tcp_input.c 181 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_timestamps __read_mostly = 1;
  76. int sysctl_tcp_window_scaling __read_mostly = 1;
  77. int sysctl_tcp_sack __read_mostly = 1;
  78. int sysctl_tcp_fack __read_mostly = 1;
  79. int sysctl_tcp_max_reordering __read_mostly = 300;
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 1000;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  91. int sysctl_tcp_thin_dupack __read_mostly;
  92. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  93. int sysctl_tcp_early_retrans __read_mostly = 3;
  94. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  95. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  96. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  97. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  98. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  99. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  100. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  101. #define FLAG_ECE 0x40 /* ECE in this ACK */
  102. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  103. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  104. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  105. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  106. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  107. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  108. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  109. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  110. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  111. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  112. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  113. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  114. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  115. #define REXMIT_NONE 0 /* no loss recovery to do */
  116. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  117. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  118. /* Adapt the MSS value used to make delayed ack decision to the
  119. * real world.
  120. */
  121. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  122. {
  123. struct inet_connection_sock *icsk = inet_csk(sk);
  124. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  125. unsigned int len;
  126. icsk->icsk_ack.last_seg_size = 0;
  127. /* skb->len may jitter because of SACKs, even if peer
  128. * sends good full-sized frames.
  129. */
  130. len = skb_shinfo(skb)->gso_size ? : skb->len;
  131. if (len >= icsk->icsk_ack.rcv_mss) {
  132. icsk->icsk_ack.rcv_mss = len;
  133. } else {
  134. /* Otherwise, we make more careful check taking into account,
  135. * that SACKs block is variable.
  136. *
  137. * "len" is invariant segment length, including TCP header.
  138. */
  139. len += skb->data - skb_transport_header(skb);
  140. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  141. /* If PSH is not set, packet should be
  142. * full sized, provided peer TCP is not badly broken.
  143. * This observation (if it is correct 8)) allows
  144. * to handle super-low mtu links fairly.
  145. */
  146. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  147. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  148. /* Subtract also invariant (if peer is RFC compliant),
  149. * tcp header plus fixed timestamp option length.
  150. * Resulting "len" is MSS free of SACK jitter.
  151. */
  152. len -= tcp_sk(sk)->tcp_header_len;
  153. icsk->icsk_ack.last_seg_size = len;
  154. if (len == lss) {
  155. icsk->icsk_ack.rcv_mss = len;
  156. return;
  157. }
  158. }
  159. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  160. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  161. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  162. }
  163. }
  164. static void tcp_incr_quickack(struct sock *sk)
  165. {
  166. struct inet_connection_sock *icsk = inet_csk(sk);
  167. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  168. if (quickacks == 0)
  169. quickacks = 2;
  170. if (quickacks > icsk->icsk_ack.quick)
  171. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  172. }
  173. static void tcp_enter_quickack_mode(struct sock *sk)
  174. {
  175. struct inet_connection_sock *icsk = inet_csk(sk);
  176. tcp_incr_quickack(sk);
  177. icsk->icsk_ack.pingpong = 0;
  178. icsk->icsk_ack.ato = TCP_ATO_MIN;
  179. }
  180. /* Send ACKs quickly, if "quick" count is not exhausted
  181. * and the session is not interactive.
  182. */
  183. static bool tcp_in_quickack_mode(struct sock *sk)
  184. {
  185. const struct inet_connection_sock *icsk = inet_csk(sk);
  186. const struct dst_entry *dst = __sk_dst_get(sk);
  187. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  188. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  189. }
  190. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  191. {
  192. if (tp->ecn_flags & TCP_ECN_OK)
  193. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  194. }
  195. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  196. {
  197. if (tcp_hdr(skb)->cwr)
  198. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  199. }
  200. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  201. {
  202. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  203. }
  204. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  205. {
  206. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  207. case INET_ECN_NOT_ECT:
  208. /* Funny extension: if ECT is not set on a segment,
  209. * and we already seen ECT on a previous segment,
  210. * it is probably a retransmit.
  211. */
  212. if (tp->ecn_flags & TCP_ECN_SEEN)
  213. tcp_enter_quickack_mode((struct sock *)tp);
  214. break;
  215. case INET_ECN_CE:
  216. if (tcp_ca_needs_ecn((struct sock *)tp))
  217. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  218. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  219. /* Better not delay acks, sender can have a very low cwnd */
  220. tcp_enter_quickack_mode((struct sock *)tp);
  221. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  222. }
  223. tp->ecn_flags |= TCP_ECN_SEEN;
  224. break;
  225. default:
  226. if (tcp_ca_needs_ecn((struct sock *)tp))
  227. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  228. tp->ecn_flags |= TCP_ECN_SEEN;
  229. break;
  230. }
  231. }
  232. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  233. {
  234. if (tp->ecn_flags & TCP_ECN_OK)
  235. __tcp_ecn_check_ce(tp, skb);
  236. }
  237. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  238. {
  239. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  240. tp->ecn_flags &= ~TCP_ECN_OK;
  241. }
  242. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  243. {
  244. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  245. tp->ecn_flags &= ~TCP_ECN_OK;
  246. }
  247. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  248. {
  249. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  250. return true;
  251. return false;
  252. }
  253. /* Buffer size and advertised window tuning.
  254. *
  255. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  256. */
  257. static void tcp_sndbuf_expand(struct sock *sk)
  258. {
  259. const struct tcp_sock *tp = tcp_sk(sk);
  260. int sndmem, per_mss;
  261. u32 nr_segs;
  262. /* Worst case is non GSO/TSO : each frame consumes one skb
  263. * and skb->head is kmalloced using power of two area of memory
  264. */
  265. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  266. MAX_TCP_HEADER +
  267. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  268. per_mss = roundup_pow_of_two(per_mss) +
  269. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  270. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  271. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  272. /* Fast Recovery (RFC 5681 3.2) :
  273. * Cubic needs 1.7 factor, rounded to 2 to include
  274. * extra cushion (application might react slowly to POLLOUT)
  275. */
  276. sndmem = 2 * nr_segs * per_mss;
  277. if (sk->sk_sndbuf < sndmem)
  278. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  279. }
  280. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  281. *
  282. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  283. * forward and advertised in receiver window (tp->rcv_wnd) and
  284. * "application buffer", required to isolate scheduling/application
  285. * latencies from network.
  286. * window_clamp is maximal advertised window. It can be less than
  287. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  288. * is reserved for "application" buffer. The less window_clamp is
  289. * the smoother our behaviour from viewpoint of network, but the lower
  290. * throughput and the higher sensitivity of the connection to losses. 8)
  291. *
  292. * rcv_ssthresh is more strict window_clamp used at "slow start"
  293. * phase to predict further behaviour of this connection.
  294. * It is used for two goals:
  295. * - to enforce header prediction at sender, even when application
  296. * requires some significant "application buffer". It is check #1.
  297. * - to prevent pruning of receive queue because of misprediction
  298. * of receiver window. Check #2.
  299. *
  300. * The scheme does not work when sender sends good segments opening
  301. * window and then starts to feed us spaghetti. But it should work
  302. * in common situations. Otherwise, we have to rely on queue collapsing.
  303. */
  304. /* Slow part of check#2. */
  305. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  306. {
  307. struct tcp_sock *tp = tcp_sk(sk);
  308. /* Optimize this! */
  309. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  310. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  311. while (tp->rcv_ssthresh <= window) {
  312. if (truesize <= skb->len)
  313. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  314. truesize >>= 1;
  315. window >>= 1;
  316. }
  317. return 0;
  318. }
  319. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  320. {
  321. struct tcp_sock *tp = tcp_sk(sk);
  322. /* Check #1 */
  323. if (tp->rcv_ssthresh < tp->window_clamp &&
  324. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  325. !tcp_under_memory_pressure(sk)) {
  326. int incr;
  327. /* Check #2. Increase window, if skb with such overhead
  328. * will fit to rcvbuf in future.
  329. */
  330. if (tcp_win_from_space(skb->truesize) <= skb->len)
  331. incr = 2 * tp->advmss;
  332. else
  333. incr = __tcp_grow_window(sk, skb);
  334. if (incr) {
  335. incr = max_t(int, incr, 2 * skb->len);
  336. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  337. tp->window_clamp);
  338. inet_csk(sk)->icsk_ack.quick |= 1;
  339. }
  340. }
  341. }
  342. /* 3. Tuning rcvbuf, when connection enters established state. */
  343. static void tcp_fixup_rcvbuf(struct sock *sk)
  344. {
  345. u32 mss = tcp_sk(sk)->advmss;
  346. int rcvmem;
  347. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  348. tcp_default_init_rwnd(mss);
  349. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  350. * Allow enough cushion so that sender is not limited by our window
  351. */
  352. if (sysctl_tcp_moderate_rcvbuf)
  353. rcvmem <<= 2;
  354. if (sk->sk_rcvbuf < rcvmem)
  355. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  356. }
  357. /* 4. Try to fixup all. It is made immediately after connection enters
  358. * established state.
  359. */
  360. void tcp_init_buffer_space(struct sock *sk)
  361. {
  362. struct tcp_sock *tp = tcp_sk(sk);
  363. int maxwin;
  364. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  365. tcp_fixup_rcvbuf(sk);
  366. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  367. tcp_sndbuf_expand(sk);
  368. tp->rcvq_space.space = tp->rcv_wnd;
  369. tp->rcvq_space.time = tcp_time_stamp;
  370. tp->rcvq_space.seq = tp->copied_seq;
  371. maxwin = tcp_full_space(sk);
  372. if (tp->window_clamp >= maxwin) {
  373. tp->window_clamp = maxwin;
  374. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  375. tp->window_clamp = max(maxwin -
  376. (maxwin >> sysctl_tcp_app_win),
  377. 4 * tp->advmss);
  378. }
  379. /* Force reservation of one segment. */
  380. if (sysctl_tcp_app_win &&
  381. tp->window_clamp > 2 * tp->advmss &&
  382. tp->window_clamp + tp->advmss > maxwin)
  383. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  384. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  385. tp->snd_cwnd_stamp = tcp_time_stamp;
  386. }
  387. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  388. static void tcp_clamp_window(struct sock *sk)
  389. {
  390. struct tcp_sock *tp = tcp_sk(sk);
  391. struct inet_connection_sock *icsk = inet_csk(sk);
  392. icsk->icsk_ack.quick = 0;
  393. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  394. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  395. !tcp_under_memory_pressure(sk) &&
  396. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  397. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  398. sysctl_tcp_rmem[2]);
  399. }
  400. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  401. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  402. }
  403. /* Initialize RCV_MSS value.
  404. * RCV_MSS is an our guess about MSS used by the peer.
  405. * We haven't any direct information about the MSS.
  406. * It's better to underestimate the RCV_MSS rather than overestimate.
  407. * Overestimations make us ACKing less frequently than needed.
  408. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  409. */
  410. void tcp_initialize_rcv_mss(struct sock *sk)
  411. {
  412. const struct tcp_sock *tp = tcp_sk(sk);
  413. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  414. hint = min(hint, tp->rcv_wnd / 2);
  415. hint = min(hint, TCP_MSS_DEFAULT);
  416. hint = max(hint, TCP_MIN_MSS);
  417. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  418. }
  419. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  420. /* Receiver "autotuning" code.
  421. *
  422. * The algorithm for RTT estimation w/o timestamps is based on
  423. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  424. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  425. *
  426. * More detail on this code can be found at
  427. * <http://staff.psc.edu/jheffner/>,
  428. * though this reference is out of date. A new paper
  429. * is pending.
  430. */
  431. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  432. {
  433. u32 new_sample = tp->rcv_rtt_est.rtt;
  434. long m = sample;
  435. if (m == 0)
  436. m = 1;
  437. if (new_sample != 0) {
  438. /* If we sample in larger samples in the non-timestamp
  439. * case, we could grossly overestimate the RTT especially
  440. * with chatty applications or bulk transfer apps which
  441. * are stalled on filesystem I/O.
  442. *
  443. * Also, since we are only going for a minimum in the
  444. * non-timestamp case, we do not smooth things out
  445. * else with timestamps disabled convergence takes too
  446. * long.
  447. */
  448. if (!win_dep) {
  449. m -= (new_sample >> 3);
  450. new_sample += m;
  451. } else {
  452. m <<= 3;
  453. if (m < new_sample)
  454. new_sample = m;
  455. }
  456. } else {
  457. /* No previous measure. */
  458. new_sample = m << 3;
  459. }
  460. if (tp->rcv_rtt_est.rtt != new_sample)
  461. tp->rcv_rtt_est.rtt = new_sample;
  462. }
  463. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  464. {
  465. if (tp->rcv_rtt_est.time == 0)
  466. goto new_measure;
  467. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  468. return;
  469. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  470. new_measure:
  471. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  472. tp->rcv_rtt_est.time = tcp_time_stamp;
  473. }
  474. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  475. const struct sk_buff *skb)
  476. {
  477. struct tcp_sock *tp = tcp_sk(sk);
  478. if (tp->rx_opt.rcv_tsecr &&
  479. (TCP_SKB_CB(skb)->end_seq -
  480. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  481. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  482. }
  483. /*
  484. * This function should be called every time data is copied to user space.
  485. * It calculates the appropriate TCP receive buffer space.
  486. */
  487. void tcp_rcv_space_adjust(struct sock *sk)
  488. {
  489. struct tcp_sock *tp = tcp_sk(sk);
  490. int time;
  491. int copied;
  492. time = tcp_time_stamp - tp->rcvq_space.time;
  493. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  494. return;
  495. /* Number of bytes copied to user in last RTT */
  496. copied = tp->copied_seq - tp->rcvq_space.seq;
  497. if (copied <= tp->rcvq_space.space)
  498. goto new_measure;
  499. /* A bit of theory :
  500. * copied = bytes received in previous RTT, our base window
  501. * To cope with packet losses, we need a 2x factor
  502. * To cope with slow start, and sender growing its cwin by 100 %
  503. * every RTT, we need a 4x factor, because the ACK we are sending
  504. * now is for the next RTT, not the current one :
  505. * <prev RTT . ><current RTT .. ><next RTT .... >
  506. */
  507. if (sysctl_tcp_moderate_rcvbuf &&
  508. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  509. int rcvwin, rcvmem, rcvbuf;
  510. /* minimal window to cope with packet losses, assuming
  511. * steady state. Add some cushion because of small variations.
  512. */
  513. rcvwin = (copied << 1) + 16 * tp->advmss;
  514. /* If rate increased by 25%,
  515. * assume slow start, rcvwin = 3 * copied
  516. * If rate increased by 50%,
  517. * assume sender can use 2x growth, rcvwin = 4 * copied
  518. */
  519. if (copied >=
  520. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  521. if (copied >=
  522. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  523. rcvwin <<= 1;
  524. else
  525. rcvwin += (rcvwin >> 1);
  526. }
  527. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  528. while (tcp_win_from_space(rcvmem) < tp->advmss)
  529. rcvmem += 128;
  530. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  531. if (rcvbuf > sk->sk_rcvbuf) {
  532. sk->sk_rcvbuf = rcvbuf;
  533. /* Make the window clamp follow along. */
  534. tp->window_clamp = rcvwin;
  535. }
  536. }
  537. tp->rcvq_space.space = copied;
  538. new_measure:
  539. tp->rcvq_space.seq = tp->copied_seq;
  540. tp->rcvq_space.time = tcp_time_stamp;
  541. }
  542. /* There is something which you must keep in mind when you analyze the
  543. * behavior of the tp->ato delayed ack timeout interval. When a
  544. * connection starts up, we want to ack as quickly as possible. The
  545. * problem is that "good" TCP's do slow start at the beginning of data
  546. * transmission. The means that until we send the first few ACK's the
  547. * sender will sit on his end and only queue most of his data, because
  548. * he can only send snd_cwnd unacked packets at any given time. For
  549. * each ACK we send, he increments snd_cwnd and transmits more of his
  550. * queue. -DaveM
  551. */
  552. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  553. {
  554. struct tcp_sock *tp = tcp_sk(sk);
  555. struct inet_connection_sock *icsk = inet_csk(sk);
  556. u32 now;
  557. inet_csk_schedule_ack(sk);
  558. tcp_measure_rcv_mss(sk, skb);
  559. tcp_rcv_rtt_measure(tp);
  560. now = tcp_time_stamp;
  561. if (!icsk->icsk_ack.ato) {
  562. /* The _first_ data packet received, initialize
  563. * delayed ACK engine.
  564. */
  565. tcp_incr_quickack(sk);
  566. icsk->icsk_ack.ato = TCP_ATO_MIN;
  567. } else {
  568. int m = now - icsk->icsk_ack.lrcvtime;
  569. if (m <= TCP_ATO_MIN / 2) {
  570. /* The fastest case is the first. */
  571. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  572. } else if (m < icsk->icsk_ack.ato) {
  573. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  574. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  575. icsk->icsk_ack.ato = icsk->icsk_rto;
  576. } else if (m > icsk->icsk_rto) {
  577. /* Too long gap. Apparently sender failed to
  578. * restart window, so that we send ACKs quickly.
  579. */
  580. tcp_incr_quickack(sk);
  581. sk_mem_reclaim(sk);
  582. }
  583. }
  584. icsk->icsk_ack.lrcvtime = now;
  585. tcp_ecn_check_ce(tp, skb);
  586. if (skb->len >= 128)
  587. tcp_grow_window(sk, skb);
  588. }
  589. /* Called to compute a smoothed rtt estimate. The data fed to this
  590. * routine either comes from timestamps, or from segments that were
  591. * known _not_ to have been retransmitted [see Karn/Partridge
  592. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  593. * piece by Van Jacobson.
  594. * NOTE: the next three routines used to be one big routine.
  595. * To save cycles in the RFC 1323 implementation it was better to break
  596. * it up into three procedures. -- erics
  597. */
  598. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  599. {
  600. struct tcp_sock *tp = tcp_sk(sk);
  601. long m = mrtt_us; /* RTT */
  602. u32 srtt = tp->srtt_us;
  603. /* The following amusing code comes from Jacobson's
  604. * article in SIGCOMM '88. Note that rtt and mdev
  605. * are scaled versions of rtt and mean deviation.
  606. * This is designed to be as fast as possible
  607. * m stands for "measurement".
  608. *
  609. * On a 1990 paper the rto value is changed to:
  610. * RTO = rtt + 4 * mdev
  611. *
  612. * Funny. This algorithm seems to be very broken.
  613. * These formulae increase RTO, when it should be decreased, increase
  614. * too slowly, when it should be increased quickly, decrease too quickly
  615. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  616. * does not matter how to _calculate_ it. Seems, it was trap
  617. * that VJ failed to avoid. 8)
  618. */
  619. if (srtt != 0) {
  620. m -= (srtt >> 3); /* m is now error in rtt est */
  621. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  622. if (m < 0) {
  623. m = -m; /* m is now abs(error) */
  624. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  625. /* This is similar to one of Eifel findings.
  626. * Eifel blocks mdev updates when rtt decreases.
  627. * This solution is a bit different: we use finer gain
  628. * for mdev in this case (alpha*beta).
  629. * Like Eifel it also prevents growth of rto,
  630. * but also it limits too fast rto decreases,
  631. * happening in pure Eifel.
  632. */
  633. if (m > 0)
  634. m >>= 3;
  635. } else {
  636. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  637. }
  638. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  639. if (tp->mdev_us > tp->mdev_max_us) {
  640. tp->mdev_max_us = tp->mdev_us;
  641. if (tp->mdev_max_us > tp->rttvar_us)
  642. tp->rttvar_us = tp->mdev_max_us;
  643. }
  644. if (after(tp->snd_una, tp->rtt_seq)) {
  645. if (tp->mdev_max_us < tp->rttvar_us)
  646. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  647. tp->rtt_seq = tp->snd_nxt;
  648. tp->mdev_max_us = tcp_rto_min_us(sk);
  649. }
  650. } else {
  651. /* no previous measure. */
  652. srtt = m << 3; /* take the measured time to be rtt */
  653. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  654. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  655. tp->mdev_max_us = tp->rttvar_us;
  656. tp->rtt_seq = tp->snd_nxt;
  657. }
  658. tp->srtt_us = max(1U, srtt);
  659. }
  660. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  661. * Note: TCP stack does not yet implement pacing.
  662. * FQ packet scheduler can be used to implement cheap but effective
  663. * TCP pacing, to smooth the burst on large writes when packets
  664. * in flight is significantly lower than cwnd (or rwin)
  665. */
  666. int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
  667. int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
  668. static void tcp_update_pacing_rate(struct sock *sk)
  669. {
  670. const struct tcp_sock *tp = tcp_sk(sk);
  671. u64 rate;
  672. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  673. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  674. /* current rate is (cwnd * mss) / srtt
  675. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  676. * In Congestion Avoidance phase, set it to 120 % the current rate.
  677. *
  678. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  679. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  680. * end of slow start and should slow down.
  681. */
  682. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  683. rate *= sysctl_tcp_pacing_ss_ratio;
  684. else
  685. rate *= sysctl_tcp_pacing_ca_ratio;
  686. rate *= max(tp->snd_cwnd, tp->packets_out);
  687. if (likely(tp->srtt_us))
  688. do_div(rate, tp->srtt_us);
  689. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  690. * without any lock. We want to make sure compiler wont store
  691. * intermediate values in this location.
  692. */
  693. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  694. sk->sk_max_pacing_rate);
  695. }
  696. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  697. * routine referred to above.
  698. */
  699. static void tcp_set_rto(struct sock *sk)
  700. {
  701. const struct tcp_sock *tp = tcp_sk(sk);
  702. /* Old crap is replaced with new one. 8)
  703. *
  704. * More seriously:
  705. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  706. * It cannot be less due to utterly erratic ACK generation made
  707. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  708. * to do with delayed acks, because at cwnd>2 true delack timeout
  709. * is invisible. Actually, Linux-2.4 also generates erratic
  710. * ACKs in some circumstances.
  711. */
  712. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  713. /* 2. Fixups made earlier cannot be right.
  714. * If we do not estimate RTO correctly without them,
  715. * all the algo is pure shit and should be replaced
  716. * with correct one. It is exactly, which we pretend to do.
  717. */
  718. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  719. * guarantees that rto is higher.
  720. */
  721. tcp_bound_rto(sk);
  722. }
  723. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  724. {
  725. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  726. if (!cwnd)
  727. cwnd = TCP_INIT_CWND;
  728. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  729. }
  730. /*
  731. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  732. * disables it when reordering is detected
  733. */
  734. void tcp_disable_fack(struct tcp_sock *tp)
  735. {
  736. /* RFC3517 uses different metric in lost marker => reset on change */
  737. if (tcp_is_fack(tp))
  738. tp->lost_skb_hint = NULL;
  739. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  740. }
  741. /* Take a notice that peer is sending D-SACKs */
  742. static void tcp_dsack_seen(struct tcp_sock *tp)
  743. {
  744. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  745. }
  746. static void tcp_update_reordering(struct sock *sk, const int metric,
  747. const int ts)
  748. {
  749. struct tcp_sock *tp = tcp_sk(sk);
  750. if (metric > tp->reordering) {
  751. int mib_idx;
  752. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  753. /* This exciting event is worth to be remembered. 8) */
  754. if (ts)
  755. mib_idx = LINUX_MIB_TCPTSREORDER;
  756. else if (tcp_is_reno(tp))
  757. mib_idx = LINUX_MIB_TCPRENOREORDER;
  758. else if (tcp_is_fack(tp))
  759. mib_idx = LINUX_MIB_TCPFACKREORDER;
  760. else
  761. mib_idx = LINUX_MIB_TCPSACKREORDER;
  762. NET_INC_STATS(sock_net(sk), mib_idx);
  763. #if FASTRETRANS_DEBUG > 1
  764. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  765. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  766. tp->reordering,
  767. tp->fackets_out,
  768. tp->sacked_out,
  769. tp->undo_marker ? tp->undo_retrans : 0);
  770. #endif
  771. tcp_disable_fack(tp);
  772. }
  773. if (metric > 0)
  774. tcp_disable_early_retrans(tp);
  775. tp->rack.reord = 1;
  776. }
  777. /* This must be called before lost_out is incremented */
  778. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  779. {
  780. if (!tp->retransmit_skb_hint ||
  781. before(TCP_SKB_CB(skb)->seq,
  782. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  783. tp->retransmit_skb_hint = skb;
  784. if (!tp->lost_out ||
  785. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  786. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  787. }
  788. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  789. {
  790. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  791. tcp_verify_retransmit_hint(tp, skb);
  792. tp->lost_out += tcp_skb_pcount(skb);
  793. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  794. }
  795. }
  796. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  797. {
  798. tcp_verify_retransmit_hint(tp, skb);
  799. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  800. tp->lost_out += tcp_skb_pcount(skb);
  801. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  802. }
  803. }
  804. /* This procedure tags the retransmission queue when SACKs arrive.
  805. *
  806. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  807. * Packets in queue with these bits set are counted in variables
  808. * sacked_out, retrans_out and lost_out, correspondingly.
  809. *
  810. * Valid combinations are:
  811. * Tag InFlight Description
  812. * 0 1 - orig segment is in flight.
  813. * S 0 - nothing flies, orig reached receiver.
  814. * L 0 - nothing flies, orig lost by net.
  815. * R 2 - both orig and retransmit are in flight.
  816. * L|R 1 - orig is lost, retransmit is in flight.
  817. * S|R 1 - orig reached receiver, retrans is still in flight.
  818. * (L|S|R is logically valid, it could occur when L|R is sacked,
  819. * but it is equivalent to plain S and code short-curcuits it to S.
  820. * L|S is logically invalid, it would mean -1 packet in flight 8))
  821. *
  822. * These 6 states form finite state machine, controlled by the following events:
  823. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  824. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  825. * 3. Loss detection event of two flavors:
  826. * A. Scoreboard estimator decided the packet is lost.
  827. * A'. Reno "three dupacks" marks head of queue lost.
  828. * A''. Its FACK modification, head until snd.fack is lost.
  829. * B. SACK arrives sacking SND.NXT at the moment, when the
  830. * segment was retransmitted.
  831. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  832. *
  833. * It is pleasant to note, that state diagram turns out to be commutative,
  834. * so that we are allowed not to be bothered by order of our actions,
  835. * when multiple events arrive simultaneously. (see the function below).
  836. *
  837. * Reordering detection.
  838. * --------------------
  839. * Reordering metric is maximal distance, which a packet can be displaced
  840. * in packet stream. With SACKs we can estimate it:
  841. *
  842. * 1. SACK fills old hole and the corresponding segment was not
  843. * ever retransmitted -> reordering. Alas, we cannot use it
  844. * when segment was retransmitted.
  845. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  846. * for retransmitted and already SACKed segment -> reordering..
  847. * Both of these heuristics are not used in Loss state, when we cannot
  848. * account for retransmits accurately.
  849. *
  850. * SACK block validation.
  851. * ----------------------
  852. *
  853. * SACK block range validation checks that the received SACK block fits to
  854. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  855. * Note that SND.UNA is not included to the range though being valid because
  856. * it means that the receiver is rather inconsistent with itself reporting
  857. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  858. * perfectly valid, however, in light of RFC2018 which explicitly states
  859. * that "SACK block MUST reflect the newest segment. Even if the newest
  860. * segment is going to be discarded ...", not that it looks very clever
  861. * in case of head skb. Due to potentional receiver driven attacks, we
  862. * choose to avoid immediate execution of a walk in write queue due to
  863. * reneging and defer head skb's loss recovery to standard loss recovery
  864. * procedure that will eventually trigger (nothing forbids us doing this).
  865. *
  866. * Implements also blockage to start_seq wrap-around. Problem lies in the
  867. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  868. * there's no guarantee that it will be before snd_nxt (n). The problem
  869. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  870. * wrap (s_w):
  871. *
  872. * <- outs wnd -> <- wrapzone ->
  873. * u e n u_w e_w s n_w
  874. * | | | | | | |
  875. * |<------------+------+----- TCP seqno space --------------+---------->|
  876. * ...-- <2^31 ->| |<--------...
  877. * ...---- >2^31 ------>| |<--------...
  878. *
  879. * Current code wouldn't be vulnerable but it's better still to discard such
  880. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  881. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  882. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  883. * equal to the ideal case (infinite seqno space without wrap caused issues).
  884. *
  885. * With D-SACK the lower bound is extended to cover sequence space below
  886. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  887. * again, D-SACK block must not to go across snd_una (for the same reason as
  888. * for the normal SACK blocks, explained above). But there all simplicity
  889. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  890. * fully below undo_marker they do not affect behavior in anyway and can
  891. * therefore be safely ignored. In rare cases (which are more or less
  892. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  893. * fragmentation and packet reordering past skb's retransmission. To consider
  894. * them correctly, the acceptable range must be extended even more though
  895. * the exact amount is rather hard to quantify. However, tp->max_window can
  896. * be used as an exaggerated estimate.
  897. */
  898. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  899. u32 start_seq, u32 end_seq)
  900. {
  901. /* Too far in future, or reversed (interpretation is ambiguous) */
  902. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  903. return false;
  904. /* Nasty start_seq wrap-around check (see comments above) */
  905. if (!before(start_seq, tp->snd_nxt))
  906. return false;
  907. /* In outstanding window? ...This is valid exit for D-SACKs too.
  908. * start_seq == snd_una is non-sensical (see comments above)
  909. */
  910. if (after(start_seq, tp->snd_una))
  911. return true;
  912. if (!is_dsack || !tp->undo_marker)
  913. return false;
  914. /* ...Then it's D-SACK, and must reside below snd_una completely */
  915. if (after(end_seq, tp->snd_una))
  916. return false;
  917. if (!before(start_seq, tp->undo_marker))
  918. return true;
  919. /* Too old */
  920. if (!after(end_seq, tp->undo_marker))
  921. return false;
  922. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  923. * start_seq < undo_marker and end_seq >= undo_marker.
  924. */
  925. return !before(start_seq, end_seq - tp->max_window);
  926. }
  927. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  928. struct tcp_sack_block_wire *sp, int num_sacks,
  929. u32 prior_snd_una)
  930. {
  931. struct tcp_sock *tp = tcp_sk(sk);
  932. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  933. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  934. bool dup_sack = false;
  935. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  936. dup_sack = true;
  937. tcp_dsack_seen(tp);
  938. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  939. } else if (num_sacks > 1) {
  940. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  941. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  942. if (!after(end_seq_0, end_seq_1) &&
  943. !before(start_seq_0, start_seq_1)) {
  944. dup_sack = true;
  945. tcp_dsack_seen(tp);
  946. NET_INC_STATS(sock_net(sk),
  947. LINUX_MIB_TCPDSACKOFORECV);
  948. }
  949. }
  950. /* D-SACK for already forgotten data... Do dumb counting. */
  951. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  952. !after(end_seq_0, prior_snd_una) &&
  953. after(end_seq_0, tp->undo_marker))
  954. tp->undo_retrans--;
  955. return dup_sack;
  956. }
  957. struct tcp_sacktag_state {
  958. int reord;
  959. int fack_count;
  960. /* Timestamps for earliest and latest never-retransmitted segment
  961. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  962. * but congestion control should still get an accurate delay signal.
  963. */
  964. struct skb_mstamp first_sackt;
  965. struct skb_mstamp last_sackt;
  966. int flag;
  967. };
  968. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  969. * the incoming SACK may not exactly match but we can find smaller MSS
  970. * aligned portion of it that matches. Therefore we might need to fragment
  971. * which may fail and creates some hassle (caller must handle error case
  972. * returns).
  973. *
  974. * FIXME: this could be merged to shift decision code
  975. */
  976. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  977. u32 start_seq, u32 end_seq)
  978. {
  979. int err;
  980. bool in_sack;
  981. unsigned int pkt_len;
  982. unsigned int mss;
  983. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  984. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  985. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  986. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  987. mss = tcp_skb_mss(skb);
  988. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  989. if (!in_sack) {
  990. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  991. if (pkt_len < mss)
  992. pkt_len = mss;
  993. } else {
  994. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  995. if (pkt_len < mss)
  996. return -EINVAL;
  997. }
  998. /* Round if necessary so that SACKs cover only full MSSes
  999. * and/or the remaining small portion (if present)
  1000. */
  1001. if (pkt_len > mss) {
  1002. unsigned int new_len = (pkt_len / mss) * mss;
  1003. if (!in_sack && new_len < pkt_len) {
  1004. new_len += mss;
  1005. if (new_len >= skb->len)
  1006. return 0;
  1007. }
  1008. pkt_len = new_len;
  1009. }
  1010. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1011. if (err < 0)
  1012. return err;
  1013. }
  1014. return in_sack;
  1015. }
  1016. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1017. static u8 tcp_sacktag_one(struct sock *sk,
  1018. struct tcp_sacktag_state *state, u8 sacked,
  1019. u32 start_seq, u32 end_seq,
  1020. int dup_sack, int pcount,
  1021. const struct skb_mstamp *xmit_time)
  1022. {
  1023. struct tcp_sock *tp = tcp_sk(sk);
  1024. int fack_count = state->fack_count;
  1025. /* Account D-SACK for retransmitted packet. */
  1026. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1027. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1028. after(end_seq, tp->undo_marker))
  1029. tp->undo_retrans--;
  1030. if (sacked & TCPCB_SACKED_ACKED)
  1031. state->reord = min(fack_count, state->reord);
  1032. }
  1033. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1034. if (!after(end_seq, tp->snd_una))
  1035. return sacked;
  1036. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1037. tcp_rack_advance(tp, xmit_time, sacked);
  1038. if (sacked & TCPCB_SACKED_RETRANS) {
  1039. /* If the segment is not tagged as lost,
  1040. * we do not clear RETRANS, believing
  1041. * that retransmission is still in flight.
  1042. */
  1043. if (sacked & TCPCB_LOST) {
  1044. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1045. tp->lost_out -= pcount;
  1046. tp->retrans_out -= pcount;
  1047. }
  1048. } else {
  1049. if (!(sacked & TCPCB_RETRANS)) {
  1050. /* New sack for not retransmitted frame,
  1051. * which was in hole. It is reordering.
  1052. */
  1053. if (before(start_seq,
  1054. tcp_highest_sack_seq(tp)))
  1055. state->reord = min(fack_count,
  1056. state->reord);
  1057. if (!after(end_seq, tp->high_seq))
  1058. state->flag |= FLAG_ORIG_SACK_ACKED;
  1059. if (state->first_sackt.v64 == 0)
  1060. state->first_sackt = *xmit_time;
  1061. state->last_sackt = *xmit_time;
  1062. }
  1063. if (sacked & TCPCB_LOST) {
  1064. sacked &= ~TCPCB_LOST;
  1065. tp->lost_out -= pcount;
  1066. }
  1067. }
  1068. sacked |= TCPCB_SACKED_ACKED;
  1069. state->flag |= FLAG_DATA_SACKED;
  1070. tp->sacked_out += pcount;
  1071. tp->delivered += pcount; /* Out-of-order packets delivered */
  1072. fack_count += pcount;
  1073. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1074. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1075. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1076. tp->lost_cnt_hint += pcount;
  1077. if (fack_count > tp->fackets_out)
  1078. tp->fackets_out = fack_count;
  1079. }
  1080. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1081. * frames and clear it. undo_retrans is decreased above, L|R frames
  1082. * are accounted above as well.
  1083. */
  1084. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1085. sacked &= ~TCPCB_SACKED_RETRANS;
  1086. tp->retrans_out -= pcount;
  1087. }
  1088. return sacked;
  1089. }
  1090. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1091. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1092. */
  1093. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1094. struct tcp_sacktag_state *state,
  1095. unsigned int pcount, int shifted, int mss,
  1096. bool dup_sack)
  1097. {
  1098. struct tcp_sock *tp = tcp_sk(sk);
  1099. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1100. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1101. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1102. BUG_ON(!pcount);
  1103. /* Adjust counters and hints for the newly sacked sequence
  1104. * range but discard the return value since prev is already
  1105. * marked. We must tag the range first because the seq
  1106. * advancement below implicitly advances
  1107. * tcp_highest_sack_seq() when skb is highest_sack.
  1108. */
  1109. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1110. start_seq, end_seq, dup_sack, pcount,
  1111. &skb->skb_mstamp);
  1112. if (skb == tp->lost_skb_hint)
  1113. tp->lost_cnt_hint += pcount;
  1114. TCP_SKB_CB(prev)->end_seq += shifted;
  1115. TCP_SKB_CB(skb)->seq += shifted;
  1116. tcp_skb_pcount_add(prev, pcount);
  1117. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1118. tcp_skb_pcount_add(skb, -pcount);
  1119. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1120. * in theory this shouldn't be necessary but as long as DSACK
  1121. * code can come after this skb later on it's better to keep
  1122. * setting gso_size to something.
  1123. */
  1124. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1125. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1126. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1127. if (tcp_skb_pcount(skb) <= 1)
  1128. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1129. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1130. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1131. if (skb->len > 0) {
  1132. BUG_ON(!tcp_skb_pcount(skb));
  1133. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1134. return false;
  1135. }
  1136. /* Whole SKB was eaten :-) */
  1137. if (skb == tp->retransmit_skb_hint)
  1138. tp->retransmit_skb_hint = prev;
  1139. if (skb == tp->lost_skb_hint) {
  1140. tp->lost_skb_hint = prev;
  1141. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1142. }
  1143. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1144. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1145. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1146. TCP_SKB_CB(prev)->end_seq++;
  1147. if (skb == tcp_highest_sack(sk))
  1148. tcp_advance_highest_sack(sk, skb);
  1149. tcp_skb_collapse_tstamp(prev, skb);
  1150. tcp_unlink_write_queue(skb, sk);
  1151. sk_wmem_free_skb(sk, skb);
  1152. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1153. return true;
  1154. }
  1155. /* I wish gso_size would have a bit more sane initialization than
  1156. * something-or-zero which complicates things
  1157. */
  1158. static int tcp_skb_seglen(const struct sk_buff *skb)
  1159. {
  1160. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1161. }
  1162. /* Shifting pages past head area doesn't work */
  1163. static int skb_can_shift(const struct sk_buff *skb)
  1164. {
  1165. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1166. }
  1167. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1168. * skb.
  1169. */
  1170. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1171. struct tcp_sacktag_state *state,
  1172. u32 start_seq, u32 end_seq,
  1173. bool dup_sack)
  1174. {
  1175. struct tcp_sock *tp = tcp_sk(sk);
  1176. struct sk_buff *prev;
  1177. int mss;
  1178. int pcount = 0;
  1179. int len;
  1180. int in_sack;
  1181. if (!sk_can_gso(sk))
  1182. goto fallback;
  1183. /* Normally R but no L won't result in plain S */
  1184. if (!dup_sack &&
  1185. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1186. goto fallback;
  1187. if (!skb_can_shift(skb))
  1188. goto fallback;
  1189. /* This frame is about to be dropped (was ACKed). */
  1190. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1191. goto fallback;
  1192. /* Can only happen with delayed DSACK + discard craziness */
  1193. if (unlikely(skb == tcp_write_queue_head(sk)))
  1194. goto fallback;
  1195. prev = tcp_write_queue_prev(sk, skb);
  1196. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1197. goto fallback;
  1198. if (!tcp_skb_can_collapse_to(prev))
  1199. goto fallback;
  1200. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1201. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1202. if (in_sack) {
  1203. len = skb->len;
  1204. pcount = tcp_skb_pcount(skb);
  1205. mss = tcp_skb_seglen(skb);
  1206. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1207. * drop this restriction as unnecessary
  1208. */
  1209. if (mss != tcp_skb_seglen(prev))
  1210. goto fallback;
  1211. } else {
  1212. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1213. goto noop;
  1214. /* CHECKME: This is non-MSS split case only?, this will
  1215. * cause skipped skbs due to advancing loop btw, original
  1216. * has that feature too
  1217. */
  1218. if (tcp_skb_pcount(skb) <= 1)
  1219. goto noop;
  1220. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1221. if (!in_sack) {
  1222. /* TODO: head merge to next could be attempted here
  1223. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1224. * though it might not be worth of the additional hassle
  1225. *
  1226. * ...we can probably just fallback to what was done
  1227. * previously. We could try merging non-SACKed ones
  1228. * as well but it probably isn't going to buy off
  1229. * because later SACKs might again split them, and
  1230. * it would make skb timestamp tracking considerably
  1231. * harder problem.
  1232. */
  1233. goto fallback;
  1234. }
  1235. len = end_seq - TCP_SKB_CB(skb)->seq;
  1236. BUG_ON(len < 0);
  1237. BUG_ON(len > skb->len);
  1238. /* MSS boundaries should be honoured or else pcount will
  1239. * severely break even though it makes things bit trickier.
  1240. * Optimize common case to avoid most of the divides
  1241. */
  1242. mss = tcp_skb_mss(skb);
  1243. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1244. * drop this restriction as unnecessary
  1245. */
  1246. if (mss != tcp_skb_seglen(prev))
  1247. goto fallback;
  1248. if (len == mss) {
  1249. pcount = 1;
  1250. } else if (len < mss) {
  1251. goto noop;
  1252. } else {
  1253. pcount = len / mss;
  1254. len = pcount * mss;
  1255. }
  1256. }
  1257. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1258. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1259. goto fallback;
  1260. if (!skb_shift(prev, skb, len))
  1261. goto fallback;
  1262. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1263. goto out;
  1264. /* Hole filled allows collapsing with the next as well, this is very
  1265. * useful when hole on every nth skb pattern happens
  1266. */
  1267. if (prev == tcp_write_queue_tail(sk))
  1268. goto out;
  1269. skb = tcp_write_queue_next(sk, prev);
  1270. if (!skb_can_shift(skb) ||
  1271. (skb == tcp_send_head(sk)) ||
  1272. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1273. (mss != tcp_skb_seglen(skb)))
  1274. goto out;
  1275. len = skb->len;
  1276. if (skb_shift(prev, skb, len)) {
  1277. pcount += tcp_skb_pcount(skb);
  1278. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1279. }
  1280. out:
  1281. state->fack_count += pcount;
  1282. return prev;
  1283. noop:
  1284. return skb;
  1285. fallback:
  1286. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1287. return NULL;
  1288. }
  1289. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1290. struct tcp_sack_block *next_dup,
  1291. struct tcp_sacktag_state *state,
  1292. u32 start_seq, u32 end_seq,
  1293. bool dup_sack_in)
  1294. {
  1295. struct tcp_sock *tp = tcp_sk(sk);
  1296. struct sk_buff *tmp;
  1297. tcp_for_write_queue_from(skb, sk) {
  1298. int in_sack = 0;
  1299. bool dup_sack = dup_sack_in;
  1300. if (skb == tcp_send_head(sk))
  1301. break;
  1302. /* queue is in-order => we can short-circuit the walk early */
  1303. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1304. break;
  1305. if (next_dup &&
  1306. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1307. in_sack = tcp_match_skb_to_sack(sk, skb,
  1308. next_dup->start_seq,
  1309. next_dup->end_seq);
  1310. if (in_sack > 0)
  1311. dup_sack = true;
  1312. }
  1313. /* skb reference here is a bit tricky to get right, since
  1314. * shifting can eat and free both this skb and the next,
  1315. * so not even _safe variant of the loop is enough.
  1316. */
  1317. if (in_sack <= 0) {
  1318. tmp = tcp_shift_skb_data(sk, skb, state,
  1319. start_seq, end_seq, dup_sack);
  1320. if (tmp) {
  1321. if (tmp != skb) {
  1322. skb = tmp;
  1323. continue;
  1324. }
  1325. in_sack = 0;
  1326. } else {
  1327. in_sack = tcp_match_skb_to_sack(sk, skb,
  1328. start_seq,
  1329. end_seq);
  1330. }
  1331. }
  1332. if (unlikely(in_sack < 0))
  1333. break;
  1334. if (in_sack) {
  1335. TCP_SKB_CB(skb)->sacked =
  1336. tcp_sacktag_one(sk,
  1337. state,
  1338. TCP_SKB_CB(skb)->sacked,
  1339. TCP_SKB_CB(skb)->seq,
  1340. TCP_SKB_CB(skb)->end_seq,
  1341. dup_sack,
  1342. tcp_skb_pcount(skb),
  1343. &skb->skb_mstamp);
  1344. if (!before(TCP_SKB_CB(skb)->seq,
  1345. tcp_highest_sack_seq(tp)))
  1346. tcp_advance_highest_sack(sk, skb);
  1347. }
  1348. state->fack_count += tcp_skb_pcount(skb);
  1349. }
  1350. return skb;
  1351. }
  1352. /* Avoid all extra work that is being done by sacktag while walking in
  1353. * a normal way
  1354. */
  1355. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1356. struct tcp_sacktag_state *state,
  1357. u32 skip_to_seq)
  1358. {
  1359. tcp_for_write_queue_from(skb, sk) {
  1360. if (skb == tcp_send_head(sk))
  1361. break;
  1362. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1363. break;
  1364. state->fack_count += tcp_skb_pcount(skb);
  1365. }
  1366. return skb;
  1367. }
  1368. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1369. struct sock *sk,
  1370. struct tcp_sack_block *next_dup,
  1371. struct tcp_sacktag_state *state,
  1372. u32 skip_to_seq)
  1373. {
  1374. if (!next_dup)
  1375. return skb;
  1376. if (before(next_dup->start_seq, skip_to_seq)) {
  1377. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1378. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1379. next_dup->start_seq, next_dup->end_seq,
  1380. 1);
  1381. }
  1382. return skb;
  1383. }
  1384. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1385. {
  1386. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1387. }
  1388. static int
  1389. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1390. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1391. {
  1392. struct tcp_sock *tp = tcp_sk(sk);
  1393. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1394. TCP_SKB_CB(ack_skb)->sacked);
  1395. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1396. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1397. struct tcp_sack_block *cache;
  1398. struct sk_buff *skb;
  1399. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1400. int used_sacks;
  1401. bool found_dup_sack = false;
  1402. int i, j;
  1403. int first_sack_index;
  1404. state->flag = 0;
  1405. state->reord = tp->packets_out;
  1406. if (!tp->sacked_out) {
  1407. if (WARN_ON(tp->fackets_out))
  1408. tp->fackets_out = 0;
  1409. tcp_highest_sack_reset(sk);
  1410. }
  1411. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1412. num_sacks, prior_snd_una);
  1413. if (found_dup_sack)
  1414. state->flag |= FLAG_DSACKING_ACK;
  1415. /* Eliminate too old ACKs, but take into
  1416. * account more or less fresh ones, they can
  1417. * contain valid SACK info.
  1418. */
  1419. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1420. return 0;
  1421. if (!tp->packets_out)
  1422. goto out;
  1423. used_sacks = 0;
  1424. first_sack_index = 0;
  1425. for (i = 0; i < num_sacks; i++) {
  1426. bool dup_sack = !i && found_dup_sack;
  1427. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1428. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1429. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1430. sp[used_sacks].start_seq,
  1431. sp[used_sacks].end_seq)) {
  1432. int mib_idx;
  1433. if (dup_sack) {
  1434. if (!tp->undo_marker)
  1435. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1436. else
  1437. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1438. } else {
  1439. /* Don't count olds caused by ACK reordering */
  1440. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1441. !after(sp[used_sacks].end_seq, tp->snd_una))
  1442. continue;
  1443. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1444. }
  1445. NET_INC_STATS(sock_net(sk), mib_idx);
  1446. if (i == 0)
  1447. first_sack_index = -1;
  1448. continue;
  1449. }
  1450. /* Ignore very old stuff early */
  1451. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1452. continue;
  1453. used_sacks++;
  1454. }
  1455. /* order SACK blocks to allow in order walk of the retrans queue */
  1456. for (i = used_sacks - 1; i > 0; i--) {
  1457. for (j = 0; j < i; j++) {
  1458. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1459. swap(sp[j], sp[j + 1]);
  1460. /* Track where the first SACK block goes to */
  1461. if (j == first_sack_index)
  1462. first_sack_index = j + 1;
  1463. }
  1464. }
  1465. }
  1466. skb = tcp_write_queue_head(sk);
  1467. state->fack_count = 0;
  1468. i = 0;
  1469. if (!tp->sacked_out) {
  1470. /* It's already past, so skip checking against it */
  1471. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1472. } else {
  1473. cache = tp->recv_sack_cache;
  1474. /* Skip empty blocks in at head of the cache */
  1475. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1476. !cache->end_seq)
  1477. cache++;
  1478. }
  1479. while (i < used_sacks) {
  1480. u32 start_seq = sp[i].start_seq;
  1481. u32 end_seq = sp[i].end_seq;
  1482. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1483. struct tcp_sack_block *next_dup = NULL;
  1484. if (found_dup_sack && ((i + 1) == first_sack_index))
  1485. next_dup = &sp[i + 1];
  1486. /* Skip too early cached blocks */
  1487. while (tcp_sack_cache_ok(tp, cache) &&
  1488. !before(start_seq, cache->end_seq))
  1489. cache++;
  1490. /* Can skip some work by looking recv_sack_cache? */
  1491. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1492. after(end_seq, cache->start_seq)) {
  1493. /* Head todo? */
  1494. if (before(start_seq, cache->start_seq)) {
  1495. skb = tcp_sacktag_skip(skb, sk, state,
  1496. start_seq);
  1497. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1498. state,
  1499. start_seq,
  1500. cache->start_seq,
  1501. dup_sack);
  1502. }
  1503. /* Rest of the block already fully processed? */
  1504. if (!after(end_seq, cache->end_seq))
  1505. goto advance_sp;
  1506. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1507. state,
  1508. cache->end_seq);
  1509. /* ...tail remains todo... */
  1510. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1511. /* ...but better entrypoint exists! */
  1512. skb = tcp_highest_sack(sk);
  1513. if (!skb)
  1514. break;
  1515. state->fack_count = tp->fackets_out;
  1516. cache++;
  1517. goto walk;
  1518. }
  1519. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1520. /* Check overlap against next cached too (past this one already) */
  1521. cache++;
  1522. continue;
  1523. }
  1524. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1525. skb = tcp_highest_sack(sk);
  1526. if (!skb)
  1527. break;
  1528. state->fack_count = tp->fackets_out;
  1529. }
  1530. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1531. walk:
  1532. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1533. start_seq, end_seq, dup_sack);
  1534. advance_sp:
  1535. i++;
  1536. }
  1537. /* Clear the head of the cache sack blocks so we can skip it next time */
  1538. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1539. tp->recv_sack_cache[i].start_seq = 0;
  1540. tp->recv_sack_cache[i].end_seq = 0;
  1541. }
  1542. for (j = 0; j < used_sacks; j++)
  1543. tp->recv_sack_cache[i++] = sp[j];
  1544. if ((state->reord < tp->fackets_out) &&
  1545. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1546. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1547. tcp_verify_left_out(tp);
  1548. out:
  1549. #if FASTRETRANS_DEBUG > 0
  1550. WARN_ON((int)tp->sacked_out < 0);
  1551. WARN_ON((int)tp->lost_out < 0);
  1552. WARN_ON((int)tp->retrans_out < 0);
  1553. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1554. #endif
  1555. return state->flag;
  1556. }
  1557. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1558. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1559. */
  1560. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1561. {
  1562. u32 holes;
  1563. holes = max(tp->lost_out, 1U);
  1564. holes = min(holes, tp->packets_out);
  1565. if ((tp->sacked_out + holes) > tp->packets_out) {
  1566. tp->sacked_out = tp->packets_out - holes;
  1567. return true;
  1568. }
  1569. return false;
  1570. }
  1571. /* If we receive more dupacks than we expected counting segments
  1572. * in assumption of absent reordering, interpret this as reordering.
  1573. * The only another reason could be bug in receiver TCP.
  1574. */
  1575. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1576. {
  1577. struct tcp_sock *tp = tcp_sk(sk);
  1578. if (tcp_limit_reno_sacked(tp))
  1579. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1580. }
  1581. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1582. static void tcp_add_reno_sack(struct sock *sk)
  1583. {
  1584. struct tcp_sock *tp = tcp_sk(sk);
  1585. u32 prior_sacked = tp->sacked_out;
  1586. tp->sacked_out++;
  1587. tcp_check_reno_reordering(sk, 0);
  1588. if (tp->sacked_out > prior_sacked)
  1589. tp->delivered++; /* Some out-of-order packet is delivered */
  1590. tcp_verify_left_out(tp);
  1591. }
  1592. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1593. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1594. {
  1595. struct tcp_sock *tp = tcp_sk(sk);
  1596. if (acked > 0) {
  1597. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1598. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1599. if (acked - 1 >= tp->sacked_out)
  1600. tp->sacked_out = 0;
  1601. else
  1602. tp->sacked_out -= acked - 1;
  1603. }
  1604. tcp_check_reno_reordering(sk, acked);
  1605. tcp_verify_left_out(tp);
  1606. }
  1607. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1608. {
  1609. tp->sacked_out = 0;
  1610. }
  1611. void tcp_clear_retrans(struct tcp_sock *tp)
  1612. {
  1613. tp->retrans_out = 0;
  1614. tp->lost_out = 0;
  1615. tp->undo_marker = 0;
  1616. tp->undo_retrans = -1;
  1617. tp->fackets_out = 0;
  1618. tp->sacked_out = 0;
  1619. }
  1620. static inline void tcp_init_undo(struct tcp_sock *tp)
  1621. {
  1622. tp->undo_marker = tp->snd_una;
  1623. /* Retransmission still in flight may cause DSACKs later. */
  1624. tp->undo_retrans = tp->retrans_out ? : -1;
  1625. }
  1626. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1627. * and reset tags completely, otherwise preserve SACKs. If receiver
  1628. * dropped its ofo queue, we will know this due to reneging detection.
  1629. */
  1630. void tcp_enter_loss(struct sock *sk)
  1631. {
  1632. const struct inet_connection_sock *icsk = inet_csk(sk);
  1633. struct tcp_sock *tp = tcp_sk(sk);
  1634. struct net *net = sock_net(sk);
  1635. struct sk_buff *skb;
  1636. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1637. bool is_reneg; /* is receiver reneging on SACKs? */
  1638. /* Reduce ssthresh if it has not yet been made inside this window. */
  1639. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1640. !after(tp->high_seq, tp->snd_una) ||
  1641. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1642. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1643. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1644. tcp_ca_event(sk, CA_EVENT_LOSS);
  1645. tcp_init_undo(tp);
  1646. }
  1647. tp->snd_cwnd = 1;
  1648. tp->snd_cwnd_cnt = 0;
  1649. tp->snd_cwnd_stamp = tcp_time_stamp;
  1650. tp->retrans_out = 0;
  1651. tp->lost_out = 0;
  1652. if (tcp_is_reno(tp))
  1653. tcp_reset_reno_sack(tp);
  1654. skb = tcp_write_queue_head(sk);
  1655. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1656. if (is_reneg) {
  1657. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1658. tp->sacked_out = 0;
  1659. tp->fackets_out = 0;
  1660. }
  1661. tcp_clear_all_retrans_hints(tp);
  1662. tcp_for_write_queue(skb, sk) {
  1663. if (skb == tcp_send_head(sk))
  1664. break;
  1665. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1666. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
  1667. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1668. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1669. tp->lost_out += tcp_skb_pcount(skb);
  1670. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1671. }
  1672. }
  1673. tcp_verify_left_out(tp);
  1674. /* Timeout in disordered state after receiving substantial DUPACKs
  1675. * suggests that the degree of reordering is over-estimated.
  1676. */
  1677. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1678. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1679. tp->reordering = min_t(unsigned int, tp->reordering,
  1680. net->ipv4.sysctl_tcp_reordering);
  1681. tcp_set_ca_state(sk, TCP_CA_Loss);
  1682. tp->high_seq = tp->snd_nxt;
  1683. tcp_ecn_queue_cwr(tp);
  1684. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1685. * loss recovery is underway except recurring timeout(s) on
  1686. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1687. */
  1688. tp->frto = sysctl_tcp_frto &&
  1689. (new_recovery || icsk->icsk_retransmits) &&
  1690. !inet_csk(sk)->icsk_mtup.probe_size;
  1691. }
  1692. /* If ACK arrived pointing to a remembered SACK, it means that our
  1693. * remembered SACKs do not reflect real state of receiver i.e.
  1694. * receiver _host_ is heavily congested (or buggy).
  1695. *
  1696. * To avoid big spurious retransmission bursts due to transient SACK
  1697. * scoreboard oddities that look like reneging, we give the receiver a
  1698. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1699. * restore sanity to the SACK scoreboard. If the apparent reneging
  1700. * persists until this RTO then we'll clear the SACK scoreboard.
  1701. */
  1702. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1703. {
  1704. if (flag & FLAG_SACK_RENEGING) {
  1705. struct tcp_sock *tp = tcp_sk(sk);
  1706. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1707. msecs_to_jiffies(10));
  1708. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1709. delay, TCP_RTO_MAX);
  1710. return true;
  1711. }
  1712. return false;
  1713. }
  1714. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1715. {
  1716. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1717. }
  1718. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1719. * counter when SACK is enabled (without SACK, sacked_out is used for
  1720. * that purpose).
  1721. *
  1722. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1723. * segments up to the highest received SACK block so far and holes in
  1724. * between them.
  1725. *
  1726. * With reordering, holes may still be in flight, so RFC3517 recovery
  1727. * uses pure sacked_out (total number of SACKed segments) even though
  1728. * it violates the RFC that uses duplicate ACKs, often these are equal
  1729. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1730. * they differ. Since neither occurs due to loss, TCP should really
  1731. * ignore them.
  1732. */
  1733. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1734. {
  1735. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1736. }
  1737. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1738. {
  1739. struct tcp_sock *tp = tcp_sk(sk);
  1740. unsigned long delay;
  1741. /* Delay early retransmit and entering fast recovery for
  1742. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1743. * available, or RTO is scheduled to fire first.
  1744. */
  1745. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1746. (flag & FLAG_ECE) || !tp->srtt_us)
  1747. return false;
  1748. delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
  1749. msecs_to_jiffies(2));
  1750. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1751. return false;
  1752. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1753. TCP_RTO_MAX);
  1754. return true;
  1755. }
  1756. /* Linux NewReno/SACK/FACK/ECN state machine.
  1757. * --------------------------------------
  1758. *
  1759. * "Open" Normal state, no dubious events, fast path.
  1760. * "Disorder" In all the respects it is "Open",
  1761. * but requires a bit more attention. It is entered when
  1762. * we see some SACKs or dupacks. It is split of "Open"
  1763. * mainly to move some processing from fast path to slow one.
  1764. * "CWR" CWND was reduced due to some Congestion Notification event.
  1765. * It can be ECN, ICMP source quench, local device congestion.
  1766. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1767. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1768. *
  1769. * tcp_fastretrans_alert() is entered:
  1770. * - each incoming ACK, if state is not "Open"
  1771. * - when arrived ACK is unusual, namely:
  1772. * * SACK
  1773. * * Duplicate ACK.
  1774. * * ECN ECE.
  1775. *
  1776. * Counting packets in flight is pretty simple.
  1777. *
  1778. * in_flight = packets_out - left_out + retrans_out
  1779. *
  1780. * packets_out is SND.NXT-SND.UNA counted in packets.
  1781. *
  1782. * retrans_out is number of retransmitted segments.
  1783. *
  1784. * left_out is number of segments left network, but not ACKed yet.
  1785. *
  1786. * left_out = sacked_out + lost_out
  1787. *
  1788. * sacked_out: Packets, which arrived to receiver out of order
  1789. * and hence not ACKed. With SACKs this number is simply
  1790. * amount of SACKed data. Even without SACKs
  1791. * it is easy to give pretty reliable estimate of this number,
  1792. * counting duplicate ACKs.
  1793. *
  1794. * lost_out: Packets lost by network. TCP has no explicit
  1795. * "loss notification" feedback from network (for now).
  1796. * It means that this number can be only _guessed_.
  1797. * Actually, it is the heuristics to predict lossage that
  1798. * distinguishes different algorithms.
  1799. *
  1800. * F.e. after RTO, when all the queue is considered as lost,
  1801. * lost_out = packets_out and in_flight = retrans_out.
  1802. *
  1803. * Essentially, we have now two algorithms counting
  1804. * lost packets.
  1805. *
  1806. * FACK: It is the simplest heuristics. As soon as we decided
  1807. * that something is lost, we decide that _all_ not SACKed
  1808. * packets until the most forward SACK are lost. I.e.
  1809. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1810. * It is absolutely correct estimate, if network does not reorder
  1811. * packets. And it loses any connection to reality when reordering
  1812. * takes place. We use FACK by default until reordering
  1813. * is suspected on the path to this destination.
  1814. *
  1815. * NewReno: when Recovery is entered, we assume that one segment
  1816. * is lost (classic Reno). While we are in Recovery and
  1817. * a partial ACK arrives, we assume that one more packet
  1818. * is lost (NewReno). This heuristics are the same in NewReno
  1819. * and SACK.
  1820. *
  1821. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1822. * deflation etc. CWND is real congestion window, never inflated, changes
  1823. * only according to classic VJ rules.
  1824. *
  1825. * Really tricky (and requiring careful tuning) part of algorithm
  1826. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1827. * The first determines the moment _when_ we should reduce CWND and,
  1828. * hence, slow down forward transmission. In fact, it determines the moment
  1829. * when we decide that hole is caused by loss, rather than by a reorder.
  1830. *
  1831. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1832. * holes, caused by lost packets.
  1833. *
  1834. * And the most logically complicated part of algorithm is undo
  1835. * heuristics. We detect false retransmits due to both too early
  1836. * fast retransmit (reordering) and underestimated RTO, analyzing
  1837. * timestamps and D-SACKs. When we detect that some segments were
  1838. * retransmitted by mistake and CWND reduction was wrong, we undo
  1839. * window reduction and abort recovery phase. This logic is hidden
  1840. * inside several functions named tcp_try_undo_<something>.
  1841. */
  1842. /* This function decides, when we should leave Disordered state
  1843. * and enter Recovery phase, reducing congestion window.
  1844. *
  1845. * Main question: may we further continue forward transmission
  1846. * with the same cwnd?
  1847. */
  1848. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1849. {
  1850. struct tcp_sock *tp = tcp_sk(sk);
  1851. __u32 packets_out;
  1852. int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
  1853. /* Trick#1: The loss is proven. */
  1854. if (tp->lost_out)
  1855. return true;
  1856. /* Not-A-Trick#2 : Classic rule... */
  1857. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1858. return true;
  1859. /* Trick#4: It is still not OK... But will it be useful to delay
  1860. * recovery more?
  1861. */
  1862. packets_out = tp->packets_out;
  1863. if (packets_out <= tp->reordering &&
  1864. tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
  1865. !tcp_may_send_now(sk)) {
  1866. /* We have nothing to send. This connection is limited
  1867. * either by receiver window or by application.
  1868. */
  1869. return true;
  1870. }
  1871. /* If a thin stream is detected, retransmit after first
  1872. * received dupack. Employ only if SACK is supported in order
  1873. * to avoid possible corner-case series of spurious retransmissions
  1874. * Use only if there are no unsent data.
  1875. */
  1876. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1877. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1878. tcp_is_sack(tp) && !tcp_send_head(sk))
  1879. return true;
  1880. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1881. * retransmissions due to small network reorderings, we implement
  1882. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1883. * interval if appropriate.
  1884. */
  1885. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1886. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1887. !tcp_may_send_now(sk))
  1888. return !tcp_pause_early_retransmit(sk, flag);
  1889. return false;
  1890. }
  1891. /* Detect loss in event "A" above by marking head of queue up as lost.
  1892. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1893. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1894. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1895. * the maximum SACKed segments to pass before reaching this limit.
  1896. */
  1897. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1898. {
  1899. struct tcp_sock *tp = tcp_sk(sk);
  1900. struct sk_buff *skb;
  1901. int cnt, oldcnt, lost;
  1902. unsigned int mss;
  1903. /* Use SACK to deduce losses of new sequences sent during recovery */
  1904. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1905. WARN_ON(packets > tp->packets_out);
  1906. if (tp->lost_skb_hint) {
  1907. skb = tp->lost_skb_hint;
  1908. cnt = tp->lost_cnt_hint;
  1909. /* Head already handled? */
  1910. if (mark_head && skb != tcp_write_queue_head(sk))
  1911. return;
  1912. } else {
  1913. skb = tcp_write_queue_head(sk);
  1914. cnt = 0;
  1915. }
  1916. tcp_for_write_queue_from(skb, sk) {
  1917. if (skb == tcp_send_head(sk))
  1918. break;
  1919. /* TODO: do this better */
  1920. /* this is not the most efficient way to do this... */
  1921. tp->lost_skb_hint = skb;
  1922. tp->lost_cnt_hint = cnt;
  1923. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1924. break;
  1925. oldcnt = cnt;
  1926. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1927. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1928. cnt += tcp_skb_pcount(skb);
  1929. if (cnt > packets) {
  1930. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1931. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1932. (oldcnt >= packets))
  1933. break;
  1934. mss = tcp_skb_mss(skb);
  1935. /* If needed, chop off the prefix to mark as lost. */
  1936. lost = (packets - oldcnt) * mss;
  1937. if (lost < skb->len &&
  1938. tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
  1939. break;
  1940. cnt = packets;
  1941. }
  1942. tcp_skb_mark_lost(tp, skb);
  1943. if (mark_head)
  1944. break;
  1945. }
  1946. tcp_verify_left_out(tp);
  1947. }
  1948. /* Account newly detected lost packet(s) */
  1949. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1950. {
  1951. struct tcp_sock *tp = tcp_sk(sk);
  1952. if (tcp_is_reno(tp)) {
  1953. tcp_mark_head_lost(sk, 1, 1);
  1954. } else if (tcp_is_fack(tp)) {
  1955. int lost = tp->fackets_out - tp->reordering;
  1956. if (lost <= 0)
  1957. lost = 1;
  1958. tcp_mark_head_lost(sk, lost, 0);
  1959. } else {
  1960. int sacked_upto = tp->sacked_out - tp->reordering;
  1961. if (sacked_upto >= 0)
  1962. tcp_mark_head_lost(sk, sacked_upto, 0);
  1963. else if (fast_rexmit)
  1964. tcp_mark_head_lost(sk, 1, 1);
  1965. }
  1966. }
  1967. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1968. {
  1969. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1970. before(tp->rx_opt.rcv_tsecr, when);
  1971. }
  1972. /* skb is spurious retransmitted if the returned timestamp echo
  1973. * reply is prior to the skb transmission time
  1974. */
  1975. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1976. const struct sk_buff *skb)
  1977. {
  1978. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1979. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1980. }
  1981. /* Nothing was retransmitted or returned timestamp is less
  1982. * than timestamp of the first retransmission.
  1983. */
  1984. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1985. {
  1986. return !tp->retrans_stamp ||
  1987. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  1988. }
  1989. /* Undo procedures. */
  1990. /* We can clear retrans_stamp when there are no retransmissions in the
  1991. * window. It would seem that it is trivially available for us in
  1992. * tp->retrans_out, however, that kind of assumptions doesn't consider
  1993. * what will happen if errors occur when sending retransmission for the
  1994. * second time. ...It could the that such segment has only
  1995. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  1996. * the head skb is enough except for some reneging corner cases that
  1997. * are not worth the effort.
  1998. *
  1999. * Main reason for all this complexity is the fact that connection dying
  2000. * time now depends on the validity of the retrans_stamp, in particular,
  2001. * that successive retransmissions of a segment must not advance
  2002. * retrans_stamp under any conditions.
  2003. */
  2004. static bool tcp_any_retrans_done(const struct sock *sk)
  2005. {
  2006. const struct tcp_sock *tp = tcp_sk(sk);
  2007. struct sk_buff *skb;
  2008. if (tp->retrans_out)
  2009. return true;
  2010. skb = tcp_write_queue_head(sk);
  2011. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2012. return true;
  2013. return false;
  2014. }
  2015. #if FASTRETRANS_DEBUG > 1
  2016. static void DBGUNDO(struct sock *sk, const char *msg)
  2017. {
  2018. struct tcp_sock *tp = tcp_sk(sk);
  2019. struct inet_sock *inet = inet_sk(sk);
  2020. if (sk->sk_family == AF_INET) {
  2021. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2022. msg,
  2023. &inet->inet_daddr, ntohs(inet->inet_dport),
  2024. tp->snd_cwnd, tcp_left_out(tp),
  2025. tp->snd_ssthresh, tp->prior_ssthresh,
  2026. tp->packets_out);
  2027. }
  2028. #if IS_ENABLED(CONFIG_IPV6)
  2029. else if (sk->sk_family == AF_INET6) {
  2030. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2031. msg,
  2032. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  2033. tp->snd_cwnd, tcp_left_out(tp),
  2034. tp->snd_ssthresh, tp->prior_ssthresh,
  2035. tp->packets_out);
  2036. }
  2037. #endif
  2038. }
  2039. #else
  2040. #define DBGUNDO(x...) do { } while (0)
  2041. #endif
  2042. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2043. {
  2044. struct tcp_sock *tp = tcp_sk(sk);
  2045. if (unmark_loss) {
  2046. struct sk_buff *skb;
  2047. tcp_for_write_queue(skb, sk) {
  2048. if (skb == tcp_send_head(sk))
  2049. break;
  2050. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2051. }
  2052. tp->lost_out = 0;
  2053. tcp_clear_all_retrans_hints(tp);
  2054. }
  2055. if (tp->prior_ssthresh) {
  2056. const struct inet_connection_sock *icsk = inet_csk(sk);
  2057. if (icsk->icsk_ca_ops->undo_cwnd)
  2058. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2059. else
  2060. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2061. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2062. tp->snd_ssthresh = tp->prior_ssthresh;
  2063. tcp_ecn_withdraw_cwr(tp);
  2064. }
  2065. }
  2066. tp->snd_cwnd_stamp = tcp_time_stamp;
  2067. tp->undo_marker = 0;
  2068. }
  2069. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2070. {
  2071. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2072. }
  2073. /* People celebrate: "We love our President!" */
  2074. static bool tcp_try_undo_recovery(struct sock *sk)
  2075. {
  2076. struct tcp_sock *tp = tcp_sk(sk);
  2077. if (tcp_may_undo(tp)) {
  2078. int mib_idx;
  2079. /* Happy end! We did not retransmit anything
  2080. * or our original transmission succeeded.
  2081. */
  2082. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2083. tcp_undo_cwnd_reduction(sk, false);
  2084. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2085. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2086. else
  2087. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2088. NET_INC_STATS(sock_net(sk), mib_idx);
  2089. }
  2090. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2091. /* Hold old state until something *above* high_seq
  2092. * is ACKed. For Reno it is MUST to prevent false
  2093. * fast retransmits (RFC2582). SACK TCP is safe. */
  2094. if (!tcp_any_retrans_done(sk))
  2095. tp->retrans_stamp = 0;
  2096. return true;
  2097. }
  2098. tcp_set_ca_state(sk, TCP_CA_Open);
  2099. return false;
  2100. }
  2101. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2102. static bool tcp_try_undo_dsack(struct sock *sk)
  2103. {
  2104. struct tcp_sock *tp = tcp_sk(sk);
  2105. if (tp->undo_marker && !tp->undo_retrans) {
  2106. DBGUNDO(sk, "D-SACK");
  2107. tcp_undo_cwnd_reduction(sk, false);
  2108. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2109. return true;
  2110. }
  2111. return false;
  2112. }
  2113. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2114. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2115. {
  2116. struct tcp_sock *tp = tcp_sk(sk);
  2117. if (frto_undo || tcp_may_undo(tp)) {
  2118. tcp_undo_cwnd_reduction(sk, true);
  2119. DBGUNDO(sk, "partial loss");
  2120. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2121. if (frto_undo)
  2122. NET_INC_STATS(sock_net(sk),
  2123. LINUX_MIB_TCPSPURIOUSRTOS);
  2124. inet_csk(sk)->icsk_retransmits = 0;
  2125. if (frto_undo || tcp_is_sack(tp))
  2126. tcp_set_ca_state(sk, TCP_CA_Open);
  2127. return true;
  2128. }
  2129. return false;
  2130. }
  2131. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2132. * It computes the number of packets to send (sndcnt) based on packets newly
  2133. * delivered:
  2134. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2135. * cwnd reductions across a full RTT.
  2136. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2137. * But when the retransmits are acked without further losses, PRR
  2138. * slow starts cwnd up to ssthresh to speed up the recovery.
  2139. */
  2140. static void tcp_init_cwnd_reduction(struct sock *sk)
  2141. {
  2142. struct tcp_sock *tp = tcp_sk(sk);
  2143. tp->high_seq = tp->snd_nxt;
  2144. tp->tlp_high_seq = 0;
  2145. tp->snd_cwnd_cnt = 0;
  2146. tp->prior_cwnd = tp->snd_cwnd;
  2147. tp->prr_delivered = 0;
  2148. tp->prr_out = 0;
  2149. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2150. tcp_ecn_queue_cwr(tp);
  2151. }
  2152. static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
  2153. int flag)
  2154. {
  2155. struct tcp_sock *tp = tcp_sk(sk);
  2156. int sndcnt = 0;
  2157. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2158. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2159. return;
  2160. tp->prr_delivered += newly_acked_sacked;
  2161. if (delta < 0) {
  2162. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2163. tp->prior_cwnd - 1;
  2164. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2165. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2166. !(flag & FLAG_LOST_RETRANS)) {
  2167. sndcnt = min_t(int, delta,
  2168. max_t(int, tp->prr_delivered - tp->prr_out,
  2169. newly_acked_sacked) + 1);
  2170. } else {
  2171. sndcnt = min(delta, newly_acked_sacked);
  2172. }
  2173. /* Force a fast retransmit upon entering fast recovery */
  2174. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2175. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2176. }
  2177. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2178. {
  2179. struct tcp_sock *tp = tcp_sk(sk);
  2180. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2181. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2182. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2183. tp->snd_cwnd = tp->snd_ssthresh;
  2184. tp->snd_cwnd_stamp = tcp_time_stamp;
  2185. }
  2186. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2187. }
  2188. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2189. void tcp_enter_cwr(struct sock *sk)
  2190. {
  2191. struct tcp_sock *tp = tcp_sk(sk);
  2192. tp->prior_ssthresh = 0;
  2193. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2194. tp->undo_marker = 0;
  2195. tcp_init_cwnd_reduction(sk);
  2196. tcp_set_ca_state(sk, TCP_CA_CWR);
  2197. }
  2198. }
  2199. EXPORT_SYMBOL(tcp_enter_cwr);
  2200. static void tcp_try_keep_open(struct sock *sk)
  2201. {
  2202. struct tcp_sock *tp = tcp_sk(sk);
  2203. int state = TCP_CA_Open;
  2204. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2205. state = TCP_CA_Disorder;
  2206. if (inet_csk(sk)->icsk_ca_state != state) {
  2207. tcp_set_ca_state(sk, state);
  2208. tp->high_seq = tp->snd_nxt;
  2209. }
  2210. }
  2211. static void tcp_try_to_open(struct sock *sk, int flag)
  2212. {
  2213. struct tcp_sock *tp = tcp_sk(sk);
  2214. tcp_verify_left_out(tp);
  2215. if (!tcp_any_retrans_done(sk))
  2216. tp->retrans_stamp = 0;
  2217. if (flag & FLAG_ECE)
  2218. tcp_enter_cwr(sk);
  2219. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2220. tcp_try_keep_open(sk);
  2221. }
  2222. }
  2223. static void tcp_mtup_probe_failed(struct sock *sk)
  2224. {
  2225. struct inet_connection_sock *icsk = inet_csk(sk);
  2226. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2227. icsk->icsk_mtup.probe_size = 0;
  2228. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2229. }
  2230. static void tcp_mtup_probe_success(struct sock *sk)
  2231. {
  2232. struct tcp_sock *tp = tcp_sk(sk);
  2233. struct inet_connection_sock *icsk = inet_csk(sk);
  2234. /* FIXME: breaks with very large cwnd */
  2235. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2236. tp->snd_cwnd = tp->snd_cwnd *
  2237. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2238. icsk->icsk_mtup.probe_size;
  2239. tp->snd_cwnd_cnt = 0;
  2240. tp->snd_cwnd_stamp = tcp_time_stamp;
  2241. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2242. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2243. icsk->icsk_mtup.probe_size = 0;
  2244. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2245. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2246. }
  2247. /* Do a simple retransmit without using the backoff mechanisms in
  2248. * tcp_timer. This is used for path mtu discovery.
  2249. * The socket is already locked here.
  2250. */
  2251. void tcp_simple_retransmit(struct sock *sk)
  2252. {
  2253. const struct inet_connection_sock *icsk = inet_csk(sk);
  2254. struct tcp_sock *tp = tcp_sk(sk);
  2255. struct sk_buff *skb;
  2256. unsigned int mss = tcp_current_mss(sk);
  2257. u32 prior_lost = tp->lost_out;
  2258. tcp_for_write_queue(skb, sk) {
  2259. if (skb == tcp_send_head(sk))
  2260. break;
  2261. if (tcp_skb_seglen(skb) > mss &&
  2262. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2263. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2264. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2265. tp->retrans_out -= tcp_skb_pcount(skb);
  2266. }
  2267. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2268. }
  2269. }
  2270. tcp_clear_retrans_hints_partial(tp);
  2271. if (prior_lost == tp->lost_out)
  2272. return;
  2273. if (tcp_is_reno(tp))
  2274. tcp_limit_reno_sacked(tp);
  2275. tcp_verify_left_out(tp);
  2276. /* Don't muck with the congestion window here.
  2277. * Reason is that we do not increase amount of _data_
  2278. * in network, but units changed and effective
  2279. * cwnd/ssthresh really reduced now.
  2280. */
  2281. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2282. tp->high_seq = tp->snd_nxt;
  2283. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2284. tp->prior_ssthresh = 0;
  2285. tp->undo_marker = 0;
  2286. tcp_set_ca_state(sk, TCP_CA_Loss);
  2287. }
  2288. tcp_xmit_retransmit_queue(sk);
  2289. }
  2290. EXPORT_SYMBOL(tcp_simple_retransmit);
  2291. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2292. {
  2293. struct tcp_sock *tp = tcp_sk(sk);
  2294. int mib_idx;
  2295. if (tcp_is_reno(tp))
  2296. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2297. else
  2298. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2299. NET_INC_STATS(sock_net(sk), mib_idx);
  2300. tp->prior_ssthresh = 0;
  2301. tcp_init_undo(tp);
  2302. if (!tcp_in_cwnd_reduction(sk)) {
  2303. if (!ece_ack)
  2304. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2305. tcp_init_cwnd_reduction(sk);
  2306. }
  2307. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2308. }
  2309. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2310. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2311. */
  2312. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2313. int *rexmit)
  2314. {
  2315. struct tcp_sock *tp = tcp_sk(sk);
  2316. bool recovered = !before(tp->snd_una, tp->high_seq);
  2317. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2318. tcp_try_undo_loss(sk, false))
  2319. return;
  2320. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2321. /* Step 3.b. A timeout is spurious if not all data are
  2322. * lost, i.e., never-retransmitted data are (s)acked.
  2323. */
  2324. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2325. tcp_try_undo_loss(sk, true))
  2326. return;
  2327. if (after(tp->snd_nxt, tp->high_seq)) {
  2328. if (flag & FLAG_DATA_SACKED || is_dupack)
  2329. tp->frto = 0; /* Step 3.a. loss was real */
  2330. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2331. tp->high_seq = tp->snd_nxt;
  2332. /* Step 2.b. Try send new data (but deferred until cwnd
  2333. * is updated in tcp_ack()). Otherwise fall back to
  2334. * the conventional recovery.
  2335. */
  2336. if (tcp_send_head(sk) &&
  2337. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2338. *rexmit = REXMIT_NEW;
  2339. return;
  2340. }
  2341. tp->frto = 0;
  2342. }
  2343. }
  2344. if (recovered) {
  2345. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2346. tcp_try_undo_recovery(sk);
  2347. return;
  2348. }
  2349. if (tcp_is_reno(tp)) {
  2350. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2351. * delivered. Lower inflight to clock out (re)tranmissions.
  2352. */
  2353. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2354. tcp_add_reno_sack(sk);
  2355. else if (flag & FLAG_SND_UNA_ADVANCED)
  2356. tcp_reset_reno_sack(tp);
  2357. }
  2358. *rexmit = REXMIT_LOST;
  2359. }
  2360. /* Undo during fast recovery after partial ACK. */
  2361. static bool tcp_try_undo_partial(struct sock *sk, const int acked)
  2362. {
  2363. struct tcp_sock *tp = tcp_sk(sk);
  2364. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2365. /* Plain luck! Hole if filled with delayed
  2366. * packet, rather than with a retransmit.
  2367. */
  2368. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2369. /* We are getting evidence that the reordering degree is higher
  2370. * than we realized. If there are no retransmits out then we
  2371. * can undo. Otherwise we clock out new packets but do not
  2372. * mark more packets lost or retransmit more.
  2373. */
  2374. if (tp->retrans_out)
  2375. return true;
  2376. if (!tcp_any_retrans_done(sk))
  2377. tp->retrans_stamp = 0;
  2378. DBGUNDO(sk, "partial recovery");
  2379. tcp_undo_cwnd_reduction(sk, true);
  2380. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2381. tcp_try_keep_open(sk);
  2382. return true;
  2383. }
  2384. return false;
  2385. }
  2386. /* Process an event, which can update packets-in-flight not trivially.
  2387. * Main goal of this function is to calculate new estimate for left_out,
  2388. * taking into account both packets sitting in receiver's buffer and
  2389. * packets lost by network.
  2390. *
  2391. * Besides that it updates the congestion state when packet loss or ECN
  2392. * is detected. But it does not reduce the cwnd, it is done by the
  2393. * congestion control later.
  2394. *
  2395. * It does _not_ decide what to send, it is made in function
  2396. * tcp_xmit_retransmit_queue().
  2397. */
  2398. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2399. bool is_dupack, int *ack_flag, int *rexmit)
  2400. {
  2401. struct inet_connection_sock *icsk = inet_csk(sk);
  2402. struct tcp_sock *tp = tcp_sk(sk);
  2403. int fast_rexmit = 0, flag = *ack_flag;
  2404. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2405. (tcp_fackets_out(tp) > tp->reordering));
  2406. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2407. tp->sacked_out = 0;
  2408. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2409. tp->fackets_out = 0;
  2410. /* Now state machine starts.
  2411. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2412. if (flag & FLAG_ECE)
  2413. tp->prior_ssthresh = 0;
  2414. /* B. In all the states check for reneging SACKs. */
  2415. if (tcp_check_sack_reneging(sk, flag))
  2416. return;
  2417. /* C. Check consistency of the current state. */
  2418. tcp_verify_left_out(tp);
  2419. /* D. Check state exit conditions. State can be terminated
  2420. * when high_seq is ACKed. */
  2421. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2422. WARN_ON(tp->retrans_out != 0);
  2423. tp->retrans_stamp = 0;
  2424. } else if (!before(tp->snd_una, tp->high_seq)) {
  2425. switch (icsk->icsk_ca_state) {
  2426. case TCP_CA_CWR:
  2427. /* CWR is to be held something *above* high_seq
  2428. * is ACKed for CWR bit to reach receiver. */
  2429. if (tp->snd_una != tp->high_seq) {
  2430. tcp_end_cwnd_reduction(sk);
  2431. tcp_set_ca_state(sk, TCP_CA_Open);
  2432. }
  2433. break;
  2434. case TCP_CA_Recovery:
  2435. if (tcp_is_reno(tp))
  2436. tcp_reset_reno_sack(tp);
  2437. if (tcp_try_undo_recovery(sk))
  2438. return;
  2439. tcp_end_cwnd_reduction(sk);
  2440. break;
  2441. }
  2442. }
  2443. /* Use RACK to detect loss */
  2444. if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
  2445. tcp_rack_mark_lost(sk)) {
  2446. flag |= FLAG_LOST_RETRANS;
  2447. *ack_flag |= FLAG_LOST_RETRANS;
  2448. }
  2449. /* E. Process state. */
  2450. switch (icsk->icsk_ca_state) {
  2451. case TCP_CA_Recovery:
  2452. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2453. if (tcp_is_reno(tp) && is_dupack)
  2454. tcp_add_reno_sack(sk);
  2455. } else {
  2456. if (tcp_try_undo_partial(sk, acked))
  2457. return;
  2458. /* Partial ACK arrived. Force fast retransmit. */
  2459. do_lost = tcp_is_reno(tp) ||
  2460. tcp_fackets_out(tp) > tp->reordering;
  2461. }
  2462. if (tcp_try_undo_dsack(sk)) {
  2463. tcp_try_keep_open(sk);
  2464. return;
  2465. }
  2466. break;
  2467. case TCP_CA_Loss:
  2468. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2469. if (icsk->icsk_ca_state != TCP_CA_Open &&
  2470. !(flag & FLAG_LOST_RETRANS))
  2471. return;
  2472. /* Change state if cwnd is undone or retransmits are lost */
  2473. default:
  2474. if (tcp_is_reno(tp)) {
  2475. if (flag & FLAG_SND_UNA_ADVANCED)
  2476. tcp_reset_reno_sack(tp);
  2477. if (is_dupack)
  2478. tcp_add_reno_sack(sk);
  2479. }
  2480. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2481. tcp_try_undo_dsack(sk);
  2482. if (!tcp_time_to_recover(sk, flag)) {
  2483. tcp_try_to_open(sk, flag);
  2484. return;
  2485. }
  2486. /* MTU probe failure: don't reduce cwnd */
  2487. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2488. icsk->icsk_mtup.probe_size &&
  2489. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2490. tcp_mtup_probe_failed(sk);
  2491. /* Restores the reduction we did in tcp_mtup_probe() */
  2492. tp->snd_cwnd++;
  2493. tcp_simple_retransmit(sk);
  2494. return;
  2495. }
  2496. /* Otherwise enter Recovery state */
  2497. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2498. fast_rexmit = 1;
  2499. }
  2500. if (do_lost)
  2501. tcp_update_scoreboard(sk, fast_rexmit);
  2502. *rexmit = REXMIT_LOST;
  2503. }
  2504. /* Kathleen Nichols' algorithm for tracking the minimum value of
  2505. * a data stream over some fixed time interval. (E.g., the minimum
  2506. * RTT over the past five minutes.) It uses constant space and constant
  2507. * time per update yet almost always delivers the same minimum as an
  2508. * implementation that has to keep all the data in the window.
  2509. *
  2510. * The algorithm keeps track of the best, 2nd best & 3rd best min
  2511. * values, maintaining an invariant that the measurement time of the
  2512. * n'th best >= n-1'th best. It also makes sure that the three values
  2513. * are widely separated in the time window since that bounds the worse
  2514. * case error when that data is monotonically increasing over the window.
  2515. *
  2516. * Upon getting a new min, we can forget everything earlier because it
  2517. * has no value - the new min is <= everything else in the window by
  2518. * definition and it's the most recent. So we restart fresh on every new min
  2519. * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
  2520. * best.
  2521. */
  2522. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2523. {
  2524. const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
  2525. struct rtt_meas *m = tcp_sk(sk)->rtt_min;
  2526. struct rtt_meas rttm = {
  2527. .rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
  2528. .ts = now,
  2529. };
  2530. u32 elapsed;
  2531. /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
  2532. if (unlikely(rttm.rtt <= m[0].rtt))
  2533. m[0] = m[1] = m[2] = rttm;
  2534. else if (rttm.rtt <= m[1].rtt)
  2535. m[1] = m[2] = rttm;
  2536. else if (rttm.rtt <= m[2].rtt)
  2537. m[2] = rttm;
  2538. elapsed = now - m[0].ts;
  2539. if (unlikely(elapsed > wlen)) {
  2540. /* Passed entire window without a new min so make 2nd choice
  2541. * the new min & 3rd choice the new 2nd. So forth and so on.
  2542. */
  2543. m[0] = m[1];
  2544. m[1] = m[2];
  2545. m[2] = rttm;
  2546. if (now - m[0].ts > wlen) {
  2547. m[0] = m[1];
  2548. m[1] = rttm;
  2549. if (now - m[0].ts > wlen)
  2550. m[0] = rttm;
  2551. }
  2552. } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
  2553. /* Passed a quarter of the window without a new min so
  2554. * take 2nd choice from the 2nd quarter of the window.
  2555. */
  2556. m[2] = m[1] = rttm;
  2557. } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
  2558. /* Passed half the window without a new min so take the 3rd
  2559. * choice from the last half of the window.
  2560. */
  2561. m[2] = rttm;
  2562. }
  2563. }
  2564. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2565. long seq_rtt_us, long sack_rtt_us,
  2566. long ca_rtt_us)
  2567. {
  2568. const struct tcp_sock *tp = tcp_sk(sk);
  2569. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2570. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2571. * Karn's algorithm forbids taking RTT if some retransmitted data
  2572. * is acked (RFC6298).
  2573. */
  2574. if (seq_rtt_us < 0)
  2575. seq_rtt_us = sack_rtt_us;
  2576. /* RTTM Rule: A TSecr value received in a segment is used to
  2577. * update the averaged RTT measurement only if the segment
  2578. * acknowledges some new data, i.e., only if it advances the
  2579. * left edge of the send window.
  2580. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2581. */
  2582. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2583. flag & FLAG_ACKED)
  2584. seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
  2585. tp->rx_opt.rcv_tsecr);
  2586. if (seq_rtt_us < 0)
  2587. return false;
  2588. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2589. * always taken together with ACK, SACK, or TS-opts. Any negative
  2590. * values will be skipped with the seq_rtt_us < 0 check above.
  2591. */
  2592. tcp_update_rtt_min(sk, ca_rtt_us);
  2593. tcp_rtt_estimator(sk, seq_rtt_us);
  2594. tcp_set_rto(sk);
  2595. /* RFC6298: only reset backoff on valid RTT measurement. */
  2596. inet_csk(sk)->icsk_backoff = 0;
  2597. return true;
  2598. }
  2599. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2600. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2601. {
  2602. long rtt_us = -1L;
  2603. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
  2604. struct skb_mstamp now;
  2605. skb_mstamp_get(&now);
  2606. rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
  2607. }
  2608. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
  2609. }
  2610. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2611. {
  2612. const struct inet_connection_sock *icsk = inet_csk(sk);
  2613. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2614. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2615. }
  2616. /* Restart timer after forward progress on connection.
  2617. * RFC2988 recommends to restart timer to now+rto.
  2618. */
  2619. void tcp_rearm_rto(struct sock *sk)
  2620. {
  2621. const struct inet_connection_sock *icsk = inet_csk(sk);
  2622. struct tcp_sock *tp = tcp_sk(sk);
  2623. /* If the retrans timer is currently being used by Fast Open
  2624. * for SYN-ACK retrans purpose, stay put.
  2625. */
  2626. if (tp->fastopen_rsk)
  2627. return;
  2628. if (!tp->packets_out) {
  2629. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2630. } else {
  2631. u32 rto = inet_csk(sk)->icsk_rto;
  2632. /* Offset the time elapsed after installing regular RTO */
  2633. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2634. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2635. struct sk_buff *skb = tcp_write_queue_head(sk);
  2636. const u32 rto_time_stamp =
  2637. tcp_skb_timestamp(skb) + rto;
  2638. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2639. /* delta may not be positive if the socket is locked
  2640. * when the retrans timer fires and is rescheduled.
  2641. */
  2642. if (delta > 0)
  2643. rto = delta;
  2644. }
  2645. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2646. TCP_RTO_MAX);
  2647. }
  2648. }
  2649. /* This function is called when the delayed ER timer fires. TCP enters
  2650. * fast recovery and performs fast-retransmit.
  2651. */
  2652. void tcp_resume_early_retransmit(struct sock *sk)
  2653. {
  2654. struct tcp_sock *tp = tcp_sk(sk);
  2655. tcp_rearm_rto(sk);
  2656. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2657. if (!tp->do_early_retrans)
  2658. return;
  2659. tcp_enter_recovery(sk, false);
  2660. tcp_update_scoreboard(sk, 1);
  2661. tcp_xmit_retransmit_queue(sk);
  2662. }
  2663. /* If we get here, the whole TSO packet has not been acked. */
  2664. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2665. {
  2666. struct tcp_sock *tp = tcp_sk(sk);
  2667. u32 packets_acked;
  2668. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2669. packets_acked = tcp_skb_pcount(skb);
  2670. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2671. return 0;
  2672. packets_acked -= tcp_skb_pcount(skb);
  2673. if (packets_acked) {
  2674. BUG_ON(tcp_skb_pcount(skb) == 0);
  2675. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2676. }
  2677. return packets_acked;
  2678. }
  2679. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2680. u32 prior_snd_una)
  2681. {
  2682. const struct skb_shared_info *shinfo;
  2683. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2684. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2685. return;
  2686. shinfo = skb_shinfo(skb);
  2687. if (!before(shinfo->tskey, prior_snd_una) &&
  2688. before(shinfo->tskey, tcp_sk(sk)->snd_una))
  2689. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2690. }
  2691. /* Remove acknowledged frames from the retransmission queue. If our packet
  2692. * is before the ack sequence we can discard it as it's confirmed to have
  2693. * arrived at the other end.
  2694. */
  2695. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2696. u32 prior_snd_una, int *acked,
  2697. struct tcp_sacktag_state *sack)
  2698. {
  2699. const struct inet_connection_sock *icsk = inet_csk(sk);
  2700. struct skb_mstamp first_ackt, last_ackt, now;
  2701. struct tcp_sock *tp = tcp_sk(sk);
  2702. u32 prior_sacked = tp->sacked_out;
  2703. u32 reord = tp->packets_out;
  2704. bool fully_acked = true;
  2705. long sack_rtt_us = -1L;
  2706. long seq_rtt_us = -1L;
  2707. long ca_rtt_us = -1L;
  2708. struct sk_buff *skb;
  2709. u32 pkts_acked = 0;
  2710. u32 last_in_flight = 0;
  2711. bool rtt_update;
  2712. int flag = 0;
  2713. first_ackt.v64 = 0;
  2714. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2715. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2716. u8 sacked = scb->sacked;
  2717. u32 acked_pcount;
  2718. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2719. /* Determine how many packets and what bytes were acked, tso and else */
  2720. if (after(scb->end_seq, tp->snd_una)) {
  2721. if (tcp_skb_pcount(skb) == 1 ||
  2722. !after(tp->snd_una, scb->seq))
  2723. break;
  2724. acked_pcount = tcp_tso_acked(sk, skb);
  2725. if (!acked_pcount)
  2726. break;
  2727. fully_acked = false;
  2728. } else {
  2729. /* Speedup tcp_unlink_write_queue() and next loop */
  2730. prefetchw(skb->next);
  2731. acked_pcount = tcp_skb_pcount(skb);
  2732. }
  2733. if (unlikely(sacked & TCPCB_RETRANS)) {
  2734. if (sacked & TCPCB_SACKED_RETRANS)
  2735. tp->retrans_out -= acked_pcount;
  2736. flag |= FLAG_RETRANS_DATA_ACKED;
  2737. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2738. last_ackt = skb->skb_mstamp;
  2739. WARN_ON_ONCE(last_ackt.v64 == 0);
  2740. if (!first_ackt.v64)
  2741. first_ackt = last_ackt;
  2742. last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
  2743. reord = min(pkts_acked, reord);
  2744. if (!after(scb->end_seq, tp->high_seq))
  2745. flag |= FLAG_ORIG_SACK_ACKED;
  2746. }
  2747. if (sacked & TCPCB_SACKED_ACKED) {
  2748. tp->sacked_out -= acked_pcount;
  2749. } else if (tcp_is_sack(tp)) {
  2750. tp->delivered += acked_pcount;
  2751. if (!tcp_skb_spurious_retrans(tp, skb))
  2752. tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
  2753. }
  2754. if (sacked & TCPCB_LOST)
  2755. tp->lost_out -= acked_pcount;
  2756. tp->packets_out -= acked_pcount;
  2757. pkts_acked += acked_pcount;
  2758. /* Initial outgoing SYN's get put onto the write_queue
  2759. * just like anything else we transmit. It is not
  2760. * true data, and if we misinform our callers that
  2761. * this ACK acks real data, we will erroneously exit
  2762. * connection startup slow start one packet too
  2763. * quickly. This is severely frowned upon behavior.
  2764. */
  2765. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2766. flag |= FLAG_DATA_ACKED;
  2767. } else {
  2768. flag |= FLAG_SYN_ACKED;
  2769. tp->retrans_stamp = 0;
  2770. }
  2771. if (!fully_acked)
  2772. break;
  2773. tcp_unlink_write_queue(skb, sk);
  2774. sk_wmem_free_skb(sk, skb);
  2775. if (unlikely(skb == tp->retransmit_skb_hint))
  2776. tp->retransmit_skb_hint = NULL;
  2777. if (unlikely(skb == tp->lost_skb_hint))
  2778. tp->lost_skb_hint = NULL;
  2779. }
  2780. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2781. tp->snd_up = tp->snd_una;
  2782. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2783. flag |= FLAG_SACK_RENEGING;
  2784. skb_mstamp_get(&now);
  2785. if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2786. seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
  2787. ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
  2788. }
  2789. if (sack->first_sackt.v64) {
  2790. sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
  2791. ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
  2792. }
  2793. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2794. ca_rtt_us);
  2795. if (flag & FLAG_ACKED) {
  2796. tcp_rearm_rto(sk);
  2797. if (unlikely(icsk->icsk_mtup.probe_size &&
  2798. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2799. tcp_mtup_probe_success(sk);
  2800. }
  2801. if (tcp_is_reno(tp)) {
  2802. tcp_remove_reno_sacks(sk, pkts_acked);
  2803. } else {
  2804. int delta;
  2805. /* Non-retransmitted hole got filled? That's reordering */
  2806. if (reord < prior_fackets)
  2807. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2808. delta = tcp_is_fack(tp) ? pkts_acked :
  2809. prior_sacked - tp->sacked_out;
  2810. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2811. }
  2812. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2813. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2814. sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
  2815. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2816. * after when the head was last (re)transmitted. Otherwise the
  2817. * timeout may continue to extend in loss recovery.
  2818. */
  2819. tcp_rearm_rto(sk);
  2820. }
  2821. if (icsk->icsk_ca_ops->pkts_acked) {
  2822. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2823. .rtt_us = ca_rtt_us,
  2824. .in_flight = last_in_flight };
  2825. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2826. }
  2827. #if FASTRETRANS_DEBUG > 0
  2828. WARN_ON((int)tp->sacked_out < 0);
  2829. WARN_ON((int)tp->lost_out < 0);
  2830. WARN_ON((int)tp->retrans_out < 0);
  2831. if (!tp->packets_out && tcp_is_sack(tp)) {
  2832. icsk = inet_csk(sk);
  2833. if (tp->lost_out) {
  2834. pr_debug("Leak l=%u %d\n",
  2835. tp->lost_out, icsk->icsk_ca_state);
  2836. tp->lost_out = 0;
  2837. }
  2838. if (tp->sacked_out) {
  2839. pr_debug("Leak s=%u %d\n",
  2840. tp->sacked_out, icsk->icsk_ca_state);
  2841. tp->sacked_out = 0;
  2842. }
  2843. if (tp->retrans_out) {
  2844. pr_debug("Leak r=%u %d\n",
  2845. tp->retrans_out, icsk->icsk_ca_state);
  2846. tp->retrans_out = 0;
  2847. }
  2848. }
  2849. #endif
  2850. *acked = pkts_acked;
  2851. return flag;
  2852. }
  2853. static void tcp_ack_probe(struct sock *sk)
  2854. {
  2855. const struct tcp_sock *tp = tcp_sk(sk);
  2856. struct inet_connection_sock *icsk = inet_csk(sk);
  2857. /* Was it a usable window open? */
  2858. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2859. icsk->icsk_backoff = 0;
  2860. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2861. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2862. * This function is not for random using!
  2863. */
  2864. } else {
  2865. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2866. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2867. when, TCP_RTO_MAX);
  2868. }
  2869. }
  2870. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2871. {
  2872. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2873. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2874. }
  2875. /* Decide wheather to run the increase function of congestion control. */
  2876. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2877. {
  2878. /* If reordering is high then always grow cwnd whenever data is
  2879. * delivered regardless of its ordering. Otherwise stay conservative
  2880. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2881. * new SACK or ECE mark may first advance cwnd here and later reduce
  2882. * cwnd in tcp_fastretrans_alert() based on more states.
  2883. */
  2884. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2885. return flag & FLAG_FORWARD_PROGRESS;
  2886. return flag & FLAG_DATA_ACKED;
  2887. }
  2888. /* The "ultimate" congestion control function that aims to replace the rigid
  2889. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2890. * It's called toward the end of processing an ACK with precise rate
  2891. * information. All transmission or retransmission are delayed afterwards.
  2892. */
  2893. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2894. int flag)
  2895. {
  2896. if (tcp_in_cwnd_reduction(sk)) {
  2897. /* Reduce cwnd if state mandates */
  2898. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2899. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2900. /* Advance cwnd if state allows */
  2901. tcp_cong_avoid(sk, ack, acked_sacked);
  2902. }
  2903. tcp_update_pacing_rate(sk);
  2904. }
  2905. /* Check that window update is acceptable.
  2906. * The function assumes that snd_una<=ack<=snd_next.
  2907. */
  2908. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2909. const u32 ack, const u32 ack_seq,
  2910. const u32 nwin)
  2911. {
  2912. return after(ack, tp->snd_una) ||
  2913. after(ack_seq, tp->snd_wl1) ||
  2914. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2915. }
  2916. /* If we update tp->snd_una, also update tp->bytes_acked */
  2917. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2918. {
  2919. u32 delta = ack - tp->snd_una;
  2920. sock_owned_by_me((struct sock *)tp);
  2921. u64_stats_update_begin_raw(&tp->syncp);
  2922. tp->bytes_acked += delta;
  2923. u64_stats_update_end_raw(&tp->syncp);
  2924. tp->snd_una = ack;
  2925. }
  2926. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2927. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2928. {
  2929. u32 delta = seq - tp->rcv_nxt;
  2930. sock_owned_by_me((struct sock *)tp);
  2931. u64_stats_update_begin_raw(&tp->syncp);
  2932. tp->bytes_received += delta;
  2933. u64_stats_update_end_raw(&tp->syncp);
  2934. tp->rcv_nxt = seq;
  2935. }
  2936. /* Update our send window.
  2937. *
  2938. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2939. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2940. */
  2941. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2942. u32 ack_seq)
  2943. {
  2944. struct tcp_sock *tp = tcp_sk(sk);
  2945. int flag = 0;
  2946. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2947. if (likely(!tcp_hdr(skb)->syn))
  2948. nwin <<= tp->rx_opt.snd_wscale;
  2949. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2950. flag |= FLAG_WIN_UPDATE;
  2951. tcp_update_wl(tp, ack_seq);
  2952. if (tp->snd_wnd != nwin) {
  2953. tp->snd_wnd = nwin;
  2954. /* Note, it is the only place, where
  2955. * fast path is recovered for sending TCP.
  2956. */
  2957. tp->pred_flags = 0;
  2958. tcp_fast_path_check(sk);
  2959. if (tcp_send_head(sk))
  2960. tcp_slow_start_after_idle_check(sk);
  2961. if (nwin > tp->max_window) {
  2962. tp->max_window = nwin;
  2963. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2964. }
  2965. }
  2966. }
  2967. tcp_snd_una_update(tp, ack);
  2968. return flag;
  2969. }
  2970. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2971. u32 *last_oow_ack_time)
  2972. {
  2973. if (*last_oow_ack_time) {
  2974. s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
  2975. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2976. NET_INC_STATS(net, mib_idx);
  2977. return true; /* rate-limited: don't send yet! */
  2978. }
  2979. }
  2980. *last_oow_ack_time = tcp_time_stamp;
  2981. return false; /* not rate-limited: go ahead, send dupack now! */
  2982. }
  2983. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2984. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2985. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2986. * attacks that send repeated SYNs or ACKs for the same connection. To
  2987. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2988. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2989. */
  2990. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2991. int mib_idx, u32 *last_oow_ack_time)
  2992. {
  2993. /* Data packets without SYNs are not likely part of an ACK loop. */
  2994. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2995. !tcp_hdr(skb)->syn)
  2996. return false;
  2997. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2998. }
  2999. /* RFC 5961 7 [ACK Throttling] */
  3000. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  3001. {
  3002. /* unprotected vars, we dont care of overwrites */
  3003. static u32 challenge_timestamp;
  3004. static unsigned int challenge_count;
  3005. struct tcp_sock *tp = tcp_sk(sk);
  3006. u32 count, now;
  3007. /* First check our per-socket dupack rate limit. */
  3008. if (__tcp_oow_rate_limited(sock_net(sk),
  3009. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  3010. &tp->last_oow_ack_time))
  3011. return;
  3012. /* Then check host-wide RFC 5961 rate limit. */
  3013. now = jiffies / HZ;
  3014. if (now != challenge_timestamp) {
  3015. u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
  3016. challenge_timestamp = now;
  3017. WRITE_ONCE(challenge_count, half +
  3018. prandom_u32_max(sysctl_tcp_challenge_ack_limit));
  3019. }
  3020. count = READ_ONCE(challenge_count);
  3021. if (count > 0) {
  3022. WRITE_ONCE(challenge_count, count - 1);
  3023. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  3024. tcp_send_ack(sk);
  3025. }
  3026. }
  3027. static void tcp_store_ts_recent(struct tcp_sock *tp)
  3028. {
  3029. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3030. tp->rx_opt.ts_recent_stamp = get_seconds();
  3031. }
  3032. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3033. {
  3034. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3035. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3036. * extra check below makes sure this can only happen
  3037. * for pure ACK frames. -DaveM
  3038. *
  3039. * Not only, also it occurs for expired timestamps.
  3040. */
  3041. if (tcp_paws_check(&tp->rx_opt, 0))
  3042. tcp_store_ts_recent(tp);
  3043. }
  3044. }
  3045. /* This routine deals with acks during a TLP episode.
  3046. * We mark the end of a TLP episode on receiving TLP dupack or when
  3047. * ack is after tlp_high_seq.
  3048. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  3049. */
  3050. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  3051. {
  3052. struct tcp_sock *tp = tcp_sk(sk);
  3053. if (before(ack, tp->tlp_high_seq))
  3054. return;
  3055. if (flag & FLAG_DSACKING_ACK) {
  3056. /* This DSACK means original and TLP probe arrived; no loss */
  3057. tp->tlp_high_seq = 0;
  3058. } else if (after(ack, tp->tlp_high_seq)) {
  3059. /* ACK advances: there was a loss, so reduce cwnd. Reset
  3060. * tlp_high_seq in tcp_init_cwnd_reduction()
  3061. */
  3062. tcp_init_cwnd_reduction(sk);
  3063. tcp_set_ca_state(sk, TCP_CA_CWR);
  3064. tcp_end_cwnd_reduction(sk);
  3065. tcp_try_keep_open(sk);
  3066. NET_INC_STATS(sock_net(sk),
  3067. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3068. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3069. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3070. /* Pure dupack: original and TLP probe arrived; no loss */
  3071. tp->tlp_high_seq = 0;
  3072. }
  3073. }
  3074. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3075. {
  3076. const struct inet_connection_sock *icsk = inet_csk(sk);
  3077. if (icsk->icsk_ca_ops->in_ack_event)
  3078. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3079. }
  3080. /* Congestion control has updated the cwnd already. So if we're in
  3081. * loss recovery then now we do any new sends (for FRTO) or
  3082. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3083. */
  3084. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3085. {
  3086. struct tcp_sock *tp = tcp_sk(sk);
  3087. if (rexmit == REXMIT_NONE)
  3088. return;
  3089. if (unlikely(rexmit == 2)) {
  3090. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3091. TCP_NAGLE_OFF);
  3092. if (after(tp->snd_nxt, tp->high_seq))
  3093. return;
  3094. tp->frto = 0;
  3095. }
  3096. tcp_xmit_retransmit_queue(sk);
  3097. }
  3098. /* This routine deals with incoming acks, but not outgoing ones. */
  3099. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3100. {
  3101. struct inet_connection_sock *icsk = inet_csk(sk);
  3102. struct tcp_sock *tp = tcp_sk(sk);
  3103. struct tcp_sacktag_state sack_state;
  3104. u32 prior_snd_una = tp->snd_una;
  3105. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3106. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3107. bool is_dupack = false;
  3108. u32 prior_fackets;
  3109. int prior_packets = tp->packets_out;
  3110. u32 prior_delivered = tp->delivered;
  3111. int acked = 0; /* Number of packets newly acked */
  3112. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3113. sack_state.first_sackt.v64 = 0;
  3114. /* We very likely will need to access write queue head. */
  3115. prefetchw(sk->sk_write_queue.next);
  3116. /* If the ack is older than previous acks
  3117. * then we can probably ignore it.
  3118. */
  3119. if (before(ack, prior_snd_una)) {
  3120. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3121. if (before(ack, prior_snd_una - tp->max_window)) {
  3122. tcp_send_challenge_ack(sk, skb);
  3123. return -1;
  3124. }
  3125. goto old_ack;
  3126. }
  3127. /* If the ack includes data we haven't sent yet, discard
  3128. * this segment (RFC793 Section 3.9).
  3129. */
  3130. if (after(ack, tp->snd_nxt))
  3131. goto invalid_ack;
  3132. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  3133. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  3134. tcp_rearm_rto(sk);
  3135. if (after(ack, prior_snd_una)) {
  3136. flag |= FLAG_SND_UNA_ADVANCED;
  3137. icsk->icsk_retransmits = 0;
  3138. }
  3139. prior_fackets = tp->fackets_out;
  3140. /* ts_recent update must be made after we are sure that the packet
  3141. * is in window.
  3142. */
  3143. if (flag & FLAG_UPDATE_TS_RECENT)
  3144. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3145. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3146. /* Window is constant, pure forward advance.
  3147. * No more checks are required.
  3148. * Note, we use the fact that SND.UNA>=SND.WL2.
  3149. */
  3150. tcp_update_wl(tp, ack_seq);
  3151. tcp_snd_una_update(tp, ack);
  3152. flag |= FLAG_WIN_UPDATE;
  3153. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3154. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3155. } else {
  3156. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3157. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3158. flag |= FLAG_DATA;
  3159. else
  3160. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3161. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3162. if (TCP_SKB_CB(skb)->sacked)
  3163. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3164. &sack_state);
  3165. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3166. flag |= FLAG_ECE;
  3167. ack_ev_flags |= CA_ACK_ECE;
  3168. }
  3169. if (flag & FLAG_WIN_UPDATE)
  3170. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3171. tcp_in_ack_event(sk, ack_ev_flags);
  3172. }
  3173. /* We passed data and got it acked, remove any soft error
  3174. * log. Something worked...
  3175. */
  3176. sk->sk_err_soft = 0;
  3177. icsk->icsk_probes_out = 0;
  3178. tp->rcv_tstamp = tcp_time_stamp;
  3179. if (!prior_packets)
  3180. goto no_queue;
  3181. /* See if we can take anything off of the retransmit queue. */
  3182. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
  3183. &sack_state);
  3184. if (tcp_ack_is_dubious(sk, flag)) {
  3185. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3186. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3187. }
  3188. if (tp->tlp_high_seq)
  3189. tcp_process_tlp_ack(sk, ack, flag);
  3190. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3191. struct dst_entry *dst = __sk_dst_get(sk);
  3192. if (dst)
  3193. dst_confirm(dst);
  3194. }
  3195. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  3196. tcp_schedule_loss_probe(sk);
  3197. tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
  3198. tcp_xmit_recovery(sk, rexmit);
  3199. return 1;
  3200. no_queue:
  3201. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3202. if (flag & FLAG_DSACKING_ACK)
  3203. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3204. /* If this ack opens up a zero window, clear backoff. It was
  3205. * being used to time the probes, and is probably far higher than
  3206. * it needs to be for normal retransmission.
  3207. */
  3208. if (tcp_send_head(sk))
  3209. tcp_ack_probe(sk);
  3210. if (tp->tlp_high_seq)
  3211. tcp_process_tlp_ack(sk, ack, flag);
  3212. return 1;
  3213. invalid_ack:
  3214. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3215. return -1;
  3216. old_ack:
  3217. /* If data was SACKed, tag it and see if we should send more data.
  3218. * If data was DSACKed, see if we can undo a cwnd reduction.
  3219. */
  3220. if (TCP_SKB_CB(skb)->sacked) {
  3221. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3222. &sack_state);
  3223. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3224. tcp_xmit_recovery(sk, rexmit);
  3225. }
  3226. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3227. return 0;
  3228. }
  3229. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3230. bool syn, struct tcp_fastopen_cookie *foc,
  3231. bool exp_opt)
  3232. {
  3233. /* Valid only in SYN or SYN-ACK with an even length. */
  3234. if (!foc || !syn || len < 0 || (len & 1))
  3235. return;
  3236. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3237. len <= TCP_FASTOPEN_COOKIE_MAX)
  3238. memcpy(foc->val, cookie, len);
  3239. else if (len != 0)
  3240. len = -1;
  3241. foc->len = len;
  3242. foc->exp = exp_opt;
  3243. }
  3244. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3245. * But, this can also be called on packets in the established flow when
  3246. * the fast version below fails.
  3247. */
  3248. void tcp_parse_options(const struct sk_buff *skb,
  3249. struct tcp_options_received *opt_rx, int estab,
  3250. struct tcp_fastopen_cookie *foc)
  3251. {
  3252. const unsigned char *ptr;
  3253. const struct tcphdr *th = tcp_hdr(skb);
  3254. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3255. ptr = (const unsigned char *)(th + 1);
  3256. opt_rx->saw_tstamp = 0;
  3257. while (length > 0) {
  3258. int opcode = *ptr++;
  3259. int opsize;
  3260. switch (opcode) {
  3261. case TCPOPT_EOL:
  3262. return;
  3263. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3264. length--;
  3265. continue;
  3266. default:
  3267. opsize = *ptr++;
  3268. if (opsize < 2) /* "silly options" */
  3269. return;
  3270. if (opsize > length)
  3271. return; /* don't parse partial options */
  3272. switch (opcode) {
  3273. case TCPOPT_MSS:
  3274. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3275. u16 in_mss = get_unaligned_be16(ptr);
  3276. if (in_mss) {
  3277. if (opt_rx->user_mss &&
  3278. opt_rx->user_mss < in_mss)
  3279. in_mss = opt_rx->user_mss;
  3280. opt_rx->mss_clamp = in_mss;
  3281. }
  3282. }
  3283. break;
  3284. case TCPOPT_WINDOW:
  3285. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3286. !estab && sysctl_tcp_window_scaling) {
  3287. __u8 snd_wscale = *(__u8 *)ptr;
  3288. opt_rx->wscale_ok = 1;
  3289. if (snd_wscale > 14) {
  3290. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3291. __func__,
  3292. snd_wscale);
  3293. snd_wscale = 14;
  3294. }
  3295. opt_rx->snd_wscale = snd_wscale;
  3296. }
  3297. break;
  3298. case TCPOPT_TIMESTAMP:
  3299. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3300. ((estab && opt_rx->tstamp_ok) ||
  3301. (!estab && sysctl_tcp_timestamps))) {
  3302. opt_rx->saw_tstamp = 1;
  3303. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3304. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3305. }
  3306. break;
  3307. case TCPOPT_SACK_PERM:
  3308. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3309. !estab && sysctl_tcp_sack) {
  3310. opt_rx->sack_ok = TCP_SACK_SEEN;
  3311. tcp_sack_reset(opt_rx);
  3312. }
  3313. break;
  3314. case TCPOPT_SACK:
  3315. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3316. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3317. opt_rx->sack_ok) {
  3318. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3319. }
  3320. break;
  3321. #ifdef CONFIG_TCP_MD5SIG
  3322. case TCPOPT_MD5SIG:
  3323. /*
  3324. * The MD5 Hash has already been
  3325. * checked (see tcp_v{4,6}_do_rcv()).
  3326. */
  3327. break;
  3328. #endif
  3329. case TCPOPT_FASTOPEN:
  3330. tcp_parse_fastopen_option(
  3331. opsize - TCPOLEN_FASTOPEN_BASE,
  3332. ptr, th->syn, foc, false);
  3333. break;
  3334. case TCPOPT_EXP:
  3335. /* Fast Open option shares code 254 using a
  3336. * 16 bits magic number.
  3337. */
  3338. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3339. get_unaligned_be16(ptr) ==
  3340. TCPOPT_FASTOPEN_MAGIC)
  3341. tcp_parse_fastopen_option(opsize -
  3342. TCPOLEN_EXP_FASTOPEN_BASE,
  3343. ptr + 2, th->syn, foc, true);
  3344. break;
  3345. }
  3346. ptr += opsize-2;
  3347. length -= opsize;
  3348. }
  3349. }
  3350. }
  3351. EXPORT_SYMBOL(tcp_parse_options);
  3352. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3353. {
  3354. const __be32 *ptr = (const __be32 *)(th + 1);
  3355. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3356. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3357. tp->rx_opt.saw_tstamp = 1;
  3358. ++ptr;
  3359. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3360. ++ptr;
  3361. if (*ptr)
  3362. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3363. else
  3364. tp->rx_opt.rcv_tsecr = 0;
  3365. return true;
  3366. }
  3367. return false;
  3368. }
  3369. /* Fast parse options. This hopes to only see timestamps.
  3370. * If it is wrong it falls back on tcp_parse_options().
  3371. */
  3372. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3373. const struct tcphdr *th, struct tcp_sock *tp)
  3374. {
  3375. /* In the spirit of fast parsing, compare doff directly to constant
  3376. * values. Because equality is used, short doff can be ignored here.
  3377. */
  3378. if (th->doff == (sizeof(*th) / 4)) {
  3379. tp->rx_opt.saw_tstamp = 0;
  3380. return false;
  3381. } else if (tp->rx_opt.tstamp_ok &&
  3382. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3383. if (tcp_parse_aligned_timestamp(tp, th))
  3384. return true;
  3385. }
  3386. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3387. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3388. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3389. return true;
  3390. }
  3391. #ifdef CONFIG_TCP_MD5SIG
  3392. /*
  3393. * Parse MD5 Signature option
  3394. */
  3395. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3396. {
  3397. int length = (th->doff << 2) - sizeof(*th);
  3398. const u8 *ptr = (const u8 *)(th + 1);
  3399. /* If the TCP option is too short, we can short cut */
  3400. if (length < TCPOLEN_MD5SIG)
  3401. return NULL;
  3402. while (length > 0) {
  3403. int opcode = *ptr++;
  3404. int opsize;
  3405. switch (opcode) {
  3406. case TCPOPT_EOL:
  3407. return NULL;
  3408. case TCPOPT_NOP:
  3409. length--;
  3410. continue;
  3411. default:
  3412. opsize = *ptr++;
  3413. if (opsize < 2 || opsize > length)
  3414. return NULL;
  3415. if (opcode == TCPOPT_MD5SIG)
  3416. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3417. }
  3418. ptr += opsize - 2;
  3419. length -= opsize;
  3420. }
  3421. return NULL;
  3422. }
  3423. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3424. #endif
  3425. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3426. *
  3427. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3428. * it can pass through stack. So, the following predicate verifies that
  3429. * this segment is not used for anything but congestion avoidance or
  3430. * fast retransmit. Moreover, we even are able to eliminate most of such
  3431. * second order effects, if we apply some small "replay" window (~RTO)
  3432. * to timestamp space.
  3433. *
  3434. * All these measures still do not guarantee that we reject wrapped ACKs
  3435. * on networks with high bandwidth, when sequence space is recycled fastly,
  3436. * but it guarantees that such events will be very rare and do not affect
  3437. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3438. * buggy extension.
  3439. *
  3440. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3441. * states that events when retransmit arrives after original data are rare.
  3442. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3443. * the biggest problem on large power networks even with minor reordering.
  3444. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3445. * up to bandwidth of 18Gigabit/sec. 8) ]
  3446. */
  3447. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3448. {
  3449. const struct tcp_sock *tp = tcp_sk(sk);
  3450. const struct tcphdr *th = tcp_hdr(skb);
  3451. u32 seq = TCP_SKB_CB(skb)->seq;
  3452. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3453. return (/* 1. Pure ACK with correct sequence number. */
  3454. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3455. /* 2. ... and duplicate ACK. */
  3456. ack == tp->snd_una &&
  3457. /* 3. ... and does not update window. */
  3458. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3459. /* 4. ... and sits in replay window. */
  3460. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3461. }
  3462. static inline bool tcp_paws_discard(const struct sock *sk,
  3463. const struct sk_buff *skb)
  3464. {
  3465. const struct tcp_sock *tp = tcp_sk(sk);
  3466. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3467. !tcp_disordered_ack(sk, skb);
  3468. }
  3469. /* Check segment sequence number for validity.
  3470. *
  3471. * Segment controls are considered valid, if the segment
  3472. * fits to the window after truncation to the window. Acceptability
  3473. * of data (and SYN, FIN, of course) is checked separately.
  3474. * See tcp_data_queue(), for example.
  3475. *
  3476. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3477. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3478. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3479. * (borrowed from freebsd)
  3480. */
  3481. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3482. {
  3483. return !before(end_seq, tp->rcv_wup) &&
  3484. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3485. }
  3486. /* When we get a reset we do this. */
  3487. void tcp_reset(struct sock *sk)
  3488. {
  3489. /* We want the right error as BSD sees it (and indeed as we do). */
  3490. switch (sk->sk_state) {
  3491. case TCP_SYN_SENT:
  3492. sk->sk_err = ECONNREFUSED;
  3493. break;
  3494. case TCP_CLOSE_WAIT:
  3495. sk->sk_err = EPIPE;
  3496. break;
  3497. case TCP_CLOSE:
  3498. return;
  3499. default:
  3500. sk->sk_err = ECONNRESET;
  3501. }
  3502. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3503. smp_wmb();
  3504. if (!sock_flag(sk, SOCK_DEAD))
  3505. sk->sk_error_report(sk);
  3506. tcp_done(sk);
  3507. }
  3508. /*
  3509. * Process the FIN bit. This now behaves as it is supposed to work
  3510. * and the FIN takes effect when it is validly part of sequence
  3511. * space. Not before when we get holes.
  3512. *
  3513. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3514. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3515. * TIME-WAIT)
  3516. *
  3517. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3518. * close and we go into CLOSING (and later onto TIME-WAIT)
  3519. *
  3520. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3521. */
  3522. void tcp_fin(struct sock *sk)
  3523. {
  3524. struct tcp_sock *tp = tcp_sk(sk);
  3525. inet_csk_schedule_ack(sk);
  3526. sk->sk_shutdown |= RCV_SHUTDOWN;
  3527. sock_set_flag(sk, SOCK_DONE);
  3528. switch (sk->sk_state) {
  3529. case TCP_SYN_RECV:
  3530. case TCP_ESTABLISHED:
  3531. /* Move to CLOSE_WAIT */
  3532. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3533. inet_csk(sk)->icsk_ack.pingpong = 1;
  3534. break;
  3535. case TCP_CLOSE_WAIT:
  3536. case TCP_CLOSING:
  3537. /* Received a retransmission of the FIN, do
  3538. * nothing.
  3539. */
  3540. break;
  3541. case TCP_LAST_ACK:
  3542. /* RFC793: Remain in the LAST-ACK state. */
  3543. break;
  3544. case TCP_FIN_WAIT1:
  3545. /* This case occurs when a simultaneous close
  3546. * happens, we must ack the received FIN and
  3547. * enter the CLOSING state.
  3548. */
  3549. tcp_send_ack(sk);
  3550. tcp_set_state(sk, TCP_CLOSING);
  3551. break;
  3552. case TCP_FIN_WAIT2:
  3553. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3554. tcp_send_ack(sk);
  3555. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3556. break;
  3557. default:
  3558. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3559. * cases we should never reach this piece of code.
  3560. */
  3561. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3562. __func__, sk->sk_state);
  3563. break;
  3564. }
  3565. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3566. * Probably, we should reset in this case. For now drop them.
  3567. */
  3568. __skb_queue_purge(&tp->out_of_order_queue);
  3569. if (tcp_is_sack(tp))
  3570. tcp_sack_reset(&tp->rx_opt);
  3571. sk_mem_reclaim(sk);
  3572. if (!sock_flag(sk, SOCK_DEAD)) {
  3573. sk->sk_state_change(sk);
  3574. /* Do not send POLL_HUP for half duplex close. */
  3575. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3576. sk->sk_state == TCP_CLOSE)
  3577. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3578. else
  3579. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3580. }
  3581. }
  3582. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3583. u32 end_seq)
  3584. {
  3585. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3586. if (before(seq, sp->start_seq))
  3587. sp->start_seq = seq;
  3588. if (after(end_seq, sp->end_seq))
  3589. sp->end_seq = end_seq;
  3590. return true;
  3591. }
  3592. return false;
  3593. }
  3594. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3595. {
  3596. struct tcp_sock *tp = tcp_sk(sk);
  3597. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3598. int mib_idx;
  3599. if (before(seq, tp->rcv_nxt))
  3600. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3601. else
  3602. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3603. NET_INC_STATS(sock_net(sk), mib_idx);
  3604. tp->rx_opt.dsack = 1;
  3605. tp->duplicate_sack[0].start_seq = seq;
  3606. tp->duplicate_sack[0].end_seq = end_seq;
  3607. }
  3608. }
  3609. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3610. {
  3611. struct tcp_sock *tp = tcp_sk(sk);
  3612. if (!tp->rx_opt.dsack)
  3613. tcp_dsack_set(sk, seq, end_seq);
  3614. else
  3615. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3616. }
  3617. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3618. {
  3619. struct tcp_sock *tp = tcp_sk(sk);
  3620. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3621. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3622. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3623. tcp_enter_quickack_mode(sk);
  3624. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3625. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3626. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3627. end_seq = tp->rcv_nxt;
  3628. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3629. }
  3630. }
  3631. tcp_send_ack(sk);
  3632. }
  3633. /* These routines update the SACK block as out-of-order packets arrive or
  3634. * in-order packets close up the sequence space.
  3635. */
  3636. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3637. {
  3638. int this_sack;
  3639. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3640. struct tcp_sack_block *swalk = sp + 1;
  3641. /* See if the recent change to the first SACK eats into
  3642. * or hits the sequence space of other SACK blocks, if so coalesce.
  3643. */
  3644. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3645. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3646. int i;
  3647. /* Zap SWALK, by moving every further SACK up by one slot.
  3648. * Decrease num_sacks.
  3649. */
  3650. tp->rx_opt.num_sacks--;
  3651. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3652. sp[i] = sp[i + 1];
  3653. continue;
  3654. }
  3655. this_sack++, swalk++;
  3656. }
  3657. }
  3658. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3659. {
  3660. struct tcp_sock *tp = tcp_sk(sk);
  3661. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3662. int cur_sacks = tp->rx_opt.num_sacks;
  3663. int this_sack;
  3664. if (!cur_sacks)
  3665. goto new_sack;
  3666. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3667. if (tcp_sack_extend(sp, seq, end_seq)) {
  3668. /* Rotate this_sack to the first one. */
  3669. for (; this_sack > 0; this_sack--, sp--)
  3670. swap(*sp, *(sp - 1));
  3671. if (cur_sacks > 1)
  3672. tcp_sack_maybe_coalesce(tp);
  3673. return;
  3674. }
  3675. }
  3676. /* Could not find an adjacent existing SACK, build a new one,
  3677. * put it at the front, and shift everyone else down. We
  3678. * always know there is at least one SACK present already here.
  3679. *
  3680. * If the sack array is full, forget about the last one.
  3681. */
  3682. if (this_sack >= TCP_NUM_SACKS) {
  3683. this_sack--;
  3684. tp->rx_opt.num_sacks--;
  3685. sp--;
  3686. }
  3687. for (; this_sack > 0; this_sack--, sp--)
  3688. *sp = *(sp - 1);
  3689. new_sack:
  3690. /* Build the new head SACK, and we're done. */
  3691. sp->start_seq = seq;
  3692. sp->end_seq = end_seq;
  3693. tp->rx_opt.num_sacks++;
  3694. }
  3695. /* RCV.NXT advances, some SACKs should be eaten. */
  3696. static void tcp_sack_remove(struct tcp_sock *tp)
  3697. {
  3698. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3699. int num_sacks = tp->rx_opt.num_sacks;
  3700. int this_sack;
  3701. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3702. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3703. tp->rx_opt.num_sacks = 0;
  3704. return;
  3705. }
  3706. for (this_sack = 0; this_sack < num_sacks;) {
  3707. /* Check if the start of the sack is covered by RCV.NXT. */
  3708. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3709. int i;
  3710. /* RCV.NXT must cover all the block! */
  3711. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3712. /* Zap this SACK, by moving forward any other SACKS. */
  3713. for (i = this_sack+1; i < num_sacks; i++)
  3714. tp->selective_acks[i-1] = tp->selective_acks[i];
  3715. num_sacks--;
  3716. continue;
  3717. }
  3718. this_sack++;
  3719. sp++;
  3720. }
  3721. tp->rx_opt.num_sacks = num_sacks;
  3722. }
  3723. /**
  3724. * tcp_try_coalesce - try to merge skb to prior one
  3725. * @sk: socket
  3726. * @to: prior buffer
  3727. * @from: buffer to add in queue
  3728. * @fragstolen: pointer to boolean
  3729. *
  3730. * Before queueing skb @from after @to, try to merge them
  3731. * to reduce overall memory use and queue lengths, if cost is small.
  3732. * Packets in ofo or receive queues can stay a long time.
  3733. * Better try to coalesce them right now to avoid future collapses.
  3734. * Returns true if caller should free @from instead of queueing it
  3735. */
  3736. static bool tcp_try_coalesce(struct sock *sk,
  3737. struct sk_buff *to,
  3738. struct sk_buff *from,
  3739. bool *fragstolen)
  3740. {
  3741. int delta;
  3742. *fragstolen = false;
  3743. /* Its possible this segment overlaps with prior segment in queue */
  3744. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3745. return false;
  3746. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3747. return false;
  3748. atomic_add(delta, &sk->sk_rmem_alloc);
  3749. sk_mem_charge(sk, delta);
  3750. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3751. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3752. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3753. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3754. return true;
  3755. }
  3756. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3757. {
  3758. sk_drops_add(sk, skb);
  3759. __kfree_skb(skb);
  3760. }
  3761. /* This one checks to see if we can put data from the
  3762. * out_of_order queue into the receive_queue.
  3763. */
  3764. static void tcp_ofo_queue(struct sock *sk)
  3765. {
  3766. struct tcp_sock *tp = tcp_sk(sk);
  3767. __u32 dsack_high = tp->rcv_nxt;
  3768. struct sk_buff *skb, *tail;
  3769. bool fragstolen, eaten;
  3770. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3771. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3772. break;
  3773. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3774. __u32 dsack = dsack_high;
  3775. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3776. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3777. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3778. }
  3779. __skb_unlink(skb, &tp->out_of_order_queue);
  3780. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3781. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3782. tcp_drop(sk, skb);
  3783. continue;
  3784. }
  3785. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3786. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3787. TCP_SKB_CB(skb)->end_seq);
  3788. tail = skb_peek_tail(&sk->sk_receive_queue);
  3789. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3790. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3791. if (!eaten)
  3792. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3793. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3794. tcp_fin(sk);
  3795. if (eaten)
  3796. kfree_skb_partial(skb, fragstolen);
  3797. }
  3798. }
  3799. static bool tcp_prune_ofo_queue(struct sock *sk);
  3800. static int tcp_prune_queue(struct sock *sk);
  3801. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3802. unsigned int size)
  3803. {
  3804. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3805. !sk_rmem_schedule(sk, skb, size)) {
  3806. if (tcp_prune_queue(sk) < 0)
  3807. return -1;
  3808. if (!sk_rmem_schedule(sk, skb, size)) {
  3809. if (!tcp_prune_ofo_queue(sk))
  3810. return -1;
  3811. if (!sk_rmem_schedule(sk, skb, size))
  3812. return -1;
  3813. }
  3814. }
  3815. return 0;
  3816. }
  3817. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3818. {
  3819. struct tcp_sock *tp = tcp_sk(sk);
  3820. struct sk_buff *skb1;
  3821. u32 seq, end_seq;
  3822. tcp_ecn_check_ce(tp, skb);
  3823. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3824. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3825. tcp_drop(sk, skb);
  3826. return;
  3827. }
  3828. /* Disable header prediction. */
  3829. tp->pred_flags = 0;
  3830. inet_csk_schedule_ack(sk);
  3831. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3832. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3833. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3834. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3835. if (!skb1) {
  3836. /* Initial out of order segment, build 1 SACK. */
  3837. if (tcp_is_sack(tp)) {
  3838. tp->rx_opt.num_sacks = 1;
  3839. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3840. tp->selective_acks[0].end_seq =
  3841. TCP_SKB_CB(skb)->end_seq;
  3842. }
  3843. __skb_queue_head(&tp->out_of_order_queue, skb);
  3844. goto end;
  3845. }
  3846. seq = TCP_SKB_CB(skb)->seq;
  3847. end_seq = TCP_SKB_CB(skb)->end_seq;
  3848. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3849. bool fragstolen;
  3850. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3851. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3852. } else {
  3853. tcp_grow_window(sk, skb);
  3854. kfree_skb_partial(skb, fragstolen);
  3855. skb = NULL;
  3856. }
  3857. if (!tp->rx_opt.num_sacks ||
  3858. tp->selective_acks[0].end_seq != seq)
  3859. goto add_sack;
  3860. /* Common case: data arrive in order after hole. */
  3861. tp->selective_acks[0].end_seq = end_seq;
  3862. goto end;
  3863. }
  3864. /* Find place to insert this segment. */
  3865. while (1) {
  3866. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3867. break;
  3868. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3869. skb1 = NULL;
  3870. break;
  3871. }
  3872. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3873. }
  3874. /* Do skb overlap to previous one? */
  3875. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3876. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3877. /* All the bits are present. Drop. */
  3878. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3879. tcp_drop(sk, skb);
  3880. skb = NULL;
  3881. tcp_dsack_set(sk, seq, end_seq);
  3882. goto add_sack;
  3883. }
  3884. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3885. /* Partial overlap. */
  3886. tcp_dsack_set(sk, seq,
  3887. TCP_SKB_CB(skb1)->end_seq);
  3888. } else {
  3889. if (skb_queue_is_first(&tp->out_of_order_queue,
  3890. skb1))
  3891. skb1 = NULL;
  3892. else
  3893. skb1 = skb_queue_prev(
  3894. &tp->out_of_order_queue,
  3895. skb1);
  3896. }
  3897. }
  3898. if (!skb1)
  3899. __skb_queue_head(&tp->out_of_order_queue, skb);
  3900. else
  3901. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3902. /* And clean segments covered by new one as whole. */
  3903. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3904. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3905. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3906. break;
  3907. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3908. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3909. end_seq);
  3910. break;
  3911. }
  3912. __skb_unlink(skb1, &tp->out_of_order_queue);
  3913. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3914. TCP_SKB_CB(skb1)->end_seq);
  3915. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3916. tcp_drop(sk, skb1);
  3917. }
  3918. add_sack:
  3919. if (tcp_is_sack(tp))
  3920. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3921. end:
  3922. if (skb) {
  3923. tcp_grow_window(sk, skb);
  3924. skb_set_owner_r(skb, sk);
  3925. }
  3926. }
  3927. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3928. bool *fragstolen)
  3929. {
  3930. int eaten;
  3931. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3932. __skb_pull(skb, hdrlen);
  3933. eaten = (tail &&
  3934. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3935. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3936. if (!eaten) {
  3937. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3938. skb_set_owner_r(skb, sk);
  3939. }
  3940. return eaten;
  3941. }
  3942. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3943. {
  3944. struct sk_buff *skb;
  3945. int err = -ENOMEM;
  3946. int data_len = 0;
  3947. bool fragstolen;
  3948. if (size == 0)
  3949. return 0;
  3950. if (size > PAGE_SIZE) {
  3951. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3952. data_len = npages << PAGE_SHIFT;
  3953. size = data_len + (size & ~PAGE_MASK);
  3954. }
  3955. skb = alloc_skb_with_frags(size - data_len, data_len,
  3956. PAGE_ALLOC_COSTLY_ORDER,
  3957. &err, sk->sk_allocation);
  3958. if (!skb)
  3959. goto err;
  3960. skb_put(skb, size - data_len);
  3961. skb->data_len = data_len;
  3962. skb->len = size;
  3963. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3964. goto err_free;
  3965. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3966. if (err)
  3967. goto err_free;
  3968. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3969. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3970. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3971. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3972. WARN_ON_ONCE(fragstolen); /* should not happen */
  3973. __kfree_skb(skb);
  3974. }
  3975. return size;
  3976. err_free:
  3977. kfree_skb(skb);
  3978. err:
  3979. return err;
  3980. }
  3981. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3982. {
  3983. struct tcp_sock *tp = tcp_sk(sk);
  3984. bool fragstolen = false;
  3985. int eaten = -1;
  3986. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  3987. __kfree_skb(skb);
  3988. return;
  3989. }
  3990. skb_dst_drop(skb);
  3991. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3992. tcp_ecn_accept_cwr(tp, skb);
  3993. tp->rx_opt.dsack = 0;
  3994. /* Queue data for delivery to the user.
  3995. * Packets in sequence go to the receive queue.
  3996. * Out of sequence packets to the out_of_order_queue.
  3997. */
  3998. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3999. if (tcp_receive_window(tp) == 0)
  4000. goto out_of_window;
  4001. /* Ok. In sequence. In window. */
  4002. if (tp->ucopy.task == current &&
  4003. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  4004. sock_owned_by_user(sk) && !tp->urg_data) {
  4005. int chunk = min_t(unsigned int, skb->len,
  4006. tp->ucopy.len);
  4007. __set_current_state(TASK_RUNNING);
  4008. if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
  4009. tp->ucopy.len -= chunk;
  4010. tp->copied_seq += chunk;
  4011. eaten = (chunk == skb->len);
  4012. tcp_rcv_space_adjust(sk);
  4013. }
  4014. }
  4015. if (eaten <= 0) {
  4016. queue_and_out:
  4017. if (eaten < 0) {
  4018. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  4019. sk_forced_mem_schedule(sk, skb->truesize);
  4020. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4021. goto drop;
  4022. }
  4023. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4024. }
  4025. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4026. if (skb->len)
  4027. tcp_event_data_recv(sk, skb);
  4028. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  4029. tcp_fin(sk);
  4030. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4031. tcp_ofo_queue(sk);
  4032. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4033. * gap in queue is filled.
  4034. */
  4035. if (skb_queue_empty(&tp->out_of_order_queue))
  4036. inet_csk(sk)->icsk_ack.pingpong = 0;
  4037. }
  4038. if (tp->rx_opt.num_sacks)
  4039. tcp_sack_remove(tp);
  4040. tcp_fast_path_check(sk);
  4041. if (eaten > 0)
  4042. kfree_skb_partial(skb, fragstolen);
  4043. if (!sock_flag(sk, SOCK_DEAD))
  4044. sk->sk_data_ready(sk);
  4045. return;
  4046. }
  4047. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4048. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4049. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4050. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4051. out_of_window:
  4052. tcp_enter_quickack_mode(sk);
  4053. inet_csk_schedule_ack(sk);
  4054. drop:
  4055. tcp_drop(sk, skb);
  4056. return;
  4057. }
  4058. /* Out of window. F.e. zero window probe. */
  4059. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4060. goto out_of_window;
  4061. tcp_enter_quickack_mode(sk);
  4062. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4063. /* Partial packet, seq < rcv_next < end_seq */
  4064. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4065. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4066. TCP_SKB_CB(skb)->end_seq);
  4067. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4068. /* If window is closed, drop tail of packet. But after
  4069. * remembering D-SACK for its head made in previous line.
  4070. */
  4071. if (!tcp_receive_window(tp))
  4072. goto out_of_window;
  4073. goto queue_and_out;
  4074. }
  4075. tcp_data_queue_ofo(sk, skb);
  4076. }
  4077. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4078. struct sk_buff_head *list)
  4079. {
  4080. struct sk_buff *next = NULL;
  4081. if (!skb_queue_is_last(list, skb))
  4082. next = skb_queue_next(list, skb);
  4083. __skb_unlink(skb, list);
  4084. __kfree_skb(skb);
  4085. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4086. return next;
  4087. }
  4088. /* Collapse contiguous sequence of skbs head..tail with
  4089. * sequence numbers start..end.
  4090. *
  4091. * If tail is NULL, this means until the end of the list.
  4092. *
  4093. * Segments with FIN/SYN are not collapsed (only because this
  4094. * simplifies code)
  4095. */
  4096. static void
  4097. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4098. struct sk_buff *head, struct sk_buff *tail,
  4099. u32 start, u32 end)
  4100. {
  4101. struct sk_buff *skb, *n;
  4102. bool end_of_skbs;
  4103. /* First, check that queue is collapsible and find
  4104. * the point where collapsing can be useful. */
  4105. skb = head;
  4106. restart:
  4107. end_of_skbs = true;
  4108. skb_queue_walk_from_safe(list, skb, n) {
  4109. if (skb == tail)
  4110. break;
  4111. /* No new bits? It is possible on ofo queue. */
  4112. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4113. skb = tcp_collapse_one(sk, skb, list);
  4114. if (!skb)
  4115. break;
  4116. goto restart;
  4117. }
  4118. /* The first skb to collapse is:
  4119. * - not SYN/FIN and
  4120. * - bloated or contains data before "start" or
  4121. * overlaps to the next one.
  4122. */
  4123. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4124. (tcp_win_from_space(skb->truesize) > skb->len ||
  4125. before(TCP_SKB_CB(skb)->seq, start))) {
  4126. end_of_skbs = false;
  4127. break;
  4128. }
  4129. if (!skb_queue_is_last(list, skb)) {
  4130. struct sk_buff *next = skb_queue_next(list, skb);
  4131. if (next != tail &&
  4132. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4133. end_of_skbs = false;
  4134. break;
  4135. }
  4136. }
  4137. /* Decided to skip this, advance start seq. */
  4138. start = TCP_SKB_CB(skb)->end_seq;
  4139. }
  4140. if (end_of_skbs ||
  4141. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4142. return;
  4143. while (before(start, end)) {
  4144. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4145. struct sk_buff *nskb;
  4146. nskb = alloc_skb(copy, GFP_ATOMIC);
  4147. if (!nskb)
  4148. return;
  4149. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4150. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4151. __skb_queue_before(list, skb, nskb);
  4152. skb_set_owner_r(nskb, sk);
  4153. /* Copy data, releasing collapsed skbs. */
  4154. while (copy > 0) {
  4155. int offset = start - TCP_SKB_CB(skb)->seq;
  4156. int size = TCP_SKB_CB(skb)->end_seq - start;
  4157. BUG_ON(offset < 0);
  4158. if (size > 0) {
  4159. size = min(copy, size);
  4160. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4161. BUG();
  4162. TCP_SKB_CB(nskb)->end_seq += size;
  4163. copy -= size;
  4164. start += size;
  4165. }
  4166. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4167. skb = tcp_collapse_one(sk, skb, list);
  4168. if (!skb ||
  4169. skb == tail ||
  4170. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4171. return;
  4172. }
  4173. }
  4174. }
  4175. }
  4176. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4177. * and tcp_collapse() them until all the queue is collapsed.
  4178. */
  4179. static void tcp_collapse_ofo_queue(struct sock *sk)
  4180. {
  4181. struct tcp_sock *tp = tcp_sk(sk);
  4182. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4183. struct sk_buff *head;
  4184. u32 start, end;
  4185. if (!skb)
  4186. return;
  4187. start = TCP_SKB_CB(skb)->seq;
  4188. end = TCP_SKB_CB(skb)->end_seq;
  4189. head = skb;
  4190. for (;;) {
  4191. struct sk_buff *next = NULL;
  4192. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4193. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4194. skb = next;
  4195. /* Segment is terminated when we see gap or when
  4196. * we are at the end of all the queue. */
  4197. if (!skb ||
  4198. after(TCP_SKB_CB(skb)->seq, end) ||
  4199. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4200. tcp_collapse(sk, &tp->out_of_order_queue,
  4201. head, skb, start, end);
  4202. head = skb;
  4203. if (!skb)
  4204. break;
  4205. /* Start new segment */
  4206. start = TCP_SKB_CB(skb)->seq;
  4207. end = TCP_SKB_CB(skb)->end_seq;
  4208. } else {
  4209. if (before(TCP_SKB_CB(skb)->seq, start))
  4210. start = TCP_SKB_CB(skb)->seq;
  4211. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4212. end = TCP_SKB_CB(skb)->end_seq;
  4213. }
  4214. }
  4215. }
  4216. /*
  4217. * Purge the out-of-order queue.
  4218. * Return true if queue was pruned.
  4219. */
  4220. static bool tcp_prune_ofo_queue(struct sock *sk)
  4221. {
  4222. struct tcp_sock *tp = tcp_sk(sk);
  4223. bool res = false;
  4224. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4225. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4226. __skb_queue_purge(&tp->out_of_order_queue);
  4227. /* Reset SACK state. A conforming SACK implementation will
  4228. * do the same at a timeout based retransmit. When a connection
  4229. * is in a sad state like this, we care only about integrity
  4230. * of the connection not performance.
  4231. */
  4232. if (tp->rx_opt.sack_ok)
  4233. tcp_sack_reset(&tp->rx_opt);
  4234. sk_mem_reclaim(sk);
  4235. res = true;
  4236. }
  4237. return res;
  4238. }
  4239. /* Reduce allocated memory if we can, trying to get
  4240. * the socket within its memory limits again.
  4241. *
  4242. * Return less than zero if we should start dropping frames
  4243. * until the socket owning process reads some of the data
  4244. * to stabilize the situation.
  4245. */
  4246. static int tcp_prune_queue(struct sock *sk)
  4247. {
  4248. struct tcp_sock *tp = tcp_sk(sk);
  4249. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4250. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4251. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4252. tcp_clamp_window(sk);
  4253. else if (tcp_under_memory_pressure(sk))
  4254. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4255. tcp_collapse_ofo_queue(sk);
  4256. if (!skb_queue_empty(&sk->sk_receive_queue))
  4257. tcp_collapse(sk, &sk->sk_receive_queue,
  4258. skb_peek(&sk->sk_receive_queue),
  4259. NULL,
  4260. tp->copied_seq, tp->rcv_nxt);
  4261. sk_mem_reclaim(sk);
  4262. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4263. return 0;
  4264. /* Collapsing did not help, destructive actions follow.
  4265. * This must not ever occur. */
  4266. tcp_prune_ofo_queue(sk);
  4267. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4268. return 0;
  4269. /* If we are really being abused, tell the caller to silently
  4270. * drop receive data on the floor. It will get retransmitted
  4271. * and hopefully then we'll have sufficient space.
  4272. */
  4273. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4274. /* Massive buffer overcommit. */
  4275. tp->pred_flags = 0;
  4276. return -1;
  4277. }
  4278. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4279. {
  4280. const struct tcp_sock *tp = tcp_sk(sk);
  4281. /* If the user specified a specific send buffer setting, do
  4282. * not modify it.
  4283. */
  4284. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4285. return false;
  4286. /* If we are under global TCP memory pressure, do not expand. */
  4287. if (tcp_under_memory_pressure(sk))
  4288. return false;
  4289. /* If we are under soft global TCP memory pressure, do not expand. */
  4290. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4291. return false;
  4292. /* If we filled the congestion window, do not expand. */
  4293. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4294. return false;
  4295. return true;
  4296. }
  4297. /* When incoming ACK allowed to free some skb from write_queue,
  4298. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4299. * on the exit from tcp input handler.
  4300. *
  4301. * PROBLEM: sndbuf expansion does not work well with largesend.
  4302. */
  4303. static void tcp_new_space(struct sock *sk)
  4304. {
  4305. struct tcp_sock *tp = tcp_sk(sk);
  4306. if (tcp_should_expand_sndbuf(sk)) {
  4307. tcp_sndbuf_expand(sk);
  4308. tp->snd_cwnd_stamp = tcp_time_stamp;
  4309. }
  4310. sk->sk_write_space(sk);
  4311. }
  4312. static void tcp_check_space(struct sock *sk)
  4313. {
  4314. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4315. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4316. /* pairs with tcp_poll() */
  4317. smp_mb__after_atomic();
  4318. if (sk->sk_socket &&
  4319. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4320. tcp_new_space(sk);
  4321. }
  4322. }
  4323. static inline void tcp_data_snd_check(struct sock *sk)
  4324. {
  4325. tcp_push_pending_frames(sk);
  4326. tcp_check_space(sk);
  4327. }
  4328. /*
  4329. * Check if sending an ack is needed.
  4330. */
  4331. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4332. {
  4333. struct tcp_sock *tp = tcp_sk(sk);
  4334. /* More than one full frame received... */
  4335. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4336. /* ... and right edge of window advances far enough.
  4337. * (tcp_recvmsg() will send ACK otherwise). Or...
  4338. */
  4339. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4340. /* We ACK each frame or... */
  4341. tcp_in_quickack_mode(sk) ||
  4342. /* We have out of order data. */
  4343. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4344. /* Then ack it now */
  4345. tcp_send_ack(sk);
  4346. } else {
  4347. /* Else, send delayed ack. */
  4348. tcp_send_delayed_ack(sk);
  4349. }
  4350. }
  4351. static inline void tcp_ack_snd_check(struct sock *sk)
  4352. {
  4353. if (!inet_csk_ack_scheduled(sk)) {
  4354. /* We sent a data segment already. */
  4355. return;
  4356. }
  4357. __tcp_ack_snd_check(sk, 1);
  4358. }
  4359. /*
  4360. * This routine is only called when we have urgent data
  4361. * signaled. Its the 'slow' part of tcp_urg. It could be
  4362. * moved inline now as tcp_urg is only called from one
  4363. * place. We handle URGent data wrong. We have to - as
  4364. * BSD still doesn't use the correction from RFC961.
  4365. * For 1003.1g we should support a new option TCP_STDURG to permit
  4366. * either form (or just set the sysctl tcp_stdurg).
  4367. */
  4368. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4369. {
  4370. struct tcp_sock *tp = tcp_sk(sk);
  4371. u32 ptr = ntohs(th->urg_ptr);
  4372. if (ptr && !sysctl_tcp_stdurg)
  4373. ptr--;
  4374. ptr += ntohl(th->seq);
  4375. /* Ignore urgent data that we've already seen and read. */
  4376. if (after(tp->copied_seq, ptr))
  4377. return;
  4378. /* Do not replay urg ptr.
  4379. *
  4380. * NOTE: interesting situation not covered by specs.
  4381. * Misbehaving sender may send urg ptr, pointing to segment,
  4382. * which we already have in ofo queue. We are not able to fetch
  4383. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4384. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4385. * situations. But it is worth to think about possibility of some
  4386. * DoSes using some hypothetical application level deadlock.
  4387. */
  4388. if (before(ptr, tp->rcv_nxt))
  4389. return;
  4390. /* Do we already have a newer (or duplicate) urgent pointer? */
  4391. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4392. return;
  4393. /* Tell the world about our new urgent pointer. */
  4394. sk_send_sigurg(sk);
  4395. /* We may be adding urgent data when the last byte read was
  4396. * urgent. To do this requires some care. We cannot just ignore
  4397. * tp->copied_seq since we would read the last urgent byte again
  4398. * as data, nor can we alter copied_seq until this data arrives
  4399. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4400. *
  4401. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4402. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4403. * and expect that both A and B disappear from stream. This is _wrong_.
  4404. * Though this happens in BSD with high probability, this is occasional.
  4405. * Any application relying on this is buggy. Note also, that fix "works"
  4406. * only in this artificial test. Insert some normal data between A and B and we will
  4407. * decline of BSD again. Verdict: it is better to remove to trap
  4408. * buggy users.
  4409. */
  4410. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4411. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4412. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4413. tp->copied_seq++;
  4414. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4415. __skb_unlink(skb, &sk->sk_receive_queue);
  4416. __kfree_skb(skb);
  4417. }
  4418. }
  4419. tp->urg_data = TCP_URG_NOTYET;
  4420. tp->urg_seq = ptr;
  4421. /* Disable header prediction. */
  4422. tp->pred_flags = 0;
  4423. }
  4424. /* This is the 'fast' part of urgent handling. */
  4425. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4426. {
  4427. struct tcp_sock *tp = tcp_sk(sk);
  4428. /* Check if we get a new urgent pointer - normally not. */
  4429. if (th->urg)
  4430. tcp_check_urg(sk, th);
  4431. /* Do we wait for any urgent data? - normally not... */
  4432. if (tp->urg_data == TCP_URG_NOTYET) {
  4433. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4434. th->syn;
  4435. /* Is the urgent pointer pointing into this packet? */
  4436. if (ptr < skb->len) {
  4437. u8 tmp;
  4438. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4439. BUG();
  4440. tp->urg_data = TCP_URG_VALID | tmp;
  4441. if (!sock_flag(sk, SOCK_DEAD))
  4442. sk->sk_data_ready(sk);
  4443. }
  4444. }
  4445. }
  4446. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4447. {
  4448. struct tcp_sock *tp = tcp_sk(sk);
  4449. int chunk = skb->len - hlen;
  4450. int err;
  4451. if (skb_csum_unnecessary(skb))
  4452. err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
  4453. else
  4454. err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
  4455. if (!err) {
  4456. tp->ucopy.len -= chunk;
  4457. tp->copied_seq += chunk;
  4458. tcp_rcv_space_adjust(sk);
  4459. }
  4460. return err;
  4461. }
  4462. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4463. * play significant role here.
  4464. */
  4465. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4466. const struct tcphdr *th, int syn_inerr)
  4467. {
  4468. struct tcp_sock *tp = tcp_sk(sk);
  4469. bool rst_seq_match = false;
  4470. /* RFC1323: H1. Apply PAWS check first. */
  4471. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4472. tcp_paws_discard(sk, skb)) {
  4473. if (!th->rst) {
  4474. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4475. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4476. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4477. &tp->last_oow_ack_time))
  4478. tcp_send_dupack(sk, skb);
  4479. goto discard;
  4480. }
  4481. /* Reset is accepted even if it did not pass PAWS. */
  4482. }
  4483. /* Step 1: check sequence number */
  4484. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4485. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4486. * (RST) segments are validated by checking their SEQ-fields."
  4487. * And page 69: "If an incoming segment is not acceptable,
  4488. * an acknowledgment should be sent in reply (unless the RST
  4489. * bit is set, if so drop the segment and return)".
  4490. */
  4491. if (!th->rst) {
  4492. if (th->syn)
  4493. goto syn_challenge;
  4494. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4495. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4496. &tp->last_oow_ack_time))
  4497. tcp_send_dupack(sk, skb);
  4498. }
  4499. goto discard;
  4500. }
  4501. /* Step 2: check RST bit */
  4502. if (th->rst) {
  4503. /* RFC 5961 3.2 (extend to match against SACK too if available):
  4504. * If seq num matches RCV.NXT or the right-most SACK block,
  4505. * then
  4506. * RESET the connection
  4507. * else
  4508. * Send a challenge ACK
  4509. */
  4510. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4511. rst_seq_match = true;
  4512. } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
  4513. struct tcp_sack_block *sp = &tp->selective_acks[0];
  4514. int max_sack = sp[0].end_seq;
  4515. int this_sack;
  4516. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
  4517. ++this_sack) {
  4518. max_sack = after(sp[this_sack].end_seq,
  4519. max_sack) ?
  4520. sp[this_sack].end_seq : max_sack;
  4521. }
  4522. if (TCP_SKB_CB(skb)->seq == max_sack)
  4523. rst_seq_match = true;
  4524. }
  4525. if (rst_seq_match)
  4526. tcp_reset(sk);
  4527. else
  4528. tcp_send_challenge_ack(sk, skb);
  4529. goto discard;
  4530. }
  4531. /* step 3: check security and precedence [ignored] */
  4532. /* step 4: Check for a SYN
  4533. * RFC 5961 4.2 : Send a challenge ack
  4534. */
  4535. if (th->syn) {
  4536. syn_challenge:
  4537. if (syn_inerr)
  4538. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4539. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4540. tcp_send_challenge_ack(sk, skb);
  4541. goto discard;
  4542. }
  4543. return true;
  4544. discard:
  4545. tcp_drop(sk, skb);
  4546. return false;
  4547. }
  4548. /*
  4549. * TCP receive function for the ESTABLISHED state.
  4550. *
  4551. * It is split into a fast path and a slow path. The fast path is
  4552. * disabled when:
  4553. * - A zero window was announced from us - zero window probing
  4554. * is only handled properly in the slow path.
  4555. * - Out of order segments arrived.
  4556. * - Urgent data is expected.
  4557. * - There is no buffer space left
  4558. * - Unexpected TCP flags/window values/header lengths are received
  4559. * (detected by checking the TCP header against pred_flags)
  4560. * - Data is sent in both directions. Fast path only supports pure senders
  4561. * or pure receivers (this means either the sequence number or the ack
  4562. * value must stay constant)
  4563. * - Unexpected TCP option.
  4564. *
  4565. * When these conditions are not satisfied it drops into a standard
  4566. * receive procedure patterned after RFC793 to handle all cases.
  4567. * The first three cases are guaranteed by proper pred_flags setting,
  4568. * the rest is checked inline. Fast processing is turned on in
  4569. * tcp_data_queue when everything is OK.
  4570. */
  4571. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4572. const struct tcphdr *th, unsigned int len)
  4573. {
  4574. struct tcp_sock *tp = tcp_sk(sk);
  4575. if (unlikely(!sk->sk_rx_dst))
  4576. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4577. /*
  4578. * Header prediction.
  4579. * The code loosely follows the one in the famous
  4580. * "30 instruction TCP receive" Van Jacobson mail.
  4581. *
  4582. * Van's trick is to deposit buffers into socket queue
  4583. * on a device interrupt, to call tcp_recv function
  4584. * on the receive process context and checksum and copy
  4585. * the buffer to user space. smart...
  4586. *
  4587. * Our current scheme is not silly either but we take the
  4588. * extra cost of the net_bh soft interrupt processing...
  4589. * We do checksum and copy also but from device to kernel.
  4590. */
  4591. tp->rx_opt.saw_tstamp = 0;
  4592. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4593. * if header_prediction is to be made
  4594. * 'S' will always be tp->tcp_header_len >> 2
  4595. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4596. * turn it off (when there are holes in the receive
  4597. * space for instance)
  4598. * PSH flag is ignored.
  4599. */
  4600. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4601. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4602. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4603. int tcp_header_len = tp->tcp_header_len;
  4604. /* Timestamp header prediction: tcp_header_len
  4605. * is automatically equal to th->doff*4 due to pred_flags
  4606. * match.
  4607. */
  4608. /* Check timestamp */
  4609. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4610. /* No? Slow path! */
  4611. if (!tcp_parse_aligned_timestamp(tp, th))
  4612. goto slow_path;
  4613. /* If PAWS failed, check it more carefully in slow path */
  4614. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4615. goto slow_path;
  4616. /* DO NOT update ts_recent here, if checksum fails
  4617. * and timestamp was corrupted part, it will result
  4618. * in a hung connection since we will drop all
  4619. * future packets due to the PAWS test.
  4620. */
  4621. }
  4622. if (len <= tcp_header_len) {
  4623. /* Bulk data transfer: sender */
  4624. if (len == tcp_header_len) {
  4625. /* Predicted packet is in window by definition.
  4626. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4627. * Hence, check seq<=rcv_wup reduces to:
  4628. */
  4629. if (tcp_header_len ==
  4630. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4631. tp->rcv_nxt == tp->rcv_wup)
  4632. tcp_store_ts_recent(tp);
  4633. /* We know that such packets are checksummed
  4634. * on entry.
  4635. */
  4636. tcp_ack(sk, skb, 0);
  4637. __kfree_skb(skb);
  4638. tcp_data_snd_check(sk);
  4639. return;
  4640. } else { /* Header too small */
  4641. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4642. goto discard;
  4643. }
  4644. } else {
  4645. int eaten = 0;
  4646. bool fragstolen = false;
  4647. if (tp->ucopy.task == current &&
  4648. tp->copied_seq == tp->rcv_nxt &&
  4649. len - tcp_header_len <= tp->ucopy.len &&
  4650. sock_owned_by_user(sk)) {
  4651. __set_current_state(TASK_RUNNING);
  4652. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
  4653. /* Predicted packet is in window by definition.
  4654. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4655. * Hence, check seq<=rcv_wup reduces to:
  4656. */
  4657. if (tcp_header_len ==
  4658. (sizeof(struct tcphdr) +
  4659. TCPOLEN_TSTAMP_ALIGNED) &&
  4660. tp->rcv_nxt == tp->rcv_wup)
  4661. tcp_store_ts_recent(tp);
  4662. tcp_rcv_rtt_measure_ts(sk, skb);
  4663. __skb_pull(skb, tcp_header_len);
  4664. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4665. NET_INC_STATS(sock_net(sk),
  4666. LINUX_MIB_TCPHPHITSTOUSER);
  4667. eaten = 1;
  4668. }
  4669. }
  4670. if (!eaten) {
  4671. if (tcp_checksum_complete(skb))
  4672. goto csum_error;
  4673. if ((int)skb->truesize > sk->sk_forward_alloc)
  4674. goto step5;
  4675. /* Predicted packet is in window by definition.
  4676. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4677. * Hence, check seq<=rcv_wup reduces to:
  4678. */
  4679. if (tcp_header_len ==
  4680. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4681. tp->rcv_nxt == tp->rcv_wup)
  4682. tcp_store_ts_recent(tp);
  4683. tcp_rcv_rtt_measure_ts(sk, skb);
  4684. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4685. /* Bulk data transfer: receiver */
  4686. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4687. &fragstolen);
  4688. }
  4689. tcp_event_data_recv(sk, skb);
  4690. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4691. /* Well, only one small jumplet in fast path... */
  4692. tcp_ack(sk, skb, FLAG_DATA);
  4693. tcp_data_snd_check(sk);
  4694. if (!inet_csk_ack_scheduled(sk))
  4695. goto no_ack;
  4696. }
  4697. __tcp_ack_snd_check(sk, 0);
  4698. no_ack:
  4699. if (eaten)
  4700. kfree_skb_partial(skb, fragstolen);
  4701. sk->sk_data_ready(sk);
  4702. return;
  4703. }
  4704. }
  4705. slow_path:
  4706. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4707. goto csum_error;
  4708. if (!th->ack && !th->rst && !th->syn)
  4709. goto discard;
  4710. /*
  4711. * Standard slow path.
  4712. */
  4713. if (!tcp_validate_incoming(sk, skb, th, 1))
  4714. return;
  4715. step5:
  4716. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4717. goto discard;
  4718. tcp_rcv_rtt_measure_ts(sk, skb);
  4719. /* Process urgent data. */
  4720. tcp_urg(sk, skb, th);
  4721. /* step 7: process the segment text */
  4722. tcp_data_queue(sk, skb);
  4723. tcp_data_snd_check(sk);
  4724. tcp_ack_snd_check(sk);
  4725. return;
  4726. csum_error:
  4727. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4728. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4729. discard:
  4730. tcp_drop(sk, skb);
  4731. }
  4732. EXPORT_SYMBOL(tcp_rcv_established);
  4733. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4734. {
  4735. struct tcp_sock *tp = tcp_sk(sk);
  4736. struct inet_connection_sock *icsk = inet_csk(sk);
  4737. tcp_set_state(sk, TCP_ESTABLISHED);
  4738. if (skb) {
  4739. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4740. security_inet_conn_established(sk, skb);
  4741. }
  4742. /* Make sure socket is routed, for correct metrics. */
  4743. icsk->icsk_af_ops->rebuild_header(sk);
  4744. tcp_init_metrics(sk);
  4745. tcp_init_congestion_control(sk);
  4746. /* Prevent spurious tcp_cwnd_restart() on first data
  4747. * packet.
  4748. */
  4749. tp->lsndtime = tcp_time_stamp;
  4750. tcp_init_buffer_space(sk);
  4751. if (sock_flag(sk, SOCK_KEEPOPEN))
  4752. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4753. if (!tp->rx_opt.snd_wscale)
  4754. __tcp_fast_path_on(tp, tp->snd_wnd);
  4755. else
  4756. tp->pred_flags = 0;
  4757. if (!sock_flag(sk, SOCK_DEAD)) {
  4758. sk->sk_state_change(sk);
  4759. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4760. }
  4761. }
  4762. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4763. struct tcp_fastopen_cookie *cookie)
  4764. {
  4765. struct tcp_sock *tp = tcp_sk(sk);
  4766. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4767. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4768. bool syn_drop = false;
  4769. if (mss == tp->rx_opt.user_mss) {
  4770. struct tcp_options_received opt;
  4771. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4772. tcp_clear_options(&opt);
  4773. opt.user_mss = opt.mss_clamp = 0;
  4774. tcp_parse_options(synack, &opt, 0, NULL);
  4775. mss = opt.mss_clamp;
  4776. }
  4777. if (!tp->syn_fastopen) {
  4778. /* Ignore an unsolicited cookie */
  4779. cookie->len = -1;
  4780. } else if (tp->total_retrans) {
  4781. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4782. * acknowledges data. Presumably the remote received only
  4783. * the retransmitted (regular) SYNs: either the original
  4784. * SYN-data or the corresponding SYN-ACK was dropped.
  4785. */
  4786. syn_drop = (cookie->len < 0 && data);
  4787. } else if (cookie->len < 0 && !tp->syn_data) {
  4788. /* We requested a cookie but didn't get it. If we did not use
  4789. * the (old) exp opt format then try so next time (try_exp=1).
  4790. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4791. */
  4792. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4793. }
  4794. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4795. if (data) { /* Retransmit unacked data in SYN */
  4796. tcp_for_write_queue_from(data, sk) {
  4797. if (data == tcp_send_head(sk) ||
  4798. __tcp_retransmit_skb(sk, data, 1))
  4799. break;
  4800. }
  4801. tcp_rearm_rto(sk);
  4802. NET_INC_STATS(sock_net(sk),
  4803. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4804. return true;
  4805. }
  4806. tp->syn_data_acked = tp->syn_data;
  4807. if (tp->syn_data_acked)
  4808. NET_INC_STATS(sock_net(sk),
  4809. LINUX_MIB_TCPFASTOPENACTIVE);
  4810. tcp_fastopen_add_skb(sk, synack);
  4811. return false;
  4812. }
  4813. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4814. const struct tcphdr *th)
  4815. {
  4816. struct inet_connection_sock *icsk = inet_csk(sk);
  4817. struct tcp_sock *tp = tcp_sk(sk);
  4818. struct tcp_fastopen_cookie foc = { .len = -1 };
  4819. int saved_clamp = tp->rx_opt.mss_clamp;
  4820. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4821. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4822. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4823. if (th->ack) {
  4824. /* rfc793:
  4825. * "If the state is SYN-SENT then
  4826. * first check the ACK bit
  4827. * If the ACK bit is set
  4828. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4829. * a reset (unless the RST bit is set, if so drop
  4830. * the segment and return)"
  4831. */
  4832. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4833. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4834. goto reset_and_undo;
  4835. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4836. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4837. tcp_time_stamp)) {
  4838. NET_INC_STATS(sock_net(sk),
  4839. LINUX_MIB_PAWSACTIVEREJECTED);
  4840. goto reset_and_undo;
  4841. }
  4842. /* Now ACK is acceptable.
  4843. *
  4844. * "If the RST bit is set
  4845. * If the ACK was acceptable then signal the user "error:
  4846. * connection reset", drop the segment, enter CLOSED state,
  4847. * delete TCB, and return."
  4848. */
  4849. if (th->rst) {
  4850. tcp_reset(sk);
  4851. goto discard;
  4852. }
  4853. /* rfc793:
  4854. * "fifth, if neither of the SYN or RST bits is set then
  4855. * drop the segment and return."
  4856. *
  4857. * See note below!
  4858. * --ANK(990513)
  4859. */
  4860. if (!th->syn)
  4861. goto discard_and_undo;
  4862. /* rfc793:
  4863. * "If the SYN bit is on ...
  4864. * are acceptable then ...
  4865. * (our SYN has been ACKed), change the connection
  4866. * state to ESTABLISHED..."
  4867. */
  4868. tcp_ecn_rcv_synack(tp, th);
  4869. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4870. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4871. /* Ok.. it's good. Set up sequence numbers and
  4872. * move to established.
  4873. */
  4874. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4875. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4876. /* RFC1323: The window in SYN & SYN/ACK segments is
  4877. * never scaled.
  4878. */
  4879. tp->snd_wnd = ntohs(th->window);
  4880. if (!tp->rx_opt.wscale_ok) {
  4881. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4882. tp->window_clamp = min(tp->window_clamp, 65535U);
  4883. }
  4884. if (tp->rx_opt.saw_tstamp) {
  4885. tp->rx_opt.tstamp_ok = 1;
  4886. tp->tcp_header_len =
  4887. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4888. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4889. tcp_store_ts_recent(tp);
  4890. } else {
  4891. tp->tcp_header_len = sizeof(struct tcphdr);
  4892. }
  4893. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4894. tcp_enable_fack(tp);
  4895. tcp_mtup_init(sk);
  4896. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4897. tcp_initialize_rcv_mss(sk);
  4898. /* Remember, tcp_poll() does not lock socket!
  4899. * Change state from SYN-SENT only after copied_seq
  4900. * is initialized. */
  4901. tp->copied_seq = tp->rcv_nxt;
  4902. smp_mb();
  4903. tcp_finish_connect(sk, skb);
  4904. if ((tp->syn_fastopen || tp->syn_data) &&
  4905. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4906. return -1;
  4907. if (sk->sk_write_pending ||
  4908. icsk->icsk_accept_queue.rskq_defer_accept ||
  4909. icsk->icsk_ack.pingpong) {
  4910. /* Save one ACK. Data will be ready after
  4911. * several ticks, if write_pending is set.
  4912. *
  4913. * It may be deleted, but with this feature tcpdumps
  4914. * look so _wonderfully_ clever, that I was not able
  4915. * to stand against the temptation 8) --ANK
  4916. */
  4917. inet_csk_schedule_ack(sk);
  4918. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4919. tcp_enter_quickack_mode(sk);
  4920. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4921. TCP_DELACK_MAX, TCP_RTO_MAX);
  4922. discard:
  4923. tcp_drop(sk, skb);
  4924. return 0;
  4925. } else {
  4926. tcp_send_ack(sk);
  4927. }
  4928. return -1;
  4929. }
  4930. /* No ACK in the segment */
  4931. if (th->rst) {
  4932. /* rfc793:
  4933. * "If the RST bit is set
  4934. *
  4935. * Otherwise (no ACK) drop the segment and return."
  4936. */
  4937. goto discard_and_undo;
  4938. }
  4939. /* PAWS check. */
  4940. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4941. tcp_paws_reject(&tp->rx_opt, 0))
  4942. goto discard_and_undo;
  4943. if (th->syn) {
  4944. /* We see SYN without ACK. It is attempt of
  4945. * simultaneous connect with crossed SYNs.
  4946. * Particularly, it can be connect to self.
  4947. */
  4948. tcp_set_state(sk, TCP_SYN_RECV);
  4949. if (tp->rx_opt.saw_tstamp) {
  4950. tp->rx_opt.tstamp_ok = 1;
  4951. tcp_store_ts_recent(tp);
  4952. tp->tcp_header_len =
  4953. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4954. } else {
  4955. tp->tcp_header_len = sizeof(struct tcphdr);
  4956. }
  4957. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4958. tp->copied_seq = tp->rcv_nxt;
  4959. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4960. /* RFC1323: The window in SYN & SYN/ACK segments is
  4961. * never scaled.
  4962. */
  4963. tp->snd_wnd = ntohs(th->window);
  4964. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4965. tp->max_window = tp->snd_wnd;
  4966. tcp_ecn_rcv_syn(tp, th);
  4967. tcp_mtup_init(sk);
  4968. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4969. tcp_initialize_rcv_mss(sk);
  4970. tcp_send_synack(sk);
  4971. #if 0
  4972. /* Note, we could accept data and URG from this segment.
  4973. * There are no obstacles to make this (except that we must
  4974. * either change tcp_recvmsg() to prevent it from returning data
  4975. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4976. *
  4977. * However, if we ignore data in ACKless segments sometimes,
  4978. * we have no reasons to accept it sometimes.
  4979. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4980. * is not flawless. So, discard packet for sanity.
  4981. * Uncomment this return to process the data.
  4982. */
  4983. return -1;
  4984. #else
  4985. goto discard;
  4986. #endif
  4987. }
  4988. /* "fifth, if neither of the SYN or RST bits is set then
  4989. * drop the segment and return."
  4990. */
  4991. discard_and_undo:
  4992. tcp_clear_options(&tp->rx_opt);
  4993. tp->rx_opt.mss_clamp = saved_clamp;
  4994. goto discard;
  4995. reset_and_undo:
  4996. tcp_clear_options(&tp->rx_opt);
  4997. tp->rx_opt.mss_clamp = saved_clamp;
  4998. return 1;
  4999. }
  5000. /*
  5001. * This function implements the receiving procedure of RFC 793 for
  5002. * all states except ESTABLISHED and TIME_WAIT.
  5003. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5004. * address independent.
  5005. */
  5006. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  5007. {
  5008. struct tcp_sock *tp = tcp_sk(sk);
  5009. struct inet_connection_sock *icsk = inet_csk(sk);
  5010. const struct tcphdr *th = tcp_hdr(skb);
  5011. struct request_sock *req;
  5012. int queued = 0;
  5013. bool acceptable;
  5014. switch (sk->sk_state) {
  5015. case TCP_CLOSE:
  5016. goto discard;
  5017. case TCP_LISTEN:
  5018. if (th->ack)
  5019. return 1;
  5020. if (th->rst)
  5021. goto discard;
  5022. if (th->syn) {
  5023. if (th->fin)
  5024. goto discard;
  5025. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5026. return 1;
  5027. consume_skb(skb);
  5028. return 0;
  5029. }
  5030. goto discard;
  5031. case TCP_SYN_SENT:
  5032. tp->rx_opt.saw_tstamp = 0;
  5033. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5034. if (queued >= 0)
  5035. return queued;
  5036. /* Do step6 onward by hand. */
  5037. tcp_urg(sk, skb, th);
  5038. __kfree_skb(skb);
  5039. tcp_data_snd_check(sk);
  5040. return 0;
  5041. }
  5042. tp->rx_opt.saw_tstamp = 0;
  5043. req = tp->fastopen_rsk;
  5044. if (req) {
  5045. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5046. sk->sk_state != TCP_FIN_WAIT1);
  5047. if (!tcp_check_req(sk, skb, req, true))
  5048. goto discard;
  5049. }
  5050. if (!th->ack && !th->rst && !th->syn)
  5051. goto discard;
  5052. if (!tcp_validate_incoming(sk, skb, th, 0))
  5053. return 0;
  5054. /* step 5: check the ACK field */
  5055. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5056. FLAG_UPDATE_TS_RECENT) > 0;
  5057. switch (sk->sk_state) {
  5058. case TCP_SYN_RECV:
  5059. if (!acceptable)
  5060. return 1;
  5061. if (!tp->srtt_us)
  5062. tcp_synack_rtt_meas(sk, req);
  5063. /* Once we leave TCP_SYN_RECV, we no longer need req
  5064. * so release it.
  5065. */
  5066. if (req) {
  5067. inet_csk(sk)->icsk_retransmits = 0;
  5068. reqsk_fastopen_remove(sk, req, false);
  5069. } else {
  5070. /* Make sure socket is routed, for correct metrics. */
  5071. icsk->icsk_af_ops->rebuild_header(sk);
  5072. tcp_init_congestion_control(sk);
  5073. tcp_mtup_init(sk);
  5074. tp->copied_seq = tp->rcv_nxt;
  5075. tcp_init_buffer_space(sk);
  5076. }
  5077. smp_mb();
  5078. tcp_set_state(sk, TCP_ESTABLISHED);
  5079. sk->sk_state_change(sk);
  5080. /* Note, that this wakeup is only for marginal crossed SYN case.
  5081. * Passively open sockets are not waked up, because
  5082. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5083. */
  5084. if (sk->sk_socket)
  5085. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5086. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5087. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5088. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5089. if (tp->rx_opt.tstamp_ok)
  5090. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5091. if (req) {
  5092. /* Re-arm the timer because data may have been sent out.
  5093. * This is similar to the regular data transmission case
  5094. * when new data has just been ack'ed.
  5095. *
  5096. * (TFO) - we could try to be more aggressive and
  5097. * retransmitting any data sooner based on when they
  5098. * are sent out.
  5099. */
  5100. tcp_rearm_rto(sk);
  5101. } else
  5102. tcp_init_metrics(sk);
  5103. tcp_update_pacing_rate(sk);
  5104. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5105. tp->lsndtime = tcp_time_stamp;
  5106. tcp_initialize_rcv_mss(sk);
  5107. tcp_fast_path_on(tp);
  5108. break;
  5109. case TCP_FIN_WAIT1: {
  5110. struct dst_entry *dst;
  5111. int tmo;
  5112. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5113. * Fast Open socket and this is the first acceptable
  5114. * ACK we have received, this would have acknowledged
  5115. * our SYNACK so stop the SYNACK timer.
  5116. */
  5117. if (req) {
  5118. /* Return RST if ack_seq is invalid.
  5119. * Note that RFC793 only says to generate a
  5120. * DUPACK for it but for TCP Fast Open it seems
  5121. * better to treat this case like TCP_SYN_RECV
  5122. * above.
  5123. */
  5124. if (!acceptable)
  5125. return 1;
  5126. /* We no longer need the request sock. */
  5127. reqsk_fastopen_remove(sk, req, false);
  5128. tcp_rearm_rto(sk);
  5129. }
  5130. if (tp->snd_una != tp->write_seq)
  5131. break;
  5132. tcp_set_state(sk, TCP_FIN_WAIT2);
  5133. sk->sk_shutdown |= SEND_SHUTDOWN;
  5134. dst = __sk_dst_get(sk);
  5135. if (dst)
  5136. dst_confirm(dst);
  5137. if (!sock_flag(sk, SOCK_DEAD)) {
  5138. /* Wake up lingering close() */
  5139. sk->sk_state_change(sk);
  5140. break;
  5141. }
  5142. if (tp->linger2 < 0 ||
  5143. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5144. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5145. tcp_done(sk);
  5146. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5147. return 1;
  5148. }
  5149. tmo = tcp_fin_time(sk);
  5150. if (tmo > TCP_TIMEWAIT_LEN) {
  5151. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5152. } else if (th->fin || sock_owned_by_user(sk)) {
  5153. /* Bad case. We could lose such FIN otherwise.
  5154. * It is not a big problem, but it looks confusing
  5155. * and not so rare event. We still can lose it now,
  5156. * if it spins in bh_lock_sock(), but it is really
  5157. * marginal case.
  5158. */
  5159. inet_csk_reset_keepalive_timer(sk, tmo);
  5160. } else {
  5161. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5162. goto discard;
  5163. }
  5164. break;
  5165. }
  5166. case TCP_CLOSING:
  5167. if (tp->snd_una == tp->write_seq) {
  5168. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5169. goto discard;
  5170. }
  5171. break;
  5172. case TCP_LAST_ACK:
  5173. if (tp->snd_una == tp->write_seq) {
  5174. tcp_update_metrics(sk);
  5175. tcp_done(sk);
  5176. goto discard;
  5177. }
  5178. break;
  5179. }
  5180. /* step 6: check the URG bit */
  5181. tcp_urg(sk, skb, th);
  5182. /* step 7: process the segment text */
  5183. switch (sk->sk_state) {
  5184. case TCP_CLOSE_WAIT:
  5185. case TCP_CLOSING:
  5186. case TCP_LAST_ACK:
  5187. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5188. break;
  5189. case TCP_FIN_WAIT1:
  5190. case TCP_FIN_WAIT2:
  5191. /* RFC 793 says to queue data in these states,
  5192. * RFC 1122 says we MUST send a reset.
  5193. * BSD 4.4 also does reset.
  5194. */
  5195. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5196. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5197. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5198. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5199. tcp_reset(sk);
  5200. return 1;
  5201. }
  5202. }
  5203. /* Fall through */
  5204. case TCP_ESTABLISHED:
  5205. tcp_data_queue(sk, skb);
  5206. queued = 1;
  5207. break;
  5208. }
  5209. /* tcp_data could move socket to TIME-WAIT */
  5210. if (sk->sk_state != TCP_CLOSE) {
  5211. tcp_data_snd_check(sk);
  5212. tcp_ack_snd_check(sk);
  5213. }
  5214. if (!queued) {
  5215. discard:
  5216. tcp_drop(sk, skb);
  5217. }
  5218. return 0;
  5219. }
  5220. EXPORT_SYMBOL(tcp_rcv_state_process);
  5221. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5222. {
  5223. struct inet_request_sock *ireq = inet_rsk(req);
  5224. if (family == AF_INET)
  5225. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5226. &ireq->ir_rmt_addr, port);
  5227. #if IS_ENABLED(CONFIG_IPV6)
  5228. else if (family == AF_INET6)
  5229. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5230. &ireq->ir_v6_rmt_addr, port);
  5231. #endif
  5232. }
  5233. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5234. *
  5235. * If we receive a SYN packet with these bits set, it means a
  5236. * network is playing bad games with TOS bits. In order to
  5237. * avoid possible false congestion notifications, we disable
  5238. * TCP ECN negotiation.
  5239. *
  5240. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5241. * congestion control: Linux DCTCP asserts ECT on all packets,
  5242. * including SYN, which is most optimal solution; however,
  5243. * others, such as FreeBSD do not.
  5244. */
  5245. static void tcp_ecn_create_request(struct request_sock *req,
  5246. const struct sk_buff *skb,
  5247. const struct sock *listen_sk,
  5248. const struct dst_entry *dst)
  5249. {
  5250. const struct tcphdr *th = tcp_hdr(skb);
  5251. const struct net *net = sock_net(listen_sk);
  5252. bool th_ecn = th->ece && th->cwr;
  5253. bool ect, ecn_ok;
  5254. u32 ecn_ok_dst;
  5255. if (!th_ecn)
  5256. return;
  5257. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5258. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5259. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5260. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5261. (ecn_ok_dst & DST_FEATURE_ECN_CA))
  5262. inet_rsk(req)->ecn_ok = 1;
  5263. }
  5264. static void tcp_openreq_init(struct request_sock *req,
  5265. const struct tcp_options_received *rx_opt,
  5266. struct sk_buff *skb, const struct sock *sk)
  5267. {
  5268. struct inet_request_sock *ireq = inet_rsk(req);
  5269. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5270. req->cookie_ts = 0;
  5271. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5272. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5273. skb_mstamp_get(&tcp_rsk(req)->snt_synack);
  5274. tcp_rsk(req)->last_oow_ack_time = 0;
  5275. req->mss = rx_opt->mss_clamp;
  5276. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5277. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5278. ireq->sack_ok = rx_opt->sack_ok;
  5279. ireq->snd_wscale = rx_opt->snd_wscale;
  5280. ireq->wscale_ok = rx_opt->wscale_ok;
  5281. ireq->acked = 0;
  5282. ireq->ecn_ok = 0;
  5283. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5284. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5285. ireq->ir_mark = inet_request_mark(sk, skb);
  5286. }
  5287. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5288. struct sock *sk_listener,
  5289. bool attach_listener)
  5290. {
  5291. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5292. attach_listener);
  5293. if (req) {
  5294. struct inet_request_sock *ireq = inet_rsk(req);
  5295. kmemcheck_annotate_bitfield(ireq, flags);
  5296. ireq->opt = NULL;
  5297. #if IS_ENABLED(CONFIG_IPV6)
  5298. ireq->pktopts = NULL;
  5299. #endif
  5300. atomic64_set(&ireq->ir_cookie, 0);
  5301. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5302. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5303. ireq->ireq_family = sk_listener->sk_family;
  5304. }
  5305. return req;
  5306. }
  5307. EXPORT_SYMBOL(inet_reqsk_alloc);
  5308. /*
  5309. * Return true if a syncookie should be sent
  5310. */
  5311. static bool tcp_syn_flood_action(const struct sock *sk,
  5312. const struct sk_buff *skb,
  5313. const char *proto)
  5314. {
  5315. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5316. const char *msg = "Dropping request";
  5317. bool want_cookie = false;
  5318. struct net *net = sock_net(sk);
  5319. #ifdef CONFIG_SYN_COOKIES
  5320. if (net->ipv4.sysctl_tcp_syncookies) {
  5321. msg = "Sending cookies";
  5322. want_cookie = true;
  5323. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5324. } else
  5325. #endif
  5326. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5327. if (!queue->synflood_warned &&
  5328. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5329. xchg(&queue->synflood_warned, 1) == 0)
  5330. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5331. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5332. return want_cookie;
  5333. }
  5334. static void tcp_reqsk_record_syn(const struct sock *sk,
  5335. struct request_sock *req,
  5336. const struct sk_buff *skb)
  5337. {
  5338. if (tcp_sk(sk)->save_syn) {
  5339. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5340. u32 *copy;
  5341. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5342. if (copy) {
  5343. copy[0] = len;
  5344. memcpy(&copy[1], skb_network_header(skb), len);
  5345. req->saved_syn = copy;
  5346. }
  5347. }
  5348. }
  5349. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5350. const struct tcp_request_sock_ops *af_ops,
  5351. struct sock *sk, struct sk_buff *skb)
  5352. {
  5353. struct tcp_fastopen_cookie foc = { .len = -1 };
  5354. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5355. struct tcp_options_received tmp_opt;
  5356. struct tcp_sock *tp = tcp_sk(sk);
  5357. struct net *net = sock_net(sk);
  5358. struct sock *fastopen_sk = NULL;
  5359. struct dst_entry *dst = NULL;
  5360. struct request_sock *req;
  5361. bool want_cookie = false;
  5362. struct flowi fl;
  5363. /* TW buckets are converted to open requests without
  5364. * limitations, they conserve resources and peer is
  5365. * evidently real one.
  5366. */
  5367. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5368. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5369. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5370. if (!want_cookie)
  5371. goto drop;
  5372. }
  5373. /* Accept backlog is full. If we have already queued enough
  5374. * of warm entries in syn queue, drop request. It is better than
  5375. * clogging syn queue with openreqs with exponentially increasing
  5376. * timeout.
  5377. */
  5378. if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
  5379. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5380. goto drop;
  5381. }
  5382. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5383. if (!req)
  5384. goto drop;
  5385. tcp_rsk(req)->af_specific = af_ops;
  5386. tcp_clear_options(&tmp_opt);
  5387. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5388. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5389. tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
  5390. if (want_cookie && !tmp_opt.saw_tstamp)
  5391. tcp_clear_options(&tmp_opt);
  5392. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5393. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5394. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5395. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5396. af_ops->init_req(req, sk, skb);
  5397. if (security_inet_conn_request(sk, skb, req))
  5398. goto drop_and_free;
  5399. if (!want_cookie && !isn) {
  5400. /* VJ's idea. We save last timestamp seen
  5401. * from the destination in peer table, when entering
  5402. * state TIME-WAIT, and check against it before
  5403. * accepting new connection request.
  5404. *
  5405. * If "isn" is not zero, this request hit alive
  5406. * timewait bucket, so that all the necessary checks
  5407. * are made in the function processing timewait state.
  5408. */
  5409. if (tcp_death_row.sysctl_tw_recycle) {
  5410. bool strict;
  5411. dst = af_ops->route_req(sk, &fl, req, &strict);
  5412. if (dst && strict &&
  5413. !tcp_peer_is_proven(req, dst, true,
  5414. tmp_opt.saw_tstamp)) {
  5415. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
  5416. goto drop_and_release;
  5417. }
  5418. }
  5419. /* Kill the following clause, if you dislike this way. */
  5420. else if (!net->ipv4.sysctl_tcp_syncookies &&
  5421. (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5422. (sysctl_max_syn_backlog >> 2)) &&
  5423. !tcp_peer_is_proven(req, dst, false,
  5424. tmp_opt.saw_tstamp)) {
  5425. /* Without syncookies last quarter of
  5426. * backlog is filled with destinations,
  5427. * proven to be alive.
  5428. * It means that we continue to communicate
  5429. * to destinations, already remembered
  5430. * to the moment of synflood.
  5431. */
  5432. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5433. rsk_ops->family);
  5434. goto drop_and_release;
  5435. }
  5436. isn = af_ops->init_seq(skb);
  5437. }
  5438. if (!dst) {
  5439. dst = af_ops->route_req(sk, &fl, req, NULL);
  5440. if (!dst)
  5441. goto drop_and_free;
  5442. }
  5443. tcp_ecn_create_request(req, skb, sk, dst);
  5444. if (want_cookie) {
  5445. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5446. req->cookie_ts = tmp_opt.tstamp_ok;
  5447. if (!tmp_opt.tstamp_ok)
  5448. inet_rsk(req)->ecn_ok = 0;
  5449. }
  5450. tcp_rsk(req)->snt_isn = isn;
  5451. tcp_rsk(req)->txhash = net_tx_rndhash();
  5452. tcp_openreq_init_rwin(req, sk, dst);
  5453. if (!want_cookie) {
  5454. tcp_reqsk_record_syn(sk, req, skb);
  5455. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
  5456. }
  5457. if (fastopen_sk) {
  5458. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5459. &foc, TCP_SYNACK_FASTOPEN);
  5460. /* Add the child socket directly into the accept queue */
  5461. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5462. sk->sk_data_ready(sk);
  5463. bh_unlock_sock(fastopen_sk);
  5464. sock_put(fastopen_sk);
  5465. } else {
  5466. tcp_rsk(req)->tfo_listener = false;
  5467. if (!want_cookie)
  5468. inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
  5469. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5470. !want_cookie ? TCP_SYNACK_NORMAL :
  5471. TCP_SYNACK_COOKIE);
  5472. if (want_cookie) {
  5473. reqsk_free(req);
  5474. return 0;
  5475. }
  5476. }
  5477. reqsk_put(req);
  5478. return 0;
  5479. drop_and_release:
  5480. dst_release(dst);
  5481. drop_and_free:
  5482. reqsk_free(req);
  5483. drop:
  5484. tcp_listendrop(sk);
  5485. return 0;
  5486. }
  5487. EXPORT_SYMBOL(tcp_conn_request);