verifier.c 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798
  1. /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
  2. * Copyright (c) 2016 Facebook
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of version 2 of the GNU General Public
  6. * License as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/types.h>
  15. #include <linux/slab.h>
  16. #include <linux/bpf.h>
  17. #include <linux/filter.h>
  18. #include <net/netlink.h>
  19. #include <linux/file.h>
  20. #include <linux/vmalloc.h>
  21. /* bpf_check() is a static code analyzer that walks eBPF program
  22. * instruction by instruction and updates register/stack state.
  23. * All paths of conditional branches are analyzed until 'bpf_exit' insn.
  24. *
  25. * The first pass is depth-first-search to check that the program is a DAG.
  26. * It rejects the following programs:
  27. * - larger than BPF_MAXINSNS insns
  28. * - if loop is present (detected via back-edge)
  29. * - unreachable insns exist (shouldn't be a forest. program = one function)
  30. * - out of bounds or malformed jumps
  31. * The second pass is all possible path descent from the 1st insn.
  32. * Since it's analyzing all pathes through the program, the length of the
  33. * analysis is limited to 32k insn, which may be hit even if total number of
  34. * insn is less then 4K, but there are too many branches that change stack/regs.
  35. * Number of 'branches to be analyzed' is limited to 1k
  36. *
  37. * On entry to each instruction, each register has a type, and the instruction
  38. * changes the types of the registers depending on instruction semantics.
  39. * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
  40. * copied to R1.
  41. *
  42. * All registers are 64-bit.
  43. * R0 - return register
  44. * R1-R5 argument passing registers
  45. * R6-R9 callee saved registers
  46. * R10 - frame pointer read-only
  47. *
  48. * At the start of BPF program the register R1 contains a pointer to bpf_context
  49. * and has type PTR_TO_CTX.
  50. *
  51. * Verifier tracks arithmetic operations on pointers in case:
  52. * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  53. * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
  54. * 1st insn copies R10 (which has FRAME_PTR) type into R1
  55. * and 2nd arithmetic instruction is pattern matched to recognize
  56. * that it wants to construct a pointer to some element within stack.
  57. * So after 2nd insn, the register R1 has type PTR_TO_STACK
  58. * (and -20 constant is saved for further stack bounds checking).
  59. * Meaning that this reg is a pointer to stack plus known immediate constant.
  60. *
  61. * Most of the time the registers have UNKNOWN_VALUE type, which
  62. * means the register has some value, but it's not a valid pointer.
  63. * (like pointer plus pointer becomes UNKNOWN_VALUE type)
  64. *
  65. * When verifier sees load or store instructions the type of base register
  66. * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
  67. * types recognized by check_mem_access() function.
  68. *
  69. * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
  70. * and the range of [ptr, ptr + map's value_size) is accessible.
  71. *
  72. * registers used to pass values to function calls are checked against
  73. * function argument constraints.
  74. *
  75. * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
  76. * It means that the register type passed to this function must be
  77. * PTR_TO_STACK and it will be used inside the function as
  78. * 'pointer to map element key'
  79. *
  80. * For example the argument constraints for bpf_map_lookup_elem():
  81. * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
  82. * .arg1_type = ARG_CONST_MAP_PTR,
  83. * .arg2_type = ARG_PTR_TO_MAP_KEY,
  84. *
  85. * ret_type says that this function returns 'pointer to map elem value or null'
  86. * function expects 1st argument to be a const pointer to 'struct bpf_map' and
  87. * 2nd argument should be a pointer to stack, which will be used inside
  88. * the helper function as a pointer to map element key.
  89. *
  90. * On the kernel side the helper function looks like:
  91. * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
  92. * {
  93. * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
  94. * void *key = (void *) (unsigned long) r2;
  95. * void *value;
  96. *
  97. * here kernel can access 'key' and 'map' pointers safely, knowing that
  98. * [key, key + map->key_size) bytes are valid and were initialized on
  99. * the stack of eBPF program.
  100. * }
  101. *
  102. * Corresponding eBPF program may look like:
  103. * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
  104. * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
  105. * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
  106. * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
  107. * here verifier looks at prototype of map_lookup_elem() and sees:
  108. * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
  109. * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
  110. *
  111. * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
  112. * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
  113. * and were initialized prior to this call.
  114. * If it's ok, then verifier allows this BPF_CALL insn and looks at
  115. * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
  116. * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
  117. * returns ether pointer to map value or NULL.
  118. *
  119. * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
  120. * insn, the register holding that pointer in the true branch changes state to
  121. * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
  122. * branch. See check_cond_jmp_op().
  123. *
  124. * After the call R0 is set to return type of the function and registers R1-R5
  125. * are set to NOT_INIT to indicate that they are no longer readable.
  126. */
  127. /* types of values stored in eBPF registers */
  128. enum bpf_reg_type {
  129. NOT_INIT = 0, /* nothing was written into register */
  130. UNKNOWN_VALUE, /* reg doesn't contain a valid pointer */
  131. PTR_TO_CTX, /* reg points to bpf_context */
  132. CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
  133. PTR_TO_MAP_VALUE, /* reg points to map element value */
  134. PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
  135. FRAME_PTR, /* reg == frame_pointer */
  136. PTR_TO_STACK, /* reg == frame_pointer + imm */
  137. CONST_IMM, /* constant integer value */
  138. /* PTR_TO_PACKET represents:
  139. * skb->data
  140. * skb->data + imm
  141. * skb->data + (u16) var
  142. * skb->data + (u16) var + imm
  143. * if (range > 0) then [ptr, ptr + range - off) is safe to access
  144. * if (id > 0) means that some 'var' was added
  145. * if (off > 0) menas that 'imm' was added
  146. */
  147. PTR_TO_PACKET,
  148. PTR_TO_PACKET_END, /* skb->data + headlen */
  149. };
  150. struct reg_state {
  151. enum bpf_reg_type type;
  152. union {
  153. /* valid when type == CONST_IMM | PTR_TO_STACK | UNKNOWN_VALUE */
  154. s64 imm;
  155. /* valid when type == PTR_TO_PACKET* */
  156. struct {
  157. u32 id;
  158. u16 off;
  159. u16 range;
  160. };
  161. /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
  162. * PTR_TO_MAP_VALUE_OR_NULL
  163. */
  164. struct bpf_map *map_ptr;
  165. };
  166. };
  167. enum bpf_stack_slot_type {
  168. STACK_INVALID, /* nothing was stored in this stack slot */
  169. STACK_SPILL, /* register spilled into stack */
  170. STACK_MISC /* BPF program wrote some data into this slot */
  171. };
  172. #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
  173. /* state of the program:
  174. * type of all registers and stack info
  175. */
  176. struct verifier_state {
  177. struct reg_state regs[MAX_BPF_REG];
  178. u8 stack_slot_type[MAX_BPF_STACK];
  179. struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
  180. };
  181. /* linked list of verifier states used to prune search */
  182. struct verifier_state_list {
  183. struct verifier_state state;
  184. struct verifier_state_list *next;
  185. };
  186. /* verifier_state + insn_idx are pushed to stack when branch is encountered */
  187. struct verifier_stack_elem {
  188. /* verifer state is 'st'
  189. * before processing instruction 'insn_idx'
  190. * and after processing instruction 'prev_insn_idx'
  191. */
  192. struct verifier_state st;
  193. int insn_idx;
  194. int prev_insn_idx;
  195. struct verifier_stack_elem *next;
  196. };
  197. #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
  198. /* single container for all structs
  199. * one verifier_env per bpf_check() call
  200. */
  201. struct verifier_env {
  202. struct bpf_prog *prog; /* eBPF program being verified */
  203. struct verifier_stack_elem *head; /* stack of verifier states to be processed */
  204. int stack_size; /* number of states to be processed */
  205. struct verifier_state cur_state; /* current verifier state */
  206. struct verifier_state_list **explored_states; /* search pruning optimization */
  207. struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
  208. u32 used_map_cnt; /* number of used maps */
  209. bool allow_ptr_leaks;
  210. };
  211. #define BPF_COMPLEXITY_LIMIT_INSNS 65536
  212. #define BPF_COMPLEXITY_LIMIT_STACK 1024
  213. struct bpf_call_arg_meta {
  214. struct bpf_map *map_ptr;
  215. bool raw_mode;
  216. int regno;
  217. int access_size;
  218. };
  219. /* verbose verifier prints what it's seeing
  220. * bpf_check() is called under lock, so no race to access these global vars
  221. */
  222. static u32 log_level, log_size, log_len;
  223. static char *log_buf;
  224. static DEFINE_MUTEX(bpf_verifier_lock);
  225. /* log_level controls verbosity level of eBPF verifier.
  226. * verbose() is used to dump the verification trace to the log, so the user
  227. * can figure out what's wrong with the program
  228. */
  229. static __printf(1, 2) void verbose(const char *fmt, ...)
  230. {
  231. va_list args;
  232. if (log_level == 0 || log_len >= log_size - 1)
  233. return;
  234. va_start(args, fmt);
  235. log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
  236. va_end(args);
  237. }
  238. /* string representation of 'enum bpf_reg_type' */
  239. static const char * const reg_type_str[] = {
  240. [NOT_INIT] = "?",
  241. [UNKNOWN_VALUE] = "inv",
  242. [PTR_TO_CTX] = "ctx",
  243. [CONST_PTR_TO_MAP] = "map_ptr",
  244. [PTR_TO_MAP_VALUE] = "map_value",
  245. [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
  246. [FRAME_PTR] = "fp",
  247. [PTR_TO_STACK] = "fp",
  248. [CONST_IMM] = "imm",
  249. [PTR_TO_PACKET] = "pkt",
  250. [PTR_TO_PACKET_END] = "pkt_end",
  251. };
  252. static void print_verifier_state(struct verifier_state *state)
  253. {
  254. struct reg_state *reg;
  255. enum bpf_reg_type t;
  256. int i;
  257. for (i = 0; i < MAX_BPF_REG; i++) {
  258. reg = &state->regs[i];
  259. t = reg->type;
  260. if (t == NOT_INIT)
  261. continue;
  262. verbose(" R%d=%s", i, reg_type_str[t]);
  263. if (t == CONST_IMM || t == PTR_TO_STACK)
  264. verbose("%lld", reg->imm);
  265. else if (t == PTR_TO_PACKET)
  266. verbose("(id=%d,off=%d,r=%d)",
  267. reg->id, reg->off, reg->range);
  268. else if (t == UNKNOWN_VALUE && reg->imm)
  269. verbose("%lld", reg->imm);
  270. else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
  271. t == PTR_TO_MAP_VALUE_OR_NULL)
  272. verbose("(ks=%d,vs=%d)",
  273. reg->map_ptr->key_size,
  274. reg->map_ptr->value_size);
  275. }
  276. for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
  277. if (state->stack_slot_type[i] == STACK_SPILL)
  278. verbose(" fp%d=%s", -MAX_BPF_STACK + i,
  279. reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
  280. }
  281. verbose("\n");
  282. }
  283. static const char *const bpf_class_string[] = {
  284. [BPF_LD] = "ld",
  285. [BPF_LDX] = "ldx",
  286. [BPF_ST] = "st",
  287. [BPF_STX] = "stx",
  288. [BPF_ALU] = "alu",
  289. [BPF_JMP] = "jmp",
  290. [BPF_RET] = "BUG",
  291. [BPF_ALU64] = "alu64",
  292. };
  293. static const char *const bpf_alu_string[16] = {
  294. [BPF_ADD >> 4] = "+=",
  295. [BPF_SUB >> 4] = "-=",
  296. [BPF_MUL >> 4] = "*=",
  297. [BPF_DIV >> 4] = "/=",
  298. [BPF_OR >> 4] = "|=",
  299. [BPF_AND >> 4] = "&=",
  300. [BPF_LSH >> 4] = "<<=",
  301. [BPF_RSH >> 4] = ">>=",
  302. [BPF_NEG >> 4] = "neg",
  303. [BPF_MOD >> 4] = "%=",
  304. [BPF_XOR >> 4] = "^=",
  305. [BPF_MOV >> 4] = "=",
  306. [BPF_ARSH >> 4] = "s>>=",
  307. [BPF_END >> 4] = "endian",
  308. };
  309. static const char *const bpf_ldst_string[] = {
  310. [BPF_W >> 3] = "u32",
  311. [BPF_H >> 3] = "u16",
  312. [BPF_B >> 3] = "u8",
  313. [BPF_DW >> 3] = "u64",
  314. };
  315. static const char *const bpf_jmp_string[16] = {
  316. [BPF_JA >> 4] = "jmp",
  317. [BPF_JEQ >> 4] = "==",
  318. [BPF_JGT >> 4] = ">",
  319. [BPF_JGE >> 4] = ">=",
  320. [BPF_JSET >> 4] = "&",
  321. [BPF_JNE >> 4] = "!=",
  322. [BPF_JSGT >> 4] = "s>",
  323. [BPF_JSGE >> 4] = "s>=",
  324. [BPF_CALL >> 4] = "call",
  325. [BPF_EXIT >> 4] = "exit",
  326. };
  327. static void print_bpf_insn(struct bpf_insn *insn)
  328. {
  329. u8 class = BPF_CLASS(insn->code);
  330. if (class == BPF_ALU || class == BPF_ALU64) {
  331. if (BPF_SRC(insn->code) == BPF_X)
  332. verbose("(%02x) %sr%d %s %sr%d\n",
  333. insn->code, class == BPF_ALU ? "(u32) " : "",
  334. insn->dst_reg,
  335. bpf_alu_string[BPF_OP(insn->code) >> 4],
  336. class == BPF_ALU ? "(u32) " : "",
  337. insn->src_reg);
  338. else
  339. verbose("(%02x) %sr%d %s %s%d\n",
  340. insn->code, class == BPF_ALU ? "(u32) " : "",
  341. insn->dst_reg,
  342. bpf_alu_string[BPF_OP(insn->code) >> 4],
  343. class == BPF_ALU ? "(u32) " : "",
  344. insn->imm);
  345. } else if (class == BPF_STX) {
  346. if (BPF_MODE(insn->code) == BPF_MEM)
  347. verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
  348. insn->code,
  349. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  350. insn->dst_reg,
  351. insn->off, insn->src_reg);
  352. else if (BPF_MODE(insn->code) == BPF_XADD)
  353. verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
  354. insn->code,
  355. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  356. insn->dst_reg, insn->off,
  357. insn->src_reg);
  358. else
  359. verbose("BUG_%02x\n", insn->code);
  360. } else if (class == BPF_ST) {
  361. if (BPF_MODE(insn->code) != BPF_MEM) {
  362. verbose("BUG_st_%02x\n", insn->code);
  363. return;
  364. }
  365. verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
  366. insn->code,
  367. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  368. insn->dst_reg,
  369. insn->off, insn->imm);
  370. } else if (class == BPF_LDX) {
  371. if (BPF_MODE(insn->code) != BPF_MEM) {
  372. verbose("BUG_ldx_%02x\n", insn->code);
  373. return;
  374. }
  375. verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
  376. insn->code, insn->dst_reg,
  377. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  378. insn->src_reg, insn->off);
  379. } else if (class == BPF_LD) {
  380. if (BPF_MODE(insn->code) == BPF_ABS) {
  381. verbose("(%02x) r0 = *(%s *)skb[%d]\n",
  382. insn->code,
  383. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  384. insn->imm);
  385. } else if (BPF_MODE(insn->code) == BPF_IND) {
  386. verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
  387. insn->code,
  388. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  389. insn->src_reg, insn->imm);
  390. } else if (BPF_MODE(insn->code) == BPF_IMM) {
  391. verbose("(%02x) r%d = 0x%x\n",
  392. insn->code, insn->dst_reg, insn->imm);
  393. } else {
  394. verbose("BUG_ld_%02x\n", insn->code);
  395. return;
  396. }
  397. } else if (class == BPF_JMP) {
  398. u8 opcode = BPF_OP(insn->code);
  399. if (opcode == BPF_CALL) {
  400. verbose("(%02x) call %d\n", insn->code, insn->imm);
  401. } else if (insn->code == (BPF_JMP | BPF_JA)) {
  402. verbose("(%02x) goto pc%+d\n",
  403. insn->code, insn->off);
  404. } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
  405. verbose("(%02x) exit\n", insn->code);
  406. } else if (BPF_SRC(insn->code) == BPF_X) {
  407. verbose("(%02x) if r%d %s r%d goto pc%+d\n",
  408. insn->code, insn->dst_reg,
  409. bpf_jmp_string[BPF_OP(insn->code) >> 4],
  410. insn->src_reg, insn->off);
  411. } else {
  412. verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
  413. insn->code, insn->dst_reg,
  414. bpf_jmp_string[BPF_OP(insn->code) >> 4],
  415. insn->imm, insn->off);
  416. }
  417. } else {
  418. verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
  419. }
  420. }
  421. static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
  422. {
  423. struct verifier_stack_elem *elem;
  424. int insn_idx;
  425. if (env->head == NULL)
  426. return -1;
  427. memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
  428. insn_idx = env->head->insn_idx;
  429. if (prev_insn_idx)
  430. *prev_insn_idx = env->head->prev_insn_idx;
  431. elem = env->head->next;
  432. kfree(env->head);
  433. env->head = elem;
  434. env->stack_size--;
  435. return insn_idx;
  436. }
  437. static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
  438. int prev_insn_idx)
  439. {
  440. struct verifier_stack_elem *elem;
  441. elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
  442. if (!elem)
  443. goto err;
  444. memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
  445. elem->insn_idx = insn_idx;
  446. elem->prev_insn_idx = prev_insn_idx;
  447. elem->next = env->head;
  448. env->head = elem;
  449. env->stack_size++;
  450. if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
  451. verbose("BPF program is too complex\n");
  452. goto err;
  453. }
  454. return &elem->st;
  455. err:
  456. /* pop all elements and return */
  457. while (pop_stack(env, NULL) >= 0);
  458. return NULL;
  459. }
  460. #define CALLER_SAVED_REGS 6
  461. static const int caller_saved[CALLER_SAVED_REGS] = {
  462. BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
  463. };
  464. static void init_reg_state(struct reg_state *regs)
  465. {
  466. int i;
  467. for (i = 0; i < MAX_BPF_REG; i++) {
  468. regs[i].type = NOT_INIT;
  469. regs[i].imm = 0;
  470. }
  471. /* frame pointer */
  472. regs[BPF_REG_FP].type = FRAME_PTR;
  473. /* 1st arg to a function */
  474. regs[BPF_REG_1].type = PTR_TO_CTX;
  475. }
  476. static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
  477. {
  478. BUG_ON(regno >= MAX_BPF_REG);
  479. regs[regno].type = UNKNOWN_VALUE;
  480. regs[regno].imm = 0;
  481. }
  482. enum reg_arg_type {
  483. SRC_OP, /* register is used as source operand */
  484. DST_OP, /* register is used as destination operand */
  485. DST_OP_NO_MARK /* same as above, check only, don't mark */
  486. };
  487. static int check_reg_arg(struct reg_state *regs, u32 regno,
  488. enum reg_arg_type t)
  489. {
  490. if (regno >= MAX_BPF_REG) {
  491. verbose("R%d is invalid\n", regno);
  492. return -EINVAL;
  493. }
  494. if (t == SRC_OP) {
  495. /* check whether register used as source operand can be read */
  496. if (regs[regno].type == NOT_INIT) {
  497. verbose("R%d !read_ok\n", regno);
  498. return -EACCES;
  499. }
  500. } else {
  501. /* check whether register used as dest operand can be written to */
  502. if (regno == BPF_REG_FP) {
  503. verbose("frame pointer is read only\n");
  504. return -EACCES;
  505. }
  506. if (t == DST_OP)
  507. mark_reg_unknown_value(regs, regno);
  508. }
  509. return 0;
  510. }
  511. static int bpf_size_to_bytes(int bpf_size)
  512. {
  513. if (bpf_size == BPF_W)
  514. return 4;
  515. else if (bpf_size == BPF_H)
  516. return 2;
  517. else if (bpf_size == BPF_B)
  518. return 1;
  519. else if (bpf_size == BPF_DW)
  520. return 8;
  521. else
  522. return -EINVAL;
  523. }
  524. static bool is_spillable_regtype(enum bpf_reg_type type)
  525. {
  526. switch (type) {
  527. case PTR_TO_MAP_VALUE:
  528. case PTR_TO_MAP_VALUE_OR_NULL:
  529. case PTR_TO_STACK:
  530. case PTR_TO_CTX:
  531. case PTR_TO_PACKET:
  532. case PTR_TO_PACKET_END:
  533. case FRAME_PTR:
  534. case CONST_PTR_TO_MAP:
  535. return true;
  536. default:
  537. return false;
  538. }
  539. }
  540. /* check_stack_read/write functions track spill/fill of registers,
  541. * stack boundary and alignment are checked in check_mem_access()
  542. */
  543. static int check_stack_write(struct verifier_state *state, int off, int size,
  544. int value_regno)
  545. {
  546. int i;
  547. /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
  548. * so it's aligned access and [off, off + size) are within stack limits
  549. */
  550. if (value_regno >= 0 &&
  551. is_spillable_regtype(state->regs[value_regno].type)) {
  552. /* register containing pointer is being spilled into stack */
  553. if (size != BPF_REG_SIZE) {
  554. verbose("invalid size of register spill\n");
  555. return -EACCES;
  556. }
  557. /* save register state */
  558. state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
  559. state->regs[value_regno];
  560. for (i = 0; i < BPF_REG_SIZE; i++)
  561. state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
  562. } else {
  563. /* regular write of data into stack */
  564. state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
  565. (struct reg_state) {};
  566. for (i = 0; i < size; i++)
  567. state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
  568. }
  569. return 0;
  570. }
  571. static int check_stack_read(struct verifier_state *state, int off, int size,
  572. int value_regno)
  573. {
  574. u8 *slot_type;
  575. int i;
  576. slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
  577. if (slot_type[0] == STACK_SPILL) {
  578. if (size != BPF_REG_SIZE) {
  579. verbose("invalid size of register spill\n");
  580. return -EACCES;
  581. }
  582. for (i = 1; i < BPF_REG_SIZE; i++) {
  583. if (slot_type[i] != STACK_SPILL) {
  584. verbose("corrupted spill memory\n");
  585. return -EACCES;
  586. }
  587. }
  588. if (value_regno >= 0)
  589. /* restore register state from stack */
  590. state->regs[value_regno] =
  591. state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
  592. return 0;
  593. } else {
  594. for (i = 0; i < size; i++) {
  595. if (slot_type[i] != STACK_MISC) {
  596. verbose("invalid read from stack off %d+%d size %d\n",
  597. off, i, size);
  598. return -EACCES;
  599. }
  600. }
  601. if (value_regno >= 0)
  602. /* have read misc data from the stack */
  603. mark_reg_unknown_value(state->regs, value_regno);
  604. return 0;
  605. }
  606. }
  607. /* check read/write into map element returned by bpf_map_lookup_elem() */
  608. static int check_map_access(struct verifier_env *env, u32 regno, int off,
  609. int size)
  610. {
  611. struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
  612. if (off < 0 || off + size > map->value_size) {
  613. verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
  614. map->value_size, off, size);
  615. return -EACCES;
  616. }
  617. return 0;
  618. }
  619. #define MAX_PACKET_OFF 0xffff
  620. static int check_packet_access(struct verifier_env *env, u32 regno, int off,
  621. int size)
  622. {
  623. struct reg_state *regs = env->cur_state.regs;
  624. struct reg_state *reg = &regs[regno];
  625. off += reg->off;
  626. if (off < 0 || off + size > reg->range) {
  627. verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
  628. off, size, regno, reg->id, reg->off, reg->range);
  629. return -EACCES;
  630. }
  631. return 0;
  632. }
  633. /* check access to 'struct bpf_context' fields */
  634. static int check_ctx_access(struct verifier_env *env, int off, int size,
  635. enum bpf_access_type t)
  636. {
  637. if (env->prog->aux->ops->is_valid_access &&
  638. env->prog->aux->ops->is_valid_access(off, size, t)) {
  639. /* remember the offset of last byte accessed in ctx */
  640. if (env->prog->aux->max_ctx_offset < off + size)
  641. env->prog->aux->max_ctx_offset = off + size;
  642. return 0;
  643. }
  644. verbose("invalid bpf_context access off=%d size=%d\n", off, size);
  645. return -EACCES;
  646. }
  647. static bool is_pointer_value(struct verifier_env *env, int regno)
  648. {
  649. if (env->allow_ptr_leaks)
  650. return false;
  651. switch (env->cur_state.regs[regno].type) {
  652. case UNKNOWN_VALUE:
  653. case CONST_IMM:
  654. return false;
  655. default:
  656. return true;
  657. }
  658. }
  659. static int check_ptr_alignment(struct verifier_env *env, struct reg_state *reg,
  660. int off, int size)
  661. {
  662. if (reg->type != PTR_TO_PACKET) {
  663. if (off % size != 0) {
  664. verbose("misaligned access off %d size %d\n", off, size);
  665. return -EACCES;
  666. } else {
  667. return 0;
  668. }
  669. }
  670. switch (env->prog->type) {
  671. case BPF_PROG_TYPE_SCHED_CLS:
  672. case BPF_PROG_TYPE_SCHED_ACT:
  673. break;
  674. default:
  675. verbose("verifier is misconfigured\n");
  676. return -EACCES;
  677. }
  678. if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
  679. /* misaligned access to packet is ok on x86,arm,arm64 */
  680. return 0;
  681. if (reg->id && size != 1) {
  682. verbose("Unknown packet alignment. Only byte-sized access allowed\n");
  683. return -EACCES;
  684. }
  685. /* skb->data is NET_IP_ALIGN-ed */
  686. if ((NET_IP_ALIGN + reg->off + off) % size != 0) {
  687. verbose("misaligned packet access off %d+%d+%d size %d\n",
  688. NET_IP_ALIGN, reg->off, off, size);
  689. return -EACCES;
  690. }
  691. return 0;
  692. }
  693. /* check whether memory at (regno + off) is accessible for t = (read | write)
  694. * if t==write, value_regno is a register which value is stored into memory
  695. * if t==read, value_regno is a register which will receive the value from memory
  696. * if t==write && value_regno==-1, some unknown value is stored into memory
  697. * if t==read && value_regno==-1, don't care what we read from memory
  698. */
  699. static int check_mem_access(struct verifier_env *env, u32 regno, int off,
  700. int bpf_size, enum bpf_access_type t,
  701. int value_regno)
  702. {
  703. struct verifier_state *state = &env->cur_state;
  704. struct reg_state *reg = &state->regs[regno];
  705. int size, err = 0;
  706. if (reg->type == PTR_TO_STACK)
  707. off += reg->imm;
  708. size = bpf_size_to_bytes(bpf_size);
  709. if (size < 0)
  710. return size;
  711. err = check_ptr_alignment(env, reg, off, size);
  712. if (err)
  713. return err;
  714. if (reg->type == PTR_TO_MAP_VALUE) {
  715. if (t == BPF_WRITE && value_regno >= 0 &&
  716. is_pointer_value(env, value_regno)) {
  717. verbose("R%d leaks addr into map\n", value_regno);
  718. return -EACCES;
  719. }
  720. err = check_map_access(env, regno, off, size);
  721. if (!err && t == BPF_READ && value_regno >= 0)
  722. mark_reg_unknown_value(state->regs, value_regno);
  723. } else if (reg->type == PTR_TO_CTX) {
  724. if (t == BPF_WRITE && value_regno >= 0 &&
  725. is_pointer_value(env, value_regno)) {
  726. verbose("R%d leaks addr into ctx\n", value_regno);
  727. return -EACCES;
  728. }
  729. err = check_ctx_access(env, off, size, t);
  730. if (!err && t == BPF_READ && value_regno >= 0) {
  731. mark_reg_unknown_value(state->regs, value_regno);
  732. if (off == offsetof(struct __sk_buff, data) &&
  733. env->allow_ptr_leaks)
  734. /* note that reg.[id|off|range] == 0 */
  735. state->regs[value_regno].type = PTR_TO_PACKET;
  736. else if (off == offsetof(struct __sk_buff, data_end) &&
  737. env->allow_ptr_leaks)
  738. state->regs[value_regno].type = PTR_TO_PACKET_END;
  739. }
  740. } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
  741. if (off >= 0 || off < -MAX_BPF_STACK) {
  742. verbose("invalid stack off=%d size=%d\n", off, size);
  743. return -EACCES;
  744. }
  745. if (t == BPF_WRITE) {
  746. if (!env->allow_ptr_leaks &&
  747. state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
  748. size != BPF_REG_SIZE) {
  749. verbose("attempt to corrupt spilled pointer on stack\n");
  750. return -EACCES;
  751. }
  752. err = check_stack_write(state, off, size, value_regno);
  753. } else {
  754. err = check_stack_read(state, off, size, value_regno);
  755. }
  756. } else if (state->regs[regno].type == PTR_TO_PACKET) {
  757. if (t == BPF_WRITE) {
  758. verbose("cannot write into packet\n");
  759. return -EACCES;
  760. }
  761. err = check_packet_access(env, regno, off, size);
  762. if (!err && t == BPF_READ && value_regno >= 0)
  763. mark_reg_unknown_value(state->regs, value_regno);
  764. } else {
  765. verbose("R%d invalid mem access '%s'\n",
  766. regno, reg_type_str[reg->type]);
  767. return -EACCES;
  768. }
  769. if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
  770. state->regs[value_regno].type == UNKNOWN_VALUE) {
  771. /* 1 or 2 byte load zero-extends, determine the number of
  772. * zero upper bits. Not doing it fo 4 byte load, since
  773. * such values cannot be added to ptr_to_packet anyway.
  774. */
  775. state->regs[value_regno].imm = 64 - size * 8;
  776. }
  777. return err;
  778. }
  779. static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
  780. {
  781. struct reg_state *regs = env->cur_state.regs;
  782. int err;
  783. if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
  784. insn->imm != 0) {
  785. verbose("BPF_XADD uses reserved fields\n");
  786. return -EINVAL;
  787. }
  788. /* check src1 operand */
  789. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  790. if (err)
  791. return err;
  792. /* check src2 operand */
  793. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  794. if (err)
  795. return err;
  796. /* check whether atomic_add can read the memory */
  797. err = check_mem_access(env, insn->dst_reg, insn->off,
  798. BPF_SIZE(insn->code), BPF_READ, -1);
  799. if (err)
  800. return err;
  801. /* check whether atomic_add can write into the same memory */
  802. return check_mem_access(env, insn->dst_reg, insn->off,
  803. BPF_SIZE(insn->code), BPF_WRITE, -1);
  804. }
  805. /* when register 'regno' is passed into function that will read 'access_size'
  806. * bytes from that pointer, make sure that it's within stack boundary
  807. * and all elements of stack are initialized
  808. */
  809. static int check_stack_boundary(struct verifier_env *env, int regno,
  810. int access_size, bool zero_size_allowed,
  811. struct bpf_call_arg_meta *meta)
  812. {
  813. struct verifier_state *state = &env->cur_state;
  814. struct reg_state *regs = state->regs;
  815. int off, i;
  816. if (regs[regno].type != PTR_TO_STACK) {
  817. if (zero_size_allowed && access_size == 0 &&
  818. regs[regno].type == CONST_IMM &&
  819. regs[regno].imm == 0)
  820. return 0;
  821. verbose("R%d type=%s expected=%s\n", regno,
  822. reg_type_str[regs[regno].type],
  823. reg_type_str[PTR_TO_STACK]);
  824. return -EACCES;
  825. }
  826. off = regs[regno].imm;
  827. if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
  828. access_size <= 0) {
  829. verbose("invalid stack type R%d off=%d access_size=%d\n",
  830. regno, off, access_size);
  831. return -EACCES;
  832. }
  833. if (meta && meta->raw_mode) {
  834. meta->access_size = access_size;
  835. meta->regno = regno;
  836. return 0;
  837. }
  838. for (i = 0; i < access_size; i++) {
  839. if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
  840. verbose("invalid indirect read from stack off %d+%d size %d\n",
  841. off, i, access_size);
  842. return -EACCES;
  843. }
  844. }
  845. return 0;
  846. }
  847. static int check_func_arg(struct verifier_env *env, u32 regno,
  848. enum bpf_arg_type arg_type,
  849. struct bpf_call_arg_meta *meta)
  850. {
  851. struct reg_state *reg = env->cur_state.regs + regno;
  852. enum bpf_reg_type expected_type;
  853. int err = 0;
  854. if (arg_type == ARG_DONTCARE)
  855. return 0;
  856. if (reg->type == NOT_INIT) {
  857. verbose("R%d !read_ok\n", regno);
  858. return -EACCES;
  859. }
  860. if (arg_type == ARG_ANYTHING) {
  861. if (is_pointer_value(env, regno)) {
  862. verbose("R%d leaks addr into helper function\n", regno);
  863. return -EACCES;
  864. }
  865. return 0;
  866. }
  867. if (arg_type == ARG_PTR_TO_MAP_KEY ||
  868. arg_type == ARG_PTR_TO_MAP_VALUE) {
  869. expected_type = PTR_TO_STACK;
  870. } else if (arg_type == ARG_CONST_STACK_SIZE ||
  871. arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
  872. expected_type = CONST_IMM;
  873. } else if (arg_type == ARG_CONST_MAP_PTR) {
  874. expected_type = CONST_PTR_TO_MAP;
  875. } else if (arg_type == ARG_PTR_TO_CTX) {
  876. expected_type = PTR_TO_CTX;
  877. } else if (arg_type == ARG_PTR_TO_STACK ||
  878. arg_type == ARG_PTR_TO_RAW_STACK) {
  879. expected_type = PTR_TO_STACK;
  880. /* One exception here. In case function allows for NULL to be
  881. * passed in as argument, it's a CONST_IMM type. Final test
  882. * happens during stack boundary checking.
  883. */
  884. if (reg->type == CONST_IMM && reg->imm == 0)
  885. expected_type = CONST_IMM;
  886. meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
  887. } else {
  888. verbose("unsupported arg_type %d\n", arg_type);
  889. return -EFAULT;
  890. }
  891. if (reg->type != expected_type) {
  892. verbose("R%d type=%s expected=%s\n", regno,
  893. reg_type_str[reg->type], reg_type_str[expected_type]);
  894. return -EACCES;
  895. }
  896. if (arg_type == ARG_CONST_MAP_PTR) {
  897. /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
  898. meta->map_ptr = reg->map_ptr;
  899. } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
  900. /* bpf_map_xxx(..., map_ptr, ..., key) call:
  901. * check that [key, key + map->key_size) are within
  902. * stack limits and initialized
  903. */
  904. if (!meta->map_ptr) {
  905. /* in function declaration map_ptr must come before
  906. * map_key, so that it's verified and known before
  907. * we have to check map_key here. Otherwise it means
  908. * that kernel subsystem misconfigured verifier
  909. */
  910. verbose("invalid map_ptr to access map->key\n");
  911. return -EACCES;
  912. }
  913. err = check_stack_boundary(env, regno, meta->map_ptr->key_size,
  914. false, NULL);
  915. } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
  916. /* bpf_map_xxx(..., map_ptr, ..., value) call:
  917. * check [value, value + map->value_size) validity
  918. */
  919. if (!meta->map_ptr) {
  920. /* kernel subsystem misconfigured verifier */
  921. verbose("invalid map_ptr to access map->value\n");
  922. return -EACCES;
  923. }
  924. err = check_stack_boundary(env, regno,
  925. meta->map_ptr->value_size,
  926. false, NULL);
  927. } else if (arg_type == ARG_CONST_STACK_SIZE ||
  928. arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
  929. bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
  930. /* bpf_xxx(..., buf, len) call will access 'len' bytes
  931. * from stack pointer 'buf'. Check it
  932. * note: regno == len, regno - 1 == buf
  933. */
  934. if (regno == 0) {
  935. /* kernel subsystem misconfigured verifier */
  936. verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
  937. return -EACCES;
  938. }
  939. err = check_stack_boundary(env, regno - 1, reg->imm,
  940. zero_size_allowed, meta);
  941. }
  942. return err;
  943. }
  944. static int check_map_func_compatibility(struct bpf_map *map, int func_id)
  945. {
  946. if (!map)
  947. return 0;
  948. /* We need a two way check, first is from map perspective ... */
  949. switch (map->map_type) {
  950. case BPF_MAP_TYPE_PROG_ARRAY:
  951. if (func_id != BPF_FUNC_tail_call)
  952. goto error;
  953. break;
  954. case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
  955. if (func_id != BPF_FUNC_perf_event_read &&
  956. func_id != BPF_FUNC_perf_event_output)
  957. goto error;
  958. break;
  959. case BPF_MAP_TYPE_STACK_TRACE:
  960. if (func_id != BPF_FUNC_get_stackid)
  961. goto error;
  962. break;
  963. default:
  964. break;
  965. }
  966. /* ... and second from the function itself. */
  967. switch (func_id) {
  968. case BPF_FUNC_tail_call:
  969. if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
  970. goto error;
  971. break;
  972. case BPF_FUNC_perf_event_read:
  973. case BPF_FUNC_perf_event_output:
  974. if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
  975. goto error;
  976. break;
  977. case BPF_FUNC_get_stackid:
  978. if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
  979. goto error;
  980. break;
  981. default:
  982. break;
  983. }
  984. return 0;
  985. error:
  986. verbose("cannot pass map_type %d into func %d\n",
  987. map->map_type, func_id);
  988. return -EINVAL;
  989. }
  990. static int check_raw_mode(const struct bpf_func_proto *fn)
  991. {
  992. int count = 0;
  993. if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
  994. count++;
  995. if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
  996. count++;
  997. if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
  998. count++;
  999. if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
  1000. count++;
  1001. if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
  1002. count++;
  1003. return count > 1 ? -EINVAL : 0;
  1004. }
  1005. static void clear_all_pkt_pointers(struct verifier_env *env)
  1006. {
  1007. struct verifier_state *state = &env->cur_state;
  1008. struct reg_state *regs = state->regs, *reg;
  1009. int i;
  1010. for (i = 0; i < MAX_BPF_REG; i++)
  1011. if (regs[i].type == PTR_TO_PACKET ||
  1012. regs[i].type == PTR_TO_PACKET_END)
  1013. mark_reg_unknown_value(regs, i);
  1014. for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
  1015. if (state->stack_slot_type[i] != STACK_SPILL)
  1016. continue;
  1017. reg = &state->spilled_regs[i / BPF_REG_SIZE];
  1018. if (reg->type != PTR_TO_PACKET &&
  1019. reg->type != PTR_TO_PACKET_END)
  1020. continue;
  1021. reg->type = UNKNOWN_VALUE;
  1022. reg->imm = 0;
  1023. }
  1024. }
  1025. static int check_call(struct verifier_env *env, int func_id)
  1026. {
  1027. struct verifier_state *state = &env->cur_state;
  1028. const struct bpf_func_proto *fn = NULL;
  1029. struct reg_state *regs = state->regs;
  1030. struct reg_state *reg;
  1031. struct bpf_call_arg_meta meta;
  1032. bool changes_data;
  1033. int i, err;
  1034. /* find function prototype */
  1035. if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
  1036. verbose("invalid func %d\n", func_id);
  1037. return -EINVAL;
  1038. }
  1039. if (env->prog->aux->ops->get_func_proto)
  1040. fn = env->prog->aux->ops->get_func_proto(func_id);
  1041. if (!fn) {
  1042. verbose("unknown func %d\n", func_id);
  1043. return -EINVAL;
  1044. }
  1045. /* eBPF programs must be GPL compatible to use GPL-ed functions */
  1046. if (!env->prog->gpl_compatible && fn->gpl_only) {
  1047. verbose("cannot call GPL only function from proprietary program\n");
  1048. return -EINVAL;
  1049. }
  1050. changes_data = bpf_helper_changes_skb_data(fn->func);
  1051. memset(&meta, 0, sizeof(meta));
  1052. /* We only support one arg being in raw mode at the moment, which
  1053. * is sufficient for the helper functions we have right now.
  1054. */
  1055. err = check_raw_mode(fn);
  1056. if (err) {
  1057. verbose("kernel subsystem misconfigured func %d\n", func_id);
  1058. return err;
  1059. }
  1060. /* check args */
  1061. err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
  1062. if (err)
  1063. return err;
  1064. err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
  1065. if (err)
  1066. return err;
  1067. err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
  1068. if (err)
  1069. return err;
  1070. err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
  1071. if (err)
  1072. return err;
  1073. err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
  1074. if (err)
  1075. return err;
  1076. /* Mark slots with STACK_MISC in case of raw mode, stack offset
  1077. * is inferred from register state.
  1078. */
  1079. for (i = 0; i < meta.access_size; i++) {
  1080. err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
  1081. if (err)
  1082. return err;
  1083. }
  1084. /* reset caller saved regs */
  1085. for (i = 0; i < CALLER_SAVED_REGS; i++) {
  1086. reg = regs + caller_saved[i];
  1087. reg->type = NOT_INIT;
  1088. reg->imm = 0;
  1089. }
  1090. /* update return register */
  1091. if (fn->ret_type == RET_INTEGER) {
  1092. regs[BPF_REG_0].type = UNKNOWN_VALUE;
  1093. } else if (fn->ret_type == RET_VOID) {
  1094. regs[BPF_REG_0].type = NOT_INIT;
  1095. } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
  1096. regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
  1097. /* remember map_ptr, so that check_map_access()
  1098. * can check 'value_size' boundary of memory access
  1099. * to map element returned from bpf_map_lookup_elem()
  1100. */
  1101. if (meta.map_ptr == NULL) {
  1102. verbose("kernel subsystem misconfigured verifier\n");
  1103. return -EINVAL;
  1104. }
  1105. regs[BPF_REG_0].map_ptr = meta.map_ptr;
  1106. } else {
  1107. verbose("unknown return type %d of func %d\n",
  1108. fn->ret_type, func_id);
  1109. return -EINVAL;
  1110. }
  1111. err = check_map_func_compatibility(meta.map_ptr, func_id);
  1112. if (err)
  1113. return err;
  1114. if (changes_data)
  1115. clear_all_pkt_pointers(env);
  1116. return 0;
  1117. }
  1118. static int check_packet_ptr_add(struct verifier_env *env, struct bpf_insn *insn)
  1119. {
  1120. struct reg_state *regs = env->cur_state.regs;
  1121. struct reg_state *dst_reg = &regs[insn->dst_reg];
  1122. struct reg_state *src_reg = &regs[insn->src_reg];
  1123. struct reg_state tmp_reg;
  1124. s32 imm;
  1125. if (BPF_SRC(insn->code) == BPF_K) {
  1126. /* pkt_ptr += imm */
  1127. imm = insn->imm;
  1128. add_imm:
  1129. if (imm <= 0) {
  1130. verbose("addition of negative constant to packet pointer is not allowed\n");
  1131. return -EACCES;
  1132. }
  1133. if (imm >= MAX_PACKET_OFF ||
  1134. imm + dst_reg->off >= MAX_PACKET_OFF) {
  1135. verbose("constant %d is too large to add to packet pointer\n",
  1136. imm);
  1137. return -EACCES;
  1138. }
  1139. /* a constant was added to pkt_ptr.
  1140. * Remember it while keeping the same 'id'
  1141. */
  1142. dst_reg->off += imm;
  1143. } else {
  1144. if (src_reg->type == PTR_TO_PACKET) {
  1145. /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
  1146. tmp_reg = *dst_reg; /* save r7 state */
  1147. *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
  1148. src_reg = &tmp_reg; /* pretend it's src_reg state */
  1149. /* if the checks below reject it, the copy won't matter,
  1150. * since we're rejecting the whole program. If all ok,
  1151. * then imm22 state will be added to r7
  1152. * and r7 will be pkt(id=0,off=22,r=62) while
  1153. * r6 will stay as pkt(id=0,off=0,r=62)
  1154. */
  1155. }
  1156. if (src_reg->type == CONST_IMM) {
  1157. /* pkt_ptr += reg where reg is known constant */
  1158. imm = src_reg->imm;
  1159. goto add_imm;
  1160. }
  1161. /* disallow pkt_ptr += reg
  1162. * if reg is not uknown_value with guaranteed zero upper bits
  1163. * otherwise pkt_ptr may overflow and addition will become
  1164. * subtraction which is not allowed
  1165. */
  1166. if (src_reg->type != UNKNOWN_VALUE) {
  1167. verbose("cannot add '%s' to ptr_to_packet\n",
  1168. reg_type_str[src_reg->type]);
  1169. return -EACCES;
  1170. }
  1171. if (src_reg->imm < 48) {
  1172. verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
  1173. src_reg->imm);
  1174. return -EACCES;
  1175. }
  1176. /* dst_reg stays as pkt_ptr type and since some positive
  1177. * integer value was added to the pointer, increment its 'id'
  1178. */
  1179. dst_reg->id++;
  1180. /* something was added to pkt_ptr, set range and off to zero */
  1181. dst_reg->off = 0;
  1182. dst_reg->range = 0;
  1183. }
  1184. return 0;
  1185. }
  1186. static int evaluate_reg_alu(struct verifier_env *env, struct bpf_insn *insn)
  1187. {
  1188. struct reg_state *regs = env->cur_state.regs;
  1189. struct reg_state *dst_reg = &regs[insn->dst_reg];
  1190. u8 opcode = BPF_OP(insn->code);
  1191. s64 imm_log2;
  1192. /* for type == UNKNOWN_VALUE:
  1193. * imm > 0 -> number of zero upper bits
  1194. * imm == 0 -> don't track which is the same as all bits can be non-zero
  1195. */
  1196. if (BPF_SRC(insn->code) == BPF_X) {
  1197. struct reg_state *src_reg = &regs[insn->src_reg];
  1198. if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
  1199. dst_reg->imm && opcode == BPF_ADD) {
  1200. /* dreg += sreg
  1201. * where both have zero upper bits. Adding them
  1202. * can only result making one more bit non-zero
  1203. * in the larger value.
  1204. * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
  1205. * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
  1206. */
  1207. dst_reg->imm = min(dst_reg->imm, src_reg->imm);
  1208. dst_reg->imm--;
  1209. return 0;
  1210. }
  1211. if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
  1212. dst_reg->imm && opcode == BPF_ADD) {
  1213. /* dreg += sreg
  1214. * where dreg has zero upper bits and sreg is const.
  1215. * Adding them can only result making one more bit
  1216. * non-zero in the larger value.
  1217. */
  1218. imm_log2 = __ilog2_u64((long long)src_reg->imm);
  1219. dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
  1220. dst_reg->imm--;
  1221. return 0;
  1222. }
  1223. /* all other cases non supported yet, just mark dst_reg */
  1224. dst_reg->imm = 0;
  1225. return 0;
  1226. }
  1227. /* sign extend 32-bit imm into 64-bit to make sure that
  1228. * negative values occupy bit 63. Note ilog2() would have
  1229. * been incorrect, since sizeof(insn->imm) == 4
  1230. */
  1231. imm_log2 = __ilog2_u64((long long)insn->imm);
  1232. if (dst_reg->imm && opcode == BPF_LSH) {
  1233. /* reg <<= imm
  1234. * if reg was a result of 2 byte load, then its imm == 48
  1235. * which means that upper 48 bits are zero and shifting this reg
  1236. * left by 4 would mean that upper 44 bits are still zero
  1237. */
  1238. dst_reg->imm -= insn->imm;
  1239. } else if (dst_reg->imm && opcode == BPF_MUL) {
  1240. /* reg *= imm
  1241. * if multiplying by 14 subtract 4
  1242. * This is conservative calculation of upper zero bits.
  1243. * It's not trying to special case insn->imm == 1 or 0 cases
  1244. */
  1245. dst_reg->imm -= imm_log2 + 1;
  1246. } else if (opcode == BPF_AND) {
  1247. /* reg &= imm */
  1248. dst_reg->imm = 63 - imm_log2;
  1249. } else if (dst_reg->imm && opcode == BPF_ADD) {
  1250. /* reg += imm */
  1251. dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
  1252. dst_reg->imm--;
  1253. } else if (opcode == BPF_RSH) {
  1254. /* reg >>= imm
  1255. * which means that after right shift, upper bits will be zero
  1256. * note that verifier already checked that
  1257. * 0 <= imm < 64 for shift insn
  1258. */
  1259. dst_reg->imm += insn->imm;
  1260. if (unlikely(dst_reg->imm > 64))
  1261. /* some dumb code did:
  1262. * r2 = *(u32 *)mem;
  1263. * r2 >>= 32;
  1264. * and all bits are zero now */
  1265. dst_reg->imm = 64;
  1266. } else {
  1267. /* all other alu ops, means that we don't know what will
  1268. * happen to the value, mark it with unknown number of zero bits
  1269. */
  1270. dst_reg->imm = 0;
  1271. }
  1272. if (dst_reg->imm < 0) {
  1273. /* all 64 bits of the register can contain non-zero bits
  1274. * and such value cannot be added to ptr_to_packet, since it
  1275. * may overflow, mark it as unknown to avoid further eval
  1276. */
  1277. dst_reg->imm = 0;
  1278. }
  1279. return 0;
  1280. }
  1281. static int evaluate_reg_imm_alu(struct verifier_env *env, struct bpf_insn *insn)
  1282. {
  1283. struct reg_state *regs = env->cur_state.regs;
  1284. struct reg_state *dst_reg = &regs[insn->dst_reg];
  1285. struct reg_state *src_reg = &regs[insn->src_reg];
  1286. u8 opcode = BPF_OP(insn->code);
  1287. /* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
  1288. * Don't care about overflow or negative values, just add them
  1289. */
  1290. if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
  1291. dst_reg->imm += insn->imm;
  1292. else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
  1293. src_reg->type == CONST_IMM)
  1294. dst_reg->imm += src_reg->imm;
  1295. else
  1296. mark_reg_unknown_value(regs, insn->dst_reg);
  1297. return 0;
  1298. }
  1299. /* check validity of 32-bit and 64-bit arithmetic operations */
  1300. static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
  1301. {
  1302. struct reg_state *regs = env->cur_state.regs, *dst_reg;
  1303. u8 opcode = BPF_OP(insn->code);
  1304. int err;
  1305. if (opcode == BPF_END || opcode == BPF_NEG) {
  1306. if (opcode == BPF_NEG) {
  1307. if (BPF_SRC(insn->code) != 0 ||
  1308. insn->src_reg != BPF_REG_0 ||
  1309. insn->off != 0 || insn->imm != 0) {
  1310. verbose("BPF_NEG uses reserved fields\n");
  1311. return -EINVAL;
  1312. }
  1313. } else {
  1314. if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
  1315. (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
  1316. verbose("BPF_END uses reserved fields\n");
  1317. return -EINVAL;
  1318. }
  1319. }
  1320. /* check src operand */
  1321. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1322. if (err)
  1323. return err;
  1324. if (is_pointer_value(env, insn->dst_reg)) {
  1325. verbose("R%d pointer arithmetic prohibited\n",
  1326. insn->dst_reg);
  1327. return -EACCES;
  1328. }
  1329. /* check dest operand */
  1330. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  1331. if (err)
  1332. return err;
  1333. } else if (opcode == BPF_MOV) {
  1334. if (BPF_SRC(insn->code) == BPF_X) {
  1335. if (insn->imm != 0 || insn->off != 0) {
  1336. verbose("BPF_MOV uses reserved fields\n");
  1337. return -EINVAL;
  1338. }
  1339. /* check src operand */
  1340. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1341. if (err)
  1342. return err;
  1343. } else {
  1344. if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
  1345. verbose("BPF_MOV uses reserved fields\n");
  1346. return -EINVAL;
  1347. }
  1348. }
  1349. /* check dest operand */
  1350. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  1351. if (err)
  1352. return err;
  1353. if (BPF_SRC(insn->code) == BPF_X) {
  1354. if (BPF_CLASS(insn->code) == BPF_ALU64) {
  1355. /* case: R1 = R2
  1356. * copy register state to dest reg
  1357. */
  1358. regs[insn->dst_reg] = regs[insn->src_reg];
  1359. } else {
  1360. if (is_pointer_value(env, insn->src_reg)) {
  1361. verbose("R%d partial copy of pointer\n",
  1362. insn->src_reg);
  1363. return -EACCES;
  1364. }
  1365. regs[insn->dst_reg].type = UNKNOWN_VALUE;
  1366. regs[insn->dst_reg].map_ptr = NULL;
  1367. }
  1368. } else {
  1369. /* case: R = imm
  1370. * remember the value we stored into this reg
  1371. */
  1372. regs[insn->dst_reg].type = CONST_IMM;
  1373. regs[insn->dst_reg].imm = insn->imm;
  1374. }
  1375. } else if (opcode > BPF_END) {
  1376. verbose("invalid BPF_ALU opcode %x\n", opcode);
  1377. return -EINVAL;
  1378. } else { /* all other ALU ops: and, sub, xor, add, ... */
  1379. if (BPF_SRC(insn->code) == BPF_X) {
  1380. if (insn->imm != 0 || insn->off != 0) {
  1381. verbose("BPF_ALU uses reserved fields\n");
  1382. return -EINVAL;
  1383. }
  1384. /* check src1 operand */
  1385. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1386. if (err)
  1387. return err;
  1388. } else {
  1389. if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
  1390. verbose("BPF_ALU uses reserved fields\n");
  1391. return -EINVAL;
  1392. }
  1393. }
  1394. /* check src2 operand */
  1395. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1396. if (err)
  1397. return err;
  1398. if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
  1399. BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
  1400. verbose("div by zero\n");
  1401. return -EINVAL;
  1402. }
  1403. if ((opcode == BPF_LSH || opcode == BPF_RSH ||
  1404. opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
  1405. int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
  1406. if (insn->imm < 0 || insn->imm >= size) {
  1407. verbose("invalid shift %d\n", insn->imm);
  1408. return -EINVAL;
  1409. }
  1410. }
  1411. /* check dest operand */
  1412. err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
  1413. if (err)
  1414. return err;
  1415. dst_reg = &regs[insn->dst_reg];
  1416. /* pattern match 'bpf_add Rx, imm' instruction */
  1417. if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
  1418. dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
  1419. dst_reg->type = PTR_TO_STACK;
  1420. dst_reg->imm = insn->imm;
  1421. return 0;
  1422. } else if (opcode == BPF_ADD &&
  1423. BPF_CLASS(insn->code) == BPF_ALU64 &&
  1424. (dst_reg->type == PTR_TO_PACKET ||
  1425. (BPF_SRC(insn->code) == BPF_X &&
  1426. regs[insn->src_reg].type == PTR_TO_PACKET))) {
  1427. /* ptr_to_packet += K|X */
  1428. return check_packet_ptr_add(env, insn);
  1429. } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
  1430. dst_reg->type == UNKNOWN_VALUE &&
  1431. env->allow_ptr_leaks) {
  1432. /* unknown += K|X */
  1433. return evaluate_reg_alu(env, insn);
  1434. } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
  1435. dst_reg->type == CONST_IMM &&
  1436. env->allow_ptr_leaks) {
  1437. /* reg_imm += K|X */
  1438. return evaluate_reg_imm_alu(env, insn);
  1439. } else if (is_pointer_value(env, insn->dst_reg)) {
  1440. verbose("R%d pointer arithmetic prohibited\n",
  1441. insn->dst_reg);
  1442. return -EACCES;
  1443. } else if (BPF_SRC(insn->code) == BPF_X &&
  1444. is_pointer_value(env, insn->src_reg)) {
  1445. verbose("R%d pointer arithmetic prohibited\n",
  1446. insn->src_reg);
  1447. return -EACCES;
  1448. }
  1449. /* mark dest operand */
  1450. mark_reg_unknown_value(regs, insn->dst_reg);
  1451. }
  1452. return 0;
  1453. }
  1454. static void find_good_pkt_pointers(struct verifier_env *env,
  1455. struct reg_state *dst_reg)
  1456. {
  1457. struct verifier_state *state = &env->cur_state;
  1458. struct reg_state *regs = state->regs, *reg;
  1459. int i;
  1460. /* r2 = r3;
  1461. * r2 += 8
  1462. * if (r2 > pkt_end) goto somewhere
  1463. * r2 == dst_reg, pkt_end == src_reg,
  1464. * r2=pkt(id=n,off=8,r=0)
  1465. * r3=pkt(id=n,off=0,r=0)
  1466. * find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
  1467. * so that range of bytes [r3, r3 + 8) is safe to access
  1468. */
  1469. for (i = 0; i < MAX_BPF_REG; i++)
  1470. if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
  1471. regs[i].range = dst_reg->off;
  1472. for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
  1473. if (state->stack_slot_type[i] != STACK_SPILL)
  1474. continue;
  1475. reg = &state->spilled_regs[i / BPF_REG_SIZE];
  1476. if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
  1477. reg->range = dst_reg->off;
  1478. }
  1479. }
  1480. static int check_cond_jmp_op(struct verifier_env *env,
  1481. struct bpf_insn *insn, int *insn_idx)
  1482. {
  1483. struct reg_state *regs = env->cur_state.regs, *dst_reg;
  1484. struct verifier_state *other_branch;
  1485. u8 opcode = BPF_OP(insn->code);
  1486. int err;
  1487. if (opcode > BPF_EXIT) {
  1488. verbose("invalid BPF_JMP opcode %x\n", opcode);
  1489. return -EINVAL;
  1490. }
  1491. if (BPF_SRC(insn->code) == BPF_X) {
  1492. if (insn->imm != 0) {
  1493. verbose("BPF_JMP uses reserved fields\n");
  1494. return -EINVAL;
  1495. }
  1496. /* check src1 operand */
  1497. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1498. if (err)
  1499. return err;
  1500. if (is_pointer_value(env, insn->src_reg)) {
  1501. verbose("R%d pointer comparison prohibited\n",
  1502. insn->src_reg);
  1503. return -EACCES;
  1504. }
  1505. } else {
  1506. if (insn->src_reg != BPF_REG_0) {
  1507. verbose("BPF_JMP uses reserved fields\n");
  1508. return -EINVAL;
  1509. }
  1510. }
  1511. /* check src2 operand */
  1512. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1513. if (err)
  1514. return err;
  1515. dst_reg = &regs[insn->dst_reg];
  1516. /* detect if R == 0 where R was initialized to zero earlier */
  1517. if (BPF_SRC(insn->code) == BPF_K &&
  1518. (opcode == BPF_JEQ || opcode == BPF_JNE) &&
  1519. dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
  1520. if (opcode == BPF_JEQ) {
  1521. /* if (imm == imm) goto pc+off;
  1522. * only follow the goto, ignore fall-through
  1523. */
  1524. *insn_idx += insn->off;
  1525. return 0;
  1526. } else {
  1527. /* if (imm != imm) goto pc+off;
  1528. * only follow fall-through branch, since
  1529. * that's where the program will go
  1530. */
  1531. return 0;
  1532. }
  1533. }
  1534. other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
  1535. if (!other_branch)
  1536. return -EFAULT;
  1537. /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
  1538. if (BPF_SRC(insn->code) == BPF_K &&
  1539. insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
  1540. dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
  1541. if (opcode == BPF_JEQ) {
  1542. /* next fallthrough insn can access memory via
  1543. * this register
  1544. */
  1545. regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
  1546. /* branch targer cannot access it, since reg == 0 */
  1547. mark_reg_unknown_value(other_branch->regs,
  1548. insn->dst_reg);
  1549. } else {
  1550. other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
  1551. mark_reg_unknown_value(regs, insn->dst_reg);
  1552. }
  1553. } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
  1554. dst_reg->type == PTR_TO_PACKET &&
  1555. regs[insn->src_reg].type == PTR_TO_PACKET_END) {
  1556. find_good_pkt_pointers(env, dst_reg);
  1557. } else if (is_pointer_value(env, insn->dst_reg)) {
  1558. verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
  1559. return -EACCES;
  1560. }
  1561. if (log_level)
  1562. print_verifier_state(&env->cur_state);
  1563. return 0;
  1564. }
  1565. /* return the map pointer stored inside BPF_LD_IMM64 instruction */
  1566. static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
  1567. {
  1568. u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
  1569. return (struct bpf_map *) (unsigned long) imm64;
  1570. }
  1571. /* verify BPF_LD_IMM64 instruction */
  1572. static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
  1573. {
  1574. struct reg_state *regs = env->cur_state.regs;
  1575. int err;
  1576. if (BPF_SIZE(insn->code) != BPF_DW) {
  1577. verbose("invalid BPF_LD_IMM insn\n");
  1578. return -EINVAL;
  1579. }
  1580. if (insn->off != 0) {
  1581. verbose("BPF_LD_IMM64 uses reserved fields\n");
  1582. return -EINVAL;
  1583. }
  1584. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  1585. if (err)
  1586. return err;
  1587. if (insn->src_reg == 0)
  1588. /* generic move 64-bit immediate into a register */
  1589. return 0;
  1590. /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
  1591. BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
  1592. regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
  1593. regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
  1594. return 0;
  1595. }
  1596. static bool may_access_skb(enum bpf_prog_type type)
  1597. {
  1598. switch (type) {
  1599. case BPF_PROG_TYPE_SOCKET_FILTER:
  1600. case BPF_PROG_TYPE_SCHED_CLS:
  1601. case BPF_PROG_TYPE_SCHED_ACT:
  1602. return true;
  1603. default:
  1604. return false;
  1605. }
  1606. }
  1607. /* verify safety of LD_ABS|LD_IND instructions:
  1608. * - they can only appear in the programs where ctx == skb
  1609. * - since they are wrappers of function calls, they scratch R1-R5 registers,
  1610. * preserve R6-R9, and store return value into R0
  1611. *
  1612. * Implicit input:
  1613. * ctx == skb == R6 == CTX
  1614. *
  1615. * Explicit input:
  1616. * SRC == any register
  1617. * IMM == 32-bit immediate
  1618. *
  1619. * Output:
  1620. * R0 - 8/16/32-bit skb data converted to cpu endianness
  1621. */
  1622. static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
  1623. {
  1624. struct reg_state *regs = env->cur_state.regs;
  1625. u8 mode = BPF_MODE(insn->code);
  1626. struct reg_state *reg;
  1627. int i, err;
  1628. if (!may_access_skb(env->prog->type)) {
  1629. verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
  1630. return -EINVAL;
  1631. }
  1632. if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
  1633. BPF_SIZE(insn->code) == BPF_DW ||
  1634. (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
  1635. verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
  1636. return -EINVAL;
  1637. }
  1638. /* check whether implicit source operand (register R6) is readable */
  1639. err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
  1640. if (err)
  1641. return err;
  1642. if (regs[BPF_REG_6].type != PTR_TO_CTX) {
  1643. verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
  1644. return -EINVAL;
  1645. }
  1646. if (mode == BPF_IND) {
  1647. /* check explicit source operand */
  1648. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1649. if (err)
  1650. return err;
  1651. }
  1652. /* reset caller saved regs to unreadable */
  1653. for (i = 0; i < CALLER_SAVED_REGS; i++) {
  1654. reg = regs + caller_saved[i];
  1655. reg->type = NOT_INIT;
  1656. reg->imm = 0;
  1657. }
  1658. /* mark destination R0 register as readable, since it contains
  1659. * the value fetched from the packet
  1660. */
  1661. regs[BPF_REG_0].type = UNKNOWN_VALUE;
  1662. return 0;
  1663. }
  1664. /* non-recursive DFS pseudo code
  1665. * 1 procedure DFS-iterative(G,v):
  1666. * 2 label v as discovered
  1667. * 3 let S be a stack
  1668. * 4 S.push(v)
  1669. * 5 while S is not empty
  1670. * 6 t <- S.pop()
  1671. * 7 if t is what we're looking for:
  1672. * 8 return t
  1673. * 9 for all edges e in G.adjacentEdges(t) do
  1674. * 10 if edge e is already labelled
  1675. * 11 continue with the next edge
  1676. * 12 w <- G.adjacentVertex(t,e)
  1677. * 13 if vertex w is not discovered and not explored
  1678. * 14 label e as tree-edge
  1679. * 15 label w as discovered
  1680. * 16 S.push(w)
  1681. * 17 continue at 5
  1682. * 18 else if vertex w is discovered
  1683. * 19 label e as back-edge
  1684. * 20 else
  1685. * 21 // vertex w is explored
  1686. * 22 label e as forward- or cross-edge
  1687. * 23 label t as explored
  1688. * 24 S.pop()
  1689. *
  1690. * convention:
  1691. * 0x10 - discovered
  1692. * 0x11 - discovered and fall-through edge labelled
  1693. * 0x12 - discovered and fall-through and branch edges labelled
  1694. * 0x20 - explored
  1695. */
  1696. enum {
  1697. DISCOVERED = 0x10,
  1698. EXPLORED = 0x20,
  1699. FALLTHROUGH = 1,
  1700. BRANCH = 2,
  1701. };
  1702. #define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
  1703. static int *insn_stack; /* stack of insns to process */
  1704. static int cur_stack; /* current stack index */
  1705. static int *insn_state;
  1706. /* t, w, e - match pseudo-code above:
  1707. * t - index of current instruction
  1708. * w - next instruction
  1709. * e - edge
  1710. */
  1711. static int push_insn(int t, int w, int e, struct verifier_env *env)
  1712. {
  1713. if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
  1714. return 0;
  1715. if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
  1716. return 0;
  1717. if (w < 0 || w >= env->prog->len) {
  1718. verbose("jump out of range from insn %d to %d\n", t, w);
  1719. return -EINVAL;
  1720. }
  1721. if (e == BRANCH)
  1722. /* mark branch target for state pruning */
  1723. env->explored_states[w] = STATE_LIST_MARK;
  1724. if (insn_state[w] == 0) {
  1725. /* tree-edge */
  1726. insn_state[t] = DISCOVERED | e;
  1727. insn_state[w] = DISCOVERED;
  1728. if (cur_stack >= env->prog->len)
  1729. return -E2BIG;
  1730. insn_stack[cur_stack++] = w;
  1731. return 1;
  1732. } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
  1733. verbose("back-edge from insn %d to %d\n", t, w);
  1734. return -EINVAL;
  1735. } else if (insn_state[w] == EXPLORED) {
  1736. /* forward- or cross-edge */
  1737. insn_state[t] = DISCOVERED | e;
  1738. } else {
  1739. verbose("insn state internal bug\n");
  1740. return -EFAULT;
  1741. }
  1742. return 0;
  1743. }
  1744. /* non-recursive depth-first-search to detect loops in BPF program
  1745. * loop == back-edge in directed graph
  1746. */
  1747. static int check_cfg(struct verifier_env *env)
  1748. {
  1749. struct bpf_insn *insns = env->prog->insnsi;
  1750. int insn_cnt = env->prog->len;
  1751. int ret = 0;
  1752. int i, t;
  1753. insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
  1754. if (!insn_state)
  1755. return -ENOMEM;
  1756. insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
  1757. if (!insn_stack) {
  1758. kfree(insn_state);
  1759. return -ENOMEM;
  1760. }
  1761. insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
  1762. insn_stack[0] = 0; /* 0 is the first instruction */
  1763. cur_stack = 1;
  1764. peek_stack:
  1765. if (cur_stack == 0)
  1766. goto check_state;
  1767. t = insn_stack[cur_stack - 1];
  1768. if (BPF_CLASS(insns[t].code) == BPF_JMP) {
  1769. u8 opcode = BPF_OP(insns[t].code);
  1770. if (opcode == BPF_EXIT) {
  1771. goto mark_explored;
  1772. } else if (opcode == BPF_CALL) {
  1773. ret = push_insn(t, t + 1, FALLTHROUGH, env);
  1774. if (ret == 1)
  1775. goto peek_stack;
  1776. else if (ret < 0)
  1777. goto err_free;
  1778. if (t + 1 < insn_cnt)
  1779. env->explored_states[t + 1] = STATE_LIST_MARK;
  1780. } else if (opcode == BPF_JA) {
  1781. if (BPF_SRC(insns[t].code) != BPF_K) {
  1782. ret = -EINVAL;
  1783. goto err_free;
  1784. }
  1785. /* unconditional jump with single edge */
  1786. ret = push_insn(t, t + insns[t].off + 1,
  1787. FALLTHROUGH, env);
  1788. if (ret == 1)
  1789. goto peek_stack;
  1790. else if (ret < 0)
  1791. goto err_free;
  1792. /* tell verifier to check for equivalent states
  1793. * after every call and jump
  1794. */
  1795. if (t + 1 < insn_cnt)
  1796. env->explored_states[t + 1] = STATE_LIST_MARK;
  1797. } else {
  1798. /* conditional jump with two edges */
  1799. ret = push_insn(t, t + 1, FALLTHROUGH, env);
  1800. if (ret == 1)
  1801. goto peek_stack;
  1802. else if (ret < 0)
  1803. goto err_free;
  1804. ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
  1805. if (ret == 1)
  1806. goto peek_stack;
  1807. else if (ret < 0)
  1808. goto err_free;
  1809. }
  1810. } else {
  1811. /* all other non-branch instructions with single
  1812. * fall-through edge
  1813. */
  1814. ret = push_insn(t, t + 1, FALLTHROUGH, env);
  1815. if (ret == 1)
  1816. goto peek_stack;
  1817. else if (ret < 0)
  1818. goto err_free;
  1819. }
  1820. mark_explored:
  1821. insn_state[t] = EXPLORED;
  1822. if (cur_stack-- <= 0) {
  1823. verbose("pop stack internal bug\n");
  1824. ret = -EFAULT;
  1825. goto err_free;
  1826. }
  1827. goto peek_stack;
  1828. check_state:
  1829. for (i = 0; i < insn_cnt; i++) {
  1830. if (insn_state[i] != EXPLORED) {
  1831. verbose("unreachable insn %d\n", i);
  1832. ret = -EINVAL;
  1833. goto err_free;
  1834. }
  1835. }
  1836. ret = 0; /* cfg looks good */
  1837. err_free:
  1838. kfree(insn_state);
  1839. kfree(insn_stack);
  1840. return ret;
  1841. }
  1842. /* the following conditions reduce the number of explored insns
  1843. * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
  1844. */
  1845. static bool compare_ptrs_to_packet(struct reg_state *old, struct reg_state *cur)
  1846. {
  1847. if (old->id != cur->id)
  1848. return false;
  1849. /* old ptr_to_packet is more conservative, since it allows smaller
  1850. * range. Ex:
  1851. * old(off=0,r=10) is equal to cur(off=0,r=20), because
  1852. * old(off=0,r=10) means that with range=10 the verifier proceeded
  1853. * further and found no issues with the program. Now we're in the same
  1854. * spot with cur(off=0,r=20), so we're safe too, since anything further
  1855. * will only be looking at most 10 bytes after this pointer.
  1856. */
  1857. if (old->off == cur->off && old->range < cur->range)
  1858. return true;
  1859. /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
  1860. * since both cannot be used for packet access and safe(old)
  1861. * pointer has smaller off that could be used for further
  1862. * 'if (ptr > data_end)' check
  1863. * Ex:
  1864. * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
  1865. * that we cannot access the packet.
  1866. * The safe range is:
  1867. * [ptr, ptr + range - off)
  1868. * so whenever off >=range, it means no safe bytes from this pointer.
  1869. * When comparing old->off <= cur->off, it means that older code
  1870. * went with smaller offset and that offset was later
  1871. * used to figure out the safe range after 'if (ptr > data_end)' check
  1872. * Say, 'old' state was explored like:
  1873. * ... R3(off=0, r=0)
  1874. * R4 = R3 + 20
  1875. * ... now R4(off=20,r=0) <-- here
  1876. * if (R4 > data_end)
  1877. * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
  1878. * ... the code further went all the way to bpf_exit.
  1879. * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
  1880. * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
  1881. * goes further, such cur_R4 will give larger safe packet range after
  1882. * 'if (R4 > data_end)' and all further insn were already good with r=20,
  1883. * so they will be good with r=30 and we can prune the search.
  1884. */
  1885. if (old->off <= cur->off &&
  1886. old->off >= old->range && cur->off >= cur->range)
  1887. return true;
  1888. return false;
  1889. }
  1890. /* compare two verifier states
  1891. *
  1892. * all states stored in state_list are known to be valid, since
  1893. * verifier reached 'bpf_exit' instruction through them
  1894. *
  1895. * this function is called when verifier exploring different branches of
  1896. * execution popped from the state stack. If it sees an old state that has
  1897. * more strict register state and more strict stack state then this execution
  1898. * branch doesn't need to be explored further, since verifier already
  1899. * concluded that more strict state leads to valid finish.
  1900. *
  1901. * Therefore two states are equivalent if register state is more conservative
  1902. * and explored stack state is more conservative than the current one.
  1903. * Example:
  1904. * explored current
  1905. * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
  1906. * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
  1907. *
  1908. * In other words if current stack state (one being explored) has more
  1909. * valid slots than old one that already passed validation, it means
  1910. * the verifier can stop exploring and conclude that current state is valid too
  1911. *
  1912. * Similarly with registers. If explored state has register type as invalid
  1913. * whereas register type in current state is meaningful, it means that
  1914. * the current state will reach 'bpf_exit' instruction safely
  1915. */
  1916. static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
  1917. {
  1918. struct reg_state *rold, *rcur;
  1919. int i;
  1920. for (i = 0; i < MAX_BPF_REG; i++) {
  1921. rold = &old->regs[i];
  1922. rcur = &cur->regs[i];
  1923. if (memcmp(rold, rcur, sizeof(*rold)) == 0)
  1924. continue;
  1925. if (rold->type == NOT_INIT ||
  1926. (rold->type == UNKNOWN_VALUE && rcur->type != NOT_INIT))
  1927. continue;
  1928. if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
  1929. compare_ptrs_to_packet(rold, rcur))
  1930. continue;
  1931. return false;
  1932. }
  1933. for (i = 0; i < MAX_BPF_STACK; i++) {
  1934. if (old->stack_slot_type[i] == STACK_INVALID)
  1935. continue;
  1936. if (old->stack_slot_type[i] != cur->stack_slot_type[i])
  1937. /* Ex: old explored (safe) state has STACK_SPILL in
  1938. * this stack slot, but current has has STACK_MISC ->
  1939. * this verifier states are not equivalent,
  1940. * return false to continue verification of this path
  1941. */
  1942. return false;
  1943. if (i % BPF_REG_SIZE)
  1944. continue;
  1945. if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
  1946. &cur->spilled_regs[i / BPF_REG_SIZE],
  1947. sizeof(old->spilled_regs[0])))
  1948. /* when explored and current stack slot types are
  1949. * the same, check that stored pointers types
  1950. * are the same as well.
  1951. * Ex: explored safe path could have stored
  1952. * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
  1953. * but current path has stored:
  1954. * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
  1955. * such verifier states are not equivalent.
  1956. * return false to continue verification of this path
  1957. */
  1958. return false;
  1959. else
  1960. continue;
  1961. }
  1962. return true;
  1963. }
  1964. static int is_state_visited(struct verifier_env *env, int insn_idx)
  1965. {
  1966. struct verifier_state_list *new_sl;
  1967. struct verifier_state_list *sl;
  1968. sl = env->explored_states[insn_idx];
  1969. if (!sl)
  1970. /* this 'insn_idx' instruction wasn't marked, so we will not
  1971. * be doing state search here
  1972. */
  1973. return 0;
  1974. while (sl != STATE_LIST_MARK) {
  1975. if (states_equal(&sl->state, &env->cur_state))
  1976. /* reached equivalent register/stack state,
  1977. * prune the search
  1978. */
  1979. return 1;
  1980. sl = sl->next;
  1981. }
  1982. /* there were no equivalent states, remember current one.
  1983. * technically the current state is not proven to be safe yet,
  1984. * but it will either reach bpf_exit (which means it's safe) or
  1985. * it will be rejected. Since there are no loops, we won't be
  1986. * seeing this 'insn_idx' instruction again on the way to bpf_exit
  1987. */
  1988. new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
  1989. if (!new_sl)
  1990. return -ENOMEM;
  1991. /* add new state to the head of linked list */
  1992. memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
  1993. new_sl->next = env->explored_states[insn_idx];
  1994. env->explored_states[insn_idx] = new_sl;
  1995. return 0;
  1996. }
  1997. static int do_check(struct verifier_env *env)
  1998. {
  1999. struct verifier_state *state = &env->cur_state;
  2000. struct bpf_insn *insns = env->prog->insnsi;
  2001. struct reg_state *regs = state->regs;
  2002. int insn_cnt = env->prog->len;
  2003. int insn_idx, prev_insn_idx = 0;
  2004. int insn_processed = 0;
  2005. bool do_print_state = false;
  2006. init_reg_state(regs);
  2007. insn_idx = 0;
  2008. for (;;) {
  2009. struct bpf_insn *insn;
  2010. u8 class;
  2011. int err;
  2012. if (insn_idx >= insn_cnt) {
  2013. verbose("invalid insn idx %d insn_cnt %d\n",
  2014. insn_idx, insn_cnt);
  2015. return -EFAULT;
  2016. }
  2017. insn = &insns[insn_idx];
  2018. class = BPF_CLASS(insn->code);
  2019. if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
  2020. verbose("BPF program is too large. Proccessed %d insn\n",
  2021. insn_processed);
  2022. return -E2BIG;
  2023. }
  2024. err = is_state_visited(env, insn_idx);
  2025. if (err < 0)
  2026. return err;
  2027. if (err == 1) {
  2028. /* found equivalent state, can prune the search */
  2029. if (log_level) {
  2030. if (do_print_state)
  2031. verbose("\nfrom %d to %d: safe\n",
  2032. prev_insn_idx, insn_idx);
  2033. else
  2034. verbose("%d: safe\n", insn_idx);
  2035. }
  2036. goto process_bpf_exit;
  2037. }
  2038. if (log_level && do_print_state) {
  2039. verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
  2040. print_verifier_state(&env->cur_state);
  2041. do_print_state = false;
  2042. }
  2043. if (log_level) {
  2044. verbose("%d: ", insn_idx);
  2045. print_bpf_insn(insn);
  2046. }
  2047. if (class == BPF_ALU || class == BPF_ALU64) {
  2048. err = check_alu_op(env, insn);
  2049. if (err)
  2050. return err;
  2051. } else if (class == BPF_LDX) {
  2052. enum bpf_reg_type src_reg_type;
  2053. /* check for reserved fields is already done */
  2054. /* check src operand */
  2055. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  2056. if (err)
  2057. return err;
  2058. err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
  2059. if (err)
  2060. return err;
  2061. src_reg_type = regs[insn->src_reg].type;
  2062. /* check that memory (src_reg + off) is readable,
  2063. * the state of dst_reg will be updated by this func
  2064. */
  2065. err = check_mem_access(env, insn->src_reg, insn->off,
  2066. BPF_SIZE(insn->code), BPF_READ,
  2067. insn->dst_reg);
  2068. if (err)
  2069. return err;
  2070. if (BPF_SIZE(insn->code) != BPF_W) {
  2071. insn_idx++;
  2072. continue;
  2073. }
  2074. if (insn->imm == 0) {
  2075. /* saw a valid insn
  2076. * dst_reg = *(u32 *)(src_reg + off)
  2077. * use reserved 'imm' field to mark this insn
  2078. */
  2079. insn->imm = src_reg_type;
  2080. } else if (src_reg_type != insn->imm &&
  2081. (src_reg_type == PTR_TO_CTX ||
  2082. insn->imm == PTR_TO_CTX)) {
  2083. /* ABuser program is trying to use the same insn
  2084. * dst_reg = *(u32*) (src_reg + off)
  2085. * with different pointer types:
  2086. * src_reg == ctx in one branch and
  2087. * src_reg == stack|map in some other branch.
  2088. * Reject it.
  2089. */
  2090. verbose("same insn cannot be used with different pointers\n");
  2091. return -EINVAL;
  2092. }
  2093. } else if (class == BPF_STX) {
  2094. enum bpf_reg_type dst_reg_type;
  2095. if (BPF_MODE(insn->code) == BPF_XADD) {
  2096. err = check_xadd(env, insn);
  2097. if (err)
  2098. return err;
  2099. insn_idx++;
  2100. continue;
  2101. }
  2102. /* check src1 operand */
  2103. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  2104. if (err)
  2105. return err;
  2106. /* check src2 operand */
  2107. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  2108. if (err)
  2109. return err;
  2110. dst_reg_type = regs[insn->dst_reg].type;
  2111. /* check that memory (dst_reg + off) is writeable */
  2112. err = check_mem_access(env, insn->dst_reg, insn->off,
  2113. BPF_SIZE(insn->code), BPF_WRITE,
  2114. insn->src_reg);
  2115. if (err)
  2116. return err;
  2117. if (insn->imm == 0) {
  2118. insn->imm = dst_reg_type;
  2119. } else if (dst_reg_type != insn->imm &&
  2120. (dst_reg_type == PTR_TO_CTX ||
  2121. insn->imm == PTR_TO_CTX)) {
  2122. verbose("same insn cannot be used with different pointers\n");
  2123. return -EINVAL;
  2124. }
  2125. } else if (class == BPF_ST) {
  2126. if (BPF_MODE(insn->code) != BPF_MEM ||
  2127. insn->src_reg != BPF_REG_0) {
  2128. verbose("BPF_ST uses reserved fields\n");
  2129. return -EINVAL;
  2130. }
  2131. /* check src operand */
  2132. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  2133. if (err)
  2134. return err;
  2135. /* check that memory (dst_reg + off) is writeable */
  2136. err = check_mem_access(env, insn->dst_reg, insn->off,
  2137. BPF_SIZE(insn->code), BPF_WRITE,
  2138. -1);
  2139. if (err)
  2140. return err;
  2141. } else if (class == BPF_JMP) {
  2142. u8 opcode = BPF_OP(insn->code);
  2143. if (opcode == BPF_CALL) {
  2144. if (BPF_SRC(insn->code) != BPF_K ||
  2145. insn->off != 0 ||
  2146. insn->src_reg != BPF_REG_0 ||
  2147. insn->dst_reg != BPF_REG_0) {
  2148. verbose("BPF_CALL uses reserved fields\n");
  2149. return -EINVAL;
  2150. }
  2151. err = check_call(env, insn->imm);
  2152. if (err)
  2153. return err;
  2154. } else if (opcode == BPF_JA) {
  2155. if (BPF_SRC(insn->code) != BPF_K ||
  2156. insn->imm != 0 ||
  2157. insn->src_reg != BPF_REG_0 ||
  2158. insn->dst_reg != BPF_REG_0) {
  2159. verbose("BPF_JA uses reserved fields\n");
  2160. return -EINVAL;
  2161. }
  2162. insn_idx += insn->off + 1;
  2163. continue;
  2164. } else if (opcode == BPF_EXIT) {
  2165. if (BPF_SRC(insn->code) != BPF_K ||
  2166. insn->imm != 0 ||
  2167. insn->src_reg != BPF_REG_0 ||
  2168. insn->dst_reg != BPF_REG_0) {
  2169. verbose("BPF_EXIT uses reserved fields\n");
  2170. return -EINVAL;
  2171. }
  2172. /* eBPF calling convetion is such that R0 is used
  2173. * to return the value from eBPF program.
  2174. * Make sure that it's readable at this time
  2175. * of bpf_exit, which means that program wrote
  2176. * something into it earlier
  2177. */
  2178. err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
  2179. if (err)
  2180. return err;
  2181. if (is_pointer_value(env, BPF_REG_0)) {
  2182. verbose("R0 leaks addr as return value\n");
  2183. return -EACCES;
  2184. }
  2185. process_bpf_exit:
  2186. insn_idx = pop_stack(env, &prev_insn_idx);
  2187. if (insn_idx < 0) {
  2188. break;
  2189. } else {
  2190. do_print_state = true;
  2191. continue;
  2192. }
  2193. } else {
  2194. err = check_cond_jmp_op(env, insn, &insn_idx);
  2195. if (err)
  2196. return err;
  2197. }
  2198. } else if (class == BPF_LD) {
  2199. u8 mode = BPF_MODE(insn->code);
  2200. if (mode == BPF_ABS || mode == BPF_IND) {
  2201. err = check_ld_abs(env, insn);
  2202. if (err)
  2203. return err;
  2204. } else if (mode == BPF_IMM) {
  2205. err = check_ld_imm(env, insn);
  2206. if (err)
  2207. return err;
  2208. insn_idx++;
  2209. } else {
  2210. verbose("invalid BPF_LD mode\n");
  2211. return -EINVAL;
  2212. }
  2213. } else {
  2214. verbose("unknown insn class %d\n", class);
  2215. return -EINVAL;
  2216. }
  2217. insn_idx++;
  2218. }
  2219. verbose("processed %d insns\n", insn_processed);
  2220. return 0;
  2221. }
  2222. /* look for pseudo eBPF instructions that access map FDs and
  2223. * replace them with actual map pointers
  2224. */
  2225. static int replace_map_fd_with_map_ptr(struct verifier_env *env)
  2226. {
  2227. struct bpf_insn *insn = env->prog->insnsi;
  2228. int insn_cnt = env->prog->len;
  2229. int i, j;
  2230. for (i = 0; i < insn_cnt; i++, insn++) {
  2231. if (BPF_CLASS(insn->code) == BPF_LDX &&
  2232. (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
  2233. verbose("BPF_LDX uses reserved fields\n");
  2234. return -EINVAL;
  2235. }
  2236. if (BPF_CLASS(insn->code) == BPF_STX &&
  2237. ((BPF_MODE(insn->code) != BPF_MEM &&
  2238. BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
  2239. verbose("BPF_STX uses reserved fields\n");
  2240. return -EINVAL;
  2241. }
  2242. if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
  2243. struct bpf_map *map;
  2244. struct fd f;
  2245. if (i == insn_cnt - 1 || insn[1].code != 0 ||
  2246. insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
  2247. insn[1].off != 0) {
  2248. verbose("invalid bpf_ld_imm64 insn\n");
  2249. return -EINVAL;
  2250. }
  2251. if (insn->src_reg == 0)
  2252. /* valid generic load 64-bit imm */
  2253. goto next_insn;
  2254. if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
  2255. verbose("unrecognized bpf_ld_imm64 insn\n");
  2256. return -EINVAL;
  2257. }
  2258. f = fdget(insn->imm);
  2259. map = __bpf_map_get(f);
  2260. if (IS_ERR(map)) {
  2261. verbose("fd %d is not pointing to valid bpf_map\n",
  2262. insn->imm);
  2263. return PTR_ERR(map);
  2264. }
  2265. /* store map pointer inside BPF_LD_IMM64 instruction */
  2266. insn[0].imm = (u32) (unsigned long) map;
  2267. insn[1].imm = ((u64) (unsigned long) map) >> 32;
  2268. /* check whether we recorded this map already */
  2269. for (j = 0; j < env->used_map_cnt; j++)
  2270. if (env->used_maps[j] == map) {
  2271. fdput(f);
  2272. goto next_insn;
  2273. }
  2274. if (env->used_map_cnt >= MAX_USED_MAPS) {
  2275. fdput(f);
  2276. return -E2BIG;
  2277. }
  2278. /* hold the map. If the program is rejected by verifier,
  2279. * the map will be released by release_maps() or it
  2280. * will be used by the valid program until it's unloaded
  2281. * and all maps are released in free_bpf_prog_info()
  2282. */
  2283. map = bpf_map_inc(map, false);
  2284. if (IS_ERR(map)) {
  2285. fdput(f);
  2286. return PTR_ERR(map);
  2287. }
  2288. env->used_maps[env->used_map_cnt++] = map;
  2289. fdput(f);
  2290. next_insn:
  2291. insn++;
  2292. i++;
  2293. }
  2294. }
  2295. /* now all pseudo BPF_LD_IMM64 instructions load valid
  2296. * 'struct bpf_map *' into a register instead of user map_fd.
  2297. * These pointers will be used later by verifier to validate map access.
  2298. */
  2299. return 0;
  2300. }
  2301. /* drop refcnt of maps used by the rejected program */
  2302. static void release_maps(struct verifier_env *env)
  2303. {
  2304. int i;
  2305. for (i = 0; i < env->used_map_cnt; i++)
  2306. bpf_map_put(env->used_maps[i]);
  2307. }
  2308. /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
  2309. static void convert_pseudo_ld_imm64(struct verifier_env *env)
  2310. {
  2311. struct bpf_insn *insn = env->prog->insnsi;
  2312. int insn_cnt = env->prog->len;
  2313. int i;
  2314. for (i = 0; i < insn_cnt; i++, insn++)
  2315. if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
  2316. insn->src_reg = 0;
  2317. }
  2318. /* convert load instructions that access fields of 'struct __sk_buff'
  2319. * into sequence of instructions that access fields of 'struct sk_buff'
  2320. */
  2321. static int convert_ctx_accesses(struct verifier_env *env)
  2322. {
  2323. struct bpf_insn *insn = env->prog->insnsi;
  2324. int insn_cnt = env->prog->len;
  2325. struct bpf_insn insn_buf[16];
  2326. struct bpf_prog *new_prog;
  2327. enum bpf_access_type type;
  2328. int i;
  2329. if (!env->prog->aux->ops->convert_ctx_access)
  2330. return 0;
  2331. for (i = 0; i < insn_cnt; i++, insn++) {
  2332. u32 insn_delta, cnt;
  2333. if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
  2334. type = BPF_READ;
  2335. else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
  2336. type = BPF_WRITE;
  2337. else
  2338. continue;
  2339. if (insn->imm != PTR_TO_CTX) {
  2340. /* clear internal mark */
  2341. insn->imm = 0;
  2342. continue;
  2343. }
  2344. cnt = env->prog->aux->ops->
  2345. convert_ctx_access(type, insn->dst_reg, insn->src_reg,
  2346. insn->off, insn_buf, env->prog);
  2347. if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
  2348. verbose("bpf verifier is misconfigured\n");
  2349. return -EINVAL;
  2350. }
  2351. new_prog = bpf_patch_insn_single(env->prog, i, insn_buf, cnt);
  2352. if (!new_prog)
  2353. return -ENOMEM;
  2354. insn_delta = cnt - 1;
  2355. /* keep walking new program and skip insns we just inserted */
  2356. env->prog = new_prog;
  2357. insn = new_prog->insnsi + i + insn_delta;
  2358. insn_cnt += insn_delta;
  2359. i += insn_delta;
  2360. }
  2361. return 0;
  2362. }
  2363. static void free_states(struct verifier_env *env)
  2364. {
  2365. struct verifier_state_list *sl, *sln;
  2366. int i;
  2367. if (!env->explored_states)
  2368. return;
  2369. for (i = 0; i < env->prog->len; i++) {
  2370. sl = env->explored_states[i];
  2371. if (sl)
  2372. while (sl != STATE_LIST_MARK) {
  2373. sln = sl->next;
  2374. kfree(sl);
  2375. sl = sln;
  2376. }
  2377. }
  2378. kfree(env->explored_states);
  2379. }
  2380. int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
  2381. {
  2382. char __user *log_ubuf = NULL;
  2383. struct verifier_env *env;
  2384. int ret = -EINVAL;
  2385. if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
  2386. return -E2BIG;
  2387. /* 'struct verifier_env' can be global, but since it's not small,
  2388. * allocate/free it every time bpf_check() is called
  2389. */
  2390. env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
  2391. if (!env)
  2392. return -ENOMEM;
  2393. env->prog = *prog;
  2394. /* grab the mutex to protect few globals used by verifier */
  2395. mutex_lock(&bpf_verifier_lock);
  2396. if (attr->log_level || attr->log_buf || attr->log_size) {
  2397. /* user requested verbose verifier output
  2398. * and supplied buffer to store the verification trace
  2399. */
  2400. log_level = attr->log_level;
  2401. log_ubuf = (char __user *) (unsigned long) attr->log_buf;
  2402. log_size = attr->log_size;
  2403. log_len = 0;
  2404. ret = -EINVAL;
  2405. /* log_* values have to be sane */
  2406. if (log_size < 128 || log_size > UINT_MAX >> 8 ||
  2407. log_level == 0 || log_ubuf == NULL)
  2408. goto free_env;
  2409. ret = -ENOMEM;
  2410. log_buf = vmalloc(log_size);
  2411. if (!log_buf)
  2412. goto free_env;
  2413. } else {
  2414. log_level = 0;
  2415. }
  2416. ret = replace_map_fd_with_map_ptr(env);
  2417. if (ret < 0)
  2418. goto skip_full_check;
  2419. env->explored_states = kcalloc(env->prog->len,
  2420. sizeof(struct verifier_state_list *),
  2421. GFP_USER);
  2422. ret = -ENOMEM;
  2423. if (!env->explored_states)
  2424. goto skip_full_check;
  2425. ret = check_cfg(env);
  2426. if (ret < 0)
  2427. goto skip_full_check;
  2428. env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
  2429. ret = do_check(env);
  2430. skip_full_check:
  2431. while (pop_stack(env, NULL) >= 0);
  2432. free_states(env);
  2433. if (ret == 0)
  2434. /* program is valid, convert *(u32*)(ctx + off) accesses */
  2435. ret = convert_ctx_accesses(env);
  2436. if (log_level && log_len >= log_size - 1) {
  2437. BUG_ON(log_len >= log_size);
  2438. /* verifier log exceeded user supplied buffer */
  2439. ret = -ENOSPC;
  2440. /* fall through to return what was recorded */
  2441. }
  2442. /* copy verifier log back to user space including trailing zero */
  2443. if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
  2444. ret = -EFAULT;
  2445. goto free_log_buf;
  2446. }
  2447. if (ret == 0 && env->used_map_cnt) {
  2448. /* if program passed verifier, update used_maps in bpf_prog_info */
  2449. env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
  2450. sizeof(env->used_maps[0]),
  2451. GFP_KERNEL);
  2452. if (!env->prog->aux->used_maps) {
  2453. ret = -ENOMEM;
  2454. goto free_log_buf;
  2455. }
  2456. memcpy(env->prog->aux->used_maps, env->used_maps,
  2457. sizeof(env->used_maps[0]) * env->used_map_cnt);
  2458. env->prog->aux->used_map_cnt = env->used_map_cnt;
  2459. /* program is valid. Convert pseudo bpf_ld_imm64 into generic
  2460. * bpf_ld_imm64 instructions
  2461. */
  2462. convert_pseudo_ld_imm64(env);
  2463. }
  2464. free_log_buf:
  2465. if (log_level)
  2466. vfree(log_buf);
  2467. free_env:
  2468. if (!env->prog->aux->used_maps)
  2469. /* if we didn't copy map pointers into bpf_prog_info, release
  2470. * them now. Otherwise free_bpf_prog_info() will release them.
  2471. */
  2472. release_maps(env);
  2473. *prog = env->prog;
  2474. kfree(env);
  2475. mutex_unlock(&bpf_verifier_lock);
  2476. return ret;
  2477. }