intel_ringbuffer.c 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  47. {
  48. if (ringbuf->last_retired_head != -1) {
  49. ringbuf->head = ringbuf->last_retired_head;
  50. ringbuf->last_retired_head = -1;
  51. }
  52. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  53. ringbuf->tail, ringbuf->size);
  54. }
  55. bool intel_engine_stopped(struct intel_engine_cs *engine)
  56. {
  57. struct drm_i915_private *dev_priv = engine->i915;
  58. return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
  59. }
  60. static void __intel_ring_advance(struct intel_engine_cs *engine)
  61. {
  62. struct intel_ringbuffer *ringbuf = engine->buffer;
  63. ringbuf->tail &= ringbuf->size - 1;
  64. if (intel_engine_stopped(engine))
  65. return;
  66. engine->write_tail(engine, ringbuf->tail);
  67. }
  68. static int
  69. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  70. u32 invalidate_domains,
  71. u32 flush_domains)
  72. {
  73. struct intel_engine_cs *engine = req->engine;
  74. u32 cmd;
  75. int ret;
  76. cmd = MI_FLUSH;
  77. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  78. cmd |= MI_NO_WRITE_FLUSH;
  79. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  80. cmd |= MI_READ_FLUSH;
  81. ret = intel_ring_begin(req, 2);
  82. if (ret)
  83. return ret;
  84. intel_ring_emit(engine, cmd);
  85. intel_ring_emit(engine, MI_NOOP);
  86. intel_ring_advance(engine);
  87. return 0;
  88. }
  89. static int
  90. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  91. u32 invalidate_domains,
  92. u32 flush_domains)
  93. {
  94. struct intel_engine_cs *engine = req->engine;
  95. u32 cmd;
  96. int ret;
  97. /*
  98. * read/write caches:
  99. *
  100. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  101. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  102. * also flushed at 2d versus 3d pipeline switches.
  103. *
  104. * read-only caches:
  105. *
  106. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  107. * MI_READ_FLUSH is set, and is always flushed on 965.
  108. *
  109. * I915_GEM_DOMAIN_COMMAND may not exist?
  110. *
  111. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  112. * invalidated when MI_EXE_FLUSH is set.
  113. *
  114. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  115. * invalidated with every MI_FLUSH.
  116. *
  117. * TLBs:
  118. *
  119. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  120. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  121. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  122. * are flushed at any MI_FLUSH.
  123. */
  124. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  125. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  126. cmd &= ~MI_NO_WRITE_FLUSH;
  127. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  128. cmd |= MI_EXE_FLUSH;
  129. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  130. (IS_G4X(req->i915) || IS_GEN5(req->i915)))
  131. cmd |= MI_INVALIDATE_ISP;
  132. ret = intel_ring_begin(req, 2);
  133. if (ret)
  134. return ret;
  135. intel_ring_emit(engine, cmd);
  136. intel_ring_emit(engine, MI_NOOP);
  137. intel_ring_advance(engine);
  138. return 0;
  139. }
  140. /**
  141. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  142. * implementing two workarounds on gen6. From section 1.4.7.1
  143. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  144. *
  145. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  146. * produced by non-pipelined state commands), software needs to first
  147. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  148. * 0.
  149. *
  150. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  151. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  152. *
  153. * And the workaround for these two requires this workaround first:
  154. *
  155. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  156. * BEFORE the pipe-control with a post-sync op and no write-cache
  157. * flushes.
  158. *
  159. * And this last workaround is tricky because of the requirements on
  160. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  161. * volume 2 part 1:
  162. *
  163. * "1 of the following must also be set:
  164. * - Render Target Cache Flush Enable ([12] of DW1)
  165. * - Depth Cache Flush Enable ([0] of DW1)
  166. * - Stall at Pixel Scoreboard ([1] of DW1)
  167. * - Depth Stall ([13] of DW1)
  168. * - Post-Sync Operation ([13] of DW1)
  169. * - Notify Enable ([8] of DW1)"
  170. *
  171. * The cache flushes require the workaround flush that triggered this
  172. * one, so we can't use it. Depth stall would trigger the same.
  173. * Post-sync nonzero is what triggered this second workaround, so we
  174. * can't use that one either. Notify enable is IRQs, which aren't
  175. * really our business. That leaves only stall at scoreboard.
  176. */
  177. static int
  178. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  179. {
  180. struct intel_engine_cs *engine = req->engine;
  181. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  182. int ret;
  183. ret = intel_ring_begin(req, 6);
  184. if (ret)
  185. return ret;
  186. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  187. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  188. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  189. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  190. intel_ring_emit(engine, 0); /* low dword */
  191. intel_ring_emit(engine, 0); /* high dword */
  192. intel_ring_emit(engine, MI_NOOP);
  193. intel_ring_advance(engine);
  194. ret = intel_ring_begin(req, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
  199. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  200. intel_ring_emit(engine, 0);
  201. intel_ring_emit(engine, 0);
  202. intel_ring_emit(engine, MI_NOOP);
  203. intel_ring_advance(engine);
  204. return 0;
  205. }
  206. static int
  207. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  208. u32 invalidate_domains, u32 flush_domains)
  209. {
  210. struct intel_engine_cs *engine = req->engine;
  211. u32 flags = 0;
  212. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  213. int ret;
  214. /* Force SNB workarounds for PIPE_CONTROL flushes */
  215. ret = intel_emit_post_sync_nonzero_flush(req);
  216. if (ret)
  217. return ret;
  218. /* Just flush everything. Experiments have shown that reducing the
  219. * number of bits based on the write domains has little performance
  220. * impact.
  221. */
  222. if (flush_domains) {
  223. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  224. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  225. /*
  226. * Ensure that any following seqno writes only happen
  227. * when the render cache is indeed flushed.
  228. */
  229. flags |= PIPE_CONTROL_CS_STALL;
  230. }
  231. if (invalidate_domains) {
  232. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  233. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  234. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  238. /*
  239. * TLB invalidate requires a post-sync write.
  240. */
  241. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  242. }
  243. ret = intel_ring_begin(req, 4);
  244. if (ret)
  245. return ret;
  246. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  247. intel_ring_emit(engine, flags);
  248. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  249. intel_ring_emit(engine, 0);
  250. intel_ring_advance(engine);
  251. return 0;
  252. }
  253. static int
  254. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  255. {
  256. struct intel_engine_cs *engine = req->engine;
  257. int ret;
  258. ret = intel_ring_begin(req, 4);
  259. if (ret)
  260. return ret;
  261. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  262. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  263. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  264. intel_ring_emit(engine, 0);
  265. intel_ring_emit(engine, 0);
  266. intel_ring_advance(engine);
  267. return 0;
  268. }
  269. static int
  270. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  271. u32 invalidate_domains, u32 flush_domains)
  272. {
  273. struct intel_engine_cs *engine = req->engine;
  274. u32 flags = 0;
  275. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  276. int ret;
  277. /*
  278. * Ensure that any following seqno writes only happen when the render
  279. * cache is indeed flushed.
  280. *
  281. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  282. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  283. * don't try to be clever and just set it unconditionally.
  284. */
  285. flags |= PIPE_CONTROL_CS_STALL;
  286. /* Just flush everything. Experiments have shown that reducing the
  287. * number of bits based on the write domains has little performance
  288. * impact.
  289. */
  290. if (flush_domains) {
  291. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  292. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  293. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  294. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  295. }
  296. if (invalidate_domains) {
  297. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  298. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  299. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  300. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  304. /*
  305. * TLB invalidate requires a post-sync write.
  306. */
  307. flags |= PIPE_CONTROL_QW_WRITE;
  308. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  309. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  310. /* Workaround: we must issue a pipe_control with CS-stall bit
  311. * set before a pipe_control command that has the state cache
  312. * invalidate bit set. */
  313. gen7_render_ring_cs_stall_wa(req);
  314. }
  315. ret = intel_ring_begin(req, 4);
  316. if (ret)
  317. return ret;
  318. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  319. intel_ring_emit(engine, flags);
  320. intel_ring_emit(engine, scratch_addr);
  321. intel_ring_emit(engine, 0);
  322. intel_ring_advance(engine);
  323. return 0;
  324. }
  325. static int
  326. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  327. u32 flags, u32 scratch_addr)
  328. {
  329. struct intel_engine_cs *engine = req->engine;
  330. int ret;
  331. ret = intel_ring_begin(req, 6);
  332. if (ret)
  333. return ret;
  334. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  335. intel_ring_emit(engine, flags);
  336. intel_ring_emit(engine, scratch_addr);
  337. intel_ring_emit(engine, 0);
  338. intel_ring_emit(engine, 0);
  339. intel_ring_emit(engine, 0);
  340. intel_ring_advance(engine);
  341. return 0;
  342. }
  343. static int
  344. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  345. u32 invalidate_domains, u32 flush_domains)
  346. {
  347. u32 flags = 0;
  348. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  349. int ret;
  350. flags |= PIPE_CONTROL_CS_STALL;
  351. if (flush_domains) {
  352. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  353. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  354. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  355. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  356. }
  357. if (invalidate_domains) {
  358. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  359. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  360. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  361. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_QW_WRITE;
  365. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  366. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  367. ret = gen8_emit_pipe_control(req,
  368. PIPE_CONTROL_CS_STALL |
  369. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  370. 0);
  371. if (ret)
  372. return ret;
  373. }
  374. return gen8_emit_pipe_control(req, flags, scratch_addr);
  375. }
  376. static void ring_write_tail(struct intel_engine_cs *engine,
  377. u32 value)
  378. {
  379. struct drm_i915_private *dev_priv = engine->i915;
  380. I915_WRITE_TAIL(engine, value);
  381. }
  382. u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
  383. {
  384. struct drm_i915_private *dev_priv = engine->i915;
  385. u64 acthd;
  386. if (INTEL_GEN(dev_priv) >= 8)
  387. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  388. RING_ACTHD_UDW(engine->mmio_base));
  389. else if (INTEL_GEN(dev_priv) >= 4)
  390. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  391. else
  392. acthd = I915_READ(ACTHD);
  393. return acthd;
  394. }
  395. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  396. {
  397. struct drm_i915_private *dev_priv = engine->i915;
  398. u32 addr;
  399. addr = dev_priv->status_page_dmah->busaddr;
  400. if (INTEL_GEN(dev_priv) >= 4)
  401. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  402. I915_WRITE(HWS_PGA, addr);
  403. }
  404. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  405. {
  406. struct drm_i915_private *dev_priv = engine->i915;
  407. i915_reg_t mmio;
  408. /* The ring status page addresses are no longer next to the rest of
  409. * the ring registers as of gen7.
  410. */
  411. if (IS_GEN7(dev_priv)) {
  412. switch (engine->id) {
  413. case RCS:
  414. mmio = RENDER_HWS_PGA_GEN7;
  415. break;
  416. case BCS:
  417. mmio = BLT_HWS_PGA_GEN7;
  418. break;
  419. /*
  420. * VCS2 actually doesn't exist on Gen7. Only shut up
  421. * gcc switch check warning
  422. */
  423. case VCS2:
  424. case VCS:
  425. mmio = BSD_HWS_PGA_GEN7;
  426. break;
  427. case VECS:
  428. mmio = VEBOX_HWS_PGA_GEN7;
  429. break;
  430. }
  431. } else if (IS_GEN6(dev_priv)) {
  432. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  433. } else {
  434. /* XXX: gen8 returns to sanity */
  435. mmio = RING_HWS_PGA(engine->mmio_base);
  436. }
  437. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  438. POSTING_READ(mmio);
  439. /*
  440. * Flush the TLB for this page
  441. *
  442. * FIXME: These two bits have disappeared on gen8, so a question
  443. * arises: do we still need this and if so how should we go about
  444. * invalidating the TLB?
  445. */
  446. if (IS_GEN(dev_priv, 6, 7)) {
  447. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  448. /* ring should be idle before issuing a sync flush*/
  449. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  450. I915_WRITE(reg,
  451. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  452. INSTPM_SYNC_FLUSH));
  453. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  454. 1000))
  455. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  456. engine->name);
  457. }
  458. }
  459. static bool stop_ring(struct intel_engine_cs *engine)
  460. {
  461. struct drm_i915_private *dev_priv = engine->i915;
  462. if (!IS_GEN2(dev_priv)) {
  463. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  464. if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
  465. DRM_ERROR("%s : timed out trying to stop ring\n",
  466. engine->name);
  467. /* Sometimes we observe that the idle flag is not
  468. * set even though the ring is empty. So double
  469. * check before giving up.
  470. */
  471. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  472. return false;
  473. }
  474. }
  475. I915_WRITE_CTL(engine, 0);
  476. I915_WRITE_HEAD(engine, 0);
  477. engine->write_tail(engine, 0);
  478. if (!IS_GEN2(dev_priv)) {
  479. (void)I915_READ_CTL(engine);
  480. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  481. }
  482. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  483. }
  484. void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
  485. {
  486. memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
  487. }
  488. static int init_ring_common(struct intel_engine_cs *engine)
  489. {
  490. struct drm_i915_private *dev_priv = engine->i915;
  491. struct intel_ringbuffer *ringbuf = engine->buffer;
  492. struct drm_i915_gem_object *obj = ringbuf->obj;
  493. int ret = 0;
  494. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  495. if (!stop_ring(engine)) {
  496. /* G45 ring initialization often fails to reset head to zero */
  497. DRM_DEBUG_KMS("%s head not reset to zero "
  498. "ctl %08x head %08x tail %08x start %08x\n",
  499. engine->name,
  500. I915_READ_CTL(engine),
  501. I915_READ_HEAD(engine),
  502. I915_READ_TAIL(engine),
  503. I915_READ_START(engine));
  504. if (!stop_ring(engine)) {
  505. DRM_ERROR("failed to set %s head to zero "
  506. "ctl %08x head %08x tail %08x start %08x\n",
  507. engine->name,
  508. I915_READ_CTL(engine),
  509. I915_READ_HEAD(engine),
  510. I915_READ_TAIL(engine),
  511. I915_READ_START(engine));
  512. ret = -EIO;
  513. goto out;
  514. }
  515. }
  516. if (I915_NEED_GFX_HWS(dev_priv))
  517. intel_ring_setup_status_page(engine);
  518. else
  519. ring_setup_phys_status_page(engine);
  520. /* Enforce ordering by reading HEAD register back */
  521. I915_READ_HEAD(engine);
  522. /* Initialize the ring. This must happen _after_ we've cleared the ring
  523. * registers with the above sequence (the readback of the HEAD registers
  524. * also enforces ordering), otherwise the hw might lose the new ring
  525. * register values. */
  526. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  527. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  528. if (I915_READ_HEAD(engine))
  529. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  530. engine->name, I915_READ_HEAD(engine));
  531. I915_WRITE_HEAD(engine, 0);
  532. (void)I915_READ_HEAD(engine);
  533. I915_WRITE_CTL(engine,
  534. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  535. | RING_VALID);
  536. /* If the head is still not zero, the ring is dead */
  537. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  538. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  539. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  540. DRM_ERROR("%s initialization failed "
  541. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  542. engine->name,
  543. I915_READ_CTL(engine),
  544. I915_READ_CTL(engine) & RING_VALID,
  545. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  546. I915_READ_START(engine),
  547. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  548. ret = -EIO;
  549. goto out;
  550. }
  551. ringbuf->last_retired_head = -1;
  552. ringbuf->head = I915_READ_HEAD(engine);
  553. ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  554. intel_ring_update_space(ringbuf);
  555. intel_engine_init_hangcheck(engine);
  556. out:
  557. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  558. return ret;
  559. }
  560. void
  561. intel_fini_pipe_control(struct intel_engine_cs *engine)
  562. {
  563. if (engine->scratch.obj == NULL)
  564. return;
  565. if (INTEL_GEN(engine->i915) >= 5) {
  566. kunmap(sg_page(engine->scratch.obj->pages->sgl));
  567. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  568. }
  569. drm_gem_object_unreference(&engine->scratch.obj->base);
  570. engine->scratch.obj = NULL;
  571. }
  572. int
  573. intel_init_pipe_control(struct intel_engine_cs *engine)
  574. {
  575. int ret;
  576. WARN_ON(engine->scratch.obj);
  577. engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
  578. if (IS_ERR(engine->scratch.obj)) {
  579. DRM_ERROR("Failed to allocate seqno page\n");
  580. ret = PTR_ERR(engine->scratch.obj);
  581. engine->scratch.obj = NULL;
  582. goto err;
  583. }
  584. ret = i915_gem_object_set_cache_level(engine->scratch.obj,
  585. I915_CACHE_LLC);
  586. if (ret)
  587. goto err_unref;
  588. ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
  589. if (ret)
  590. goto err_unref;
  591. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
  592. engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
  593. if (engine->scratch.cpu_page == NULL) {
  594. ret = -ENOMEM;
  595. goto err_unpin;
  596. }
  597. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  598. engine->name, engine->scratch.gtt_offset);
  599. return 0;
  600. err_unpin:
  601. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  602. err_unref:
  603. drm_gem_object_unreference(&engine->scratch.obj->base);
  604. err:
  605. return ret;
  606. }
  607. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  608. {
  609. struct intel_engine_cs *engine = req->engine;
  610. struct i915_workarounds *w = &req->i915->workarounds;
  611. int ret, i;
  612. if (w->count == 0)
  613. return 0;
  614. engine->gpu_caches_dirty = true;
  615. ret = intel_ring_flush_all_caches(req);
  616. if (ret)
  617. return ret;
  618. ret = intel_ring_begin(req, (w->count * 2 + 2));
  619. if (ret)
  620. return ret;
  621. intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
  622. for (i = 0; i < w->count; i++) {
  623. intel_ring_emit_reg(engine, w->reg[i].addr);
  624. intel_ring_emit(engine, w->reg[i].value);
  625. }
  626. intel_ring_emit(engine, MI_NOOP);
  627. intel_ring_advance(engine);
  628. engine->gpu_caches_dirty = true;
  629. ret = intel_ring_flush_all_caches(req);
  630. if (ret)
  631. return ret;
  632. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  633. return 0;
  634. }
  635. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  636. {
  637. int ret;
  638. ret = intel_ring_workarounds_emit(req);
  639. if (ret != 0)
  640. return ret;
  641. ret = i915_gem_render_state_init(req);
  642. if (ret)
  643. return ret;
  644. return 0;
  645. }
  646. static int wa_add(struct drm_i915_private *dev_priv,
  647. i915_reg_t addr,
  648. const u32 mask, const u32 val)
  649. {
  650. const u32 idx = dev_priv->workarounds.count;
  651. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  652. return -ENOSPC;
  653. dev_priv->workarounds.reg[idx].addr = addr;
  654. dev_priv->workarounds.reg[idx].value = val;
  655. dev_priv->workarounds.reg[idx].mask = mask;
  656. dev_priv->workarounds.count++;
  657. return 0;
  658. }
  659. #define WA_REG(addr, mask, val) do { \
  660. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  661. if (r) \
  662. return r; \
  663. } while (0)
  664. #define WA_SET_BIT_MASKED(addr, mask) \
  665. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  666. #define WA_CLR_BIT_MASKED(addr, mask) \
  667. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  668. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  669. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  670. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  671. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  672. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  673. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  674. i915_reg_t reg)
  675. {
  676. struct drm_i915_private *dev_priv = engine->i915;
  677. struct i915_workarounds *wa = &dev_priv->workarounds;
  678. const uint32_t index = wa->hw_whitelist_count[engine->id];
  679. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  680. return -EINVAL;
  681. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  682. i915_mmio_reg_offset(reg));
  683. wa->hw_whitelist_count[engine->id]++;
  684. return 0;
  685. }
  686. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  687. {
  688. struct drm_i915_private *dev_priv = engine->i915;
  689. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  690. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  691. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  692. /* WaDisablePartialInstShootdown:bdw,chv */
  693. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  694. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  695. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  696. * workaround for for a possible hang in the unlikely event a TLB
  697. * invalidation occurs during a PSD flush.
  698. */
  699. /* WaForceEnableNonCoherent:bdw,chv */
  700. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  701. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  702. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  703. HDC_FORCE_NON_COHERENT);
  704. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  705. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  706. * polygons in the same 8x4 pixel/sample area to be processed without
  707. * stalling waiting for the earlier ones to write to Hierarchical Z
  708. * buffer."
  709. *
  710. * This optimization is off by default for BDW and CHV; turn it on.
  711. */
  712. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  713. /* Wa4x4STCOptimizationDisable:bdw,chv */
  714. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  715. /*
  716. * BSpec recommends 8x4 when MSAA is used,
  717. * however in practice 16x4 seems fastest.
  718. *
  719. * Note that PS/WM thread counts depend on the WIZ hashing
  720. * disable bit, which we don't touch here, but it's good
  721. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  722. */
  723. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  724. GEN6_WIZ_HASHING_MASK,
  725. GEN6_WIZ_HASHING_16x4);
  726. return 0;
  727. }
  728. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  729. {
  730. struct drm_i915_private *dev_priv = engine->i915;
  731. int ret;
  732. ret = gen8_init_workarounds(engine);
  733. if (ret)
  734. return ret;
  735. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  736. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  737. /* WaDisableDopClockGating:bdw */
  738. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  739. DOP_CLOCK_GATING_DISABLE);
  740. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  741. GEN8_SAMPLER_POWER_BYPASS_DIS);
  742. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  743. /* WaForceContextSaveRestoreNonCoherent:bdw */
  744. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  745. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  746. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  747. return 0;
  748. }
  749. static int chv_init_workarounds(struct intel_engine_cs *engine)
  750. {
  751. struct drm_i915_private *dev_priv = engine->i915;
  752. int ret;
  753. ret = gen8_init_workarounds(engine);
  754. if (ret)
  755. return ret;
  756. /* WaDisableThreadStallDopClockGating:chv */
  757. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  758. /* Improve HiZ throughput on CHV. */
  759. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  760. return 0;
  761. }
  762. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  763. {
  764. struct drm_i915_private *dev_priv = engine->i915;
  765. int ret;
  766. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  767. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  768. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  769. /* WaDisableKillLogic:bxt,skl,kbl */
  770. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  771. ECOCHK_DIS_TLB);
  772. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  773. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  774. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  775. FLOW_CONTROL_ENABLE |
  776. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  777. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  778. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  779. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  780. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  781. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  782. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  783. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  784. GEN9_DG_MIRROR_FIX_ENABLE);
  785. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  786. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  787. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  788. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  789. GEN9_RHWO_OPTIMIZATION_DISABLE);
  790. /*
  791. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  792. * but we do that in per ctx batchbuffer as there is an issue
  793. * with this register not getting restored on ctx restore
  794. */
  795. }
  796. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
  797. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  798. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  799. GEN9_ENABLE_YV12_BUGFIX |
  800. GEN9_ENABLE_GPGPU_PREEMPTION);
  801. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  802. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  803. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  804. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  805. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  806. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  807. GEN9_CCS_TLB_PREFETCH_ENABLE);
  808. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  809. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
  810. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  811. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  812. PIXEL_MASK_CAMMING_DISABLE);
  813. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  814. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  815. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  816. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  817. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  818. * both tied to WaForceContextSaveRestoreNonCoherent
  819. * in some hsds for skl. We keep the tie for all gen9. The
  820. * documentation is a bit hazy and so we want to get common behaviour,
  821. * even though there is no clear evidence we would need both on kbl/bxt.
  822. * This area has been source of system hangs so we play it safe
  823. * and mimic the skl regardless of what bspec says.
  824. *
  825. * Use Force Non-Coherent whenever executing a 3D context. This
  826. * is a workaround for a possible hang in the unlikely event
  827. * a TLB invalidation occurs during a PSD flush.
  828. */
  829. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  830. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  831. HDC_FORCE_NON_COHERENT);
  832. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  833. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  834. BDW_DISABLE_HDC_INVALIDATION);
  835. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  836. if (IS_SKYLAKE(dev_priv) ||
  837. IS_KABYLAKE(dev_priv) ||
  838. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  839. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  840. GEN8_SAMPLER_POWER_BYPASS_DIS);
  841. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  842. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  843. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  844. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  845. GEN8_LQSC_FLUSH_COHERENT_LINES));
  846. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  847. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  848. if (ret)
  849. return ret;
  850. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  851. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  852. if (ret)
  853. return ret;
  854. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  855. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  856. if (ret)
  857. return ret;
  858. return 0;
  859. }
  860. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  861. {
  862. struct drm_i915_private *dev_priv = engine->i915;
  863. u8 vals[3] = { 0, 0, 0 };
  864. unsigned int i;
  865. for (i = 0; i < 3; i++) {
  866. u8 ss;
  867. /*
  868. * Only consider slices where one, and only one, subslice has 7
  869. * EUs
  870. */
  871. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  872. continue;
  873. /*
  874. * subslice_7eu[i] != 0 (because of the check above) and
  875. * ss_max == 4 (maximum number of subslices possible per slice)
  876. *
  877. * -> 0 <= ss <= 3;
  878. */
  879. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  880. vals[i] = 3 - ss;
  881. }
  882. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  883. return 0;
  884. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  885. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  886. GEN9_IZ_HASHING_MASK(2) |
  887. GEN9_IZ_HASHING_MASK(1) |
  888. GEN9_IZ_HASHING_MASK(0),
  889. GEN9_IZ_HASHING(2, vals[2]) |
  890. GEN9_IZ_HASHING(1, vals[1]) |
  891. GEN9_IZ_HASHING(0, vals[0]));
  892. return 0;
  893. }
  894. static int skl_init_workarounds(struct intel_engine_cs *engine)
  895. {
  896. struct drm_i915_private *dev_priv = engine->i915;
  897. int ret;
  898. ret = gen9_init_workarounds(engine);
  899. if (ret)
  900. return ret;
  901. /*
  902. * Actual WA is to disable percontext preemption granularity control
  903. * until D0 which is the default case so this is equivalent to
  904. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  905. */
  906. if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
  907. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  908. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  909. }
  910. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0)) {
  911. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  912. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  913. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  914. }
  915. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  916. * involving this register should also be added to WA batch as required.
  917. */
  918. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
  919. /* WaDisableLSQCROPERFforOCL:skl */
  920. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  921. GEN8_LQSC_RO_PERF_DIS);
  922. /* WaEnableGapsTsvCreditFix:skl */
  923. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
  924. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  925. GEN9_GAPS_TSV_CREDIT_DISABLE));
  926. }
  927. /* WaDisablePowerCompilerClockGating:skl */
  928. if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
  929. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  930. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  931. /* WaBarrierPerformanceFixDisable:skl */
  932. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
  933. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  934. HDC_FENCE_DEST_SLM_DISABLE |
  935. HDC_BARRIER_PERFORMANCE_DISABLE);
  936. /* WaDisableSbeCacheDispatchPortSharing:skl */
  937. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
  938. WA_SET_BIT_MASKED(
  939. GEN7_HALF_SLICE_CHICKEN1,
  940. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  941. /* WaDisableGafsUnitClkGating:skl */
  942. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  943. /* WaDisableLSQCROPERFforOCL:skl */
  944. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  945. if (ret)
  946. return ret;
  947. return skl_tune_iz_hashing(engine);
  948. }
  949. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  950. {
  951. struct drm_i915_private *dev_priv = engine->i915;
  952. int ret;
  953. ret = gen9_init_workarounds(engine);
  954. if (ret)
  955. return ret;
  956. /* WaStoreMultiplePTEenable:bxt */
  957. /* This is a requirement according to Hardware specification */
  958. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  959. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  960. /* WaSetClckGatingDisableMedia:bxt */
  961. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  962. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  963. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  964. }
  965. /* WaDisableThreadStallDopClockGating:bxt */
  966. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  967. STALL_DOP_GATING_DISABLE);
  968. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  969. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  970. WA_SET_BIT_MASKED(
  971. GEN7_HALF_SLICE_CHICKEN1,
  972. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  973. }
  974. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  975. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  976. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  977. /* WaDisableLSQCROPERFforOCL:bxt */
  978. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  979. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  980. if (ret)
  981. return ret;
  982. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  983. if (ret)
  984. return ret;
  985. }
  986. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  987. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  988. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  989. L3_HIGH_PRIO_CREDITS(2));
  990. return 0;
  991. }
  992. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  993. {
  994. int ret;
  995. ret = gen9_init_workarounds(engine);
  996. if (ret)
  997. return ret;
  998. return 0;
  999. }
  1000. int init_workarounds_ring(struct intel_engine_cs *engine)
  1001. {
  1002. struct drm_i915_private *dev_priv = engine->i915;
  1003. WARN_ON(engine->id != RCS);
  1004. dev_priv->workarounds.count = 0;
  1005. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  1006. if (IS_BROADWELL(dev_priv))
  1007. return bdw_init_workarounds(engine);
  1008. if (IS_CHERRYVIEW(dev_priv))
  1009. return chv_init_workarounds(engine);
  1010. if (IS_SKYLAKE(dev_priv))
  1011. return skl_init_workarounds(engine);
  1012. if (IS_BROXTON(dev_priv))
  1013. return bxt_init_workarounds(engine);
  1014. if (IS_KABYLAKE(dev_priv))
  1015. return kbl_init_workarounds(engine);
  1016. return 0;
  1017. }
  1018. static int init_render_ring(struct intel_engine_cs *engine)
  1019. {
  1020. struct drm_i915_private *dev_priv = engine->i915;
  1021. int ret = init_ring_common(engine);
  1022. if (ret)
  1023. return ret;
  1024. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1025. if (IS_GEN(dev_priv, 4, 6))
  1026. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1027. /* We need to disable the AsyncFlip performance optimisations in order
  1028. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1029. * programmed to '1' on all products.
  1030. *
  1031. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1032. */
  1033. if (IS_GEN(dev_priv, 6, 7))
  1034. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1035. /* Required for the hardware to program scanline values for waiting */
  1036. /* WaEnableFlushTlbInvalidationMode:snb */
  1037. if (IS_GEN6(dev_priv))
  1038. I915_WRITE(GFX_MODE,
  1039. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1040. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1041. if (IS_GEN7(dev_priv))
  1042. I915_WRITE(GFX_MODE_GEN7,
  1043. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1044. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1045. if (IS_GEN6(dev_priv)) {
  1046. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1047. * "If this bit is set, STCunit will have LRA as replacement
  1048. * policy. [...] This bit must be reset. LRA replacement
  1049. * policy is not supported."
  1050. */
  1051. I915_WRITE(CACHE_MODE_0,
  1052. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1053. }
  1054. if (IS_GEN(dev_priv, 6, 7))
  1055. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1056. if (HAS_L3_DPF(dev_priv))
  1057. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
  1058. return init_workarounds_ring(engine);
  1059. }
  1060. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1061. {
  1062. struct drm_i915_private *dev_priv = engine->i915;
  1063. if (dev_priv->semaphore_obj) {
  1064. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1065. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1066. dev_priv->semaphore_obj = NULL;
  1067. }
  1068. intel_fini_pipe_control(engine);
  1069. }
  1070. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1071. unsigned int num_dwords)
  1072. {
  1073. #define MBOX_UPDATE_DWORDS 8
  1074. struct intel_engine_cs *signaller = signaller_req->engine;
  1075. struct drm_i915_private *dev_priv = signaller_req->i915;
  1076. struct intel_engine_cs *waiter;
  1077. enum intel_engine_id id;
  1078. int ret, num_rings;
  1079. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1080. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1081. #undef MBOX_UPDATE_DWORDS
  1082. ret = intel_ring_begin(signaller_req, num_dwords);
  1083. if (ret)
  1084. return ret;
  1085. for_each_engine_id(waiter, dev_priv, id) {
  1086. u32 seqno;
  1087. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1088. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1089. continue;
  1090. seqno = i915_gem_request_get_seqno(signaller_req);
  1091. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1092. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1093. PIPE_CONTROL_QW_WRITE |
  1094. PIPE_CONTROL_CS_STALL);
  1095. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1096. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1097. intel_ring_emit(signaller, seqno);
  1098. intel_ring_emit(signaller, 0);
  1099. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1100. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1101. intel_ring_emit(signaller, 0);
  1102. }
  1103. return 0;
  1104. }
  1105. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1106. unsigned int num_dwords)
  1107. {
  1108. #define MBOX_UPDATE_DWORDS 6
  1109. struct intel_engine_cs *signaller = signaller_req->engine;
  1110. struct drm_i915_private *dev_priv = signaller_req->i915;
  1111. struct intel_engine_cs *waiter;
  1112. enum intel_engine_id id;
  1113. int ret, num_rings;
  1114. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1115. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1116. #undef MBOX_UPDATE_DWORDS
  1117. ret = intel_ring_begin(signaller_req, num_dwords);
  1118. if (ret)
  1119. return ret;
  1120. for_each_engine_id(waiter, dev_priv, id) {
  1121. u32 seqno;
  1122. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1123. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1124. continue;
  1125. seqno = i915_gem_request_get_seqno(signaller_req);
  1126. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1127. MI_FLUSH_DW_OP_STOREDW);
  1128. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1129. MI_FLUSH_DW_USE_GTT);
  1130. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1131. intel_ring_emit(signaller, seqno);
  1132. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1133. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1134. intel_ring_emit(signaller, 0);
  1135. }
  1136. return 0;
  1137. }
  1138. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1139. unsigned int num_dwords)
  1140. {
  1141. struct intel_engine_cs *signaller = signaller_req->engine;
  1142. struct drm_i915_private *dev_priv = signaller_req->i915;
  1143. struct intel_engine_cs *useless;
  1144. enum intel_engine_id id;
  1145. int ret, num_rings;
  1146. #define MBOX_UPDATE_DWORDS 3
  1147. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1148. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1149. #undef MBOX_UPDATE_DWORDS
  1150. ret = intel_ring_begin(signaller_req, num_dwords);
  1151. if (ret)
  1152. return ret;
  1153. for_each_engine_id(useless, dev_priv, id) {
  1154. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
  1155. if (i915_mmio_reg_valid(mbox_reg)) {
  1156. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1157. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1158. intel_ring_emit_reg(signaller, mbox_reg);
  1159. intel_ring_emit(signaller, seqno);
  1160. }
  1161. }
  1162. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1163. if (num_rings % 2 == 0)
  1164. intel_ring_emit(signaller, MI_NOOP);
  1165. return 0;
  1166. }
  1167. /**
  1168. * gen6_add_request - Update the semaphore mailbox registers
  1169. *
  1170. * @request - request to write to the ring
  1171. *
  1172. * Update the mailbox registers in the *other* rings with the current seqno.
  1173. * This acts like a signal in the canonical semaphore.
  1174. */
  1175. static int
  1176. gen6_add_request(struct drm_i915_gem_request *req)
  1177. {
  1178. struct intel_engine_cs *engine = req->engine;
  1179. int ret;
  1180. if (engine->semaphore.signal)
  1181. ret = engine->semaphore.signal(req, 4);
  1182. else
  1183. ret = intel_ring_begin(req, 4);
  1184. if (ret)
  1185. return ret;
  1186. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1187. intel_ring_emit(engine,
  1188. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1189. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1190. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1191. __intel_ring_advance(engine);
  1192. return 0;
  1193. }
  1194. static int
  1195. gen8_render_add_request(struct drm_i915_gem_request *req)
  1196. {
  1197. struct intel_engine_cs *engine = req->engine;
  1198. int ret;
  1199. if (engine->semaphore.signal)
  1200. ret = engine->semaphore.signal(req, 8);
  1201. else
  1202. ret = intel_ring_begin(req, 8);
  1203. if (ret)
  1204. return ret;
  1205. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  1206. intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1207. PIPE_CONTROL_CS_STALL |
  1208. PIPE_CONTROL_QW_WRITE));
  1209. intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
  1210. intel_ring_emit(engine, 0);
  1211. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1212. /* We're thrashing one dword of HWS. */
  1213. intel_ring_emit(engine, 0);
  1214. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1215. intel_ring_emit(engine, MI_NOOP);
  1216. __intel_ring_advance(engine);
  1217. return 0;
  1218. }
  1219. static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
  1220. u32 seqno)
  1221. {
  1222. return dev_priv->last_seqno < seqno;
  1223. }
  1224. /**
  1225. * intel_ring_sync - sync the waiter to the signaller on seqno
  1226. *
  1227. * @waiter - ring that is waiting
  1228. * @signaller - ring which has, or will signal
  1229. * @seqno - seqno which the waiter will block on
  1230. */
  1231. static int
  1232. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1233. struct intel_engine_cs *signaller,
  1234. u32 seqno)
  1235. {
  1236. struct intel_engine_cs *waiter = waiter_req->engine;
  1237. struct drm_i915_private *dev_priv = waiter_req->i915;
  1238. struct i915_hw_ppgtt *ppgtt;
  1239. int ret;
  1240. ret = intel_ring_begin(waiter_req, 4);
  1241. if (ret)
  1242. return ret;
  1243. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1244. MI_SEMAPHORE_GLOBAL_GTT |
  1245. MI_SEMAPHORE_SAD_GTE_SDD);
  1246. intel_ring_emit(waiter, seqno);
  1247. intel_ring_emit(waiter,
  1248. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1249. intel_ring_emit(waiter,
  1250. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1251. intel_ring_advance(waiter);
  1252. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1253. * pagetables and we must reload them before executing the batch.
  1254. * We do this on the i915_switch_context() following the wait and
  1255. * before the dispatch.
  1256. */
  1257. ppgtt = waiter_req->ctx->ppgtt;
  1258. if (ppgtt && waiter_req->engine->id != RCS)
  1259. ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
  1260. return 0;
  1261. }
  1262. static int
  1263. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1264. struct intel_engine_cs *signaller,
  1265. u32 seqno)
  1266. {
  1267. struct intel_engine_cs *waiter = waiter_req->engine;
  1268. u32 dw1 = MI_SEMAPHORE_MBOX |
  1269. MI_SEMAPHORE_COMPARE |
  1270. MI_SEMAPHORE_REGISTER;
  1271. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1272. int ret;
  1273. /* Throughout all of the GEM code, seqno passed implies our current
  1274. * seqno is >= the last seqno executed. However for hardware the
  1275. * comparison is strictly greater than.
  1276. */
  1277. seqno -= 1;
  1278. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1279. ret = intel_ring_begin(waiter_req, 4);
  1280. if (ret)
  1281. return ret;
  1282. /* If seqno wrap happened, omit the wait with no-ops */
  1283. if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
  1284. intel_ring_emit(waiter, dw1 | wait_mbox);
  1285. intel_ring_emit(waiter, seqno);
  1286. intel_ring_emit(waiter, 0);
  1287. intel_ring_emit(waiter, MI_NOOP);
  1288. } else {
  1289. intel_ring_emit(waiter, MI_NOOP);
  1290. intel_ring_emit(waiter, MI_NOOP);
  1291. intel_ring_emit(waiter, MI_NOOP);
  1292. intel_ring_emit(waiter, MI_NOOP);
  1293. }
  1294. intel_ring_advance(waiter);
  1295. return 0;
  1296. }
  1297. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1298. do { \
  1299. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1300. PIPE_CONTROL_DEPTH_STALL); \
  1301. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1302. intel_ring_emit(ring__, 0); \
  1303. intel_ring_emit(ring__, 0); \
  1304. } while (0)
  1305. static int
  1306. pc_render_add_request(struct drm_i915_gem_request *req)
  1307. {
  1308. struct intel_engine_cs *engine = req->engine;
  1309. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1310. int ret;
  1311. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1312. * incoherent with writes to memory, i.e. completely fubar,
  1313. * so we need to use PIPE_NOTIFY instead.
  1314. *
  1315. * However, we also need to workaround the qword write
  1316. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1317. * memory before requesting an interrupt.
  1318. */
  1319. ret = intel_ring_begin(req, 32);
  1320. if (ret)
  1321. return ret;
  1322. intel_ring_emit(engine,
  1323. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1324. PIPE_CONTROL_WRITE_FLUSH |
  1325. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1326. intel_ring_emit(engine,
  1327. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1328. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1329. intel_ring_emit(engine, 0);
  1330. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1331. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1332. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1333. scratch_addr += 2 * CACHELINE_BYTES;
  1334. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1335. scratch_addr += 2 * CACHELINE_BYTES;
  1336. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1337. scratch_addr += 2 * CACHELINE_BYTES;
  1338. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1339. scratch_addr += 2 * CACHELINE_BYTES;
  1340. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1341. intel_ring_emit(engine,
  1342. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1343. PIPE_CONTROL_WRITE_FLUSH |
  1344. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1345. PIPE_CONTROL_NOTIFY);
  1346. intel_ring_emit(engine,
  1347. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1348. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1349. intel_ring_emit(engine, 0);
  1350. __intel_ring_advance(engine);
  1351. return 0;
  1352. }
  1353. static void
  1354. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1355. {
  1356. struct drm_i915_private *dev_priv = engine->i915;
  1357. /* Workaround to force correct ordering between irq and seqno writes on
  1358. * ivb (and maybe also on snb) by reading from a CS register (like
  1359. * ACTHD) before reading the status page.
  1360. *
  1361. * Note that this effectively stalls the read by the time it takes to
  1362. * do a memory transaction, which more or less ensures that the write
  1363. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1364. * Alternatively we could delay the interrupt from the CS ring to give
  1365. * the write time to land, but that would incur a delay after every
  1366. * batch i.e. much more frequent than a delay when waiting for the
  1367. * interrupt (with the same net latency).
  1368. *
  1369. * Also note that to prevent whole machine hangs on gen7, we have to
  1370. * take the spinlock to guard against concurrent cacheline access.
  1371. */
  1372. spin_lock_irq(&dev_priv->uncore.lock);
  1373. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1374. spin_unlock_irq(&dev_priv->uncore.lock);
  1375. }
  1376. static u32
  1377. ring_get_seqno(struct intel_engine_cs *engine)
  1378. {
  1379. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  1380. }
  1381. static void
  1382. ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1383. {
  1384. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  1385. }
  1386. static u32
  1387. pc_render_get_seqno(struct intel_engine_cs *engine)
  1388. {
  1389. return engine->scratch.cpu_page[0];
  1390. }
  1391. static void
  1392. pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1393. {
  1394. engine->scratch.cpu_page[0] = seqno;
  1395. }
  1396. static bool
  1397. gen5_ring_get_irq(struct intel_engine_cs *engine)
  1398. {
  1399. struct drm_i915_private *dev_priv = engine->i915;
  1400. unsigned long flags;
  1401. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1402. return false;
  1403. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1404. if (engine->irq_refcount++ == 0)
  1405. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1406. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1407. return true;
  1408. }
  1409. static void
  1410. gen5_ring_put_irq(struct intel_engine_cs *engine)
  1411. {
  1412. struct drm_i915_private *dev_priv = engine->i915;
  1413. unsigned long flags;
  1414. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1415. if (--engine->irq_refcount == 0)
  1416. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1417. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1418. }
  1419. static bool
  1420. i9xx_ring_get_irq(struct intel_engine_cs *engine)
  1421. {
  1422. struct drm_i915_private *dev_priv = engine->i915;
  1423. unsigned long flags;
  1424. if (!intel_irqs_enabled(dev_priv))
  1425. return false;
  1426. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1427. if (engine->irq_refcount++ == 0) {
  1428. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1429. I915_WRITE(IMR, dev_priv->irq_mask);
  1430. POSTING_READ(IMR);
  1431. }
  1432. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1433. return true;
  1434. }
  1435. static void
  1436. i9xx_ring_put_irq(struct intel_engine_cs *engine)
  1437. {
  1438. struct drm_i915_private *dev_priv = engine->i915;
  1439. unsigned long flags;
  1440. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1441. if (--engine->irq_refcount == 0) {
  1442. dev_priv->irq_mask |= engine->irq_enable_mask;
  1443. I915_WRITE(IMR, dev_priv->irq_mask);
  1444. POSTING_READ(IMR);
  1445. }
  1446. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1447. }
  1448. static bool
  1449. i8xx_ring_get_irq(struct intel_engine_cs *engine)
  1450. {
  1451. struct drm_i915_private *dev_priv = engine->i915;
  1452. unsigned long flags;
  1453. if (!intel_irqs_enabled(dev_priv))
  1454. return false;
  1455. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1456. if (engine->irq_refcount++ == 0) {
  1457. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1458. I915_WRITE16(IMR, dev_priv->irq_mask);
  1459. POSTING_READ16(IMR);
  1460. }
  1461. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1462. return true;
  1463. }
  1464. static void
  1465. i8xx_ring_put_irq(struct intel_engine_cs *engine)
  1466. {
  1467. struct drm_i915_private *dev_priv = engine->i915;
  1468. unsigned long flags;
  1469. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1470. if (--engine->irq_refcount == 0) {
  1471. dev_priv->irq_mask |= engine->irq_enable_mask;
  1472. I915_WRITE16(IMR, dev_priv->irq_mask);
  1473. POSTING_READ16(IMR);
  1474. }
  1475. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1476. }
  1477. static int
  1478. bsd_ring_flush(struct drm_i915_gem_request *req,
  1479. u32 invalidate_domains,
  1480. u32 flush_domains)
  1481. {
  1482. struct intel_engine_cs *engine = req->engine;
  1483. int ret;
  1484. ret = intel_ring_begin(req, 2);
  1485. if (ret)
  1486. return ret;
  1487. intel_ring_emit(engine, MI_FLUSH);
  1488. intel_ring_emit(engine, MI_NOOP);
  1489. intel_ring_advance(engine);
  1490. return 0;
  1491. }
  1492. static int
  1493. i9xx_add_request(struct drm_i915_gem_request *req)
  1494. {
  1495. struct intel_engine_cs *engine = req->engine;
  1496. int ret;
  1497. ret = intel_ring_begin(req, 4);
  1498. if (ret)
  1499. return ret;
  1500. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1501. intel_ring_emit(engine,
  1502. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1503. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1504. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1505. __intel_ring_advance(engine);
  1506. return 0;
  1507. }
  1508. static bool
  1509. gen6_ring_get_irq(struct intel_engine_cs *engine)
  1510. {
  1511. struct drm_i915_private *dev_priv = engine->i915;
  1512. unsigned long flags;
  1513. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1514. return false;
  1515. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1516. if (engine->irq_refcount++ == 0) {
  1517. if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
  1518. I915_WRITE_IMR(engine,
  1519. ~(engine->irq_enable_mask |
  1520. GT_PARITY_ERROR(dev_priv)));
  1521. else
  1522. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1523. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1524. }
  1525. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1526. return true;
  1527. }
  1528. static void
  1529. gen6_ring_put_irq(struct intel_engine_cs *engine)
  1530. {
  1531. struct drm_i915_private *dev_priv = engine->i915;
  1532. unsigned long flags;
  1533. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1534. if (--engine->irq_refcount == 0) {
  1535. if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
  1536. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
  1537. else
  1538. I915_WRITE_IMR(engine, ~0);
  1539. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1540. }
  1541. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1542. }
  1543. static bool
  1544. hsw_vebox_get_irq(struct intel_engine_cs *engine)
  1545. {
  1546. struct drm_i915_private *dev_priv = engine->i915;
  1547. unsigned long flags;
  1548. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1549. return false;
  1550. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1551. if (engine->irq_refcount++ == 0) {
  1552. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1553. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1554. }
  1555. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1556. return true;
  1557. }
  1558. static void
  1559. hsw_vebox_put_irq(struct intel_engine_cs *engine)
  1560. {
  1561. struct drm_i915_private *dev_priv = engine->i915;
  1562. unsigned long flags;
  1563. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1564. if (--engine->irq_refcount == 0) {
  1565. I915_WRITE_IMR(engine, ~0);
  1566. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1567. }
  1568. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1569. }
  1570. static bool
  1571. gen8_ring_get_irq(struct intel_engine_cs *engine)
  1572. {
  1573. struct drm_i915_private *dev_priv = engine->i915;
  1574. unsigned long flags;
  1575. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1576. return false;
  1577. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1578. if (engine->irq_refcount++ == 0) {
  1579. if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
  1580. I915_WRITE_IMR(engine,
  1581. ~(engine->irq_enable_mask |
  1582. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1583. } else {
  1584. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1585. }
  1586. POSTING_READ(RING_IMR(engine->mmio_base));
  1587. }
  1588. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1589. return true;
  1590. }
  1591. static void
  1592. gen8_ring_put_irq(struct intel_engine_cs *engine)
  1593. {
  1594. struct drm_i915_private *dev_priv = engine->i915;
  1595. unsigned long flags;
  1596. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1597. if (--engine->irq_refcount == 0) {
  1598. if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
  1599. I915_WRITE_IMR(engine,
  1600. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1601. } else {
  1602. I915_WRITE_IMR(engine, ~0);
  1603. }
  1604. POSTING_READ(RING_IMR(engine->mmio_base));
  1605. }
  1606. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1607. }
  1608. static int
  1609. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1610. u64 offset, u32 length,
  1611. unsigned dispatch_flags)
  1612. {
  1613. struct intel_engine_cs *engine = req->engine;
  1614. int ret;
  1615. ret = intel_ring_begin(req, 2);
  1616. if (ret)
  1617. return ret;
  1618. intel_ring_emit(engine,
  1619. MI_BATCH_BUFFER_START |
  1620. MI_BATCH_GTT |
  1621. (dispatch_flags & I915_DISPATCH_SECURE ?
  1622. 0 : MI_BATCH_NON_SECURE_I965));
  1623. intel_ring_emit(engine, offset);
  1624. intel_ring_advance(engine);
  1625. return 0;
  1626. }
  1627. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1628. #define I830_BATCH_LIMIT (256*1024)
  1629. #define I830_TLB_ENTRIES (2)
  1630. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1631. static int
  1632. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1633. u64 offset, u32 len,
  1634. unsigned dispatch_flags)
  1635. {
  1636. struct intel_engine_cs *engine = req->engine;
  1637. u32 cs_offset = engine->scratch.gtt_offset;
  1638. int ret;
  1639. ret = intel_ring_begin(req, 6);
  1640. if (ret)
  1641. return ret;
  1642. /* Evict the invalid PTE TLBs */
  1643. intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1644. intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1645. intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1646. intel_ring_emit(engine, cs_offset);
  1647. intel_ring_emit(engine, 0xdeadbeef);
  1648. intel_ring_emit(engine, MI_NOOP);
  1649. intel_ring_advance(engine);
  1650. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1651. if (len > I830_BATCH_LIMIT)
  1652. return -ENOSPC;
  1653. ret = intel_ring_begin(req, 6 + 2);
  1654. if (ret)
  1655. return ret;
  1656. /* Blit the batch (which has now all relocs applied) to the
  1657. * stable batch scratch bo area (so that the CS never
  1658. * stumbles over its tlb invalidation bug) ...
  1659. */
  1660. intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1661. intel_ring_emit(engine,
  1662. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1663. intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1664. intel_ring_emit(engine, cs_offset);
  1665. intel_ring_emit(engine, 4096);
  1666. intel_ring_emit(engine, offset);
  1667. intel_ring_emit(engine, MI_FLUSH);
  1668. intel_ring_emit(engine, MI_NOOP);
  1669. intel_ring_advance(engine);
  1670. /* ... and execute it. */
  1671. offset = cs_offset;
  1672. }
  1673. ret = intel_ring_begin(req, 2);
  1674. if (ret)
  1675. return ret;
  1676. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1677. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1678. 0 : MI_BATCH_NON_SECURE));
  1679. intel_ring_advance(engine);
  1680. return 0;
  1681. }
  1682. static int
  1683. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1684. u64 offset, u32 len,
  1685. unsigned dispatch_flags)
  1686. {
  1687. struct intel_engine_cs *engine = req->engine;
  1688. int ret;
  1689. ret = intel_ring_begin(req, 2);
  1690. if (ret)
  1691. return ret;
  1692. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1693. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1694. 0 : MI_BATCH_NON_SECURE));
  1695. intel_ring_advance(engine);
  1696. return 0;
  1697. }
  1698. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1699. {
  1700. struct drm_i915_private *dev_priv = engine->i915;
  1701. if (!dev_priv->status_page_dmah)
  1702. return;
  1703. drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
  1704. engine->status_page.page_addr = NULL;
  1705. }
  1706. static void cleanup_status_page(struct intel_engine_cs *engine)
  1707. {
  1708. struct drm_i915_gem_object *obj;
  1709. obj = engine->status_page.obj;
  1710. if (obj == NULL)
  1711. return;
  1712. kunmap(sg_page(obj->pages->sgl));
  1713. i915_gem_object_ggtt_unpin(obj);
  1714. drm_gem_object_unreference(&obj->base);
  1715. engine->status_page.obj = NULL;
  1716. }
  1717. static int init_status_page(struct intel_engine_cs *engine)
  1718. {
  1719. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1720. if (obj == NULL) {
  1721. unsigned flags;
  1722. int ret;
  1723. obj = i915_gem_object_create(engine->i915->dev, 4096);
  1724. if (IS_ERR(obj)) {
  1725. DRM_ERROR("Failed to allocate status page\n");
  1726. return PTR_ERR(obj);
  1727. }
  1728. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1729. if (ret)
  1730. goto err_unref;
  1731. flags = 0;
  1732. if (!HAS_LLC(engine->i915))
  1733. /* On g33, we cannot place HWS above 256MiB, so
  1734. * restrict its pinning to the low mappable arena.
  1735. * Though this restriction is not documented for
  1736. * gen4, gen5, or byt, they also behave similarly
  1737. * and hang if the HWS is placed at the top of the
  1738. * GTT. To generalise, it appears that all !llc
  1739. * platforms have issues with us placing the HWS
  1740. * above the mappable region (even though we never
  1741. * actualy map it).
  1742. */
  1743. flags |= PIN_MAPPABLE;
  1744. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1745. if (ret) {
  1746. err_unref:
  1747. drm_gem_object_unreference(&obj->base);
  1748. return ret;
  1749. }
  1750. engine->status_page.obj = obj;
  1751. }
  1752. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1753. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1754. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1755. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1756. engine->name, engine->status_page.gfx_addr);
  1757. return 0;
  1758. }
  1759. static int init_phys_status_page(struct intel_engine_cs *engine)
  1760. {
  1761. struct drm_i915_private *dev_priv = engine->i915;
  1762. if (!dev_priv->status_page_dmah) {
  1763. dev_priv->status_page_dmah =
  1764. drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
  1765. if (!dev_priv->status_page_dmah)
  1766. return -ENOMEM;
  1767. }
  1768. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1769. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1770. return 0;
  1771. }
  1772. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1773. {
  1774. GEM_BUG_ON(ringbuf->vma == NULL);
  1775. GEM_BUG_ON(ringbuf->virtual_start == NULL);
  1776. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1777. i915_gem_object_unpin_map(ringbuf->obj);
  1778. else
  1779. i915_vma_unpin_iomap(ringbuf->vma);
  1780. ringbuf->virtual_start = NULL;
  1781. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1782. ringbuf->vma = NULL;
  1783. }
  1784. int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
  1785. struct intel_ringbuffer *ringbuf)
  1786. {
  1787. struct drm_i915_gem_object *obj = ringbuf->obj;
  1788. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1789. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1790. void *addr;
  1791. int ret;
  1792. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1793. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1794. if (ret)
  1795. return ret;
  1796. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1797. if (ret)
  1798. goto err_unpin;
  1799. addr = i915_gem_object_pin_map(obj);
  1800. if (IS_ERR(addr)) {
  1801. ret = PTR_ERR(addr);
  1802. goto err_unpin;
  1803. }
  1804. } else {
  1805. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1806. flags | PIN_MAPPABLE);
  1807. if (ret)
  1808. return ret;
  1809. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1810. if (ret)
  1811. goto err_unpin;
  1812. /* Access through the GTT requires the device to be awake. */
  1813. assert_rpm_wakelock_held(dev_priv);
  1814. addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1815. if (IS_ERR(addr)) {
  1816. ret = PTR_ERR(addr);
  1817. goto err_unpin;
  1818. }
  1819. }
  1820. ringbuf->virtual_start = addr;
  1821. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1822. return 0;
  1823. err_unpin:
  1824. i915_gem_object_ggtt_unpin(obj);
  1825. return ret;
  1826. }
  1827. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1828. {
  1829. drm_gem_object_unreference(&ringbuf->obj->base);
  1830. ringbuf->obj = NULL;
  1831. }
  1832. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1833. struct intel_ringbuffer *ringbuf)
  1834. {
  1835. struct drm_i915_gem_object *obj;
  1836. obj = NULL;
  1837. if (!HAS_LLC(dev))
  1838. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1839. if (obj == NULL)
  1840. obj = i915_gem_object_create(dev, ringbuf->size);
  1841. if (IS_ERR(obj))
  1842. return PTR_ERR(obj);
  1843. /* mark ring buffers as read-only from GPU side by default */
  1844. obj->gt_ro = 1;
  1845. ringbuf->obj = obj;
  1846. return 0;
  1847. }
  1848. struct intel_ringbuffer *
  1849. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1850. {
  1851. struct intel_ringbuffer *ring;
  1852. int ret;
  1853. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1854. if (ring == NULL) {
  1855. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1856. engine->name);
  1857. return ERR_PTR(-ENOMEM);
  1858. }
  1859. ring->engine = engine;
  1860. list_add(&ring->link, &engine->buffers);
  1861. ring->size = size;
  1862. /* Workaround an erratum on the i830 which causes a hang if
  1863. * the TAIL pointer points to within the last 2 cachelines
  1864. * of the buffer.
  1865. */
  1866. ring->effective_size = size;
  1867. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1868. ring->effective_size -= 2 * CACHELINE_BYTES;
  1869. ring->last_retired_head = -1;
  1870. intel_ring_update_space(ring);
  1871. ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
  1872. if (ret) {
  1873. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1874. engine->name, ret);
  1875. list_del(&ring->link);
  1876. kfree(ring);
  1877. return ERR_PTR(ret);
  1878. }
  1879. return ring;
  1880. }
  1881. void
  1882. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1883. {
  1884. intel_destroy_ringbuffer_obj(ring);
  1885. list_del(&ring->link);
  1886. kfree(ring);
  1887. }
  1888. static int intel_init_ring_buffer(struct drm_device *dev,
  1889. struct intel_engine_cs *engine)
  1890. {
  1891. struct drm_i915_private *dev_priv = to_i915(dev);
  1892. struct intel_ringbuffer *ringbuf;
  1893. int ret;
  1894. WARN_ON(engine->buffer);
  1895. engine->i915 = dev_priv;
  1896. INIT_LIST_HEAD(&engine->active_list);
  1897. INIT_LIST_HEAD(&engine->request_list);
  1898. INIT_LIST_HEAD(&engine->execlist_queue);
  1899. INIT_LIST_HEAD(&engine->buffers);
  1900. i915_gem_batch_pool_init(dev, &engine->batch_pool);
  1901. memset(engine->semaphore.sync_seqno, 0,
  1902. sizeof(engine->semaphore.sync_seqno));
  1903. init_waitqueue_head(&engine->irq_queue);
  1904. ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
  1905. if (IS_ERR(ringbuf)) {
  1906. ret = PTR_ERR(ringbuf);
  1907. goto error;
  1908. }
  1909. engine->buffer = ringbuf;
  1910. if (I915_NEED_GFX_HWS(dev_priv)) {
  1911. ret = init_status_page(engine);
  1912. if (ret)
  1913. goto error;
  1914. } else {
  1915. WARN_ON(engine->id != RCS);
  1916. ret = init_phys_status_page(engine);
  1917. if (ret)
  1918. goto error;
  1919. }
  1920. ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
  1921. if (ret) {
  1922. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1923. engine->name, ret);
  1924. intel_destroy_ringbuffer_obj(ringbuf);
  1925. goto error;
  1926. }
  1927. ret = i915_cmd_parser_init_ring(engine);
  1928. if (ret)
  1929. goto error;
  1930. return 0;
  1931. error:
  1932. intel_cleanup_engine(engine);
  1933. return ret;
  1934. }
  1935. void intel_cleanup_engine(struct intel_engine_cs *engine)
  1936. {
  1937. struct drm_i915_private *dev_priv;
  1938. if (!intel_engine_initialized(engine))
  1939. return;
  1940. dev_priv = engine->i915;
  1941. if (engine->buffer) {
  1942. intel_stop_engine(engine);
  1943. WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1944. intel_unpin_ringbuffer_obj(engine->buffer);
  1945. intel_ringbuffer_free(engine->buffer);
  1946. engine->buffer = NULL;
  1947. }
  1948. if (engine->cleanup)
  1949. engine->cleanup(engine);
  1950. if (I915_NEED_GFX_HWS(dev_priv)) {
  1951. cleanup_status_page(engine);
  1952. } else {
  1953. WARN_ON(engine->id != RCS);
  1954. cleanup_phys_status_page(engine);
  1955. }
  1956. i915_cmd_parser_fini_ring(engine);
  1957. i915_gem_batch_pool_fini(&engine->batch_pool);
  1958. engine->i915 = NULL;
  1959. }
  1960. int intel_engine_idle(struct intel_engine_cs *engine)
  1961. {
  1962. struct drm_i915_gem_request *req;
  1963. /* Wait upon the last request to be completed */
  1964. if (list_empty(&engine->request_list))
  1965. return 0;
  1966. req = list_entry(engine->request_list.prev,
  1967. struct drm_i915_gem_request,
  1968. list);
  1969. /* Make sure we do not trigger any retires */
  1970. return __i915_wait_request(req,
  1971. req->i915->mm.interruptible,
  1972. NULL, NULL);
  1973. }
  1974. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1975. {
  1976. int ret;
  1977. /* Flush enough space to reduce the likelihood of waiting after
  1978. * we start building the request - in which case we will just
  1979. * have to repeat work.
  1980. */
  1981. request->reserved_space += LEGACY_REQUEST_SIZE;
  1982. request->ringbuf = request->engine->buffer;
  1983. ret = intel_ring_begin(request, 0);
  1984. if (ret)
  1985. return ret;
  1986. request->reserved_space -= LEGACY_REQUEST_SIZE;
  1987. return 0;
  1988. }
  1989. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1990. {
  1991. struct intel_ringbuffer *ringbuf = req->ringbuf;
  1992. struct intel_engine_cs *engine = req->engine;
  1993. struct drm_i915_gem_request *target;
  1994. intel_ring_update_space(ringbuf);
  1995. if (ringbuf->space >= bytes)
  1996. return 0;
  1997. /*
  1998. * Space is reserved in the ringbuffer for finalising the request,
  1999. * as that cannot be allowed to fail. During request finalisation,
  2000. * reserved_space is set to 0 to stop the overallocation and the
  2001. * assumption is that then we never need to wait (which has the
  2002. * risk of failing with EINTR).
  2003. *
  2004. * See also i915_gem_request_alloc() and i915_add_request().
  2005. */
  2006. GEM_BUG_ON(!req->reserved_space);
  2007. list_for_each_entry(target, &engine->request_list, list) {
  2008. unsigned space;
  2009. /*
  2010. * The request queue is per-engine, so can contain requests
  2011. * from multiple ringbuffers. Here, we must ignore any that
  2012. * aren't from the ringbuffer we're considering.
  2013. */
  2014. if (target->ringbuf != ringbuf)
  2015. continue;
  2016. /* Would completion of this request free enough space? */
  2017. space = __intel_ring_space(target->postfix, ringbuf->tail,
  2018. ringbuf->size);
  2019. if (space >= bytes)
  2020. break;
  2021. }
  2022. if (WARN_ON(&target->list == &engine->request_list))
  2023. return -ENOSPC;
  2024. return i915_wait_request(target);
  2025. }
  2026. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  2027. {
  2028. struct intel_ringbuffer *ringbuf = req->ringbuf;
  2029. int remain_actual = ringbuf->size - ringbuf->tail;
  2030. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  2031. int bytes = num_dwords * sizeof(u32);
  2032. int total_bytes, wait_bytes;
  2033. bool need_wrap = false;
  2034. total_bytes = bytes + req->reserved_space;
  2035. if (unlikely(bytes > remain_usable)) {
  2036. /*
  2037. * Not enough space for the basic request. So need to flush
  2038. * out the remainder and then wait for base + reserved.
  2039. */
  2040. wait_bytes = remain_actual + total_bytes;
  2041. need_wrap = true;
  2042. } else if (unlikely(total_bytes > remain_usable)) {
  2043. /*
  2044. * The base request will fit but the reserved space
  2045. * falls off the end. So we don't need an immediate wrap
  2046. * and only need to effectively wait for the reserved
  2047. * size space from the start of ringbuffer.
  2048. */
  2049. wait_bytes = remain_actual + req->reserved_space;
  2050. } else {
  2051. /* No wrapping required, just waiting. */
  2052. wait_bytes = total_bytes;
  2053. }
  2054. if (wait_bytes > ringbuf->space) {
  2055. int ret = wait_for_space(req, wait_bytes);
  2056. if (unlikely(ret))
  2057. return ret;
  2058. intel_ring_update_space(ringbuf);
  2059. if (unlikely(ringbuf->space < wait_bytes))
  2060. return -EAGAIN;
  2061. }
  2062. if (unlikely(need_wrap)) {
  2063. GEM_BUG_ON(remain_actual > ringbuf->space);
  2064. GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
  2065. /* Fill the tail with MI_NOOP */
  2066. memset(ringbuf->virtual_start + ringbuf->tail,
  2067. 0, remain_actual);
  2068. ringbuf->tail = 0;
  2069. ringbuf->space -= remain_actual;
  2070. }
  2071. ringbuf->space -= bytes;
  2072. GEM_BUG_ON(ringbuf->space < 0);
  2073. return 0;
  2074. }
  2075. /* Align the ring tail to a cacheline boundary */
  2076. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2077. {
  2078. struct intel_engine_cs *engine = req->engine;
  2079. int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2080. int ret;
  2081. if (num_dwords == 0)
  2082. return 0;
  2083. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2084. ret = intel_ring_begin(req, num_dwords);
  2085. if (ret)
  2086. return ret;
  2087. while (num_dwords--)
  2088. intel_ring_emit(engine, MI_NOOP);
  2089. intel_ring_advance(engine);
  2090. return 0;
  2091. }
  2092. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2093. {
  2094. struct drm_i915_private *dev_priv = engine->i915;
  2095. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2096. * so long as the semaphore value in the register/page is greater
  2097. * than the sync value), so whenever we reset the seqno,
  2098. * so long as we reset the tracking semaphore value to 0, it will
  2099. * always be before the next request's seqno. If we don't reset
  2100. * the semaphore value, then when the seqno moves backwards all
  2101. * future waits will complete instantly (causing rendering corruption).
  2102. */
  2103. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  2104. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2105. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2106. if (HAS_VEBOX(dev_priv))
  2107. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2108. }
  2109. if (dev_priv->semaphore_obj) {
  2110. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2111. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2112. void *semaphores = kmap(page);
  2113. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2114. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2115. kunmap(page);
  2116. }
  2117. memset(engine->semaphore.sync_seqno, 0,
  2118. sizeof(engine->semaphore.sync_seqno));
  2119. engine->set_seqno(engine, seqno);
  2120. engine->last_submitted_seqno = seqno;
  2121. engine->hangcheck.seqno = seqno;
  2122. }
  2123. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2124. u32 value)
  2125. {
  2126. struct drm_i915_private *dev_priv = engine->i915;
  2127. /* Every tail move must follow the sequence below */
  2128. /* Disable notification that the ring is IDLE. The GT
  2129. * will then assume that it is busy and bring it out of rc6.
  2130. */
  2131. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2132. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2133. /* Clear the context id. Here be magic! */
  2134. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2135. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2136. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2137. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2138. 50))
  2139. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2140. /* Now that the ring is fully powered up, update the tail */
  2141. I915_WRITE_TAIL(engine, value);
  2142. POSTING_READ(RING_TAIL(engine->mmio_base));
  2143. /* Let the ring send IDLE messages to the GT again,
  2144. * and so let it sleep to conserve power when idle.
  2145. */
  2146. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2147. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2148. }
  2149. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2150. u32 invalidate, u32 flush)
  2151. {
  2152. struct intel_engine_cs *engine = req->engine;
  2153. uint32_t cmd;
  2154. int ret;
  2155. ret = intel_ring_begin(req, 4);
  2156. if (ret)
  2157. return ret;
  2158. cmd = MI_FLUSH_DW;
  2159. if (INTEL_GEN(req->i915) >= 8)
  2160. cmd += 1;
  2161. /* We always require a command barrier so that subsequent
  2162. * commands, such as breadcrumb interrupts, are strictly ordered
  2163. * wrt the contents of the write cache being flushed to memory
  2164. * (and thus being coherent from the CPU).
  2165. */
  2166. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2167. /*
  2168. * Bspec vol 1c.5 - video engine command streamer:
  2169. * "If ENABLED, all TLBs will be invalidated once the flush
  2170. * operation is complete. This bit is only valid when the
  2171. * Post-Sync Operation field is a value of 1h or 3h."
  2172. */
  2173. if (invalidate & I915_GEM_GPU_DOMAINS)
  2174. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2175. intel_ring_emit(engine, cmd);
  2176. intel_ring_emit(engine,
  2177. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2178. if (INTEL_GEN(req->i915) >= 8) {
  2179. intel_ring_emit(engine, 0); /* upper addr */
  2180. intel_ring_emit(engine, 0); /* value */
  2181. } else {
  2182. intel_ring_emit(engine, 0);
  2183. intel_ring_emit(engine, MI_NOOP);
  2184. }
  2185. intel_ring_advance(engine);
  2186. return 0;
  2187. }
  2188. static int
  2189. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2190. u64 offset, u32 len,
  2191. unsigned dispatch_flags)
  2192. {
  2193. struct intel_engine_cs *engine = req->engine;
  2194. bool ppgtt = USES_PPGTT(engine->dev) &&
  2195. !(dispatch_flags & I915_DISPATCH_SECURE);
  2196. int ret;
  2197. ret = intel_ring_begin(req, 4);
  2198. if (ret)
  2199. return ret;
  2200. /* FIXME(BDW): Address space and security selectors. */
  2201. intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2202. (dispatch_flags & I915_DISPATCH_RS ?
  2203. MI_BATCH_RESOURCE_STREAMER : 0));
  2204. intel_ring_emit(engine, lower_32_bits(offset));
  2205. intel_ring_emit(engine, upper_32_bits(offset));
  2206. intel_ring_emit(engine, MI_NOOP);
  2207. intel_ring_advance(engine);
  2208. return 0;
  2209. }
  2210. static int
  2211. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2212. u64 offset, u32 len,
  2213. unsigned dispatch_flags)
  2214. {
  2215. struct intel_engine_cs *engine = req->engine;
  2216. int ret;
  2217. ret = intel_ring_begin(req, 2);
  2218. if (ret)
  2219. return ret;
  2220. intel_ring_emit(engine,
  2221. MI_BATCH_BUFFER_START |
  2222. (dispatch_flags & I915_DISPATCH_SECURE ?
  2223. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2224. (dispatch_flags & I915_DISPATCH_RS ?
  2225. MI_BATCH_RESOURCE_STREAMER : 0));
  2226. /* bit0-7 is the length on GEN6+ */
  2227. intel_ring_emit(engine, offset);
  2228. intel_ring_advance(engine);
  2229. return 0;
  2230. }
  2231. static int
  2232. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2233. u64 offset, u32 len,
  2234. unsigned dispatch_flags)
  2235. {
  2236. struct intel_engine_cs *engine = req->engine;
  2237. int ret;
  2238. ret = intel_ring_begin(req, 2);
  2239. if (ret)
  2240. return ret;
  2241. intel_ring_emit(engine,
  2242. MI_BATCH_BUFFER_START |
  2243. (dispatch_flags & I915_DISPATCH_SECURE ?
  2244. 0 : MI_BATCH_NON_SECURE_I965));
  2245. /* bit0-7 is the length on GEN6+ */
  2246. intel_ring_emit(engine, offset);
  2247. intel_ring_advance(engine);
  2248. return 0;
  2249. }
  2250. /* Blitter support (SandyBridge+) */
  2251. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2252. u32 invalidate, u32 flush)
  2253. {
  2254. struct intel_engine_cs *engine = req->engine;
  2255. uint32_t cmd;
  2256. int ret;
  2257. ret = intel_ring_begin(req, 4);
  2258. if (ret)
  2259. return ret;
  2260. cmd = MI_FLUSH_DW;
  2261. if (INTEL_GEN(req->i915) >= 8)
  2262. cmd += 1;
  2263. /* We always require a command barrier so that subsequent
  2264. * commands, such as breadcrumb interrupts, are strictly ordered
  2265. * wrt the contents of the write cache being flushed to memory
  2266. * (and thus being coherent from the CPU).
  2267. */
  2268. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2269. /*
  2270. * Bspec vol 1c.3 - blitter engine command streamer:
  2271. * "If ENABLED, all TLBs will be invalidated once the flush
  2272. * operation is complete. This bit is only valid when the
  2273. * Post-Sync Operation field is a value of 1h or 3h."
  2274. */
  2275. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2276. cmd |= MI_INVALIDATE_TLB;
  2277. intel_ring_emit(engine, cmd);
  2278. intel_ring_emit(engine,
  2279. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2280. if (INTEL_GEN(req->i915) >= 8) {
  2281. intel_ring_emit(engine, 0); /* upper addr */
  2282. intel_ring_emit(engine, 0); /* value */
  2283. } else {
  2284. intel_ring_emit(engine, 0);
  2285. intel_ring_emit(engine, MI_NOOP);
  2286. }
  2287. intel_ring_advance(engine);
  2288. return 0;
  2289. }
  2290. int intel_init_render_ring_buffer(struct drm_device *dev)
  2291. {
  2292. struct drm_i915_private *dev_priv = dev->dev_private;
  2293. struct intel_engine_cs *engine = &dev_priv->engine[RCS];
  2294. struct drm_i915_gem_object *obj;
  2295. int ret;
  2296. engine->name = "render ring";
  2297. engine->id = RCS;
  2298. engine->exec_id = I915_EXEC_RENDER;
  2299. engine->hw_id = 0;
  2300. engine->mmio_base = RENDER_RING_BASE;
  2301. if (INTEL_GEN(dev_priv) >= 8) {
  2302. if (i915_semaphore_is_enabled(dev_priv)) {
  2303. obj = i915_gem_object_create(dev, 4096);
  2304. if (IS_ERR(obj)) {
  2305. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2306. i915.semaphores = 0;
  2307. } else {
  2308. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2309. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2310. if (ret != 0) {
  2311. drm_gem_object_unreference(&obj->base);
  2312. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2313. i915.semaphores = 0;
  2314. } else
  2315. dev_priv->semaphore_obj = obj;
  2316. }
  2317. }
  2318. engine->init_context = intel_rcs_ctx_init;
  2319. engine->add_request = gen8_render_add_request;
  2320. engine->flush = gen8_render_ring_flush;
  2321. engine->irq_get = gen8_ring_get_irq;
  2322. engine->irq_put = gen8_ring_put_irq;
  2323. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2324. engine->get_seqno = ring_get_seqno;
  2325. engine->set_seqno = ring_set_seqno;
  2326. if (i915_semaphore_is_enabled(dev_priv)) {
  2327. WARN_ON(!dev_priv->semaphore_obj);
  2328. engine->semaphore.sync_to = gen8_ring_sync;
  2329. engine->semaphore.signal = gen8_rcs_signal;
  2330. GEN8_RING_SEMAPHORE_INIT(engine);
  2331. }
  2332. } else if (INTEL_GEN(dev_priv) >= 6) {
  2333. engine->init_context = intel_rcs_ctx_init;
  2334. engine->add_request = gen6_add_request;
  2335. engine->flush = gen7_render_ring_flush;
  2336. if (IS_GEN6(dev_priv))
  2337. engine->flush = gen6_render_ring_flush;
  2338. engine->irq_get = gen6_ring_get_irq;
  2339. engine->irq_put = gen6_ring_put_irq;
  2340. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2341. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2342. engine->get_seqno = ring_get_seqno;
  2343. engine->set_seqno = ring_set_seqno;
  2344. if (i915_semaphore_is_enabled(dev_priv)) {
  2345. engine->semaphore.sync_to = gen6_ring_sync;
  2346. engine->semaphore.signal = gen6_signal;
  2347. /*
  2348. * The current semaphore is only applied on pre-gen8
  2349. * platform. And there is no VCS2 ring on the pre-gen8
  2350. * platform. So the semaphore between RCS and VCS2 is
  2351. * initialized as INVALID. Gen8 will initialize the
  2352. * sema between VCS2 and RCS later.
  2353. */
  2354. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2355. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2356. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2357. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2358. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2359. engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2360. engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2361. engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2362. engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2363. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2364. }
  2365. } else if (IS_GEN5(dev_priv)) {
  2366. engine->add_request = pc_render_add_request;
  2367. engine->flush = gen4_render_ring_flush;
  2368. engine->get_seqno = pc_render_get_seqno;
  2369. engine->set_seqno = pc_render_set_seqno;
  2370. engine->irq_get = gen5_ring_get_irq;
  2371. engine->irq_put = gen5_ring_put_irq;
  2372. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2373. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2374. } else {
  2375. engine->add_request = i9xx_add_request;
  2376. if (INTEL_GEN(dev_priv) < 4)
  2377. engine->flush = gen2_render_ring_flush;
  2378. else
  2379. engine->flush = gen4_render_ring_flush;
  2380. engine->get_seqno = ring_get_seqno;
  2381. engine->set_seqno = ring_set_seqno;
  2382. if (IS_GEN2(dev_priv)) {
  2383. engine->irq_get = i8xx_ring_get_irq;
  2384. engine->irq_put = i8xx_ring_put_irq;
  2385. } else {
  2386. engine->irq_get = i9xx_ring_get_irq;
  2387. engine->irq_put = i9xx_ring_put_irq;
  2388. }
  2389. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2390. }
  2391. engine->write_tail = ring_write_tail;
  2392. if (IS_HASWELL(dev_priv))
  2393. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2394. else if (IS_GEN8(dev_priv))
  2395. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2396. else if (INTEL_GEN(dev_priv) >= 6)
  2397. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2398. else if (INTEL_GEN(dev_priv) >= 4)
  2399. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2400. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2401. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2402. else
  2403. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2404. engine->init_hw = init_render_ring;
  2405. engine->cleanup = render_ring_cleanup;
  2406. /* Workaround batchbuffer to combat CS tlb bug. */
  2407. if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2408. obj = i915_gem_object_create(dev, I830_WA_SIZE);
  2409. if (IS_ERR(obj)) {
  2410. DRM_ERROR("Failed to allocate batch bo\n");
  2411. return PTR_ERR(obj);
  2412. }
  2413. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2414. if (ret != 0) {
  2415. drm_gem_object_unreference(&obj->base);
  2416. DRM_ERROR("Failed to ping batch bo\n");
  2417. return ret;
  2418. }
  2419. engine->scratch.obj = obj;
  2420. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2421. }
  2422. ret = intel_init_ring_buffer(dev, engine);
  2423. if (ret)
  2424. return ret;
  2425. if (INTEL_GEN(dev_priv) >= 5) {
  2426. ret = intel_init_pipe_control(engine);
  2427. if (ret)
  2428. return ret;
  2429. }
  2430. return 0;
  2431. }
  2432. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2433. {
  2434. struct drm_i915_private *dev_priv = dev->dev_private;
  2435. struct intel_engine_cs *engine = &dev_priv->engine[VCS];
  2436. engine->name = "bsd ring";
  2437. engine->id = VCS;
  2438. engine->exec_id = I915_EXEC_BSD;
  2439. engine->hw_id = 1;
  2440. engine->write_tail = ring_write_tail;
  2441. if (INTEL_GEN(dev_priv) >= 6) {
  2442. engine->mmio_base = GEN6_BSD_RING_BASE;
  2443. /* gen6 bsd needs a special wa for tail updates */
  2444. if (IS_GEN6(dev_priv))
  2445. engine->write_tail = gen6_bsd_ring_write_tail;
  2446. engine->flush = gen6_bsd_ring_flush;
  2447. engine->add_request = gen6_add_request;
  2448. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2449. engine->get_seqno = ring_get_seqno;
  2450. engine->set_seqno = ring_set_seqno;
  2451. if (INTEL_GEN(dev_priv) >= 8) {
  2452. engine->irq_enable_mask =
  2453. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2454. engine->irq_get = gen8_ring_get_irq;
  2455. engine->irq_put = gen8_ring_put_irq;
  2456. engine->dispatch_execbuffer =
  2457. gen8_ring_dispatch_execbuffer;
  2458. if (i915_semaphore_is_enabled(dev_priv)) {
  2459. engine->semaphore.sync_to = gen8_ring_sync;
  2460. engine->semaphore.signal = gen8_xcs_signal;
  2461. GEN8_RING_SEMAPHORE_INIT(engine);
  2462. }
  2463. } else {
  2464. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2465. engine->irq_get = gen6_ring_get_irq;
  2466. engine->irq_put = gen6_ring_put_irq;
  2467. engine->dispatch_execbuffer =
  2468. gen6_ring_dispatch_execbuffer;
  2469. if (i915_semaphore_is_enabled(dev_priv)) {
  2470. engine->semaphore.sync_to = gen6_ring_sync;
  2471. engine->semaphore.signal = gen6_signal;
  2472. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2473. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2474. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2475. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2476. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2477. engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2478. engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2479. engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2480. engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2481. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2482. }
  2483. }
  2484. } else {
  2485. engine->mmio_base = BSD_RING_BASE;
  2486. engine->flush = bsd_ring_flush;
  2487. engine->add_request = i9xx_add_request;
  2488. engine->get_seqno = ring_get_seqno;
  2489. engine->set_seqno = ring_set_seqno;
  2490. if (IS_GEN5(dev_priv)) {
  2491. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2492. engine->irq_get = gen5_ring_get_irq;
  2493. engine->irq_put = gen5_ring_put_irq;
  2494. } else {
  2495. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2496. engine->irq_get = i9xx_ring_get_irq;
  2497. engine->irq_put = i9xx_ring_put_irq;
  2498. }
  2499. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2500. }
  2501. engine->init_hw = init_ring_common;
  2502. return intel_init_ring_buffer(dev, engine);
  2503. }
  2504. /**
  2505. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2506. */
  2507. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2508. {
  2509. struct drm_i915_private *dev_priv = dev->dev_private;
  2510. struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
  2511. engine->name = "bsd2 ring";
  2512. engine->id = VCS2;
  2513. engine->exec_id = I915_EXEC_BSD;
  2514. engine->hw_id = 4;
  2515. engine->write_tail = ring_write_tail;
  2516. engine->mmio_base = GEN8_BSD2_RING_BASE;
  2517. engine->flush = gen6_bsd_ring_flush;
  2518. engine->add_request = gen6_add_request;
  2519. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2520. engine->get_seqno = ring_get_seqno;
  2521. engine->set_seqno = ring_set_seqno;
  2522. engine->irq_enable_mask =
  2523. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2524. engine->irq_get = gen8_ring_get_irq;
  2525. engine->irq_put = gen8_ring_put_irq;
  2526. engine->dispatch_execbuffer =
  2527. gen8_ring_dispatch_execbuffer;
  2528. if (i915_semaphore_is_enabled(dev_priv)) {
  2529. engine->semaphore.sync_to = gen8_ring_sync;
  2530. engine->semaphore.signal = gen8_xcs_signal;
  2531. GEN8_RING_SEMAPHORE_INIT(engine);
  2532. }
  2533. engine->init_hw = init_ring_common;
  2534. return intel_init_ring_buffer(dev, engine);
  2535. }
  2536. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2537. {
  2538. struct drm_i915_private *dev_priv = dev->dev_private;
  2539. struct intel_engine_cs *engine = &dev_priv->engine[BCS];
  2540. engine->name = "blitter ring";
  2541. engine->id = BCS;
  2542. engine->exec_id = I915_EXEC_BLT;
  2543. engine->hw_id = 2;
  2544. engine->mmio_base = BLT_RING_BASE;
  2545. engine->write_tail = ring_write_tail;
  2546. engine->flush = gen6_ring_flush;
  2547. engine->add_request = gen6_add_request;
  2548. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2549. engine->get_seqno = ring_get_seqno;
  2550. engine->set_seqno = ring_set_seqno;
  2551. if (INTEL_GEN(dev_priv) >= 8) {
  2552. engine->irq_enable_mask =
  2553. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2554. engine->irq_get = gen8_ring_get_irq;
  2555. engine->irq_put = gen8_ring_put_irq;
  2556. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2557. if (i915_semaphore_is_enabled(dev_priv)) {
  2558. engine->semaphore.sync_to = gen8_ring_sync;
  2559. engine->semaphore.signal = gen8_xcs_signal;
  2560. GEN8_RING_SEMAPHORE_INIT(engine);
  2561. }
  2562. } else {
  2563. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2564. engine->irq_get = gen6_ring_get_irq;
  2565. engine->irq_put = gen6_ring_put_irq;
  2566. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2567. if (i915_semaphore_is_enabled(dev_priv)) {
  2568. engine->semaphore.signal = gen6_signal;
  2569. engine->semaphore.sync_to = gen6_ring_sync;
  2570. /*
  2571. * The current semaphore is only applied on pre-gen8
  2572. * platform. And there is no VCS2 ring on the pre-gen8
  2573. * platform. So the semaphore between BCS and VCS2 is
  2574. * initialized as INVALID. Gen8 will initialize the
  2575. * sema between BCS and VCS2 later.
  2576. */
  2577. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2578. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2579. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2580. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2581. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2582. engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2583. engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2584. engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2585. engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2586. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2587. }
  2588. }
  2589. engine->init_hw = init_ring_common;
  2590. return intel_init_ring_buffer(dev, engine);
  2591. }
  2592. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2593. {
  2594. struct drm_i915_private *dev_priv = dev->dev_private;
  2595. struct intel_engine_cs *engine = &dev_priv->engine[VECS];
  2596. engine->name = "video enhancement ring";
  2597. engine->id = VECS;
  2598. engine->exec_id = I915_EXEC_VEBOX;
  2599. engine->hw_id = 3;
  2600. engine->mmio_base = VEBOX_RING_BASE;
  2601. engine->write_tail = ring_write_tail;
  2602. engine->flush = gen6_ring_flush;
  2603. engine->add_request = gen6_add_request;
  2604. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2605. engine->get_seqno = ring_get_seqno;
  2606. engine->set_seqno = ring_set_seqno;
  2607. if (INTEL_GEN(dev_priv) >= 8) {
  2608. engine->irq_enable_mask =
  2609. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2610. engine->irq_get = gen8_ring_get_irq;
  2611. engine->irq_put = gen8_ring_put_irq;
  2612. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2613. if (i915_semaphore_is_enabled(dev_priv)) {
  2614. engine->semaphore.sync_to = gen8_ring_sync;
  2615. engine->semaphore.signal = gen8_xcs_signal;
  2616. GEN8_RING_SEMAPHORE_INIT(engine);
  2617. }
  2618. } else {
  2619. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2620. engine->irq_get = hsw_vebox_get_irq;
  2621. engine->irq_put = hsw_vebox_put_irq;
  2622. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2623. if (i915_semaphore_is_enabled(dev_priv)) {
  2624. engine->semaphore.sync_to = gen6_ring_sync;
  2625. engine->semaphore.signal = gen6_signal;
  2626. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2627. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2628. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2629. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2630. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2631. engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2632. engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2633. engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2634. engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2635. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2636. }
  2637. }
  2638. engine->init_hw = init_ring_common;
  2639. return intel_init_ring_buffer(dev, engine);
  2640. }
  2641. int
  2642. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2643. {
  2644. struct intel_engine_cs *engine = req->engine;
  2645. int ret;
  2646. if (!engine->gpu_caches_dirty)
  2647. return 0;
  2648. ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2649. if (ret)
  2650. return ret;
  2651. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2652. engine->gpu_caches_dirty = false;
  2653. return 0;
  2654. }
  2655. int
  2656. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2657. {
  2658. struct intel_engine_cs *engine = req->engine;
  2659. uint32_t flush_domains;
  2660. int ret;
  2661. flush_domains = 0;
  2662. if (engine->gpu_caches_dirty)
  2663. flush_domains = I915_GEM_GPU_DOMAINS;
  2664. ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2665. if (ret)
  2666. return ret;
  2667. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2668. engine->gpu_caches_dirty = false;
  2669. return 0;
  2670. }
  2671. void
  2672. intel_stop_engine(struct intel_engine_cs *engine)
  2673. {
  2674. int ret;
  2675. if (!intel_engine_initialized(engine))
  2676. return;
  2677. ret = intel_engine_idle(engine);
  2678. if (ret)
  2679. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2680. engine->name, ret);
  2681. stop_ring(engine);
  2682. }