  1132. if (t)
  1133. rcu_wake_cond(t, rnp->boost_kthread_status);
  1134. } else {
  1135. rcu_initiate_boost_trace(rnp);
  1136. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1137. }
  1138. }
  1139. /*
  1140. * Wake up the per-CPU kthread to invoke RCU callbacks.
  1141. */
  1142. static void invoke_rcu_callbacks_kthread(void)
  1143. {
  1144. unsigned long flags;
  1145. local_irq_save(flags);
  1146. __this_cpu_write(rcu_cpu_has_work, 1);
  1147. if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
  1148. current != __this_cpu_read(rcu_cpu_kthread_task)) {
  1149. rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
  1150. __this_cpu_read(rcu_cpu_kthread_status));
  1151. }
  1152. local_irq_restore(flags);
  1153. }
  1154. /*
  1155. * Is the current CPU running the RCU-callbacks kthread?
  1156. * Caller must have preemption disabled.
  1157. */
  1158. static bool rcu_is_callbacks_kthread(void)
  1159. {
  1160. return __this_cpu_read(rcu_cpu_kthread_task) == current;
  1161. }
  1162. #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
  1163. /*
  1164. * Do priority-boost accounting for the start of a new grace period.
  1165. */
  1166. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1167. {
  1168. rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
  1169. }
  1170. /*
  1171. * Create an RCU-boost kthread for the specified node if one does not
  1172. * already exist. We only create this kthread for preemptible RCU.
  1173. * Returns zero if all is well, a negated errno otherwise.
  1174. */
  1175. static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
  1176. struct rcu_node *rnp)
  1177. {
  1178. int rnp_index = rnp - &rsp->node[0];
  1179. unsigned long flags;
  1180. struct sched_param sp;
  1181. struct task_struct *t;
  1182. if (&rcu_preempt_state != rsp)
  1183. return 0;
  1184. if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
  1185. return 0;
  1186. rsp->boost = 1;
  1187. if (rnp->boost_kthread_task != NULL)
  1188. return 0;
  1189. t = kthread_create(rcu_boost_kthread, (void *)rnp,
  1190. "rcub/%d", rnp_index);
  1191. if (IS_ERR(t))
  1192. return PTR_ERR(t);
  1193. raw_spin_lock_irqsave(&rnp->lock, flags);
  1194. smp_mb__after_unlock_lock();
  1195. rnp->boost_kthread_task = t;
  1196. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1197. sp.sched_priority = kthread_prio;
  1198. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  1199. wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
  1200. return 0;
  1201. }
  1202. static void rcu_kthread_do_work(void)
  1203. {
  1204. rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
  1205. rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
  1206. rcu_preempt_do_callbacks();
  1207. }
  1208. static void rcu_cpu_kthread_setup(unsigned int cpu)
  1209. {
  1210. struct sched_param sp;
  1211. sp.sched_priority = kthread_prio;
  1212. sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
  1213. }
  1214. static void rcu_cpu_kthread_park(unsigned int cpu)
  1215. {
  1216. per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
  1217. }
  1218. static int rcu_cpu_kthread_should_run(unsigned int cpu)
  1219. {
  1220. return __this_cpu_read(rcu_cpu_has_work);
  1221. }
  1222. /*
  1223. * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
  1224. * RCU softirq used in flavors and configurations of RCU that do not
  1225. * support RCU priority boosting.
  1226. */
  1227. static void rcu_cpu_kthread(unsigned int cpu)
  1228. {
  1229. unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
  1230. char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
  1231. int spincnt;
  1232. for (spincnt = 0; spincnt < 10; spincnt++) {
  1233. trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
  1234. local_bh_disable();
  1235. *statusp = RCU_KTHREAD_RUNNING;
  1236. this_cpu_inc(rcu_cpu_kthread_loops);
  1237. local_irq_disable();
  1238. work = *workp;
  1239. *workp = 0;
  1240. local_irq_enable();
  1241. if (work)
  1242. rcu_kthread_do_work();
  1243. local_bh_enable();
  1244. if (*workp == 0) {
  1245. trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
  1246. *statusp = RCU_KTHREAD_WAITING;
  1247. return;
  1248. }
  1249. }
  1250. *statusp = RCU_KTHREAD_YIELDING;
  1251. trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
  1252. schedule_timeout_interruptible(2);
  1253. trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
  1254. *statusp = RCU_KTHREAD_WAITING;
  1255. }
  1256. /*
  1257. * Set the per-rcu_node kthread's affinity to cover all CPUs that are
  1258. * served by the rcu_node in question. The CPU hotplug lock is still
  1259. * held, so the value of rnp->qsmaskinit will be stable.
  1260. *
  1261. * We don't include outgoingcpu in the affinity set, use -1 if there is
  1262. * no outgoing CPU. If there are no CPUs left in the affinity set,
  1263. * this function allows the kthread to execute on any CPU.
  1264. */
  1265. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1266. {
  1267. struct task_struct *t = rnp->boost_kthread_task;
  1268. unsigned long mask = rnp->qsmaskinit;
  1269. cpumask_var_t cm;
  1270. int cpu;
  1271. if (!t)
  1272. return;
  1273. if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
  1274. return;
  1275. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
  1276. if ((mask & 0x1) && cpu != outgoingcpu)
  1277. cpumask_set_cpu(cpu, cm);
  1278. if (cpumask_weight(cm) == 0) {
  1279. cpumask_setall(cm);
  1280. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
  1281. cpumask_clear_cpu(cpu, cm);
  1282. WARN_ON_ONCE(cpumask_weight(cm) == 0);
  1283. }
  1284. set_cpus_allowed_ptr(t, cm);
  1285. free_cpumask_var(cm);
  1286. }
  1287. static struct smp_hotplug_thread rcu_cpu_thread_spec = {
  1288. .store = &rcu_cpu_kthread_task,
  1289. .thread_should_run = rcu_cpu_kthread_should_run,
  1290. .thread_fn = rcu_cpu_kthread,
  1291. .thread_comm = "rcuc/%u",
  1292. .setup = rcu_cpu_kthread_setup,
  1293. .park = rcu_cpu_kthread_park,
  1294. };
  1295. /*
  1296. * Spawn boost kthreads -- called as soon as the scheduler is running.
  1297. */
  1298. static void __init rcu_spawn_boost_kthreads(void)
  1299. {
  1300. struct rcu_node *rnp;
  1301. int cpu;
  1302. for_each_possible_cpu(cpu)
  1303. per_cpu(rcu_cpu_has_work, cpu) = 0;
  1304. BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
  1305. rnp = rcu_get_root(rcu_state_p);
  1306. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1307. if (NUM_RCU_NODES > 1) {
  1308. rcu_for_each_leaf_node(rcu_state_p, rnp)
  1309. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1310. }
  1311. }
  1312. static void rcu_prepare_kthreads(int cpu)
  1313. {
  1314. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  1315. struct rcu_node *rnp = rdp->mynode;
  1316. /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
  1317. if (rcu_scheduler_fully_active)
  1318. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1319. }
  1320. #else /* #ifdef CONFIG_RCU_BOOST */
  1321. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1322. __releases(rnp->lock)
  1323. {
  1324. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1325. }
  1326. static void invoke_rcu_callbacks_kthread(void)
  1327. {
  1328. WARN_ON_ONCE(1);
  1329. }
  1330. static bool rcu_is_callbacks_kthread(void)
  1331. {
  1332. return false;
  1333. }
  1334. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1335. {
  1336. }
  1337. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1338. {
  1339. }
  1340. static void __init rcu_spawn_boost_kthreads(void)
  1341. {
  1342. }
  1343. static void rcu_prepare_kthreads(int cpu)
  1344. {
  1345. }
  1346. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  1347. #if !defined(CONFIG_RCU_FAST_NO_HZ)
  1348. /*
  1349. * Check to see if any future RCU-related work will need to be done
  1350. * by the current CPU, even if none need be done immediately, returning
  1351. * 1 if so. This function is part of the RCU implementation; it is -not-
  1352. * an exported member of the RCU API.
  1353. *
  1354. * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
  1355. * any flavor of RCU.
  1356. */
  1357. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1358. int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
  1359. {
  1360. *delta_jiffies = ULONG_MAX;
  1361. return rcu_cpu_has_callbacks(cpu, NULL);
  1362. }
  1363. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1364. /*
  1365. * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
  1366. * after it.
  1367. */
  1368. static void rcu_cleanup_after_idle(int cpu)
  1369. {
  1370. }
  1371. /*
  1372. * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
  1373. * is nothing.
  1374. */
  1375. static void rcu_prepare_for_idle(int cpu)
  1376. {
  1377. }
  1378. /*
  1379. * Don't bother keeping a running count of the number of RCU callbacks
  1380. * posted because CONFIG_RCU_FAST_NO_HZ=n.
  1381. */
  1382. static void rcu_idle_count_callbacks_posted(void)
  1383. {
  1384. }
  1385. #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1386. /*
  1387. * This code is invoked when a CPU goes idle, at which point we want
  1388. * to have the CPU do everything required for RCU so that it can enter
  1389. * the energy-efficient dyntick-idle mode. This is handled by a
  1390. * state machine implemented by rcu_prepare_for_idle() below.
  1391. *
  1392. * The following three proprocessor symbols control this state machine:
  1393. *
  1394. * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
  1395. * to sleep in dyntick-idle mode with RCU callbacks pending. This
  1396. * is sized to be roughly one RCU grace period. Those energy-efficiency
  1397. * benchmarkers who might otherwise be tempted to set this to a large
  1398. * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
  1399. * system. And if you are -that- concerned about energy efficiency,
  1400. * just power the system down and be done with it!
  1401. * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
  1402. * permitted to sleep in dyntick-idle mode with only lazy RCU
  1403. * callbacks pending. Setting this too high can OOM your system.
  1404. *
  1405. * The values below work well in practice. If future workloads require
  1406. * adjustment, they can be converted into kernel config parameters, though
  1407. * making the state machine smarter might be a better option.
  1408. */
  1409. #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
  1410. #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
  1411. static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
  1412. module_param(rcu_idle_gp_delay, int, 0644);
  1413. static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
  1414. module_param(rcu_idle_lazy_gp_delay, int, 0644);
  1415. extern int tick_nohz_active;
  1416. /*
  1417. * Try to advance callbacks for all flavors of RCU on the current CPU, but
  1418. * only if it has been awhile since the last time we did so. Afterwards,
  1419. * if there are any callbacks ready for immediate invocation, return true.
  1420. */
  1421. static bool __maybe_unused rcu_try_advance_all_cbs(void)
  1422. {
  1423. bool cbs_ready = false;
  1424. struct rcu_data *rdp;
  1425. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1426. struct rcu_node *rnp;
  1427. struct rcu_state *rsp;
  1428. /* Exit early if we advanced recently. */
  1429. if (jiffies == rdtp->last_advance_all)
  1430. return false;
  1431. rdtp->last_advance_all = jiffies;
  1432. for_each_rcu_flavor(rsp) {
  1433. rdp = this_cpu_ptr(rsp->rda);
  1434. rnp = rdp->mynode;
  1435. /*
  1436. * Don't bother checking unless a grace period has
  1437. * completed since we last checked and there are
  1438. * callbacks not yet ready to invoke.
  1439. */
  1440. if (rdp->completed != rnp->completed &&
  1441. rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
  1442. note_gp_changes(rsp, rdp);
  1443. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1444. cbs_ready = true;
  1445. }
  1446. return cbs_ready;
  1447. }
  1448. /*
  1449. * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
  1450. * to invoke. If the CPU has callbacks, try to advance them. Tell the
  1451. * caller to set the timeout based on whether or not there are non-lazy
  1452. * callbacks.
  1453. *
  1454. * The caller must have disabled interrupts.
  1455. */
  1456. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1457. int rcu_needs_cpu(int cpu, unsigned long *dj)
  1458. {
  1459. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1460. /* Snapshot to detect later posting of non-lazy callback. */
  1461. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1462. /* If no callbacks, RCU doesn't need the CPU. */
  1463. if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
  1464. *dj = ULONG_MAX;
  1465. return 0;
  1466. }
  1467. /* Attempt to advance callbacks. */
  1468. if (rcu_try_advance_all_cbs()) {
  1469. /* Some ready to invoke, so initiate later invocation. */
  1470. invoke_rcu_core();
  1471. return 1;
  1472. }
  1473. rdtp->last_accelerate = jiffies;
  1474. /* Request timer delay depending on laziness, and round. */
  1475. if (!rdtp->all_lazy) {
  1476. *dj = round_up(rcu_idle_gp_delay + jiffies,
  1477. rcu_idle_gp_delay) - jiffies;
  1478. } else {
  1479. *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
  1480. }
  1481. return 0;
  1482. }
  1483. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1484. /*
  1485. * Prepare a CPU for idle from an RCU perspective. The first major task
  1486. * is to sense whether nohz mode has been enabled or disabled via sysfs.
  1487. * The second major task is to check to see if a non-lazy callback has
  1488. * arrived at a CPU that previously had only lazy callbacks. The third
  1489. * major task is to accelerate (that is, assign grace-period numbers to)
  1490. * any recently arrived callbacks.
  1491. *
  1492. * The caller must have disabled interrupts.
  1493. */
  1494. static void rcu_prepare_for_idle(int cpu)
  1495. {
  1496. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1497. bool needwake;
  1498. struct rcu_data *rdp;
  1499. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1500. struct rcu_node *rnp;
  1501. struct rcu_state *rsp;
  1502. int tne;
  1503. /* Handle nohz enablement switches conservatively. */
  1504. tne = ACCESS_ONCE(tick_nohz_active);
  1505. if (tne != rdtp->tick_nohz_enabled_snap) {
  1506. if (rcu_cpu_has_callbacks(cpu, NULL))
  1507. invoke_rcu_core(); /* force nohz to see update. */
  1508. rdtp->tick_nohz_enabled_snap = tne;
  1509. return;
  1510. }
  1511. if (!tne)
  1512. return;
  1513. /* If this is a no-CBs CPU, no callbacks, just return. */
  1514. if (rcu_is_nocb_cpu(cpu))
  1515. return;
  1516. /*
  1517. * If a non-lazy callback arrived at a CPU having only lazy
  1518. * callbacks, invoke RCU core for the side-effect of recalculating
  1519. * idle duration on re-entry to idle.
  1520. */
  1521. if (rdtp->all_lazy &&
  1522. rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
  1523. rdtp->all_lazy = false;
  1524. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1525. invoke_rcu_core();
  1526. return;
  1527. }
  1528. /*
  1529. * If we have not yet accelerated this jiffy, accelerate all
  1530. * callbacks on this CPU.
  1531. */
  1532. if (rdtp->last_accelerate == jiffies)
  1533. return;
  1534. rdtp->last_accelerate = jiffies;
  1535. for_each_rcu_flavor(rsp) {
  1536. rdp = per_cpu_ptr(rsp->rda, cpu);
  1537. if (!*rdp->nxttail[RCU_DONE_TAIL])
  1538. continue;
  1539. rnp = rdp->mynode;
  1540. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  1541. smp_mb__after_unlock_lock();
  1542. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  1543. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1544. if (needwake)
  1545. rcu_gp_kthread_wake(rsp);
  1546. }
  1547. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1548. }
  1549. /*
  1550. * Clean up for exit from idle. Attempt to advance callbacks based on
  1551. * any grace periods that elapsed while the CPU was idle, and if any
  1552. * callbacks are now ready to invoke, initiate invocation.
  1553. */
  1554. static void rcu_cleanup_after_idle(int cpu)
  1555. {
  1556. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1557. if (rcu_is_nocb_cpu(cpu))
  1558. return;
  1559. if (rcu_try_advance_all_cbs())
  1560. invoke_rcu_core();
  1561. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1562. }
  1563. /*
  1564. * Keep a running count of the number of non-lazy callbacks posted
  1565. * on this CPU. This running counter (which is never decremented) allows
  1566. * rcu_prepare_for_idle() to detect when something out of the idle loop
  1567. * posts a callback, even if an equal number of callbacks are invoked.
  1568. * Of course, callbacks should only be posted from within a trace event
  1569. * designed to be called from idle or from within RCU_NONIDLE().
  1570. */
  1571. static void rcu_idle_count_callbacks_posted(void)
  1572. {
  1573. __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
  1574. }
  1575. /*
  1576. * Data for flushing lazy RCU callbacks at OOM time.
  1577. */
  1578. static atomic_t oom_callback_count;
  1579. static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
  1580. /*
  1581. * RCU OOM callback -- decrement the outstanding count and deliver the
  1582. * wake-up if we are the last one.
  1583. */
  1584. static void rcu_oom_callback(struct rcu_head *rhp)
  1585. {
  1586. if (atomic_dec_and_test(&oom_callback_count))
  1587. wake_up(&oom_callback_wq);
  1588. }
  1589. /*
  1590. * Post an rcu_oom_notify callback on the current CPU if it has at
  1591. * least one lazy callback. This will unnecessarily post callbacks
  1592. * to CPUs that already have a non-lazy callback at the end of their
  1593. * callback list, but this is an infrequent operation, so accept some
  1594. * extra overhead to keep things simple.
  1595. */
  1596. static void rcu_oom_notify_cpu(void *unused)
  1597. {
  1598. struct rcu_state *rsp;
  1599. struct rcu_data *rdp;
  1600. for_each_rcu_flavor(rsp) {
  1601. rdp = raw_cpu_ptr(rsp->rda);
  1602. if (rdp->qlen_lazy != 0) {
  1603. atomic_inc(&oom_callback_count);
  1604. rsp->call(&rdp->oom_head, rcu_oom_callback);
  1605. }
  1606. }
  1607. }
  1608. /*
  1609. * If low on memory, ensure that each CPU has a non-lazy callback.
  1610. * This will wake up CPUs that have only lazy callbacks, in turn
  1611. * ensuring that they free up the corresponding memory in a timely manner.
  1612. * Because an uncertain amount of memory will be freed in some uncertain
  1613. * timeframe, we do not claim to have freed anything.
  1614. */
  1615. static int rcu_oom_notify(struct notifier_block *self,
  1616. unsigned long notused, void *nfreed)
  1617. {
  1618. int cpu;
  1619. /* Wait for callbacks from earlier instance to complete. */
  1620. wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
  1621. smp_mb(); /* Ensure callback reuse happens after callback invocation. */
  1622. /*
  1623. * Prevent premature wakeup: ensure that all increments happen
  1624. * before there is a chance of the counter reaching zero.
  1625. */
  1626. atomic_set(&oom_callback_count, 1);
  1627. get_online_cpus();
  1628. for_each_online_cpu(cpu) {
  1629. smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
  1630. cond_resched_rcu_qs();
  1631. }
  1632. put_online_cpus();
  1633. /* Unconditionally decrement: no need to wake ourselves up. */
  1634. atomic_dec(&oom_callback_count);
  1635. return NOTIFY_OK;
  1636. }
  1637. static struct notifier_block rcu_oom_nb = {
  1638. .notifier_call = rcu_oom_notify
  1639. };
  1640. static int __init rcu_register_oom_notifier(void)
  1641. {
  1642. register_oom_notifier(&rcu_oom_nb);
  1643. return 0;
  1644. }
  1645. early_initcall(rcu_register_oom_notifier);
  1646. #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1647. #ifdef CONFIG_RCU_CPU_STALL_INFO
  1648. #ifdef CONFIG_RCU_FAST_NO_HZ
  1649. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1650. {
  1651. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1652. unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
  1653. sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
  1654. rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
  1655. ulong2long(nlpd),
  1656. rdtp->all_lazy ? 'L' : '.',
  1657. rdtp->tick_nohz_enabled_snap ? '.' : 'D');
  1658. }
  1659. #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
  1660. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1661. {
  1662. *cp = '\0';
  1663. }
  1664. #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
  1665. /* Initiate the stall-info list. */
  1666. static void print_cpu_stall_info_begin(void)
  1667. {
  1668. pr_cont("\n");
  1669. }
  1670. /*
  1671. * Print out diagnostic information for the specified stalled CPU.
  1672. *
  1673. * If the specified CPU is aware of the current RCU grace period
  1674. * (flavor specified by rsp), then print the number of scheduling
  1675. * clock interrupts the CPU has taken during the time that it has
  1676. * been aware. Otherwise, print the number of RCU grace periods
  1677. * that this CPU is ignorant of, for example, "1" if the CPU was
  1678. * aware of the previous grace period.
  1679. *
  1680. * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
  1681. */
  1682. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1683. {
  1684. char fast_no_hz[72];
  1685. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1686. struct rcu_dynticks *rdtp = rdp->dynticks;
  1687. char *ticks_title;
  1688. unsigned long ticks_value;
  1689. if (rsp->gpnum == rdp->gpnum) {
  1690. ticks_title = "ticks this GP";
  1691. ticks_value = rdp->ticks_this_gp;
  1692. } else {
  1693. ticks_title = "GPs behind";
  1694. ticks_value = rsp->gpnum - rdp->gpnum;
  1695. }
  1696. print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
  1697. pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
  1698. cpu, ticks_value, ticks_title,
  1699. atomic_read(&rdtp->dynticks) & 0xfff,
  1700. rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
  1701. rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
  1702. fast_no_hz);
  1703. }
  1704. /* Terminate the stall-info list. */
  1705. static void print_cpu_stall_info_end(void)
  1706. {
  1707. pr_err("\t");
  1708. }
  1709. /* Zero ->ticks_this_gp for all flavors of RCU. */
  1710. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1711. {
  1712. rdp->ticks_this_gp = 0;
  1713. rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
  1714. }
  1715. /* Increment ->ticks_this_gp for all flavors of RCU. */
  1716. static void increment_cpu_stall_ticks(void)
  1717. {
  1718. struct rcu_state *rsp;
  1719. for_each_rcu_flavor(rsp)
  1720. raw_cpu_inc(rsp->rda->ticks_this_gp);
  1721. }
  1722. #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
  1723. static void print_cpu_stall_info_begin(void)
  1724. {
  1725. pr_cont(" {");
  1726. }
  1727. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1728. {
  1729. pr_cont(" %d", cpu);
  1730. }
  1731. static void print_cpu_stall_info_end(void)
  1732. {
  1733. pr_cont("} ");
  1734. }
  1735. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1736. {
  1737. }
  1738. static void increment_cpu_stall_ticks(void)
  1739. {
  1740. }
  1741. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
  1742. #ifdef CONFIG_RCU_NOCB_CPU
  1743. /*
  1744. * Offload callback processing from the boot-time-specified set of CPUs
  1745. * specified by rcu_nocb_mask. For each CPU in the set, there is a
  1746. * kthread created that pulls the callbacks from the corresponding CPU,
  1747. * waits for a grace period to elapse, and invokes the callbacks.
  1748. * The no-CBs CPUs do a wake_up() on their kthread when they insert
  1749. * a callback into any empty list, unless the rcu_nocb_poll boot parameter
  1750. * has been specified, in which case each kthread actively polls its
  1751. * CPU. (Which isn't so great for energy efficiency, but which does
  1752. * reduce RCU's overhead on that CPU.)
  1753. *
  1754. * This is intended to be used in conjunction with Frederic Weisbecker's
  1755. * adaptive-idle work, which would seriously reduce OS jitter on CPUs
  1756. * running CPU-bound user-mode computations.
  1757. *
  1758. * Offloading of callback processing could also in theory be used as
  1759. * an energy-efficiency measure because CPUs with no RCU callbacks
  1760. * queued are more aggressive about entering dyntick-idle mode.
  1761. */
  1762. /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
  1763. static int __init rcu_nocb_setup(char *str)
  1764. {
  1765. alloc_bootmem_cpumask_var(&rcu_nocb_mask);
  1766. have_rcu_nocb_mask = true;
  1767. cpulist_parse(str, rcu_nocb_mask);
  1768. return 1;
  1769. }
  1770. __setup("rcu_nocbs=", rcu_nocb_setup);
  1771. static int __init parse_rcu_nocb_poll(char *arg)
  1772. {
  1773. rcu_nocb_poll = 1;
  1774. return 0;
  1775. }
  1776. early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
  1777. /*
  1778. * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
  1779. * grace period.
  1780. */
  1781. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1782. {
  1783. wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
  1784. }
  1785. /*
  1786. * Set the root rcu_node structure's ->need_future_gp field
  1787. * based on the sum of those of all rcu_node structures. This does
  1788. * double-count the root rcu_node structure's requests, but this
  1789. * is necessary to handle the possibility of a rcu_nocb_kthread()
  1790. * having awakened during the time that the rcu_node structures
  1791. * were being updated for the end of the previous grace period.
  1792. */
  1793. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  1794. {
  1795. rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
  1796. }
  1797. static void rcu_init_one_nocb(struct rcu_node *rnp)
  1798. {
  1799. init_waitqueue_head(&rnp->nocb_gp_wq[0]);
  1800. init_waitqueue_head(&rnp->nocb_gp_wq[1]);
  1801. }
  1802. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1803. /* Is the specified CPU a no-CBs CPU? */
  1804. bool rcu_is_nocb_cpu(int cpu)
  1805. {
  1806. if (have_rcu_nocb_mask)
  1807. return cpumask_test_cpu(cpu, rcu_nocb_mask);
  1808. return false;
  1809. }
  1810. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1811. /*
  1812. * Kick the leader kthread for this NOCB group.
  1813. */
  1814. static void wake_nocb_leader(struct rcu_data *rdp, bool force)
  1815. {
  1816. struct rcu_data *rdp_leader = rdp->nocb_leader;
  1817. if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
  1818. return;
  1819. if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
  1820. /* Prior smp_mb__after_atomic() orders against prior enqueue. */
  1821. ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
  1822. wake_up(&rdp_leader->nocb_wq);
  1823. }
  1824. }
  1825. /*
  1826. * Does the specified CPU need an RCU callback for the specified flavor
  1827. * of rcu_barrier()?
  1828. */
  1829. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  1830. {
  1831. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1832. struct rcu_head *rhp;
  1833. /* No-CBs CPUs might have callbacks on any of three lists. */
  1834. rhp = ACCESS_ONCE(rdp->nocb_head);
  1835. if (!rhp)
  1836. rhp = ACCESS_ONCE(rdp->nocb_gp_head);
  1837. if (!rhp)
  1838. rhp = ACCESS_ONCE(rdp->nocb_follower_head);
  1839. /* Having no rcuo kthread but CBs after scheduler starts is bad! */
  1840. if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
  1841. /* RCU callback enqueued before CPU first came online??? */
  1842. pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
  1843. cpu, rhp->func);
  1844. WARN_ON_ONCE(1);
  1845. }
  1846. return !!rhp;
  1847. }
  1848. /*
  1849. * Enqueue the specified string of rcu_head structures onto the specified
  1850. * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
  1851. * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
  1852. * counts are supplied by rhcount and rhcount_lazy.
  1853. *
  1854. * If warranted, also wake up the kthread servicing this CPUs queues.
  1855. */
  1856. static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
  1857. struct rcu_head *rhp,
  1858. struct rcu_head **rhtp,
  1859. int rhcount, int rhcount_lazy,
  1860. unsigned long flags)
  1861. {
  1862. int len;
  1863. struct rcu_head **old_rhpp;
  1864. struct task_struct *t;
  1865. /* Enqueue the callback on the nocb list and update counts. */
  1866. old_rhpp = xchg(&rdp->nocb_tail, rhtp);
  1867. ACCESS_ONCE(*old_rhpp) = rhp;
  1868. atomic_long_add(rhcount, &rdp->nocb_q_count);
  1869. atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
  1870. smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
  1871. /* If we are not being polled and there is a kthread, awaken it ... */
  1872. t = ACCESS_ONCE(rdp->nocb_kthread);
  1873. if (rcu_nocb_poll || !t) {
  1874. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1875. TPS("WakeNotPoll"));
  1876. return;
  1877. }
  1878. len = atomic_long_read(&rdp->nocb_q_count);
  1879. if (old_rhpp == &rdp->nocb_head) {
  1880. if (!irqs_disabled_flags(flags)) {
  1881. /* ... if queue was empty ... */
  1882. wake_nocb_leader(rdp, false);
  1883. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1884. TPS("WakeEmpty"));
  1885. } else {
  1886. rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
  1887. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1888. TPS("WakeEmptyIsDeferred"));
  1889. }
  1890. rdp->qlen_last_fqs_check = 0;
  1891. } else if (len > rdp->qlen_last_fqs_check + qhimark) {
  1892. /* ... or if many callbacks queued. */
  1893. if (!irqs_disabled_flags(flags)) {
  1894. wake_nocb_leader(rdp, true);
  1895. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1896. TPS("WakeOvf"));
  1897. } else {
  1898. rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
  1899. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1900. TPS("WakeOvfIsDeferred"));
  1901. }
  1902. rdp->qlen_last_fqs_check = LONG_MAX / 2;
  1903. } else {
  1904. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
  1905. }
  1906. return;
  1907. }
  1908. /*
  1909. * This is a helper for __call_rcu(), which invokes this when the normal
  1910. * callback queue is inoperable. If this is not a no-CBs CPU, this
  1911. * function returns failure back to __call_rcu(), which can complain
  1912. * appropriately.
  1913. *
  1914. * Otherwise, this function queues the callback where the corresponding
  1915. * "rcuo" kthread can find it.
  1916. */
  1917. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  1918. bool lazy, unsigned long flags)
  1919. {
  1920. if (!rcu_is_nocb_cpu(rdp->cpu))
  1921. return false;
  1922. __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
  1923. if (__is_kfree_rcu_offset((unsigned long)rhp->func))
  1924. trace_rcu_kfree_callback(rdp->rsp->name, rhp,
  1925. (unsigned long)rhp->func,
  1926. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1927. -atomic_long_read(&rdp->nocb_q_count));
  1928. else
  1929. trace_rcu_callback(rdp->rsp->name, rhp,
  1930. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1931. -atomic_long_read(&rdp->nocb_q_count));
  1932. /*
  1933. * If called from an extended quiescent state with interrupts
  1934. * disabled, invoke the RCU core in order to allow the idle-entry
  1935. * deferred-wakeup check to function.
  1936. */
  1937. if (irqs_disabled_flags(flags) &&
  1938. !rcu_is_watching() &&
  1939. cpu_online(smp_processor_id()))
  1940. invoke_rcu_core();
  1941. return true;
  1942. }
  1943. /*
  1944. * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
  1945. * not a no-CBs CPU.
  1946. */
  1947. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  1948. struct rcu_data *rdp,
  1949. unsigned long flags)
  1950. {
  1951. long ql = rsp->qlen;
  1952. long qll = rsp->qlen_lazy;
  1953. /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
  1954. if (!rcu_is_nocb_cpu(smp_processor_id()))
  1955. return false;
  1956. rsp->qlen = 0;
  1957. rsp->qlen_lazy = 0;
  1958. /* First, enqueue the donelist, if any. This preserves CB ordering. */
  1959. if (rsp->orphan_donelist != NULL) {
  1960. __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
  1961. rsp->orphan_donetail, ql, qll, flags);
  1962. ql = qll = 0;
  1963. rsp->orphan_donelist = NULL;
  1964. rsp->orphan_donetail = &rsp->orphan_donelist;
  1965. }
  1966. if (rsp->orphan_nxtlist != NULL) {
  1967. __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
  1968. rsp->orphan_nxttail, ql, qll, flags);
  1969. ql = qll = 0;
  1970. rsp->orphan_nxtlist = NULL;
  1971. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1972. }
  1973. return true;
  1974. }
  1975. /*
  1976. * If necessary, kick off a new grace period, and either way wait
  1977. * for a subsequent grace period to complete.
  1978. */
  1979. static void rcu_nocb_wait_gp(struct rcu_data *rdp)
  1980. {
  1981. unsigned long c;
  1982. bool d;
  1983. unsigned long flags;
  1984. bool needwake;
  1985. struct rcu_node *rnp = rdp->mynode;
  1986. raw_spin_lock_irqsave(&rnp->lock, flags);
  1987. smp_mb__after_unlock_lock();
  1988. needwake = rcu_start_future_gp(rnp, rdp, &c);
  1989. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1990. if (needwake)
  1991. rcu_gp_kthread_wake(rdp->rsp);
  1992. /*
  1993. * Wait for the grace period. Do so interruptibly to avoid messing
  1994. * up the load average.
  1995. */
  1996. trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
  1997. for (;;) {
  1998. wait_event_interruptible(
  1999. rnp->nocb_gp_wq[c & 0x1],
  2000. (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
  2001. if (likely(d))
  2002. break;
  2003. WARN_ON(signal_pending(current));
  2004. trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
  2005. }
  2006. trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
  2007. smp_mb(); /* Ensure that CB invocation happens after GP end. */
  2008. }
  2009. /*
  2010. * Leaders come here to wait for additional callbacks to show up.
  2011. * This function does not return until callbacks appear.
  2012. */
  2013. static void nocb_leader_wait(struct rcu_data *my_rdp)
  2014. {
  2015. bool firsttime = true;
  2016. bool gotcbs;
  2017. struct rcu_data *rdp;
  2018. struct rcu_head **tail;
  2019. wait_again:
  2020. /* Wait for callbacks to appear. */
  2021. if (!rcu_nocb_poll) {
  2022. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
  2023. wait_event_interruptible(my_rdp->nocb_wq,
  2024. !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
  2025. /* Memory barrier handled by smp_mb() calls below and repoll. */
  2026. } else if (firsttime) {
  2027. firsttime = false; /* Don't drown trace log with "Poll"! */
  2028. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
  2029. }
  2030. /*
  2031. * Each pass through the following loop checks a follower for CBs.
  2032. * We are our own first follower. Any CBs found are moved to
  2033. * nocb_gp_head, where they await a grace period.
  2034. */
  2035. gotcbs = false;
  2036. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  2037. rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
  2038. if (!rdp->nocb_gp_head)
  2039. continue; /* No CBs here, try next follower. */
  2040. /* Move callbacks to wait-for-GP list, which is empty. */
  2041. ACCESS_ONCE(rdp->nocb_head) = NULL;
  2042. rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
  2043. rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
  2044. rdp->nocb_gp_count_lazy =
  2045. atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
  2046. gotcbs = true;
  2047. }
  2048. /*
  2049. * If there were no callbacks, sleep a bit, rescan after a
  2050. * memory barrier, and go retry.
  2051. */
  2052. if (unlikely(!gotcbs)) {
  2053. if (!rcu_nocb_poll)
  2054. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
  2055. "WokeEmpty");
  2056. WARN_ON(signal_pending(current));
  2057. schedule_timeout_interruptible(1);
  2058. /* Rescan in case we were a victim of memory ordering. */
  2059. my_rdp->nocb_leader_sleep = true;
  2060. smp_mb(); /* Ensure _sleep true before scan. */
  2061. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
  2062. if (ACCESS_ONCE(rdp->nocb_head)) {
  2063. /* Found CB, so short-circuit next wait. */
  2064. my_rdp->nocb_leader_sleep = false;
  2065. break;
  2066. }
  2067. goto wait_again;
  2068. }
  2069. /* Wait for one grace period. */
  2070. rcu_nocb_wait_gp(my_rdp);
  2071. /*
  2072. * We left ->nocb_leader_sleep unset to reduce cache thrashing.
  2073. * We set it now, but recheck for new callbacks while
  2074. * traversing our follower list.
  2075. */
  2076. my_rdp->nocb_leader_sleep = true;
  2077. smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
  2078. /* Each pass through the following loop wakes a follower, if needed. */
  2079. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  2080. if (ACCESS_ONCE(rdp->nocb_head))
  2081. my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
  2082. if (!rdp->nocb_gp_head)
  2083. continue; /* No CBs, so no need to wake follower. */
  2084. /* Append callbacks to follower's "done" list. */
  2085. tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
  2086. *tail = rdp->nocb_gp_head;
  2087. atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
  2088. atomic_long_add(rdp->nocb_gp_count_lazy,
  2089. &rdp->nocb_follower_count_lazy);
  2090. smp_mb__after_atomic(); /* Store *tail before wakeup. */
  2091. if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
  2092. /*
  2093. * List was empty, wake up the follower.
  2094. * Memory barriers supplied by atomic_long_add().
  2095. */
  2096. wake_up(&rdp->nocb_wq);
  2097. }
  2098. }
  2099. /* If we (the leader) don't have CBs, go wait some more. */
  2100. if (!my_rdp->nocb_follower_head)
  2101. goto wait_again;
  2102. }
  2103. /*
  2104. * Followers come here to wait for additional callbacks to show up.
  2105. * This function does not return until callbacks appear.
  2106. */
  2107. static void nocb_follower_wait(struct rcu_data *rdp)
  2108. {
  2109. bool firsttime = true;
  2110. for (;;) {
  2111. if (!rcu_nocb_poll) {
  2112. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2113. "FollowerSleep");
  2114. wait_event_interruptible(rdp->nocb_wq,
  2115. ACCESS_ONCE(rdp->nocb_follower_head));
  2116. } else if (firsttime) {
  2117. /* Don't drown trace log with "Poll"! */
  2118. firsttime = false;
  2119. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
  2120. }
  2121. if (smp_load_acquire(&rdp->nocb_follower_head)) {
  2122. /* ^^^ Ensure CB invocation follows _head test. */
  2123. return;
  2124. }
  2125. if (!rcu_nocb_poll)
  2126. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2127. "WokeEmpty");
  2128. WARN_ON(signal_pending(current));
  2129. schedule_timeout_interruptible(1);
  2130. }
  2131. }
  2132. /*
  2133. * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
  2134. * callbacks queued by the corresponding no-CBs CPU, however, there is
  2135. * an optional leader-follower relationship so that the grace-period
  2136. * kthreads don't have to do quite so many wakeups.
  2137. */
  2138. static int rcu_nocb_kthread(void *arg)
  2139. {
  2140. int c, cl;
  2141. struct rcu_head *list;
  2142. struct rcu_head *next;
  2143. struct rcu_head **tail;
  2144. struct rcu_data *rdp = arg;
  2145. /* Each pass through this loop invokes one batch of callbacks */
  2146. for (;;) {
  2147. /* Wait for callbacks. */
  2148. if (rdp->nocb_leader == rdp)
  2149. nocb_leader_wait(rdp);
  2150. else
  2151. nocb_follower_wait(rdp);
  2152. /* Pull the ready-to-invoke callbacks onto local list. */
  2153. list = ACCESS_ONCE(rdp->nocb_follower_head);
  2154. BUG_ON(!list);
  2155. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
  2156. ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
  2157. tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
  2158. c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
  2159. cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
  2160. rdp->nocb_p_count += c;
  2161. rdp->nocb_p_count_lazy += cl;
  2162. /* Each pass through the following loop invokes a callback. */
  2163. trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
  2164. c = cl = 0;
  2165. while (list) {
  2166. next = list->next;
  2167. /* Wait for enqueuing to complete, if needed. */
  2168. while (next == NULL && &list->next != tail) {
  2169. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2170. TPS("WaitQueue"));
  2171. schedule_timeout_interruptible(1);
  2172. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2173. TPS("WokeQueue"));
  2174. next = list->next;
  2175. }
  2176. debug_rcu_head_unqueue(list);
  2177. local_bh_disable();
  2178. if (__rcu_reclaim(rdp->rsp->name, list))
  2179. cl++;
  2180. c++;
  2181. local_bh_enable();
  2182. list = next;
  2183. }
  2184. trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
  2185. ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
  2186. ACCESS_ONCE(rdp->nocb_p_count_lazy) =
  2187. rdp->nocb_p_count_lazy - cl;
  2188. rdp->n_nocbs_invoked += c;
  2189. }
  2190. return 0;
  2191. }
  2192. /* Is a deferred wakeup of rcu_nocb_kthread() required? */
  2193. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2194. {
  2195. return ACCESS_ONCE(rdp->nocb_defer_wakeup);
  2196. }
  2197. /* Do a deferred wakeup of rcu_nocb_kthread(). */
  2198. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2199. {
  2200. int ndw;
  2201. if (!rcu_nocb_need_deferred_wakeup(rdp))
  2202. return;
  2203. ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
  2204. ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
  2205. wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
  2206. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
  2207. }
  2208. void __init rcu_init_nohz(void)
  2209. {
  2210. int cpu;
  2211. bool need_rcu_nocb_mask = true;
  2212. struct rcu_state *rsp;
  2213. #ifdef CONFIG_RCU_NOCB_CPU_NONE
  2214. need_rcu_nocb_mask = false;
  2215. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
  2216. #if defined(CONFIG_NO_HZ_FULL)
  2217. if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
  2218. need_rcu_nocb_mask = true;
  2219. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  2220. if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
  2221. if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
  2222. pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
  2223. return;
  2224. }
  2225. have_rcu_nocb_mask = true;
  2226. }
  2227. if (!have_rcu_nocb_mask)
  2228. return;
  2229. #ifdef CONFIG_RCU_NOCB_CPU_ZERO
  2230. pr_info("\tOffload RCU callbacks from CPU 0\n");
  2231. cpumask_set_cpu(0, rcu_nocb_mask);
  2232. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
  2233. #ifdef CONFIG_RCU_NOCB_CPU_ALL
  2234. pr_info("\tOffload RCU callbacks from all CPUs\n");
  2235. cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
  2236. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
  2237. #if defined(CONFIG_NO_HZ_FULL)
  2238. if (tick_nohz_full_running)
  2239. cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
  2240. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  2241. if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
  2242. pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
  2243. cpumask_and(rcu_nocb_mask, cpu_possible_mask,
  2244. rcu_nocb_mask);
  2245. }
  2246. cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
  2247. pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
  2248. if (rcu_nocb_poll)
  2249. pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
  2250. for_each_rcu_flavor(rsp) {
  2251. for_each_cpu(cpu, rcu_nocb_mask) {
  2252. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2253. /*
  2254. * If there are early callbacks, they will need
  2255. * to be moved to the nocb lists.
  2256. */
  2257. WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
  2258. &rdp->nxtlist &&
  2259. rdp->nxttail[RCU_NEXT_TAIL] != NULL);
  2260. init_nocb_callback_list(rdp);
  2261. }
  2262. rcu_organize_nocb_kthreads(rsp);
  2263. }
  2264. }
  2265. /* Initialize per-rcu_data variables for no-CBs CPUs. */
  2266. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2267. {
  2268. rdp->nocb_tail = &rdp->nocb_head;
  2269. init_waitqueue_head(&rdp->nocb_wq);
  2270. rdp->nocb_follower_tail = &rdp->nocb_follower_head;
  2271. }
  2272. /*
  2273. * If the specified CPU is a no-CBs CPU that does not already have its
  2274. * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
  2275. * brought online out of order, this can require re-organizing the
  2276. * leader-follower relationships.
  2277. */
  2278. static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
  2279. {
  2280. struct rcu_data *rdp;
  2281. struct rcu_data *rdp_last;
  2282. struct rcu_data *rdp_old_leader;
  2283. struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
  2284. struct task_struct *t;
  2285. /*
  2286. * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
  2287. * then nothing to do.
  2288. */
  2289. if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
  2290. return;
  2291. /* If we didn't spawn the leader first, reorganize! */
  2292. rdp_old_leader = rdp_spawn->nocb_leader;
  2293. if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
  2294. rdp_last = NULL;
  2295. rdp = rdp_old_leader;
  2296. do {
  2297. rdp->nocb_leader = rdp_spawn;
  2298. if (rdp_last && rdp != rdp_spawn)
  2299. rdp_last->nocb_next_follower = rdp;
  2300. if (rdp == rdp_spawn) {
  2301. rdp = rdp->nocb_next_follower;
  2302. } else {
  2303. rdp_last = rdp;
  2304. rdp = rdp->nocb_next_follower;
  2305. rdp_last->nocb_next_follower = NULL;
  2306. }
  2307. } while (rdp);
  2308. rdp_spawn->nocb_next_follower = rdp_old_leader;
  2309. }
  2310. /* Spawn the kthread for this CPU and RCU flavor. */
  2311. t = kthread_run(rcu_nocb_kthread, rdp_spawn,
  2312. "rcuo%c/%d", rsp->abbr, cpu);
  2313. BUG_ON(IS_ERR(t));
  2314. ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
  2315. }
  2316. /*
  2317. * If the specified CPU is a no-CBs CPU that does not already have its
  2318. * rcuo kthreads, spawn them.
  2319. */
  2320. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2321. {
  2322. struct rcu_state *rsp;
  2323. if (rcu_scheduler_fully_active)
  2324. for_each_rcu_flavor(rsp)
  2325. rcu_spawn_one_nocb_kthread(rsp, cpu);
  2326. }
  2327. /*
  2328. * Once the scheduler is running, spawn rcuo kthreads for all online
  2329. * no-CBs CPUs. This assumes that the early_initcall()s happen before
  2330. * non-boot CPUs come online -- if this changes, we will need to add
  2331. * some mutual exclusion.
  2332. */
  2333. static void __init rcu_spawn_nocb_kthreads(void)
  2334. {
  2335. int cpu;
  2336. for_each_online_cpu(cpu)
  2337. rcu_spawn_all_nocb_kthreads(cpu);
  2338. }
  2339. /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
  2340. static int rcu_nocb_leader_stride = -1;
  2341. module_param(rcu_nocb_leader_stride, int, 0444);
  2342. /*
  2343. * Initialize leader-follower relationships for all no-CBs CPU.
  2344. */
  2345. static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
  2346. {
  2347. int cpu;
  2348. int ls = rcu_nocb_leader_stride;
  2349. int nl = 0; /* Next leader. */
  2350. struct rcu_data *rdp;
  2351. struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
  2352. struct rcu_data *rdp_prev = NULL;
  2353. if (!have_rcu_nocb_mask)
  2354. return;
  2355. if (ls == -1) {
  2356. ls = int_sqrt(nr_cpu_ids);
  2357. rcu_nocb_leader_stride = ls;
  2358. }
  2359. /*
  2360. * Each pass through this loop sets up one rcu_data structure and
  2361. * spawns one rcu_nocb_kthread().
  2362. */
  2363. for_each_cpu(cpu, rcu_nocb_mask) {
  2364. rdp = per_cpu_ptr(rsp->rda, cpu);
  2365. if (rdp->cpu >= nl) {
  2366. /* New leader, set up for followers & next leader. */
  2367. nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
  2368. rdp->nocb_leader = rdp;
  2369. rdp_leader = rdp;
  2370. } else {
  2371. /* Another follower, link to previous leader. */
  2372. rdp->nocb_leader = rdp_leader;
  2373. rdp_prev->nocb_next_follower = rdp;
  2374. }
  2375. rdp_prev = rdp;
  2376. }
  2377. }
  2378. /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
  2379. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2380. {
  2381. if (!rcu_is_nocb_cpu(rdp->cpu))
  2382. return false;
  2383. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2384. return true;
  2385. }
  2386. #else /* #ifdef CONFIG_RCU_NOCB_CPU */
  2387. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  2388. {
  2389. WARN_ON_ONCE(1); /* Should be dead code. */
  2390. return false;
  2391. }
  2392. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  2393. {
  2394. }
  2395. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  2396. {
  2397. }
  2398. static void rcu_init_one_nocb(struct rcu_node *rnp)
  2399. {
  2400. }
  2401. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  2402. bool lazy, unsigned long flags)
  2403. {
  2404. return false;
  2405. }
  2406. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  2407. struct rcu_data *rdp,
  2408. unsigned long flags)
  2409. {
  2410. return false;
  2411. }
  2412. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2413. {
  2414. }
  2415. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2416. {
  2417. return false;
  2418. }
  2419. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2420. {
  2421. }
  2422. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2423. {
  2424. }
  2425. static void __init rcu_spawn_nocb_kthreads(void)
  2426. {
  2427. }
  2428. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2429. {
  2430. return false;
  2431. }
  2432. #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
  2433. /*
  2434. * An adaptive-ticks CPU can potentially execute in kernel mode for an
  2435. * arbitrarily long period of time with the scheduling-clock tick turned
  2436. * off. RCU will be paying attention to this CPU because it is in the
  2437. * kernel, but the CPU cannot be guaranteed to be executing the RCU state
  2438. * machine because the scheduling-clock tick has been disabled. Therefore,
  2439. * if an adaptive-ticks CPU is failing to respond to the current grace
  2440. * period and has not be idle from an RCU perspective, kick it.
  2441. */
  2442. static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
  2443. {
  2444. #ifdef CONFIG_NO_HZ_FULL
  2445. if (tick_nohz_full_cpu(cpu))
  2446. smp_send_reschedule(cpu);
  2447. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2448. }
  2449. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2450. static int full_sysidle_state; /* Current system-idle state. */
  2451. #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
  2452. #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
  2453. #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
  2454. #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
  2455. #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
  2456. /*
  2457. * Invoked to note exit from irq or task transition to idle. Note that
  2458. * usermode execution does -not- count as idle here! After all, we want
  2459. * to detect full-system idle states, not RCU quiescent states and grace
  2460. * periods. The caller must have disabled interrupts.
  2461. */
  2462. static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
  2463. {
  2464. unsigned long j;
  2465. /* If there are no nohz_full= CPUs, no need to track this. */
  2466. if (!tick_nohz_full_enabled())
  2467. return;
  2468. /* Adjust nesting, check for fully idle. */
  2469. if (irq) {
  2470. rdtp->dynticks_idle_nesting--;
  2471. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2472. if (rdtp->dynticks_idle_nesting != 0)
  2473. return; /* Still not fully idle. */
  2474. } else {
  2475. if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
  2476. DYNTICK_TASK_NEST_VALUE) {
  2477. rdtp->dynticks_idle_nesting = 0;
  2478. } else {
  2479. rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
  2480. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2481. return; /* Still not fully idle. */
  2482. }
  2483. }
  2484. /* Record start of fully idle period. */
  2485. j = jiffies;
  2486. ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
  2487. smp_mb__before_atomic();
  2488. atomic_inc(&rdtp->dynticks_idle);
  2489. smp_mb__after_atomic();
  2490. WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
  2491. }
  2492. /*
  2493. * Unconditionally force exit from full system-idle state. This is
  2494. * invoked when a normal CPU exits idle, but must be called separately
  2495. * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
  2496. * is that the timekeeping CPU is permitted to take scheduling-clock
  2497. * interrupts while the system is in system-idle state, and of course
  2498. * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
  2499. * interrupt from any other type of interrupt.
  2500. */
  2501. void rcu_sysidle_force_exit(void)
  2502. {
  2503. int oldstate = ACCESS_ONCE(full_sysidle_state);
  2504. int newoldstate;
  2505. /*
  2506. * Each pass through the following loop attempts to exit full
  2507. * system-idle state. If contention proves to be a problem,
  2508. * a trylock-based contention tree could be used here.
  2509. */
  2510. while (oldstate > RCU_SYSIDLE_SHORT) {
  2511. newoldstate = cmpxchg(&full_sysidle_state,
  2512. oldstate, RCU_SYSIDLE_NOT);
  2513. if (oldstate == newoldstate &&
  2514. oldstate == RCU_SYSIDLE_FULL_NOTED) {
  2515. rcu_kick_nohz_cpu(tick_do_timer_cpu);
  2516. return; /* We cleared it, done! */
  2517. }
  2518. oldstate = newoldstate;
  2519. }
  2520. smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
  2521. }
  2522. /*
  2523. * Invoked to note entry to irq or task transition from idle. Note that
  2524. * usermode execution does -not- count as idle here! The caller must
  2525. * have disabled interrupts.
  2526. */
  2527. static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
  2528. {
  2529. /* If there are no nohz_full= CPUs, no need to track this. */
  2530. if (!tick_nohz_full_enabled())
  2531. return;
  2532. /* Adjust nesting, check for already non-idle. */
  2533. if (irq) {
  2534. rdtp->dynticks_idle_nesting++;
  2535. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2536. if (rdtp->dynticks_idle_nesting != 1)
  2537. return; /* Already non-idle. */
  2538. } else {
  2539. /*
  2540. * Allow for irq misnesting. Yes, it really is possible
  2541. * to enter an irq handler then never leave it, and maybe
  2542. * also vice versa. Handle both possibilities.
  2543. */
  2544. if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
  2545. rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
  2546. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2547. return; /* Already non-idle. */
  2548. } else {
  2549. rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
  2550. }
  2551. }
  2552. /* Record end of idle period. */
  2553. smp_mb__before_atomic();
  2554. atomic_inc(&rdtp->dynticks_idle);
  2555. smp_mb__after_atomic();
  2556. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
  2557. /*
  2558. * If we are the timekeeping CPU, we are permitted to be non-idle
  2559. * during a system-idle state. This must be the case, because
  2560. * the timekeeping CPU has to take scheduling-clock interrupts
  2561. * during the time that the system is transitioning to full
  2562. * system-idle state. This means that the timekeeping CPU must
  2563. * invoke rcu_sysidle_force_exit() directly if it does anything
  2564. * more than take a scheduling-clock interrupt.
  2565. */
  2566. if (smp_processor_id() == tick_do_timer_cpu)
  2567. return;
  2568. /* Update system-idle state: We are clearly no longer fully idle! */
  2569. rcu_sysidle_force_exit();
  2570. }
  2571. /*
  2572. * Check to see if the current CPU is idle. Note that usermode execution
  2573. * does not count as idle. The caller must have disabled interrupts.
  2574. */
  2575. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2576. unsigned long *maxj)
  2577. {
  2578. int cur;
  2579. unsigned long j;
  2580. struct rcu_dynticks *rdtp = rdp->dynticks;
  2581. /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
  2582. if (!tick_nohz_full_enabled())
  2583. return;
  2584. /*
  2585. * If some other CPU has already reported non-idle, if this is
  2586. * not the flavor of RCU that tracks sysidle state, or if this
  2587. * is an offline or the timekeeping CPU, nothing to do.
  2588. */
  2589. if (!*isidle || rdp->rsp != rcu_state_p ||
  2590. cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
  2591. return;
  2592. if (rcu_gp_in_progress(rdp->rsp))
  2593. WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
  2594. /* Pick up current idle and NMI-nesting counter and check. */
  2595. cur = atomic_read(&rdtp->dynticks_idle);
  2596. if (cur & 0x1) {
  2597. *isidle = false; /* We are not idle! */
  2598. return;
  2599. }
  2600. smp_mb(); /* Read counters before timestamps. */
  2601. /* Pick up timestamps. */
  2602. j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
  2603. /* If this CPU entered idle more recently, update maxj timestamp. */
  2604. if (ULONG_CMP_LT(*maxj, j))
  2605. *maxj = j;
  2606. }
  2607. /*
  2608. * Is this the flavor of RCU that is handling full-system idle?
  2609. */
  2610. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2611. {
  2612. return rsp == rcu_state_p;
  2613. }
  2614. /*
  2615. * Return a delay in jiffies based on the number of CPUs, rcu_node
  2616. * leaf fanout, and jiffies tick rate. The idea is to allow larger
  2617. * systems more time to transition to full-idle state in order to
  2618. * avoid the cache thrashing that otherwise occur on the state variable.
  2619. * Really small systems (less than a couple of tens of CPUs) should
  2620. * instead use a single global atomically incremented counter, and later
  2621. * versions of this will automatically reconfigure themselves accordingly.
  2622. */
  2623. static unsigned long rcu_sysidle_delay(void)
  2624. {
  2625. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2626. return 0;
  2627. return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
  2628. }
  2629. /*
  2630. * Advance the full-system-idle state. This is invoked when all of
  2631. * the non-timekeeping CPUs are idle.
  2632. */
  2633. static void rcu_sysidle(unsigned long j)
  2634. {
  2635. /* Check the current state. */
  2636. switch (ACCESS_ONCE(full_sysidle_state)) {
  2637. case RCU_SYSIDLE_NOT:
  2638. /* First time all are idle, so note a short idle period. */
  2639. ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
  2640. break;
  2641. case RCU_SYSIDLE_SHORT:
  2642. /*
  2643. * Idle for a bit, time to advance to next state?
  2644. * cmpxchg failure means race with non-idle, let them win.
  2645. */
  2646. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2647. (void)cmpxchg(&full_sysidle_state,
  2648. RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
  2649. break;
  2650. case RCU_SYSIDLE_LONG:
  2651. /*
  2652. * Do an additional check pass before advancing to full.
  2653. * cmpxchg failure means race with non-idle, let them win.
  2654. */
  2655. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2656. (void)cmpxchg(&full_sysidle_state,
  2657. RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
  2658. break;
  2659. default:
  2660. break;
  2661. }
  2662. }
  2663. /*
  2664. * Found a non-idle non-timekeeping CPU, so kick the system-idle state
  2665. * back to the beginning.
  2666. */
  2667. static void rcu_sysidle_cancel(void)
  2668. {
  2669. smp_mb();
  2670. if (full_sysidle_state > RCU_SYSIDLE_SHORT)
  2671. ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
  2672. }
  2673. /*
  2674. * Update the sysidle state based on the results of a force-quiescent-state
  2675. * scan of the CPUs' dyntick-idle state.
  2676. */
  2677. static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
  2678. unsigned long maxj, bool gpkt)
  2679. {
  2680. if (rsp != rcu_state_p)
  2681. return; /* Wrong flavor, ignore. */
  2682. if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2683. return; /* Running state machine from timekeeping CPU. */
  2684. if (isidle)
  2685. rcu_sysidle(maxj); /* More idle! */
  2686. else
  2687. rcu_sysidle_cancel(); /* Idle is over. */
  2688. }
  2689. /*
  2690. * Wrapper for rcu_sysidle_report() when called from the grace-period
  2691. * kthread's context.
  2692. */
  2693. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2694. unsigned long maxj)
  2695. {
  2696. /* If there are no nohz_full= CPUs, no need to track this. */
  2697. if (!tick_nohz_full_enabled())
  2698. return;
  2699. rcu_sysidle_report(rsp, isidle, maxj, true);
  2700. }
  2701. /* Callback and function for forcing an RCU grace period. */
  2702. struct rcu_sysidle_head {
  2703. struct rcu_head rh;
  2704. int inuse;
  2705. };
  2706. static void rcu_sysidle_cb(struct rcu_head *rhp)
  2707. {
  2708. struct rcu_sysidle_head *rshp;
  2709. /*
  2710. * The following memory barrier is needed to replace the
  2711. * memory barriers that would normally be in the memory
  2712. * allocator.
  2713. */
  2714. smp_mb(); /* grace period precedes setting inuse. */
  2715. rshp = container_of(rhp, struct rcu_sysidle_head, rh);
  2716. ACCESS_ONCE(rshp->inuse) = 0;
  2717. }
  2718. /*
  2719. * Check to see if the system is fully idle, other than the timekeeping CPU.
  2720. * The caller must have disabled interrupts. This is not intended to be
  2721. * called unless tick_nohz_full_enabled().
  2722. */
  2723. bool rcu_sys_is_idle(void)
  2724. {
  2725. static struct rcu_sysidle_head rsh;
  2726. int rss = ACCESS_ONCE(full_sysidle_state);
  2727. if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
  2728. return false;
  2729. /* Handle small-system case by doing a full scan of CPUs. */
  2730. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
  2731. int oldrss = rss - 1;
  2732. /*
  2733. * One pass to advance to each state up to _FULL.
  2734. * Give up if any pass fails to advance the state.
  2735. */
  2736. while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
  2737. int cpu;
  2738. bool isidle = true;
  2739. unsigned long maxj = jiffies - ULONG_MAX / 4;
  2740. struct rcu_data *rdp;
  2741. /* Scan all the CPUs looking for nonidle CPUs. */
  2742. for_each_possible_cpu(cpu) {
  2743. rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  2744. rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
  2745. if (!isidle)
  2746. break;
  2747. }
  2748. rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
  2749. oldrss = rss;
  2750. rss = ACCESS_ONCE(full_sysidle_state);
  2751. }
  2752. }
  2753. /* If this is the first observation of an idle period, record it. */
  2754. if (rss == RCU_SYSIDLE_FULL) {
  2755. rss = cmpxchg(&full_sysidle_state,
  2756. RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
  2757. return rss == RCU_SYSIDLE_FULL;
  2758. }
  2759. smp_mb(); /* ensure rss load happens before later caller actions. */
  2760. /* If already fully idle, tell the caller (in case of races). */
  2761. if (rss == RCU_SYSIDLE_FULL_NOTED)
  2762. return true;
  2763. /*
  2764. * If we aren't there yet, and a grace period is not in flight,
  2765. * initiate a grace period. Either way, tell the caller that
  2766. * we are not there yet. We use an xchg() rather than an assignment
  2767. * to make up for the memory barriers that would otherwise be
  2768. * provided by the memory allocator.
  2769. */
  2770. if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
  2771. !rcu_gp_in_progress(rcu_state_p) &&
  2772. !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
  2773. call_rcu(&rsh.rh, rcu_sysidle_cb);
  2774. return false;
  2775. }
  2776. /*
  2777. * Initialize dynticks sysidle state for CPUs coming online.
  2778. */
  2779. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2780. {
  2781. rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
  2782. }
  2783. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2784. static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
  2785. {
  2786. }
  2787. static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
  2788. {
  2789. }
  2790. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2791. unsigned long *maxj)
  2792. {
  2793. }
  2794. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2795. {
  2796. return false;
  2797. }
  2798. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2799. unsigned long maxj)
  2800. {
  2801. }
  2802. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2803. {
  2804. }
  2805. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2806. /*
  2807. * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
  2808. * grace-period kthread will do force_quiescent_state() processing?
  2809. * The idea is to avoid waking up RCU core processing on such a
  2810. * CPU unless the grace period has extended for too long.
  2811. *
  2812. * This code relies on the fact that all NO_HZ_FULL CPUs are also
  2813. * CONFIG_RCU_NOCB_CPU CPUs.
  2814. */
  2815. static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
  2816. {
  2817. #ifdef CONFIG_NO_HZ_FULL
  2818. if (tick_nohz_full_cpu(smp_processor_id()) &&
  2819. (!rcu_gp_in_progress(rsp) ||
  2820. ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
  2821. return 1;
  2822. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2823. return 0;
  2824. }
  2825. /*
  2826. * Bind the grace-period kthread for the sysidle flavor of RCU to the
  2827. * timekeeping CPU.
  2828. */
  2829. static void rcu_bind_gp_kthread(void)
  2830. {
  2831. int __maybe_unused cpu;
  2832. if (!tick_nohz_full_enabled())
  2833. return;
  2834. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2835. cpu = tick_do_timer_cpu;
  2836. if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
  2837. set_cpus_allowed_ptr(current, cpumask_of(cpu));
  2838. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2839. if (!is_housekeeping_cpu(raw_smp_processor_id()))
  2840. housekeeping_affine(current);
  2841. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2842. }
  2843. /* Record the current task on dyntick-idle entry. */
  2844. static void rcu_dynticks_task_enter(void)
  2845. {
  2846. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2847. ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
  2848. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2849. }
  2850. /* Record no current task on dyntick-idle exit. */
  2851. static void rcu_dynticks_task_exit(void)
  2852. {
  2853. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2854. ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
  2855. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2856. }