memory.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/pfn_t.h>
  49. #include <linux/writeback.h>
  50. #include <linux/memcontrol.h>
  51. #include <linux/mmu_notifier.h>
  52. #include <linux/kallsyms.h>
  53. #include <linux/swapops.h>
  54. #include <linux/elf.h>
  55. #include <linux/gfp.h>
  56. #include <linux/migrate.h>
  57. #include <linux/string.h>
  58. #include <linux/dma-debug.h>
  59. #include <linux/debugfs.h>
  60. #include <linux/userfaultfd_k.h>
  61. #include <linux/dax.h>
  62. #include <asm/io.h>
  63. #include <asm/mmu_context.h>
  64. #include <asm/pgalloc.h>
  65. #include <asm/uaccess.h>
  66. #include <asm/tlb.h>
  67. #include <asm/tlbflush.h>
  68. #include <asm/pgtable.h>
  69. #include "internal.h"
  70. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  71. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  72. #endif
  73. #ifndef CONFIG_NEED_MULTIPLE_NODES
  74. /* use the per-pgdat data instead for discontigmem - mbligh */
  75. unsigned long max_mapnr;
  76. struct page *mem_map;
  77. EXPORT_SYMBOL(max_mapnr);
  78. EXPORT_SYMBOL(mem_map);
  79. #endif
  80. /*
  81. * A number of key systems in x86 including ioremap() rely on the assumption
  82. * that high_memory defines the upper bound on direct map memory, then end
  83. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  84. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  85. * and ZONE_HIGHMEM.
  86. */
  87. void * high_memory;
  88. EXPORT_SYMBOL(high_memory);
  89. /*
  90. * Randomize the address space (stacks, mmaps, brk, etc.).
  91. *
  92. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  93. * as ancient (libc5 based) binaries can segfault. )
  94. */
  95. int randomize_va_space __read_mostly =
  96. #ifdef CONFIG_COMPAT_BRK
  97. 1;
  98. #else
  99. 2;
  100. #endif
  101. static int __init disable_randmaps(char *s)
  102. {
  103. randomize_va_space = 0;
  104. return 1;
  105. }
  106. __setup("norandmaps", disable_randmaps);
  107. unsigned long zero_pfn __read_mostly;
  108. unsigned long highest_memmap_pfn __read_mostly;
  109. EXPORT_SYMBOL(zero_pfn);
  110. /*
  111. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  112. */
  113. static int __init init_zero_pfn(void)
  114. {
  115. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  116. return 0;
  117. }
  118. core_initcall(init_zero_pfn);
  119. #if defined(SPLIT_RSS_COUNTING)
  120. void sync_mm_rss(struct mm_struct *mm)
  121. {
  122. int i;
  123. for (i = 0; i < NR_MM_COUNTERS; i++) {
  124. if (current->rss_stat.count[i]) {
  125. add_mm_counter(mm, i, current->rss_stat.count[i]);
  126. current->rss_stat.count[i] = 0;
  127. }
  128. }
  129. current->rss_stat.events = 0;
  130. }
  131. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  132. {
  133. struct task_struct *task = current;
  134. if (likely(task->mm == mm))
  135. task->rss_stat.count[member] += val;
  136. else
  137. add_mm_counter(mm, member, val);
  138. }
  139. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  140. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  141. /* sync counter once per 64 page faults */
  142. #define TASK_RSS_EVENTS_THRESH (64)
  143. static void check_sync_rss_stat(struct task_struct *task)
  144. {
  145. if (unlikely(task != current))
  146. return;
  147. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  148. sync_mm_rss(task->mm);
  149. }
  150. #else /* SPLIT_RSS_COUNTING */
  151. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  152. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  153. static void check_sync_rss_stat(struct task_struct *task)
  154. {
  155. }
  156. #endif /* SPLIT_RSS_COUNTING */
  157. #ifdef HAVE_GENERIC_MMU_GATHER
  158. static bool tlb_next_batch(struct mmu_gather *tlb)
  159. {
  160. struct mmu_gather_batch *batch;
  161. batch = tlb->active;
  162. if (batch->next) {
  163. tlb->active = batch->next;
  164. return true;
  165. }
  166. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  167. return false;
  168. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  169. if (!batch)
  170. return false;
  171. tlb->batch_count++;
  172. batch->next = NULL;
  173. batch->nr = 0;
  174. batch->max = MAX_GATHER_BATCH;
  175. tlb->active->next = batch;
  176. tlb->active = batch;
  177. return true;
  178. }
  179. /* tlb_gather_mmu
  180. * Called to initialize an (on-stack) mmu_gather structure for page-table
  181. * tear-down from @mm. The @fullmm argument is used when @mm is without
  182. * users and we're going to destroy the full address space (exit/execve).
  183. */
  184. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  185. {
  186. tlb->mm = mm;
  187. /* Is it from 0 to ~0? */
  188. tlb->fullmm = !(start | (end+1));
  189. tlb->need_flush_all = 0;
  190. tlb->local.next = NULL;
  191. tlb->local.nr = 0;
  192. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  193. tlb->active = &tlb->local;
  194. tlb->batch_count = 0;
  195. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  196. tlb->batch = NULL;
  197. #endif
  198. tlb->page_size = 0;
  199. __tlb_reset_range(tlb);
  200. }
  201. static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
  202. {
  203. if (!tlb->end)
  204. return;
  205. tlb_flush(tlb);
  206. mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
  207. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  208. tlb_table_flush(tlb);
  209. #endif
  210. __tlb_reset_range(tlb);
  211. }
  212. static void tlb_flush_mmu_free(struct mmu_gather *tlb)
  213. {
  214. struct mmu_gather_batch *batch;
  215. for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
  216. free_pages_and_swap_cache(batch->pages, batch->nr);
  217. batch->nr = 0;
  218. }
  219. tlb->active = &tlb->local;
  220. }
  221. void tlb_flush_mmu(struct mmu_gather *tlb)
  222. {
  223. tlb_flush_mmu_tlbonly(tlb);
  224. tlb_flush_mmu_free(tlb);
  225. }
  226. /* tlb_finish_mmu
  227. * Called at the end of the shootdown operation to free up any resources
  228. * that were required.
  229. */
  230. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  231. {
  232. struct mmu_gather_batch *batch, *next;
  233. tlb_flush_mmu(tlb);
  234. /* keep the page table cache within bounds */
  235. check_pgt_cache();
  236. for (batch = tlb->local.next; batch; batch = next) {
  237. next = batch->next;
  238. free_pages((unsigned long)batch, 0);
  239. }
  240. tlb->local.next = NULL;
  241. }
  242. /* __tlb_remove_page
  243. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  244. * handling the additional races in SMP caused by other CPUs caching valid
  245. * mappings in their TLBs. Returns the number of free page slots left.
  246. * When out of page slots we must call tlb_flush_mmu().
  247. *returns true if the caller should flush.
  248. */
  249. bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
  250. {
  251. struct mmu_gather_batch *batch;
  252. VM_BUG_ON(!tlb->end);
  253. if (!tlb->page_size)
  254. tlb->page_size = page_size;
  255. else {
  256. if (page_size != tlb->page_size)
  257. return true;
  258. }
  259. batch = tlb->active;
  260. if (batch->nr == batch->max) {
  261. if (!tlb_next_batch(tlb))
  262. return true;
  263. batch = tlb->active;
  264. }
  265. VM_BUG_ON_PAGE(batch->nr > batch->max, page);
  266. batch->pages[batch->nr++] = page;
  267. return false;
  268. }
  269. #endif /* HAVE_GENERIC_MMU_GATHER */
  270. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  271. /*
  272. * See the comment near struct mmu_table_batch.
  273. */
  274. static void tlb_remove_table_smp_sync(void *arg)
  275. {
  276. /* Simply deliver the interrupt */
  277. }
  278. static void tlb_remove_table_one(void *table)
  279. {
  280. /*
  281. * This isn't an RCU grace period and hence the page-tables cannot be
  282. * assumed to be actually RCU-freed.
  283. *
  284. * It is however sufficient for software page-table walkers that rely on
  285. * IRQ disabling. See the comment near struct mmu_table_batch.
  286. */
  287. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  288. __tlb_remove_table(table);
  289. }
  290. static void tlb_remove_table_rcu(struct rcu_head *head)
  291. {
  292. struct mmu_table_batch *batch;
  293. int i;
  294. batch = container_of(head, struct mmu_table_batch, rcu);
  295. for (i = 0; i < batch->nr; i++)
  296. __tlb_remove_table(batch->tables[i]);
  297. free_page((unsigned long)batch);
  298. }
  299. void tlb_table_flush(struct mmu_gather *tlb)
  300. {
  301. struct mmu_table_batch **batch = &tlb->batch;
  302. if (*batch) {
  303. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  304. *batch = NULL;
  305. }
  306. }
  307. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  308. {
  309. struct mmu_table_batch **batch = &tlb->batch;
  310. /*
  311. * When there's less then two users of this mm there cannot be a
  312. * concurrent page-table walk.
  313. */
  314. if (atomic_read(&tlb->mm->mm_users) < 2) {
  315. __tlb_remove_table(table);
  316. return;
  317. }
  318. if (*batch == NULL) {
  319. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  320. if (*batch == NULL) {
  321. tlb_remove_table_one(table);
  322. return;
  323. }
  324. (*batch)->nr = 0;
  325. }
  326. (*batch)->tables[(*batch)->nr++] = table;
  327. if ((*batch)->nr == MAX_TABLE_BATCH)
  328. tlb_table_flush(tlb);
  329. }
  330. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  331. /*
  332. * Note: this doesn't free the actual pages themselves. That
  333. * has been handled earlier when unmapping all the memory regions.
  334. */
  335. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  336. unsigned long addr)
  337. {
  338. pgtable_t token = pmd_pgtable(*pmd);
  339. pmd_clear(pmd);
  340. pte_free_tlb(tlb, token, addr);
  341. atomic_long_dec(&tlb->mm->nr_ptes);
  342. }
  343. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  344. unsigned long addr, unsigned long end,
  345. unsigned long floor, unsigned long ceiling)
  346. {
  347. pmd_t *pmd;
  348. unsigned long next;
  349. unsigned long start;
  350. start = addr;
  351. pmd = pmd_offset(pud, addr);
  352. do {
  353. next = pmd_addr_end(addr, end);
  354. if (pmd_none_or_clear_bad(pmd))
  355. continue;
  356. free_pte_range(tlb, pmd, addr);
  357. } while (pmd++, addr = next, addr != end);
  358. start &= PUD_MASK;
  359. if (start < floor)
  360. return;
  361. if (ceiling) {
  362. ceiling &= PUD_MASK;
  363. if (!ceiling)
  364. return;
  365. }
  366. if (end - 1 > ceiling - 1)
  367. return;
  368. pmd = pmd_offset(pud, start);
  369. pud_clear(pud);
  370. pmd_free_tlb(tlb, pmd, start);
  371. mm_dec_nr_pmds(tlb->mm);
  372. }
  373. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  374. unsigned long addr, unsigned long end,
  375. unsigned long floor, unsigned long ceiling)
  376. {
  377. pud_t *pud;
  378. unsigned long next;
  379. unsigned long start;
  380. start = addr;
  381. pud = pud_offset(pgd, addr);
  382. do {
  383. next = pud_addr_end(addr, end);
  384. if (pud_none_or_clear_bad(pud))
  385. continue;
  386. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  387. } while (pud++, addr = next, addr != end);
  388. start &= PGDIR_MASK;
  389. if (start < floor)
  390. return;
  391. if (ceiling) {
  392. ceiling &= PGDIR_MASK;
  393. if (!ceiling)
  394. return;
  395. }
  396. if (end - 1 > ceiling - 1)
  397. return;
  398. pud = pud_offset(pgd, start);
  399. pgd_clear(pgd);
  400. pud_free_tlb(tlb, pud, start);
  401. }
  402. /*
  403. * This function frees user-level page tables of a process.
  404. */
  405. void free_pgd_range(struct mmu_gather *tlb,
  406. unsigned long addr, unsigned long end,
  407. unsigned long floor, unsigned long ceiling)
  408. {
  409. pgd_t *pgd;
  410. unsigned long next;
  411. /*
  412. * The next few lines have given us lots of grief...
  413. *
  414. * Why are we testing PMD* at this top level? Because often
  415. * there will be no work to do at all, and we'd prefer not to
  416. * go all the way down to the bottom just to discover that.
  417. *
  418. * Why all these "- 1"s? Because 0 represents both the bottom
  419. * of the address space and the top of it (using -1 for the
  420. * top wouldn't help much: the masks would do the wrong thing).
  421. * The rule is that addr 0 and floor 0 refer to the bottom of
  422. * the address space, but end 0 and ceiling 0 refer to the top
  423. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  424. * that end 0 case should be mythical).
  425. *
  426. * Wherever addr is brought up or ceiling brought down, we must
  427. * be careful to reject "the opposite 0" before it confuses the
  428. * subsequent tests. But what about where end is brought down
  429. * by PMD_SIZE below? no, end can't go down to 0 there.
  430. *
  431. * Whereas we round start (addr) and ceiling down, by different
  432. * masks at different levels, in order to test whether a table
  433. * now has no other vmas using it, so can be freed, we don't
  434. * bother to round floor or end up - the tests don't need that.
  435. */
  436. addr &= PMD_MASK;
  437. if (addr < floor) {
  438. addr += PMD_SIZE;
  439. if (!addr)
  440. return;
  441. }
  442. if (ceiling) {
  443. ceiling &= PMD_MASK;
  444. if (!ceiling)
  445. return;
  446. }
  447. if (end - 1 > ceiling - 1)
  448. end -= PMD_SIZE;
  449. if (addr > end - 1)
  450. return;
  451. pgd = pgd_offset(tlb->mm, addr);
  452. do {
  453. next = pgd_addr_end(addr, end);
  454. if (pgd_none_or_clear_bad(pgd))
  455. continue;
  456. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  457. } while (pgd++, addr = next, addr != end);
  458. }
  459. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  460. unsigned long floor, unsigned long ceiling)
  461. {
  462. while (vma) {
  463. struct vm_area_struct *next = vma->vm_next;
  464. unsigned long addr = vma->vm_start;
  465. /*
  466. * Hide vma from rmap and truncate_pagecache before freeing
  467. * pgtables
  468. */
  469. unlink_anon_vmas(vma);
  470. unlink_file_vma(vma);
  471. if (is_vm_hugetlb_page(vma)) {
  472. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  473. floor, next? next->vm_start: ceiling);
  474. } else {
  475. /*
  476. * Optimization: gather nearby vmas into one call down
  477. */
  478. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  479. && !is_vm_hugetlb_page(next)) {
  480. vma = next;
  481. next = vma->vm_next;
  482. unlink_anon_vmas(vma);
  483. unlink_file_vma(vma);
  484. }
  485. free_pgd_range(tlb, addr, vma->vm_end,
  486. floor, next? next->vm_start: ceiling);
  487. }
  488. vma = next;
  489. }
  490. }
  491. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  492. {
  493. spinlock_t *ptl;
  494. pgtable_t new = pte_alloc_one(mm, address);
  495. if (!new)
  496. return -ENOMEM;
  497. /*
  498. * Ensure all pte setup (eg. pte page lock and page clearing) are
  499. * visible before the pte is made visible to other CPUs by being
  500. * put into page tables.
  501. *
  502. * The other side of the story is the pointer chasing in the page
  503. * table walking code (when walking the page table without locking;
  504. * ie. most of the time). Fortunately, these data accesses consist
  505. * of a chain of data-dependent loads, meaning most CPUs (alpha
  506. * being the notable exception) will already guarantee loads are
  507. * seen in-order. See the alpha page table accessors for the
  508. * smp_read_barrier_depends() barriers in page table walking code.
  509. */
  510. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  511. ptl = pmd_lock(mm, pmd);
  512. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  513. atomic_long_inc(&mm->nr_ptes);
  514. pmd_populate(mm, pmd, new);
  515. new = NULL;
  516. }
  517. spin_unlock(ptl);
  518. if (new)
  519. pte_free(mm, new);
  520. return 0;
  521. }
  522. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  523. {
  524. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  525. if (!new)
  526. return -ENOMEM;
  527. smp_wmb(); /* See comment in __pte_alloc */
  528. spin_lock(&init_mm.page_table_lock);
  529. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  530. pmd_populate_kernel(&init_mm, pmd, new);
  531. new = NULL;
  532. }
  533. spin_unlock(&init_mm.page_table_lock);
  534. if (new)
  535. pte_free_kernel(&init_mm, new);
  536. return 0;
  537. }
  538. static inline void init_rss_vec(int *rss)
  539. {
  540. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  541. }
  542. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  543. {
  544. int i;
  545. if (current->mm == mm)
  546. sync_mm_rss(mm);
  547. for (i = 0; i < NR_MM_COUNTERS; i++)
  548. if (rss[i])
  549. add_mm_counter(mm, i, rss[i]);
  550. }
  551. /*
  552. * This function is called to print an error when a bad pte
  553. * is found. For example, we might have a PFN-mapped pte in
  554. * a region that doesn't allow it.
  555. *
  556. * The calling function must still handle the error.
  557. */
  558. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  559. pte_t pte, struct page *page)
  560. {
  561. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  562. pud_t *pud = pud_offset(pgd, addr);
  563. pmd_t *pmd = pmd_offset(pud, addr);
  564. struct address_space *mapping;
  565. pgoff_t index;
  566. static unsigned long resume;
  567. static unsigned long nr_shown;
  568. static unsigned long nr_unshown;
  569. /*
  570. * Allow a burst of 60 reports, then keep quiet for that minute;
  571. * or allow a steady drip of one report per second.
  572. */
  573. if (nr_shown == 60) {
  574. if (time_before(jiffies, resume)) {
  575. nr_unshown++;
  576. return;
  577. }
  578. if (nr_unshown) {
  579. pr_alert("BUG: Bad page map: %lu messages suppressed\n",
  580. nr_unshown);
  581. nr_unshown = 0;
  582. }
  583. nr_shown = 0;
  584. }
  585. if (nr_shown++ == 0)
  586. resume = jiffies + 60 * HZ;
  587. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  588. index = linear_page_index(vma, addr);
  589. pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  590. current->comm,
  591. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  592. if (page)
  593. dump_page(page, "bad pte");
  594. pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  595. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  596. /*
  597. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  598. */
  599. pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
  600. vma->vm_file,
  601. vma->vm_ops ? vma->vm_ops->fault : NULL,
  602. vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
  603. mapping ? mapping->a_ops->readpage : NULL);
  604. dump_stack();
  605. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  606. }
  607. /*
  608. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  609. *
  610. * "Special" mappings do not wish to be associated with a "struct page" (either
  611. * it doesn't exist, or it exists but they don't want to touch it). In this
  612. * case, NULL is returned here. "Normal" mappings do have a struct page.
  613. *
  614. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  615. * pte bit, in which case this function is trivial. Secondly, an architecture
  616. * may not have a spare pte bit, which requires a more complicated scheme,
  617. * described below.
  618. *
  619. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  620. * special mapping (even if there are underlying and valid "struct pages").
  621. * COWed pages of a VM_PFNMAP are always normal.
  622. *
  623. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  624. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  625. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  626. * mapping will always honor the rule
  627. *
  628. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  629. *
  630. * And for normal mappings this is false.
  631. *
  632. * This restricts such mappings to be a linear translation from virtual address
  633. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  634. * as the vma is not a COW mapping; in that case, we know that all ptes are
  635. * special (because none can have been COWed).
  636. *
  637. *
  638. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  639. *
  640. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  641. * page" backing, however the difference is that _all_ pages with a struct
  642. * page (that is, those where pfn_valid is true) are refcounted and considered
  643. * normal pages by the VM. The disadvantage is that pages are refcounted
  644. * (which can be slower and simply not an option for some PFNMAP users). The
  645. * advantage is that we don't have to follow the strict linearity rule of
  646. * PFNMAP mappings in order to support COWable mappings.
  647. *
  648. */
  649. #ifdef __HAVE_ARCH_PTE_SPECIAL
  650. # define HAVE_PTE_SPECIAL 1
  651. #else
  652. # define HAVE_PTE_SPECIAL 0
  653. #endif
  654. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  655. pte_t pte)
  656. {
  657. unsigned long pfn = pte_pfn(pte);
  658. if (HAVE_PTE_SPECIAL) {
  659. if (likely(!pte_special(pte)))
  660. goto check_pfn;
  661. if (vma->vm_ops && vma->vm_ops->find_special_page)
  662. return vma->vm_ops->find_special_page(vma, addr);
  663. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  664. return NULL;
  665. if (!is_zero_pfn(pfn))
  666. print_bad_pte(vma, addr, pte, NULL);
  667. return NULL;
  668. }
  669. /* !HAVE_PTE_SPECIAL case follows: */
  670. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  671. if (vma->vm_flags & VM_MIXEDMAP) {
  672. if (!pfn_valid(pfn))
  673. return NULL;
  674. goto out;
  675. } else {
  676. unsigned long off;
  677. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  678. if (pfn == vma->vm_pgoff + off)
  679. return NULL;
  680. if (!is_cow_mapping(vma->vm_flags))
  681. return NULL;
  682. }
  683. }
  684. if (is_zero_pfn(pfn))
  685. return NULL;
  686. check_pfn:
  687. if (unlikely(pfn > highest_memmap_pfn)) {
  688. print_bad_pte(vma, addr, pte, NULL);
  689. return NULL;
  690. }
  691. /*
  692. * NOTE! We still have PageReserved() pages in the page tables.
  693. * eg. VDSO mappings can cause them to exist.
  694. */
  695. out:
  696. return pfn_to_page(pfn);
  697. }
  698. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  699. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  700. pmd_t pmd)
  701. {
  702. unsigned long pfn = pmd_pfn(pmd);
  703. /*
  704. * There is no pmd_special() but there may be special pmds, e.g.
  705. * in a direct-access (dax) mapping, so let's just replicate the
  706. * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
  707. */
  708. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  709. if (vma->vm_flags & VM_MIXEDMAP) {
  710. if (!pfn_valid(pfn))
  711. return NULL;
  712. goto out;
  713. } else {
  714. unsigned long off;
  715. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  716. if (pfn == vma->vm_pgoff + off)
  717. return NULL;
  718. if (!is_cow_mapping(vma->vm_flags))
  719. return NULL;
  720. }
  721. }
  722. if (is_zero_pfn(pfn))
  723. return NULL;
  724. if (unlikely(pfn > highest_memmap_pfn))
  725. return NULL;
  726. /*
  727. * NOTE! We still have PageReserved() pages in the page tables.
  728. * eg. VDSO mappings can cause them to exist.
  729. */
  730. out:
  731. return pfn_to_page(pfn);
  732. }
  733. #endif
  734. /*
  735. * copy one vm_area from one task to the other. Assumes the page tables
  736. * already present in the new task to be cleared in the whole range
  737. * covered by this vma.
  738. */
  739. static inline unsigned long
  740. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  741. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  742. unsigned long addr, int *rss)
  743. {
  744. unsigned long vm_flags = vma->vm_flags;
  745. pte_t pte = *src_pte;
  746. struct page *page;
  747. /* pte contains position in swap or file, so copy. */
  748. if (unlikely(!pte_present(pte))) {
  749. swp_entry_t entry = pte_to_swp_entry(pte);
  750. if (likely(!non_swap_entry(entry))) {
  751. if (swap_duplicate(entry) < 0)
  752. return entry.val;
  753. /* make sure dst_mm is on swapoff's mmlist. */
  754. if (unlikely(list_empty(&dst_mm->mmlist))) {
  755. spin_lock(&mmlist_lock);
  756. if (list_empty(&dst_mm->mmlist))
  757. list_add(&dst_mm->mmlist,
  758. &src_mm->mmlist);
  759. spin_unlock(&mmlist_lock);
  760. }
  761. rss[MM_SWAPENTS]++;
  762. } else if (is_migration_entry(entry)) {
  763. page = migration_entry_to_page(entry);
  764. rss[mm_counter(page)]++;
  765. if (is_write_migration_entry(entry) &&
  766. is_cow_mapping(vm_flags)) {
  767. /*
  768. * COW mappings require pages in both
  769. * parent and child to be set to read.
  770. */
  771. make_migration_entry_read(&entry);
  772. pte = swp_entry_to_pte(entry);
  773. if (pte_swp_soft_dirty(*src_pte))
  774. pte = pte_swp_mksoft_dirty(pte);
  775. set_pte_at(src_mm, addr, src_pte, pte);
  776. }
  777. }
  778. goto out_set_pte;
  779. }
  780. /*
  781. * If it's a COW mapping, write protect it both
  782. * in the parent and the child
  783. */
  784. if (is_cow_mapping(vm_flags)) {
  785. ptep_set_wrprotect(src_mm, addr, src_pte);
  786. pte = pte_wrprotect(pte);
  787. }
  788. /*
  789. * If it's a shared mapping, mark it clean in
  790. * the child
  791. */
  792. if (vm_flags & VM_SHARED)
  793. pte = pte_mkclean(pte);
  794. pte = pte_mkold(pte);
  795. page = vm_normal_page(vma, addr, pte);
  796. if (page) {
  797. get_page(page);
  798. page_dup_rmap(page, false);
  799. rss[mm_counter(page)]++;
  800. }
  801. out_set_pte:
  802. set_pte_at(dst_mm, addr, dst_pte, pte);
  803. return 0;
  804. }
  805. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  806. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  807. unsigned long addr, unsigned long end)
  808. {
  809. pte_t *orig_src_pte, *orig_dst_pte;
  810. pte_t *src_pte, *dst_pte;
  811. spinlock_t *src_ptl, *dst_ptl;
  812. int progress = 0;
  813. int rss[NR_MM_COUNTERS];
  814. swp_entry_t entry = (swp_entry_t){0};
  815. again:
  816. init_rss_vec(rss);
  817. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  818. if (!dst_pte)
  819. return -ENOMEM;
  820. src_pte = pte_offset_map(src_pmd, addr);
  821. src_ptl = pte_lockptr(src_mm, src_pmd);
  822. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  823. orig_src_pte = src_pte;
  824. orig_dst_pte = dst_pte;
  825. arch_enter_lazy_mmu_mode();
  826. do {
  827. /*
  828. * We are holding two locks at this point - either of them
  829. * could generate latencies in another task on another CPU.
  830. */
  831. if (progress >= 32) {
  832. progress = 0;
  833. if (need_resched() ||
  834. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  835. break;
  836. }
  837. if (pte_none(*src_pte)) {
  838. progress++;
  839. continue;
  840. }
  841. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  842. vma, addr, rss);
  843. if (entry.val)
  844. break;
  845. progress += 8;
  846. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  847. arch_leave_lazy_mmu_mode();
  848. spin_unlock(src_ptl);
  849. pte_unmap(orig_src_pte);
  850. add_mm_rss_vec(dst_mm, rss);
  851. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  852. cond_resched();
  853. if (entry.val) {
  854. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  855. return -ENOMEM;
  856. progress = 0;
  857. }
  858. if (addr != end)
  859. goto again;
  860. return 0;
  861. }
  862. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  863. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  864. unsigned long addr, unsigned long end)
  865. {
  866. pmd_t *src_pmd, *dst_pmd;
  867. unsigned long next;
  868. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  869. if (!dst_pmd)
  870. return -ENOMEM;
  871. src_pmd = pmd_offset(src_pud, addr);
  872. do {
  873. next = pmd_addr_end(addr, end);
  874. if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
  875. int err;
  876. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  877. err = copy_huge_pmd(dst_mm, src_mm,
  878. dst_pmd, src_pmd, addr, vma);
  879. if (err == -ENOMEM)
  880. return -ENOMEM;
  881. if (!err)
  882. continue;
  883. /* fall through */
  884. }
  885. if (pmd_none_or_clear_bad(src_pmd))
  886. continue;
  887. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  888. vma, addr, next))
  889. return -ENOMEM;
  890. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  891. return 0;
  892. }
  893. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  894. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  895. unsigned long addr, unsigned long end)
  896. {
  897. pud_t *src_pud, *dst_pud;
  898. unsigned long next;
  899. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  900. if (!dst_pud)
  901. return -ENOMEM;
  902. src_pud = pud_offset(src_pgd, addr);
  903. do {
  904. next = pud_addr_end(addr, end);
  905. if (pud_none_or_clear_bad(src_pud))
  906. continue;
  907. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  908. vma, addr, next))
  909. return -ENOMEM;
  910. } while (dst_pud++, src_pud++, addr = next, addr != end);
  911. return 0;
  912. }
  913. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  914. struct vm_area_struct *vma)
  915. {
  916. pgd_t *src_pgd, *dst_pgd;
  917. unsigned long next;
  918. unsigned long addr = vma->vm_start;
  919. unsigned long end = vma->vm_end;
  920. unsigned long mmun_start; /* For mmu_notifiers */
  921. unsigned long mmun_end; /* For mmu_notifiers */
  922. bool is_cow;
  923. int ret;
  924. /*
  925. * Don't copy ptes where a page fault will fill them correctly.
  926. * Fork becomes much lighter when there are big shared or private
  927. * readonly mappings. The tradeoff is that copy_page_range is more
  928. * efficient than faulting.
  929. */
  930. if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
  931. !vma->anon_vma)
  932. return 0;
  933. if (is_vm_hugetlb_page(vma))
  934. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  935. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  936. /*
  937. * We do not free on error cases below as remove_vma
  938. * gets called on error from higher level routine
  939. */
  940. ret = track_pfn_copy(vma);
  941. if (ret)
  942. return ret;
  943. }
  944. /*
  945. * We need to invalidate the secondary MMU mappings only when
  946. * there could be a permission downgrade on the ptes of the
  947. * parent mm. And a permission downgrade will only happen if
  948. * is_cow_mapping() returns true.
  949. */
  950. is_cow = is_cow_mapping(vma->vm_flags);
  951. mmun_start = addr;
  952. mmun_end = end;
  953. if (is_cow)
  954. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  955. mmun_end);
  956. ret = 0;
  957. dst_pgd = pgd_offset(dst_mm, addr);
  958. src_pgd = pgd_offset(src_mm, addr);
  959. do {
  960. next = pgd_addr_end(addr, end);
  961. if (pgd_none_or_clear_bad(src_pgd))
  962. continue;
  963. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  964. vma, addr, next))) {
  965. ret = -ENOMEM;
  966. break;
  967. }
  968. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  969. if (is_cow)
  970. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  971. return ret;
  972. }
  973. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  974. struct vm_area_struct *vma, pmd_t *pmd,
  975. unsigned long addr, unsigned long end,
  976. struct zap_details *details)
  977. {
  978. struct mm_struct *mm = tlb->mm;
  979. int force_flush = 0;
  980. int rss[NR_MM_COUNTERS];
  981. spinlock_t *ptl;
  982. pte_t *start_pte;
  983. pte_t *pte;
  984. swp_entry_t entry;
  985. struct page *pending_page = NULL;
  986. again:
  987. init_rss_vec(rss);
  988. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  989. pte = start_pte;
  990. arch_enter_lazy_mmu_mode();
  991. do {
  992. pte_t ptent = *pte;
  993. if (pte_none(ptent)) {
  994. continue;
  995. }
  996. if (pte_present(ptent)) {
  997. struct page *page;
  998. page = vm_normal_page(vma, addr, ptent);
  999. if (unlikely(details) && page) {
  1000. /*
  1001. * unmap_shared_mapping_pages() wants to
  1002. * invalidate cache without truncating:
  1003. * unmap shared but keep private pages.
  1004. */
  1005. if (details->check_mapping &&
  1006. details->check_mapping != page->mapping)
  1007. continue;
  1008. }
  1009. ptent = ptep_get_and_clear_full(mm, addr, pte,
  1010. tlb->fullmm);
  1011. tlb_remove_tlb_entry(tlb, pte, addr);
  1012. if (unlikely(!page))
  1013. continue;
  1014. if (!PageAnon(page)) {
  1015. if (pte_dirty(ptent)) {
  1016. /*
  1017. * oom_reaper cannot tear down dirty
  1018. * pages
  1019. */
  1020. if (unlikely(details && details->ignore_dirty))
  1021. continue;
  1022. force_flush = 1;
  1023. set_page_dirty(page);
  1024. }
  1025. if (pte_young(ptent) &&
  1026. likely(!(vma->vm_flags & VM_SEQ_READ)))
  1027. mark_page_accessed(page);
  1028. }
  1029. rss[mm_counter(page)]--;
  1030. page_remove_rmap(page, false);
  1031. if (unlikely(page_mapcount(page) < 0))
  1032. print_bad_pte(vma, addr, ptent, page);
  1033. if (unlikely(__tlb_remove_page(tlb, page))) {
  1034. force_flush = 1;
  1035. pending_page = page;
  1036. addr += PAGE_SIZE;
  1037. break;
  1038. }
  1039. continue;
  1040. }
  1041. /* only check swap_entries if explicitly asked for in details */
  1042. if (unlikely(details && !details->check_swap_entries))
  1043. continue;
  1044. entry = pte_to_swp_entry(ptent);
  1045. if (!non_swap_entry(entry))
  1046. rss[MM_SWAPENTS]--;
  1047. else if (is_migration_entry(entry)) {
  1048. struct page *page;
  1049. page = migration_entry_to_page(entry);
  1050. rss[mm_counter(page)]--;
  1051. }
  1052. if (unlikely(!free_swap_and_cache(entry)))
  1053. print_bad_pte(vma, addr, ptent, NULL);
  1054. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1055. } while (pte++, addr += PAGE_SIZE, addr != end);
  1056. add_mm_rss_vec(mm, rss);
  1057. arch_leave_lazy_mmu_mode();
  1058. /* Do the actual TLB flush before dropping ptl */
  1059. if (force_flush)
  1060. tlb_flush_mmu_tlbonly(tlb);
  1061. pte_unmap_unlock(start_pte, ptl);
  1062. /*
  1063. * If we forced a TLB flush (either due to running out of
  1064. * batch buffers or because we needed to flush dirty TLB
  1065. * entries before releasing the ptl), free the batched
  1066. * memory too. Restart if we didn't do everything.
  1067. */
  1068. if (force_flush) {
  1069. force_flush = 0;
  1070. tlb_flush_mmu_free(tlb);
  1071. if (pending_page) {
  1072. /* remove the page with new size */
  1073. __tlb_remove_pte_page(tlb, pending_page);
  1074. pending_page = NULL;
  1075. }
  1076. if (addr != end)
  1077. goto again;
  1078. }
  1079. return addr;
  1080. }
  1081. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1082. struct vm_area_struct *vma, pud_t *pud,
  1083. unsigned long addr, unsigned long end,
  1084. struct zap_details *details)
  1085. {
  1086. pmd_t *pmd;
  1087. unsigned long next;
  1088. pmd = pmd_offset(pud, addr);
  1089. do {
  1090. next = pmd_addr_end(addr, end);
  1091. if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
  1092. if (next - addr != HPAGE_PMD_SIZE) {
  1093. VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
  1094. !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
  1095. split_huge_pmd(vma, pmd, addr);
  1096. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1097. goto next;
  1098. /* fall through */
  1099. }
  1100. /*
  1101. * Here there can be other concurrent MADV_DONTNEED or
  1102. * trans huge page faults running, and if the pmd is
  1103. * none or trans huge it can change under us. This is
  1104. * because MADV_DONTNEED holds the mmap_sem in read
  1105. * mode.
  1106. */
  1107. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1108. goto next;
  1109. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1110. next:
  1111. cond_resched();
  1112. } while (pmd++, addr = next, addr != end);
  1113. return addr;
  1114. }
  1115. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1116. struct vm_area_struct *vma, pgd_t *pgd,
  1117. unsigned long addr, unsigned long end,
  1118. struct zap_details *details)
  1119. {
  1120. pud_t *pud;
  1121. unsigned long next;
  1122. pud = pud_offset(pgd, addr);
  1123. do {
  1124. next = pud_addr_end(addr, end);
  1125. if (pud_none_or_clear_bad(pud))
  1126. continue;
  1127. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1128. } while (pud++, addr = next, addr != end);
  1129. return addr;
  1130. }
  1131. void unmap_page_range(struct mmu_gather *tlb,
  1132. struct vm_area_struct *vma,
  1133. unsigned long addr, unsigned long end,
  1134. struct zap_details *details)
  1135. {
  1136. pgd_t *pgd;
  1137. unsigned long next;
  1138. BUG_ON(addr >= end);
  1139. tlb_start_vma(tlb, vma);
  1140. pgd = pgd_offset(vma->vm_mm, addr);
  1141. do {
  1142. next = pgd_addr_end(addr, end);
  1143. if (pgd_none_or_clear_bad(pgd))
  1144. continue;
  1145. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1146. } while (pgd++, addr = next, addr != end);
  1147. tlb_end_vma(tlb, vma);
  1148. }
  1149. static void unmap_single_vma(struct mmu_gather *tlb,
  1150. struct vm_area_struct *vma, unsigned long start_addr,
  1151. unsigned long end_addr,
  1152. struct zap_details *details)
  1153. {
  1154. unsigned long start = max(vma->vm_start, start_addr);
  1155. unsigned long end;
  1156. if (start >= vma->vm_end)
  1157. return;
  1158. end = min(vma->vm_end, end_addr);
  1159. if (end <= vma->vm_start)
  1160. return;
  1161. if (vma->vm_file)
  1162. uprobe_munmap(vma, start, end);
  1163. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1164. untrack_pfn(vma, 0, 0);
  1165. if (start != end) {
  1166. if (unlikely(is_vm_hugetlb_page(vma))) {
  1167. /*
  1168. * It is undesirable to test vma->vm_file as it
  1169. * should be non-null for valid hugetlb area.
  1170. * However, vm_file will be NULL in the error
  1171. * cleanup path of mmap_region. When
  1172. * hugetlbfs ->mmap method fails,
  1173. * mmap_region() nullifies vma->vm_file
  1174. * before calling this function to clean up.
  1175. * Since no pte has actually been setup, it is
  1176. * safe to do nothing in this case.
  1177. */
  1178. if (vma->vm_file) {
  1179. i_mmap_lock_write(vma->vm_file->f_mapping);
  1180. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1181. i_mmap_unlock_write(vma->vm_file->f_mapping);
  1182. }
  1183. } else
  1184. unmap_page_range(tlb, vma, start, end, details);
  1185. }
  1186. }
  1187. /**
  1188. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1189. * @tlb: address of the caller's struct mmu_gather
  1190. * @vma: the starting vma
  1191. * @start_addr: virtual address at which to start unmapping
  1192. * @end_addr: virtual address at which to end unmapping
  1193. *
  1194. * Unmap all pages in the vma list.
  1195. *
  1196. * Only addresses between `start' and `end' will be unmapped.
  1197. *
  1198. * The VMA list must be sorted in ascending virtual address order.
  1199. *
  1200. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1201. * range after unmap_vmas() returns. So the only responsibility here is to
  1202. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1203. * drops the lock and schedules.
  1204. */
  1205. void unmap_vmas(struct mmu_gather *tlb,
  1206. struct vm_area_struct *vma, unsigned long start_addr,
  1207. unsigned long end_addr)
  1208. {
  1209. struct mm_struct *mm = vma->vm_mm;
  1210. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1211. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1212. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1213. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1214. }
  1215. /**
  1216. * zap_page_range - remove user pages in a given range
  1217. * @vma: vm_area_struct holding the applicable pages
  1218. * @start: starting address of pages to zap
  1219. * @size: number of bytes to zap
  1220. * @details: details of shared cache invalidation
  1221. *
  1222. * Caller must protect the VMA list
  1223. */
  1224. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1225. unsigned long size, struct zap_details *details)
  1226. {
  1227. struct mm_struct *mm = vma->vm_mm;
  1228. struct mmu_gather tlb;
  1229. unsigned long end = start + size;
  1230. lru_add_drain();
  1231. tlb_gather_mmu(&tlb, mm, start, end);
  1232. update_hiwater_rss(mm);
  1233. mmu_notifier_invalidate_range_start(mm, start, end);
  1234. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1235. unmap_single_vma(&tlb, vma, start, end, details);
  1236. mmu_notifier_invalidate_range_end(mm, start, end);
  1237. tlb_finish_mmu(&tlb, start, end);
  1238. }
  1239. /**
  1240. * zap_page_range_single - remove user pages in a given range
  1241. * @vma: vm_area_struct holding the applicable pages
  1242. * @address: starting address of pages to zap
  1243. * @size: number of bytes to zap
  1244. * @details: details of shared cache invalidation
  1245. *
  1246. * The range must fit into one VMA.
  1247. */
  1248. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1249. unsigned long size, struct zap_details *details)
  1250. {
  1251. struct mm_struct *mm = vma->vm_mm;
  1252. struct mmu_gather tlb;
  1253. unsigned long end = address + size;
  1254. lru_add_drain();
  1255. tlb_gather_mmu(&tlb, mm, address, end);
  1256. update_hiwater_rss(mm);
  1257. mmu_notifier_invalidate_range_start(mm, address, end);
  1258. unmap_single_vma(&tlb, vma, address, end, details);
  1259. mmu_notifier_invalidate_range_end(mm, address, end);
  1260. tlb_finish_mmu(&tlb, address, end);
  1261. }
  1262. /**
  1263. * zap_vma_ptes - remove ptes mapping the vma
  1264. * @vma: vm_area_struct holding ptes to be zapped
  1265. * @address: starting address of pages to zap
  1266. * @size: number of bytes to zap
  1267. *
  1268. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1269. *
  1270. * The entire address range must be fully contained within the vma.
  1271. *
  1272. * Returns 0 if successful.
  1273. */
  1274. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1275. unsigned long size)
  1276. {
  1277. if (address < vma->vm_start || address + size > vma->vm_end ||
  1278. !(vma->vm_flags & VM_PFNMAP))
  1279. return -1;
  1280. zap_page_range_single(vma, address, size, NULL);
  1281. return 0;
  1282. }
  1283. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1284. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1285. spinlock_t **ptl)
  1286. {
  1287. pgd_t * pgd = pgd_offset(mm, addr);
  1288. pud_t * pud = pud_alloc(mm, pgd, addr);
  1289. if (pud) {
  1290. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1291. if (pmd) {
  1292. VM_BUG_ON(pmd_trans_huge(*pmd));
  1293. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1294. }
  1295. }
  1296. return NULL;
  1297. }
  1298. /*
  1299. * This is the old fallback for page remapping.
  1300. *
  1301. * For historical reasons, it only allows reserved pages. Only
  1302. * old drivers should use this, and they needed to mark their
  1303. * pages reserved for the old functions anyway.
  1304. */
  1305. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1306. struct page *page, pgprot_t prot)
  1307. {
  1308. struct mm_struct *mm = vma->vm_mm;
  1309. int retval;
  1310. pte_t *pte;
  1311. spinlock_t *ptl;
  1312. retval = -EINVAL;
  1313. if (PageAnon(page))
  1314. goto out;
  1315. retval = -ENOMEM;
  1316. flush_dcache_page(page);
  1317. pte = get_locked_pte(mm, addr, &ptl);
  1318. if (!pte)
  1319. goto out;
  1320. retval = -EBUSY;
  1321. if (!pte_none(*pte))
  1322. goto out_unlock;
  1323. /* Ok, finally just insert the thing.. */
  1324. get_page(page);
  1325. inc_mm_counter_fast(mm, mm_counter_file(page));
  1326. page_add_file_rmap(page);
  1327. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1328. retval = 0;
  1329. pte_unmap_unlock(pte, ptl);
  1330. return retval;
  1331. out_unlock:
  1332. pte_unmap_unlock(pte, ptl);
  1333. out:
  1334. return retval;
  1335. }
  1336. /**
  1337. * vm_insert_page - insert single page into user vma
  1338. * @vma: user vma to map to
  1339. * @addr: target user address of this page
  1340. * @page: source kernel page
  1341. *
  1342. * This allows drivers to insert individual pages they've allocated
  1343. * into a user vma.
  1344. *
  1345. * The page has to be a nice clean _individual_ kernel allocation.
  1346. * If you allocate a compound page, you need to have marked it as
  1347. * such (__GFP_COMP), or manually just split the page up yourself
  1348. * (see split_page()).
  1349. *
  1350. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1351. * took an arbitrary page protection parameter. This doesn't allow
  1352. * that. Your vma protection will have to be set up correctly, which
  1353. * means that if you want a shared writable mapping, you'd better
  1354. * ask for a shared writable mapping!
  1355. *
  1356. * The page does not need to be reserved.
  1357. *
  1358. * Usually this function is called from f_op->mmap() handler
  1359. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1360. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1361. * function from other places, for example from page-fault handler.
  1362. */
  1363. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1364. struct page *page)
  1365. {
  1366. if (addr < vma->vm_start || addr >= vma->vm_end)
  1367. return -EFAULT;
  1368. if (!page_count(page))
  1369. return -EINVAL;
  1370. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1371. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1372. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1373. vma->vm_flags |= VM_MIXEDMAP;
  1374. }
  1375. return insert_page(vma, addr, page, vma->vm_page_prot);
  1376. }
  1377. EXPORT_SYMBOL(vm_insert_page);
  1378. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1379. pfn_t pfn, pgprot_t prot)
  1380. {
  1381. struct mm_struct *mm = vma->vm_mm;
  1382. int retval;
  1383. pte_t *pte, entry;
  1384. spinlock_t *ptl;
  1385. retval = -ENOMEM;
  1386. pte = get_locked_pte(mm, addr, &ptl);
  1387. if (!pte)
  1388. goto out;
  1389. retval = -EBUSY;
  1390. if (!pte_none(*pte))
  1391. goto out_unlock;
  1392. /* Ok, finally just insert the thing.. */
  1393. if (pfn_t_devmap(pfn))
  1394. entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
  1395. else
  1396. entry = pte_mkspecial(pfn_t_pte(pfn, prot));
  1397. set_pte_at(mm, addr, pte, entry);
  1398. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1399. retval = 0;
  1400. out_unlock:
  1401. pte_unmap_unlock(pte, ptl);
  1402. out:
  1403. return retval;
  1404. }
  1405. /**
  1406. * vm_insert_pfn - insert single pfn into user vma
  1407. * @vma: user vma to map to
  1408. * @addr: target user address of this page
  1409. * @pfn: source kernel pfn
  1410. *
  1411. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1412. * they've allocated into a user vma. Same comments apply.
  1413. *
  1414. * This function should only be called from a vm_ops->fault handler, and
  1415. * in that case the handler should return NULL.
  1416. *
  1417. * vma cannot be a COW mapping.
  1418. *
  1419. * As this is called only for pages that do not currently exist, we
  1420. * do not need to flush old virtual caches or the TLB.
  1421. */
  1422. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1423. unsigned long pfn)
  1424. {
  1425. return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
  1426. }
  1427. EXPORT_SYMBOL(vm_insert_pfn);
  1428. /**
  1429. * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
  1430. * @vma: user vma to map to
  1431. * @addr: target user address of this page
  1432. * @pfn: source kernel pfn
  1433. * @pgprot: pgprot flags for the inserted page
  1434. *
  1435. * This is exactly like vm_insert_pfn, except that it allows drivers to
  1436. * to override pgprot on a per-page basis.
  1437. *
  1438. * This only makes sense for IO mappings, and it makes no sense for
  1439. * cow mappings. In general, using multiple vmas is preferable;
  1440. * vm_insert_pfn_prot should only be used if using multiple VMAs is
  1441. * impractical.
  1442. */
  1443. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  1444. unsigned long pfn, pgprot_t pgprot)
  1445. {
  1446. int ret;
  1447. /*
  1448. * Technically, architectures with pte_special can avoid all these
  1449. * restrictions (same for remap_pfn_range). However we would like
  1450. * consistency in testing and feature parity among all, so we should
  1451. * try to keep these invariants in place for everybody.
  1452. */
  1453. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1454. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1455. (VM_PFNMAP|VM_MIXEDMAP));
  1456. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1457. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1458. if (addr < vma->vm_start || addr >= vma->vm_end)
  1459. return -EFAULT;
  1460. if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
  1461. return -EINVAL;
  1462. ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
  1463. return ret;
  1464. }
  1465. EXPORT_SYMBOL(vm_insert_pfn_prot);
  1466. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1467. pfn_t pfn)
  1468. {
  1469. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1470. if (addr < vma->vm_start || addr >= vma->vm_end)
  1471. return -EFAULT;
  1472. /*
  1473. * If we don't have pte special, then we have to use the pfn_valid()
  1474. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1475. * refcount the page if pfn_valid is true (hence insert_page rather
  1476. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1477. * without pte special, it would there be refcounted as a normal page.
  1478. */
  1479. if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
  1480. struct page *page;
  1481. /*
  1482. * At this point we are committed to insert_page()
  1483. * regardless of whether the caller specified flags that
  1484. * result in pfn_t_has_page() == false.
  1485. */
  1486. page = pfn_to_page(pfn_t_to_pfn(pfn));
  1487. return insert_page(vma, addr, page, vma->vm_page_prot);
  1488. }
  1489. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1490. }
  1491. EXPORT_SYMBOL(vm_insert_mixed);
  1492. /*
  1493. * maps a range of physical memory into the requested pages. the old
  1494. * mappings are removed. any references to nonexistent pages results
  1495. * in null mappings (currently treated as "copy-on-access")
  1496. */
  1497. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1498. unsigned long addr, unsigned long end,
  1499. unsigned long pfn, pgprot_t prot)
  1500. {
  1501. pte_t *pte;
  1502. spinlock_t *ptl;
  1503. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1504. if (!pte)
  1505. return -ENOMEM;
  1506. arch_enter_lazy_mmu_mode();
  1507. do {
  1508. BUG_ON(!pte_none(*pte));
  1509. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1510. pfn++;
  1511. } while (pte++, addr += PAGE_SIZE, addr != end);
  1512. arch_leave_lazy_mmu_mode();
  1513. pte_unmap_unlock(pte - 1, ptl);
  1514. return 0;
  1515. }
  1516. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1517. unsigned long addr, unsigned long end,
  1518. unsigned long pfn, pgprot_t prot)
  1519. {
  1520. pmd_t *pmd;
  1521. unsigned long next;
  1522. pfn -= addr >> PAGE_SHIFT;
  1523. pmd = pmd_alloc(mm, pud, addr);
  1524. if (!pmd)
  1525. return -ENOMEM;
  1526. VM_BUG_ON(pmd_trans_huge(*pmd));
  1527. do {
  1528. next = pmd_addr_end(addr, end);
  1529. if (remap_pte_range(mm, pmd, addr, next,
  1530. pfn + (addr >> PAGE_SHIFT), prot))
  1531. return -ENOMEM;
  1532. } while (pmd++, addr = next, addr != end);
  1533. return 0;
  1534. }
  1535. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1536. unsigned long addr, unsigned long end,
  1537. unsigned long pfn, pgprot_t prot)
  1538. {
  1539. pud_t *pud;
  1540. unsigned long next;
  1541. pfn -= addr >> PAGE_SHIFT;
  1542. pud = pud_alloc(mm, pgd, addr);
  1543. if (!pud)
  1544. return -ENOMEM;
  1545. do {
  1546. next = pud_addr_end(addr, end);
  1547. if (remap_pmd_range(mm, pud, addr, next,
  1548. pfn + (addr >> PAGE_SHIFT), prot))
  1549. return -ENOMEM;
  1550. } while (pud++, addr = next, addr != end);
  1551. return 0;
  1552. }
  1553. /**
  1554. * remap_pfn_range - remap kernel memory to userspace
  1555. * @vma: user vma to map to
  1556. * @addr: target user address to start at
  1557. * @pfn: physical address of kernel memory
  1558. * @size: size of map area
  1559. * @prot: page protection flags for this mapping
  1560. *
  1561. * Note: this is only safe if the mm semaphore is held when called.
  1562. */
  1563. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1564. unsigned long pfn, unsigned long size, pgprot_t prot)
  1565. {
  1566. pgd_t *pgd;
  1567. unsigned long next;
  1568. unsigned long end = addr + PAGE_ALIGN(size);
  1569. struct mm_struct *mm = vma->vm_mm;
  1570. unsigned long remap_pfn = pfn;
  1571. int err;
  1572. /*
  1573. * Physically remapped pages are special. Tell the
  1574. * rest of the world about it:
  1575. * VM_IO tells people not to look at these pages
  1576. * (accesses can have side effects).
  1577. * VM_PFNMAP tells the core MM that the base pages are just
  1578. * raw PFN mappings, and do not have a "struct page" associated
  1579. * with them.
  1580. * VM_DONTEXPAND
  1581. * Disable vma merging and expanding with mremap().
  1582. * VM_DONTDUMP
  1583. * Omit vma from core dump, even when VM_IO turned off.
  1584. *
  1585. * There's a horrible special case to handle copy-on-write
  1586. * behaviour that some programs depend on. We mark the "original"
  1587. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1588. * See vm_normal_page() for details.
  1589. */
  1590. if (is_cow_mapping(vma->vm_flags)) {
  1591. if (addr != vma->vm_start || end != vma->vm_end)
  1592. return -EINVAL;
  1593. vma->vm_pgoff = pfn;
  1594. }
  1595. err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
  1596. if (err)
  1597. return -EINVAL;
  1598. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  1599. BUG_ON(addr >= end);
  1600. pfn -= addr >> PAGE_SHIFT;
  1601. pgd = pgd_offset(mm, addr);
  1602. flush_cache_range(vma, addr, end);
  1603. do {
  1604. next = pgd_addr_end(addr, end);
  1605. err = remap_pud_range(mm, pgd, addr, next,
  1606. pfn + (addr >> PAGE_SHIFT), prot);
  1607. if (err)
  1608. break;
  1609. } while (pgd++, addr = next, addr != end);
  1610. if (err)
  1611. untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
  1612. return err;
  1613. }
  1614. EXPORT_SYMBOL(remap_pfn_range);
  1615. /**
  1616. * vm_iomap_memory - remap memory to userspace
  1617. * @vma: user vma to map to
  1618. * @start: start of area
  1619. * @len: size of area
  1620. *
  1621. * This is a simplified io_remap_pfn_range() for common driver use. The
  1622. * driver just needs to give us the physical memory range to be mapped,
  1623. * we'll figure out the rest from the vma information.
  1624. *
  1625. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  1626. * whatever write-combining details or similar.
  1627. */
  1628. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  1629. {
  1630. unsigned long vm_len, pfn, pages;
  1631. /* Check that the physical memory area passed in looks valid */
  1632. if (start + len < start)
  1633. return -EINVAL;
  1634. /*
  1635. * You *really* shouldn't map things that aren't page-aligned,
  1636. * but we've historically allowed it because IO memory might
  1637. * just have smaller alignment.
  1638. */
  1639. len += start & ~PAGE_MASK;
  1640. pfn = start >> PAGE_SHIFT;
  1641. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  1642. if (pfn + pages < pfn)
  1643. return -EINVAL;
  1644. /* We start the mapping 'vm_pgoff' pages into the area */
  1645. if (vma->vm_pgoff > pages)
  1646. return -EINVAL;
  1647. pfn += vma->vm_pgoff;
  1648. pages -= vma->vm_pgoff;
  1649. /* Can we fit all of the mapping? */
  1650. vm_len = vma->vm_end - vma->vm_start;
  1651. if (vm_len >> PAGE_SHIFT > pages)
  1652. return -EINVAL;
  1653. /* Ok, let it rip */
  1654. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  1655. }
  1656. EXPORT_SYMBOL(vm_iomap_memory);
  1657. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1658. unsigned long addr, unsigned long end,
  1659. pte_fn_t fn, void *data)
  1660. {
  1661. pte_t *pte;
  1662. int err;
  1663. pgtable_t token;
  1664. spinlock_t *uninitialized_var(ptl);
  1665. pte = (mm == &init_mm) ?
  1666. pte_alloc_kernel(pmd, addr) :
  1667. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1668. if (!pte)
  1669. return -ENOMEM;
  1670. BUG_ON(pmd_huge(*pmd));
  1671. arch_enter_lazy_mmu_mode();
  1672. token = pmd_pgtable(*pmd);
  1673. do {
  1674. err = fn(pte++, token, addr, data);
  1675. if (err)
  1676. break;
  1677. } while (addr += PAGE_SIZE, addr != end);
  1678. arch_leave_lazy_mmu_mode();
  1679. if (mm != &init_mm)
  1680. pte_unmap_unlock(pte-1, ptl);
  1681. return err;
  1682. }
  1683. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1684. unsigned long addr, unsigned long end,
  1685. pte_fn_t fn, void *data)
  1686. {
  1687. pmd_t *pmd;
  1688. unsigned long next;
  1689. int err;
  1690. BUG_ON(pud_huge(*pud));
  1691. pmd = pmd_alloc(mm, pud, addr);
  1692. if (!pmd)
  1693. return -ENOMEM;
  1694. do {
  1695. next = pmd_addr_end(addr, end);
  1696. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1697. if (err)
  1698. break;
  1699. } while (pmd++, addr = next, addr != end);
  1700. return err;
  1701. }
  1702. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1703. unsigned long addr, unsigned long end,
  1704. pte_fn_t fn, void *data)
  1705. {
  1706. pud_t *pud;
  1707. unsigned long next;
  1708. int err;
  1709. pud = pud_alloc(mm, pgd, addr);
  1710. if (!pud)
  1711. return -ENOMEM;
  1712. do {
  1713. next = pud_addr_end(addr, end);
  1714. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1715. if (err)
  1716. break;
  1717. } while (pud++, addr = next, addr != end);
  1718. return err;
  1719. }
  1720. /*
  1721. * Scan a region of virtual memory, filling in page tables as necessary
  1722. * and calling a provided function on each leaf page table.
  1723. */
  1724. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1725. unsigned long size, pte_fn_t fn, void *data)
  1726. {
  1727. pgd_t *pgd;
  1728. unsigned long next;
  1729. unsigned long end = addr + size;
  1730. int err;
  1731. if (WARN_ON(addr >= end))
  1732. return -EINVAL;
  1733. pgd = pgd_offset(mm, addr);
  1734. do {
  1735. next = pgd_addr_end(addr, end);
  1736. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1737. if (err)
  1738. break;
  1739. } while (pgd++, addr = next, addr != end);
  1740. return err;
  1741. }
  1742. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1743. /*
  1744. * handle_pte_fault chooses page fault handler according to an entry which was
  1745. * read non-atomically. Before making any commitment, on those architectures
  1746. * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
  1747. * parts, do_swap_page must check under lock before unmapping the pte and
  1748. * proceeding (but do_wp_page is only called after already making such a check;
  1749. * and do_anonymous_page can safely check later on).
  1750. */
  1751. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1752. pte_t *page_table, pte_t orig_pte)
  1753. {
  1754. int same = 1;
  1755. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1756. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1757. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1758. spin_lock(ptl);
  1759. same = pte_same(*page_table, orig_pte);
  1760. spin_unlock(ptl);
  1761. }
  1762. #endif
  1763. pte_unmap(page_table);
  1764. return same;
  1765. }
  1766. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1767. {
  1768. debug_dma_assert_idle(src);
  1769. /*
  1770. * If the source page was a PFN mapping, we don't have
  1771. * a "struct page" for it. We do a best-effort copy by
  1772. * just copying from the original user address. If that
  1773. * fails, we just zero-fill it. Live with it.
  1774. */
  1775. if (unlikely(!src)) {
  1776. void *kaddr = kmap_atomic(dst);
  1777. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1778. /*
  1779. * This really shouldn't fail, because the page is there
  1780. * in the page tables. But it might just be unreadable,
  1781. * in which case we just give up and fill the result with
  1782. * zeroes.
  1783. */
  1784. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1785. clear_page(kaddr);
  1786. kunmap_atomic(kaddr);
  1787. flush_dcache_page(dst);
  1788. } else
  1789. copy_user_highpage(dst, src, va, vma);
  1790. }
  1791. static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
  1792. {
  1793. struct file *vm_file = vma->vm_file;
  1794. if (vm_file)
  1795. return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
  1796. /*
  1797. * Special mappings (e.g. VDSO) do not have any file so fake
  1798. * a default GFP_KERNEL for them.
  1799. */
  1800. return GFP_KERNEL;
  1801. }
  1802. /*
  1803. * Notify the address space that the page is about to become writable so that
  1804. * it can prohibit this or wait for the page to get into an appropriate state.
  1805. *
  1806. * We do this without the lock held, so that it can sleep if it needs to.
  1807. */
  1808. static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
  1809. unsigned long address)
  1810. {
  1811. struct vm_fault vmf;
  1812. int ret;
  1813. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1814. vmf.pgoff = page->index;
  1815. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1816. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  1817. vmf.page = page;
  1818. vmf.cow_page = NULL;
  1819. ret = vma->vm_ops->page_mkwrite(vma, &vmf);
  1820. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1821. return ret;
  1822. if (unlikely(!(ret & VM_FAULT_LOCKED))) {
  1823. lock_page(page);
  1824. if (!page->mapping) {
  1825. unlock_page(page);
  1826. return 0; /* retry */
  1827. }
  1828. ret |= VM_FAULT_LOCKED;
  1829. } else
  1830. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1831. return ret;
  1832. }
  1833. /*
  1834. * Handle write page faults for pages that can be reused in the current vma
  1835. *
  1836. * This can happen either due to the mapping being with the VM_SHARED flag,
  1837. * or due to us being the last reference standing to the page. In either
  1838. * case, all we need to do here is to mark the page as writable and update
  1839. * any related book-keeping.
  1840. */
  1841. static inline int wp_page_reuse(struct fault_env *fe, pte_t orig_pte,
  1842. struct page *page, int page_mkwrite, int dirty_shared)
  1843. __releases(fe->ptl)
  1844. {
  1845. struct vm_area_struct *vma = fe->vma;
  1846. pte_t entry;
  1847. /*
  1848. * Clear the pages cpupid information as the existing
  1849. * information potentially belongs to a now completely
  1850. * unrelated process.
  1851. */
  1852. if (page)
  1853. page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
  1854. flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
  1855. entry = pte_mkyoung(orig_pte);
  1856. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1857. if (ptep_set_access_flags(vma, fe->address, fe->pte, entry, 1))
  1858. update_mmu_cache(vma, fe->address, fe->pte);
  1859. pte_unmap_unlock(fe->pte, fe->ptl);
  1860. if (dirty_shared) {
  1861. struct address_space *mapping;
  1862. int dirtied;
  1863. if (!page_mkwrite)
  1864. lock_page(page);
  1865. dirtied = set_page_dirty(page);
  1866. VM_BUG_ON_PAGE(PageAnon(page), page);
  1867. mapping = page->mapping;
  1868. unlock_page(page);
  1869. put_page(page);
  1870. if ((dirtied || page_mkwrite) && mapping) {
  1871. /*
  1872. * Some device drivers do not set page.mapping
  1873. * but still dirty their pages
  1874. */
  1875. balance_dirty_pages_ratelimited(mapping);
  1876. }
  1877. if (!page_mkwrite)
  1878. file_update_time(vma->vm_file);
  1879. }
  1880. return VM_FAULT_WRITE;
  1881. }
  1882. /*
  1883. * Handle the case of a page which we actually need to copy to a new page.
  1884. *
  1885. * Called with mmap_sem locked and the old page referenced, but
  1886. * without the ptl held.
  1887. *
  1888. * High level logic flow:
  1889. *
  1890. * - Allocate a page, copy the content of the old page to the new one.
  1891. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
  1892. * - Take the PTL. If the pte changed, bail out and release the allocated page
  1893. * - If the pte is still the way we remember it, update the page table and all
  1894. * relevant references. This includes dropping the reference the page-table
  1895. * held to the old page, as well as updating the rmap.
  1896. * - In any case, unlock the PTL and drop the reference we took to the old page.
  1897. */
  1898. static int wp_page_copy(struct fault_env *fe, pte_t orig_pte,
  1899. struct page *old_page)
  1900. {
  1901. struct vm_area_struct *vma = fe->vma;
  1902. struct mm_struct *mm = vma->vm_mm;
  1903. struct page *new_page = NULL;
  1904. pte_t entry;
  1905. int page_copied = 0;
  1906. const unsigned long mmun_start = fe->address & PAGE_MASK;
  1907. const unsigned long mmun_end = mmun_start + PAGE_SIZE;
  1908. struct mem_cgroup *memcg;
  1909. if (unlikely(anon_vma_prepare(vma)))
  1910. goto oom;
  1911. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1912. new_page = alloc_zeroed_user_highpage_movable(vma, fe->address);
  1913. if (!new_page)
  1914. goto oom;
  1915. } else {
  1916. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
  1917. fe->address);
  1918. if (!new_page)
  1919. goto oom;
  1920. cow_user_page(new_page, old_page, fe->address, vma);
  1921. }
  1922. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
  1923. goto oom_free_new;
  1924. __SetPageUptodate(new_page);
  1925. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1926. /*
  1927. * Re-check the pte - we dropped the lock
  1928. */
  1929. fe->pte = pte_offset_map_lock(mm, fe->pmd, fe->address, &fe->ptl);
  1930. if (likely(pte_same(*fe->pte, orig_pte))) {
  1931. if (old_page) {
  1932. if (!PageAnon(old_page)) {
  1933. dec_mm_counter_fast(mm,
  1934. mm_counter_file(old_page));
  1935. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1936. }
  1937. } else {
  1938. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1939. }
  1940. flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
  1941. entry = mk_pte(new_page, vma->vm_page_prot);
  1942. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1943. /*
  1944. * Clear the pte entry and flush it first, before updating the
  1945. * pte with the new entry. This will avoid a race condition
  1946. * seen in the presence of one thread doing SMC and another
  1947. * thread doing COW.
  1948. */
  1949. ptep_clear_flush_notify(vma, fe->address, fe->pte);
  1950. page_add_new_anon_rmap(new_page, vma, fe->address, false);
  1951. mem_cgroup_commit_charge(new_page, memcg, false, false);
  1952. lru_cache_add_active_or_unevictable(new_page, vma);
  1953. /*
  1954. * We call the notify macro here because, when using secondary
  1955. * mmu page tables (such as kvm shadow page tables), we want the
  1956. * new page to be mapped directly into the secondary page table.
  1957. */
  1958. set_pte_at_notify(mm, fe->address, fe->pte, entry);
  1959. update_mmu_cache(vma, fe->address, fe->pte);
  1960. if (old_page) {
  1961. /*
  1962. * Only after switching the pte to the new page may
  1963. * we remove the mapcount here. Otherwise another
  1964. * process may come and find the rmap count decremented
  1965. * before the pte is switched to the new page, and
  1966. * "reuse" the old page writing into it while our pte
  1967. * here still points into it and can be read by other
  1968. * threads.
  1969. *
  1970. * The critical issue is to order this
  1971. * page_remove_rmap with the ptp_clear_flush above.
  1972. * Those stores are ordered by (if nothing else,)
  1973. * the barrier present in the atomic_add_negative
  1974. * in page_remove_rmap.
  1975. *
  1976. * Then the TLB flush in ptep_clear_flush ensures that
  1977. * no process can access the old page before the
  1978. * decremented mapcount is visible. And the old page
  1979. * cannot be reused until after the decremented
  1980. * mapcount is visible. So transitively, TLBs to
  1981. * old page will be flushed before it can be reused.
  1982. */
  1983. page_remove_rmap(old_page, false);
  1984. }
  1985. /* Free the old page.. */
  1986. new_page = old_page;
  1987. page_copied = 1;
  1988. } else {
  1989. mem_cgroup_cancel_charge(new_page, memcg, false);
  1990. }
  1991. if (new_page)
  1992. put_page(new_page);
  1993. pte_unmap_unlock(fe->pte, fe->ptl);
  1994. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1995. if (old_page) {
  1996. /*
  1997. * Don't let another task, with possibly unlocked vma,
  1998. * keep the mlocked page.
  1999. */
  2000. if (page_copied && (vma->vm_flags & VM_LOCKED)) {
  2001. lock_page(old_page); /* LRU manipulation */
  2002. if (PageMlocked(old_page))
  2003. munlock_vma_page(old_page);
  2004. unlock_page(old_page);
  2005. }
  2006. put_page(old_page);
  2007. }
  2008. return page_copied ? VM_FAULT_WRITE : 0;
  2009. oom_free_new:
  2010. put_page(new_page);
  2011. oom:
  2012. if (old_page)
  2013. put_page(old_page);
  2014. return VM_FAULT_OOM;
  2015. }
  2016. /*
  2017. * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
  2018. * mapping
  2019. */
  2020. static int wp_pfn_shared(struct fault_env *fe, pte_t orig_pte)
  2021. {
  2022. struct vm_area_struct *vma = fe->vma;
  2023. if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
  2024. struct vm_fault vmf = {
  2025. .page = NULL,
  2026. .pgoff = linear_page_index(vma, fe->address),
  2027. .virtual_address =
  2028. (void __user *)(fe->address & PAGE_MASK),
  2029. .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
  2030. };
  2031. int ret;
  2032. pte_unmap_unlock(fe->pte, fe->ptl);
  2033. ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
  2034. if (ret & VM_FAULT_ERROR)
  2035. return ret;
  2036. fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
  2037. &fe->ptl);
  2038. /*
  2039. * We might have raced with another page fault while we
  2040. * released the pte_offset_map_lock.
  2041. */
  2042. if (!pte_same(*fe->pte, orig_pte)) {
  2043. pte_unmap_unlock(fe->pte, fe->ptl);
  2044. return 0;
  2045. }
  2046. }
  2047. return wp_page_reuse(fe, orig_pte, NULL, 0, 0);
  2048. }
  2049. static int wp_page_shared(struct fault_env *fe, pte_t orig_pte,
  2050. struct page *old_page)
  2051. __releases(fe->ptl)
  2052. {
  2053. struct vm_area_struct *vma = fe->vma;
  2054. int page_mkwrite = 0;
  2055. get_page(old_page);
  2056. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2057. int tmp;
  2058. pte_unmap_unlock(fe->pte, fe->ptl);
  2059. tmp = do_page_mkwrite(vma, old_page, fe->address);
  2060. if (unlikely(!tmp || (tmp &
  2061. (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2062. put_page(old_page);
  2063. return tmp;
  2064. }
  2065. /*
  2066. * Since we dropped the lock we need to revalidate
  2067. * the PTE as someone else may have changed it. If
  2068. * they did, we just return, as we can count on the
  2069. * MMU to tell us if they didn't also make it writable.
  2070. */
  2071. fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
  2072. &fe->ptl);
  2073. if (!pte_same(*fe->pte, orig_pte)) {
  2074. unlock_page(old_page);
  2075. pte_unmap_unlock(fe->pte, fe->ptl);
  2076. put_page(old_page);
  2077. return 0;
  2078. }
  2079. page_mkwrite = 1;
  2080. }
  2081. return wp_page_reuse(fe, orig_pte, old_page, page_mkwrite, 1);
  2082. }
  2083. /*
  2084. * This routine handles present pages, when users try to write
  2085. * to a shared page. It is done by copying the page to a new address
  2086. * and decrementing the shared-page counter for the old page.
  2087. *
  2088. * Note that this routine assumes that the protection checks have been
  2089. * done by the caller (the low-level page fault routine in most cases).
  2090. * Thus we can safely just mark it writable once we've done any necessary
  2091. * COW.
  2092. *
  2093. * We also mark the page dirty at this point even though the page will
  2094. * change only once the write actually happens. This avoids a few races,
  2095. * and potentially makes it more efficient.
  2096. *
  2097. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2098. * but allow concurrent faults), with pte both mapped and locked.
  2099. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2100. */
  2101. static int do_wp_page(struct fault_env *fe, pte_t orig_pte)
  2102. __releases(fe->ptl)
  2103. {
  2104. struct vm_area_struct *vma = fe->vma;
  2105. struct page *old_page;
  2106. old_page = vm_normal_page(vma, fe->address, orig_pte);
  2107. if (!old_page) {
  2108. /*
  2109. * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
  2110. * VM_PFNMAP VMA.
  2111. *
  2112. * We should not cow pages in a shared writeable mapping.
  2113. * Just mark the pages writable and/or call ops->pfn_mkwrite.
  2114. */
  2115. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2116. (VM_WRITE|VM_SHARED))
  2117. return wp_pfn_shared(fe, orig_pte);
  2118. pte_unmap_unlock(fe->pte, fe->ptl);
  2119. return wp_page_copy(fe, orig_pte, old_page);
  2120. }
  2121. /*
  2122. * Take out anonymous pages first, anonymous shared vmas are
  2123. * not dirty accountable.
  2124. */
  2125. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2126. int total_mapcount;
  2127. if (!trylock_page(old_page)) {
  2128. get_page(old_page);
  2129. pte_unmap_unlock(fe->pte, fe->ptl);
  2130. lock_page(old_page);
  2131. fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
  2132. fe->address, &fe->ptl);
  2133. if (!pte_same(*fe->pte, orig_pte)) {
  2134. unlock_page(old_page);
  2135. pte_unmap_unlock(fe->pte, fe->ptl);
  2136. put_page(old_page);
  2137. return 0;
  2138. }
  2139. put_page(old_page);
  2140. }
  2141. if (reuse_swap_page(old_page, &total_mapcount)) {
  2142. if (total_mapcount == 1) {
  2143. /*
  2144. * The page is all ours. Move it to
  2145. * our anon_vma so the rmap code will
  2146. * not search our parent or siblings.
  2147. * Protected against the rmap code by
  2148. * the page lock.
  2149. */
  2150. page_move_anon_rmap(old_page, vma);
  2151. }
  2152. unlock_page(old_page);
  2153. return wp_page_reuse(fe, orig_pte, old_page, 0, 0);
  2154. }
  2155. unlock_page(old_page);
  2156. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2157. (VM_WRITE|VM_SHARED))) {
  2158. return wp_page_shared(fe, orig_pte, old_page);
  2159. }
  2160. /*
  2161. * Ok, we need to copy. Oh, well..
  2162. */
  2163. get_page(old_page);
  2164. pte_unmap_unlock(fe->pte, fe->ptl);
  2165. return wp_page_copy(fe, orig_pte, old_page);
  2166. }
  2167. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2168. unsigned long start_addr, unsigned long end_addr,
  2169. struct zap_details *details)
  2170. {
  2171. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2172. }
  2173. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2174. struct zap_details *details)
  2175. {
  2176. struct vm_area_struct *vma;
  2177. pgoff_t vba, vea, zba, zea;
  2178. vma_interval_tree_foreach(vma, root,
  2179. details->first_index, details->last_index) {
  2180. vba = vma->vm_pgoff;
  2181. vea = vba + vma_pages(vma) - 1;
  2182. zba = details->first_index;
  2183. if (zba < vba)
  2184. zba = vba;
  2185. zea = details->last_index;
  2186. if (zea > vea)
  2187. zea = vea;
  2188. unmap_mapping_range_vma(vma,
  2189. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2190. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2191. details);
  2192. }
  2193. }
  2194. /**
  2195. * unmap_mapping_range - unmap the portion of all mmaps in the specified
  2196. * address_space corresponding to the specified page range in the underlying
  2197. * file.
  2198. *
  2199. * @mapping: the address space containing mmaps to be unmapped.
  2200. * @holebegin: byte in first page to unmap, relative to the start of
  2201. * the underlying file. This will be rounded down to a PAGE_SIZE
  2202. * boundary. Note that this is different from truncate_pagecache(), which
  2203. * must keep the partial page. In contrast, we must get rid of
  2204. * partial pages.
  2205. * @holelen: size of prospective hole in bytes. This will be rounded
  2206. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2207. * end of the file.
  2208. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2209. * but 0 when invalidating pagecache, don't throw away private data.
  2210. */
  2211. void unmap_mapping_range(struct address_space *mapping,
  2212. loff_t const holebegin, loff_t const holelen, int even_cows)
  2213. {
  2214. struct zap_details details = { };
  2215. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2216. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2217. /* Check for overflow. */
  2218. if (sizeof(holelen) > sizeof(hlen)) {
  2219. long long holeend =
  2220. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2221. if (holeend & ~(long long)ULONG_MAX)
  2222. hlen = ULONG_MAX - hba + 1;
  2223. }
  2224. details.check_mapping = even_cows? NULL: mapping;
  2225. details.first_index = hba;
  2226. details.last_index = hba + hlen - 1;
  2227. if (details.last_index < details.first_index)
  2228. details.last_index = ULONG_MAX;
  2229. i_mmap_lock_write(mapping);
  2230. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2231. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2232. i_mmap_unlock_write(mapping);
  2233. }
  2234. EXPORT_SYMBOL(unmap_mapping_range);
  2235. /*
  2236. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2237. * but allow concurrent faults), and pte mapped but not yet locked.
  2238. * We return with pte unmapped and unlocked.
  2239. *
  2240. * We return with the mmap_sem locked or unlocked in the same cases
  2241. * as does filemap_fault().
  2242. */
  2243. int do_swap_page(struct fault_env *fe, pte_t orig_pte)
  2244. {
  2245. struct vm_area_struct *vma = fe->vma;
  2246. struct page *page, *swapcache;
  2247. struct mem_cgroup *memcg;
  2248. swp_entry_t entry;
  2249. pte_t pte;
  2250. int locked;
  2251. int exclusive = 0;
  2252. int ret = 0;
  2253. if (!pte_unmap_same(vma->vm_mm, fe->pmd, fe->pte, orig_pte))
  2254. goto out;
  2255. entry = pte_to_swp_entry(orig_pte);
  2256. if (unlikely(non_swap_entry(entry))) {
  2257. if (is_migration_entry(entry)) {
  2258. migration_entry_wait(vma->vm_mm, fe->pmd, fe->address);
  2259. } else if (is_hwpoison_entry(entry)) {
  2260. ret = VM_FAULT_HWPOISON;
  2261. } else {
  2262. print_bad_pte(vma, fe->address, orig_pte, NULL);
  2263. ret = VM_FAULT_SIGBUS;
  2264. }
  2265. goto out;
  2266. }
  2267. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2268. page = lookup_swap_cache(entry);
  2269. if (!page) {
  2270. page = swapin_readahead(entry,
  2271. GFP_HIGHUSER_MOVABLE, vma, fe->address);
  2272. if (!page) {
  2273. /*
  2274. * Back out if somebody else faulted in this pte
  2275. * while we released the pte lock.
  2276. */
  2277. fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
  2278. fe->address, &fe->ptl);
  2279. if (likely(pte_same(*fe->pte, orig_pte)))
  2280. ret = VM_FAULT_OOM;
  2281. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2282. goto unlock;
  2283. }
  2284. /* Had to read the page from swap area: Major fault */
  2285. ret = VM_FAULT_MAJOR;
  2286. count_vm_event(PGMAJFAULT);
  2287. mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
  2288. } else if (PageHWPoison(page)) {
  2289. /*
  2290. * hwpoisoned dirty swapcache pages are kept for killing
  2291. * owner processes (which may be unknown at hwpoison time)
  2292. */
  2293. ret = VM_FAULT_HWPOISON;
  2294. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2295. swapcache = page;
  2296. goto out_release;
  2297. }
  2298. swapcache = page;
  2299. locked = lock_page_or_retry(page, vma->vm_mm, fe->flags);
  2300. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2301. if (!locked) {
  2302. ret |= VM_FAULT_RETRY;
  2303. goto out_release;
  2304. }
  2305. /*
  2306. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2307. * release the swapcache from under us. The page pin, and pte_same
  2308. * test below, are not enough to exclude that. Even if it is still
  2309. * swapcache, we need to check that the page's swap has not changed.
  2310. */
  2311. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2312. goto out_page;
  2313. page = ksm_might_need_to_copy(page, vma, fe->address);
  2314. if (unlikely(!page)) {
  2315. ret = VM_FAULT_OOM;
  2316. page = swapcache;
  2317. goto out_page;
  2318. }
  2319. if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
  2320. &memcg, false)) {
  2321. ret = VM_FAULT_OOM;
  2322. goto out_page;
  2323. }
  2324. /*
  2325. * Back out if somebody else already faulted in this pte.
  2326. */
  2327. fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
  2328. &fe->ptl);
  2329. if (unlikely(!pte_same(*fe->pte, orig_pte)))
  2330. goto out_nomap;
  2331. if (unlikely(!PageUptodate(page))) {
  2332. ret = VM_FAULT_SIGBUS;
  2333. goto out_nomap;
  2334. }
  2335. /*
  2336. * The page isn't present yet, go ahead with the fault.
  2337. *
  2338. * Be careful about the sequence of operations here.
  2339. * To get its accounting right, reuse_swap_page() must be called
  2340. * while the page is counted on swap but not yet in mapcount i.e.
  2341. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2342. * must be called after the swap_free(), or it will never succeed.
  2343. */
  2344. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2345. dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
  2346. pte = mk_pte(page, vma->vm_page_prot);
  2347. if ((fe->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
  2348. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2349. fe->flags &= ~FAULT_FLAG_WRITE;
  2350. ret |= VM_FAULT_WRITE;
  2351. exclusive = RMAP_EXCLUSIVE;
  2352. }
  2353. flush_icache_page(vma, page);
  2354. if (pte_swp_soft_dirty(orig_pte))
  2355. pte = pte_mksoft_dirty(pte);
  2356. set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
  2357. if (page == swapcache) {
  2358. do_page_add_anon_rmap(page, vma, fe->address, exclusive);
  2359. mem_cgroup_commit_charge(page, memcg, true, false);
  2360. } else { /* ksm created a completely new copy */
  2361. page_add_new_anon_rmap(page, vma, fe->address, false);
  2362. mem_cgroup_commit_charge(page, memcg, false, false);
  2363. lru_cache_add_active_or_unevictable(page, vma);
  2364. }
  2365. swap_free(entry);
  2366. if (mem_cgroup_swap_full(page) ||
  2367. (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2368. try_to_free_swap(page);
  2369. unlock_page(page);
  2370. if (page != swapcache) {
  2371. /*
  2372. * Hold the lock to avoid the swap entry to be reused
  2373. * until we take the PT lock for the pte_same() check
  2374. * (to avoid false positives from pte_same). For
  2375. * further safety release the lock after the swap_free
  2376. * so that the swap count won't change under a
  2377. * parallel locked swapcache.
  2378. */
  2379. unlock_page(swapcache);
  2380. put_page(swapcache);
  2381. }
  2382. if (fe->flags & FAULT_FLAG_WRITE) {
  2383. ret |= do_wp_page(fe, pte);
  2384. if (ret & VM_FAULT_ERROR)
  2385. ret &= VM_FAULT_ERROR;
  2386. goto out;
  2387. }
  2388. /* No need to invalidate - it was non-present before */
  2389. update_mmu_cache(vma, fe->address, fe->pte);
  2390. unlock:
  2391. pte_unmap_unlock(fe->pte, fe->ptl);
  2392. out:
  2393. return ret;
  2394. out_nomap:
  2395. mem_cgroup_cancel_charge(page, memcg, false);
  2396. pte_unmap_unlock(fe->pte, fe->ptl);
  2397. out_page:
  2398. unlock_page(page);
  2399. out_release:
  2400. put_page(page);
  2401. if (page != swapcache) {
  2402. unlock_page(swapcache);
  2403. put_page(swapcache);
  2404. }
  2405. return ret;
  2406. }
  2407. /*
  2408. * This is like a special single-page "expand_{down|up}wards()",
  2409. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2410. * doesn't hit another vma.
  2411. */
  2412. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2413. {
  2414. address &= PAGE_MASK;
  2415. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2416. struct vm_area_struct *prev = vma->vm_prev;
  2417. /*
  2418. * Is there a mapping abutting this one below?
  2419. *
  2420. * That's only ok if it's the same stack mapping
  2421. * that has gotten split..
  2422. */
  2423. if (prev && prev->vm_end == address)
  2424. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2425. return expand_downwards(vma, address - PAGE_SIZE);
  2426. }
  2427. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2428. struct vm_area_struct *next = vma->vm_next;
  2429. /* As VM_GROWSDOWN but s/below/above/ */
  2430. if (next && next->vm_start == address + PAGE_SIZE)
  2431. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2432. return expand_upwards(vma, address + PAGE_SIZE);
  2433. }
  2434. return 0;
  2435. }
  2436. /*
  2437. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2438. * but allow concurrent faults), and pte mapped but not yet locked.
  2439. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2440. */
  2441. static int do_anonymous_page(struct fault_env *fe)
  2442. {
  2443. struct vm_area_struct *vma = fe->vma;
  2444. struct mem_cgroup *memcg;
  2445. struct page *page;
  2446. pte_t entry;
  2447. pte_unmap(fe->pte);
  2448. /* File mapping without ->vm_ops ? */
  2449. if (vma->vm_flags & VM_SHARED)
  2450. return VM_FAULT_SIGBUS;
  2451. /* Check if we need to add a guard page to the stack */
  2452. if (check_stack_guard_page(vma, fe->address) < 0)
  2453. return VM_FAULT_SIGSEGV;
  2454. /* Use the zero-page for reads */
  2455. if (!(fe->flags & FAULT_FLAG_WRITE) &&
  2456. !mm_forbids_zeropage(vma->vm_mm)) {
  2457. entry = pte_mkspecial(pfn_pte(my_zero_pfn(fe->address),
  2458. vma->vm_page_prot));
  2459. fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
  2460. &fe->ptl);
  2461. if (!pte_none(*fe->pte))
  2462. goto unlock;
  2463. /* Deliver the page fault to userland, check inside PT lock */
  2464. if (userfaultfd_missing(vma)) {
  2465. pte_unmap_unlock(fe->pte, fe->ptl);
  2466. return handle_userfault(fe, VM_UFFD_MISSING);
  2467. }
  2468. goto setpte;
  2469. }
  2470. /* Allocate our own private page. */
  2471. if (unlikely(anon_vma_prepare(vma)))
  2472. goto oom;
  2473. page = alloc_zeroed_user_highpage_movable(vma, fe->address);
  2474. if (!page)
  2475. goto oom;
  2476. if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
  2477. goto oom_free_page;
  2478. /*
  2479. * The memory barrier inside __SetPageUptodate makes sure that
  2480. * preceeding stores to the page contents become visible before
  2481. * the set_pte_at() write.
  2482. */
  2483. __SetPageUptodate(page);
  2484. entry = mk_pte(page, vma->vm_page_prot);
  2485. if (vma->vm_flags & VM_WRITE)
  2486. entry = pte_mkwrite(pte_mkdirty(entry));
  2487. fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
  2488. &fe->ptl);
  2489. if (!pte_none(*fe->pte))
  2490. goto release;
  2491. /* Deliver the page fault to userland, check inside PT lock */
  2492. if (userfaultfd_missing(vma)) {
  2493. pte_unmap_unlock(fe->pte, fe->ptl);
  2494. mem_cgroup_cancel_charge(page, memcg, false);
  2495. put_page(page);
  2496. return handle_userfault(fe, VM_UFFD_MISSING);
  2497. }
  2498. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2499. page_add_new_anon_rmap(page, vma, fe->address, false);
  2500. mem_cgroup_commit_charge(page, memcg, false, false);
  2501. lru_cache_add_active_or_unevictable(page, vma);
  2502. setpte:
  2503. set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
  2504. /* No need to invalidate - it was non-present before */
  2505. update_mmu_cache(vma, fe->address, fe->pte);
  2506. unlock:
  2507. pte_unmap_unlock(fe->pte, fe->ptl);
  2508. return 0;
  2509. release:
  2510. mem_cgroup_cancel_charge(page, memcg, false);
  2511. put_page(page);
  2512. goto unlock;
  2513. oom_free_page:
  2514. put_page(page);
  2515. oom:
  2516. return VM_FAULT_OOM;
  2517. }
  2518. /*
  2519. * The mmap_sem must have been held on entry, and may have been
  2520. * released depending on flags and vma->vm_ops->fault() return value.
  2521. * See filemap_fault() and __lock_page_retry().
  2522. */
  2523. static int __do_fault(struct fault_env *fe, pgoff_t pgoff,
  2524. struct page *cow_page, struct page **page, void **entry)
  2525. {
  2526. struct vm_area_struct *vma = fe->vma;
  2527. struct vm_fault vmf;
  2528. int ret;
  2529. vmf.virtual_address = (void __user *)(fe->address & PAGE_MASK);
  2530. vmf.pgoff = pgoff;
  2531. vmf.flags = fe->flags;
  2532. vmf.page = NULL;
  2533. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  2534. vmf.cow_page = cow_page;
  2535. ret = vma->vm_ops->fault(vma, &vmf);
  2536. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2537. return ret;
  2538. if (ret & VM_FAULT_DAX_LOCKED) {
  2539. *entry = vmf.entry;
  2540. return ret;
  2541. }
  2542. if (unlikely(PageHWPoison(vmf.page))) {
  2543. if (ret & VM_FAULT_LOCKED)
  2544. unlock_page(vmf.page);
  2545. put_page(vmf.page);
  2546. return VM_FAULT_HWPOISON;
  2547. }
  2548. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2549. lock_page(vmf.page);
  2550. else
  2551. VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
  2552. *page = vmf.page;
  2553. return ret;
  2554. }
  2555. /**
  2556. * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
  2557. *
  2558. * @fe: fault environment
  2559. * @page: page to map
  2560. *
  2561. * Caller must hold page table lock relevant for @fe->pte.
  2562. *
  2563. * Target users are page handler itself and implementations of
  2564. * vm_ops->map_pages.
  2565. */
  2566. void do_set_pte(struct fault_env *fe, struct page *page)
  2567. {
  2568. struct vm_area_struct *vma = fe->vma;
  2569. bool write = fe->flags & FAULT_FLAG_WRITE;
  2570. pte_t entry;
  2571. flush_icache_page(vma, page);
  2572. entry = mk_pte(page, vma->vm_page_prot);
  2573. if (write)
  2574. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2575. /* copy-on-write page */
  2576. if (write && !(vma->vm_flags & VM_SHARED)) {
  2577. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2578. page_add_new_anon_rmap(page, vma, fe->address, false);
  2579. } else {
  2580. inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
  2581. page_add_file_rmap(page);
  2582. }
  2583. set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
  2584. /* no need to invalidate: a not-present page won't be cached */
  2585. update_mmu_cache(vma, fe->address, fe->pte);
  2586. }
  2587. static unsigned long fault_around_bytes __read_mostly =
  2588. rounddown_pow_of_two(65536);
  2589. #ifdef CONFIG_DEBUG_FS
  2590. static int fault_around_bytes_get(void *data, u64 *val)
  2591. {
  2592. *val = fault_around_bytes;
  2593. return 0;
  2594. }
  2595. /*
  2596. * fault_around_pages() and fault_around_mask() expects fault_around_bytes
  2597. * rounded down to nearest page order. It's what do_fault_around() expects to
  2598. * see.
  2599. */
  2600. static int fault_around_bytes_set(void *data, u64 val)
  2601. {
  2602. if (val / PAGE_SIZE > PTRS_PER_PTE)
  2603. return -EINVAL;
  2604. if (val > PAGE_SIZE)
  2605. fault_around_bytes = rounddown_pow_of_two(val);
  2606. else
  2607. fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
  2608. return 0;
  2609. }
  2610. DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
  2611. fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
  2612. static int __init fault_around_debugfs(void)
  2613. {
  2614. void *ret;
  2615. ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
  2616. &fault_around_bytes_fops);
  2617. if (!ret)
  2618. pr_warn("Failed to create fault_around_bytes in debugfs");
  2619. return 0;
  2620. }
  2621. late_initcall(fault_around_debugfs);
  2622. #endif
  2623. /*
  2624. * do_fault_around() tries to map few pages around the fault address. The hope
  2625. * is that the pages will be needed soon and this will lower the number of
  2626. * faults to handle.
  2627. *
  2628. * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
  2629. * not ready to be mapped: not up-to-date, locked, etc.
  2630. *
  2631. * This function is called with the page table lock taken. In the split ptlock
  2632. * case the page table lock only protects only those entries which belong to
  2633. * the page table corresponding to the fault address.
  2634. *
  2635. * This function doesn't cross the VMA boundaries, in order to call map_pages()
  2636. * only once.
  2637. *
  2638. * fault_around_pages() defines how many pages we'll try to map.
  2639. * do_fault_around() expects it to return a power of two less than or equal to
  2640. * PTRS_PER_PTE.
  2641. *
  2642. * The virtual address of the area that we map is naturally aligned to the
  2643. * fault_around_pages() value (and therefore to page order). This way it's
  2644. * easier to guarantee that we don't cross page table boundaries.
  2645. */
  2646. static void do_fault_around(struct fault_env *fe, pgoff_t start_pgoff)
  2647. {
  2648. unsigned long address = fe->address, start_addr, nr_pages, mask;
  2649. pte_t *pte = fe->pte;
  2650. pgoff_t end_pgoff;
  2651. int off;
  2652. nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
  2653. mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
  2654. start_addr = max(fe->address & mask, fe->vma->vm_start);
  2655. off = ((fe->address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  2656. fe->pte -= off;
  2657. start_pgoff -= off;
  2658. /*
  2659. * end_pgoff is either end of page table or end of vma
  2660. * or fault_around_pages() from start_pgoff, depending what is nearest.
  2661. */
  2662. end_pgoff = start_pgoff -
  2663. ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
  2664. PTRS_PER_PTE - 1;
  2665. end_pgoff = min3(end_pgoff, vma_pages(fe->vma) + fe->vma->vm_pgoff - 1,
  2666. start_pgoff + nr_pages - 1);
  2667. /* Check if it makes any sense to call ->map_pages */
  2668. fe->address = start_addr;
  2669. while (!pte_none(*fe->pte)) {
  2670. if (++start_pgoff > end_pgoff)
  2671. goto out;
  2672. fe->address += PAGE_SIZE;
  2673. if (fe->address >= fe->vma->vm_end)
  2674. goto out;
  2675. fe->pte++;
  2676. }
  2677. fe->vma->vm_ops->map_pages(fe, start_pgoff, end_pgoff);
  2678. out:
  2679. /* restore fault_env */
  2680. fe->pte = pte;
  2681. fe->address = address;
  2682. }
  2683. static int do_read_fault(struct fault_env *fe, pgoff_t pgoff, pte_t orig_pte)
  2684. {
  2685. struct vm_area_struct *vma = fe->vma;
  2686. struct page *fault_page;
  2687. int ret = 0;
  2688. /*
  2689. * Let's call ->map_pages() first and use ->fault() as fallback
  2690. * if page by the offset is not ready to be mapped (cold cache or
  2691. * something).
  2692. */
  2693. if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
  2694. fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
  2695. &fe->ptl);
  2696. if (!pte_same(*fe->pte, orig_pte))
  2697. goto unlock_out;
  2698. do_fault_around(fe, pgoff);
  2699. /* Check if the fault is handled by faultaround */
  2700. if (!pte_same(*fe->pte, orig_pte))
  2701. goto unlock_out;
  2702. pte_unmap_unlock(fe->pte, fe->ptl);
  2703. }
  2704. ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
  2705. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2706. return ret;
  2707. fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, &fe->ptl);
  2708. if (unlikely(!pte_same(*fe->pte, orig_pte))) {
  2709. pte_unmap_unlock(fe->pte, fe->ptl);
  2710. unlock_page(fault_page);
  2711. put_page(fault_page);
  2712. return ret;
  2713. }
  2714. do_set_pte(fe, fault_page);
  2715. unlock_page(fault_page);
  2716. unlock_out:
  2717. pte_unmap_unlock(fe->pte, fe->ptl);
  2718. return ret;
  2719. }
  2720. static int do_cow_fault(struct fault_env *fe, pgoff_t pgoff, pte_t orig_pte)
  2721. {
  2722. struct vm_area_struct *vma = fe->vma;
  2723. struct page *fault_page, *new_page;
  2724. void *fault_entry;
  2725. struct mem_cgroup *memcg;
  2726. int ret;
  2727. if (unlikely(anon_vma_prepare(vma)))
  2728. return VM_FAULT_OOM;
  2729. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, fe->address);
  2730. if (!new_page)
  2731. return VM_FAULT_OOM;
  2732. if (mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
  2733. &memcg, false)) {
  2734. put_page(new_page);
  2735. return VM_FAULT_OOM;
  2736. }
  2737. ret = __do_fault(fe, pgoff, new_page, &fault_page, &fault_entry);
  2738. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2739. goto uncharge_out;
  2740. if (!(ret & VM_FAULT_DAX_LOCKED))
  2741. copy_user_highpage(new_page, fault_page, fe->address, vma);
  2742. __SetPageUptodate(new_page);
  2743. fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
  2744. &fe->ptl);
  2745. if (unlikely(!pte_same(*fe->pte, orig_pte))) {
  2746. pte_unmap_unlock(fe->pte, fe->ptl);
  2747. if (!(ret & VM_FAULT_DAX_LOCKED)) {
  2748. unlock_page(fault_page);
  2749. put_page(fault_page);
  2750. } else {
  2751. dax_unlock_mapping_entry(vma->vm_file->f_mapping,
  2752. pgoff);
  2753. }
  2754. goto uncharge_out;
  2755. }
  2756. do_set_pte(fe, new_page);
  2757. mem_cgroup_commit_charge(new_page, memcg, false, false);
  2758. lru_cache_add_active_or_unevictable(new_page, vma);
  2759. pte_unmap_unlock(fe->pte, fe->ptl);
  2760. if (!(ret & VM_FAULT_DAX_LOCKED)) {
  2761. unlock_page(fault_page);
  2762. put_page(fault_page);
  2763. } else {
  2764. dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff);
  2765. }
  2766. return ret;
  2767. uncharge_out:
  2768. mem_cgroup_cancel_charge(new_page, memcg, false);
  2769. put_page(new_page);
  2770. return ret;
  2771. }
  2772. static int do_shared_fault(struct fault_env *fe, pgoff_t pgoff, pte_t orig_pte)
  2773. {
  2774. struct vm_area_struct *vma = fe->vma;
  2775. struct page *fault_page;
  2776. struct address_space *mapping;
  2777. int dirtied = 0;
  2778. int ret, tmp;
  2779. ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
  2780. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2781. return ret;
  2782. /*
  2783. * Check if the backing address space wants to know that the page is
  2784. * about to become writable
  2785. */
  2786. if (vma->vm_ops->page_mkwrite) {
  2787. unlock_page(fault_page);
  2788. tmp = do_page_mkwrite(vma, fault_page, fe->address);
  2789. if (unlikely(!tmp ||
  2790. (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2791. put_page(fault_page);
  2792. return tmp;
  2793. }
  2794. }
  2795. fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
  2796. &fe->ptl);
  2797. if (unlikely(!pte_same(*fe->pte, orig_pte))) {
  2798. pte_unmap_unlock(fe->pte, fe->ptl);
  2799. unlock_page(fault_page);
  2800. put_page(fault_page);
  2801. return ret;
  2802. }
  2803. do_set_pte(fe, fault_page);
  2804. pte_unmap_unlock(fe->pte, fe->ptl);
  2805. if (set_page_dirty(fault_page))
  2806. dirtied = 1;
  2807. /*
  2808. * Take a local copy of the address_space - page.mapping may be zeroed
  2809. * by truncate after unlock_page(). The address_space itself remains
  2810. * pinned by vma->vm_file's reference. We rely on unlock_page()'s
  2811. * release semantics to prevent the compiler from undoing this copying.
  2812. */
  2813. mapping = page_rmapping(fault_page);
  2814. unlock_page(fault_page);
  2815. if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
  2816. /*
  2817. * Some device drivers do not set page.mapping but still
  2818. * dirty their pages
  2819. */
  2820. balance_dirty_pages_ratelimited(mapping);
  2821. }
  2822. if (!vma->vm_ops->page_mkwrite)
  2823. file_update_time(vma->vm_file);
  2824. return ret;
  2825. }
  2826. /*
  2827. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2828. * but allow concurrent faults).
  2829. * The mmap_sem may have been released depending on flags and our
  2830. * return value. See filemap_fault() and __lock_page_or_retry().
  2831. */
  2832. static int do_fault(struct fault_env *fe, pte_t orig_pte)
  2833. {
  2834. struct vm_area_struct *vma = fe->vma;
  2835. pgoff_t pgoff = linear_page_index(vma, fe->address);
  2836. pte_unmap(fe->pte);
  2837. /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
  2838. if (!vma->vm_ops->fault)
  2839. return VM_FAULT_SIGBUS;
  2840. if (!(fe->flags & FAULT_FLAG_WRITE))
  2841. return do_read_fault(fe, pgoff, orig_pte);
  2842. if (!(vma->vm_flags & VM_SHARED))
  2843. return do_cow_fault(fe, pgoff, orig_pte);
  2844. return do_shared_fault(fe, pgoff, orig_pte);
  2845. }
  2846. static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  2847. unsigned long addr, int page_nid,
  2848. int *flags)
  2849. {
  2850. get_page(page);
  2851. count_vm_numa_event(NUMA_HINT_FAULTS);
  2852. if (page_nid == numa_node_id()) {
  2853. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  2854. *flags |= TNF_FAULT_LOCAL;
  2855. }
  2856. return mpol_misplaced(page, vma, addr);
  2857. }
  2858. static int do_numa_page(struct fault_env *fe, pte_t pte)
  2859. {
  2860. struct vm_area_struct *vma = fe->vma;
  2861. struct page *page = NULL;
  2862. int page_nid = -1;
  2863. int last_cpupid;
  2864. int target_nid;
  2865. bool migrated = false;
  2866. bool was_writable = pte_write(pte);
  2867. int flags = 0;
  2868. /* A PROT_NONE fault should not end up here */
  2869. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  2870. /*
  2871. * The "pte" at this point cannot be used safely without
  2872. * validation through pte_unmap_same(). It's of NUMA type but
  2873. * the pfn may be screwed if the read is non atomic.
  2874. *
  2875. * We can safely just do a "set_pte_at()", because the old
  2876. * page table entry is not accessible, so there would be no
  2877. * concurrent hardware modifications to the PTE.
  2878. */
  2879. fe->ptl = pte_lockptr(vma->vm_mm, fe->pmd);
  2880. spin_lock(fe->ptl);
  2881. if (unlikely(!pte_same(*fe->pte, pte))) {
  2882. pte_unmap_unlock(fe->pte, fe->ptl);
  2883. goto out;
  2884. }
  2885. /* Make it present again */
  2886. pte = pte_modify(pte, vma->vm_page_prot);
  2887. pte = pte_mkyoung(pte);
  2888. if (was_writable)
  2889. pte = pte_mkwrite(pte);
  2890. set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
  2891. update_mmu_cache(vma, fe->address, fe->pte);
  2892. page = vm_normal_page(vma, fe->address, pte);
  2893. if (!page) {
  2894. pte_unmap_unlock(fe->pte, fe->ptl);
  2895. return 0;
  2896. }
  2897. /* TODO: handle PTE-mapped THP */
  2898. if (PageCompound(page)) {
  2899. pte_unmap_unlock(fe->pte, fe->ptl);
  2900. return 0;
  2901. }
  2902. /*
  2903. * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
  2904. * much anyway since they can be in shared cache state. This misses
  2905. * the case where a mapping is writable but the process never writes
  2906. * to it but pte_write gets cleared during protection updates and
  2907. * pte_dirty has unpredictable behaviour between PTE scan updates,
  2908. * background writeback, dirty balancing and application behaviour.
  2909. */
  2910. if (!(vma->vm_flags & VM_WRITE))
  2911. flags |= TNF_NO_GROUP;
  2912. /*
  2913. * Flag if the page is shared between multiple address spaces. This
  2914. * is later used when determining whether to group tasks together
  2915. */
  2916. if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
  2917. flags |= TNF_SHARED;
  2918. last_cpupid = page_cpupid_last(page);
  2919. page_nid = page_to_nid(page);
  2920. target_nid = numa_migrate_prep(page, vma, fe->address, page_nid,
  2921. &flags);
  2922. pte_unmap_unlock(fe->pte, fe->ptl);
  2923. if (target_nid == -1) {
  2924. put_page(page);
  2925. goto out;
  2926. }
  2927. /* Migrate to the requested node */
  2928. migrated = migrate_misplaced_page(page, vma, target_nid);
  2929. if (migrated) {
  2930. page_nid = target_nid;
  2931. flags |= TNF_MIGRATED;
  2932. } else
  2933. flags |= TNF_MIGRATE_FAIL;
  2934. out:
  2935. if (page_nid != -1)
  2936. task_numa_fault(last_cpupid, page_nid, 1, flags);
  2937. return 0;
  2938. }
  2939. static int create_huge_pmd(struct fault_env *fe)
  2940. {
  2941. struct vm_area_struct *vma = fe->vma;
  2942. if (vma_is_anonymous(vma))
  2943. return do_huge_pmd_anonymous_page(fe);
  2944. if (vma->vm_ops->pmd_fault)
  2945. return vma->vm_ops->pmd_fault(vma, fe->address, fe->pmd,
  2946. fe->flags);
  2947. return VM_FAULT_FALLBACK;
  2948. }
  2949. static int wp_huge_pmd(struct fault_env *fe, pmd_t orig_pmd)
  2950. {
  2951. if (vma_is_anonymous(fe->vma))
  2952. return do_huge_pmd_wp_page(fe, orig_pmd);
  2953. if (fe->vma->vm_ops->pmd_fault)
  2954. return fe->vma->vm_ops->pmd_fault(fe->vma, fe->address, fe->pmd,
  2955. fe->flags);
  2956. return VM_FAULT_FALLBACK;
  2957. }
  2958. /*
  2959. * These routines also need to handle stuff like marking pages dirty
  2960. * and/or accessed for architectures that don't do it in hardware (most
  2961. * RISC architectures). The early dirtying is also good on the i386.
  2962. *
  2963. * There is also a hook called "update_mmu_cache()" that architectures
  2964. * with external mmu caches can use to update those (ie the Sparc or
  2965. * PowerPC hashed page tables that act as extended TLBs).
  2966. *
  2967. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2968. * but allow concurrent faults), and pte mapped but not yet locked.
  2969. * We return with pte unmapped and unlocked.
  2970. *
  2971. * The mmap_sem may have been released depending on flags and our
  2972. * return value. See filemap_fault() and __lock_page_or_retry().
  2973. */
  2974. static int handle_pte_fault(struct fault_env *fe)
  2975. {
  2976. pte_t entry;
  2977. /*
  2978. * some architectures can have larger ptes than wordsize,
  2979. * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
  2980. * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
  2981. * The code below just needs a consistent view for the ifs and
  2982. * we later double check anyway with the ptl lock held. So here
  2983. * a barrier will do.
  2984. */
  2985. entry = *fe->pte;
  2986. barrier();
  2987. if (!pte_present(entry)) {
  2988. if (pte_none(entry)) {
  2989. if (vma_is_anonymous(fe->vma))
  2990. return do_anonymous_page(fe);
  2991. else
  2992. return do_fault(fe, entry);
  2993. }
  2994. return do_swap_page(fe, entry);
  2995. }
  2996. if (pte_protnone(entry))
  2997. return do_numa_page(fe, entry);
  2998. fe->ptl = pte_lockptr(fe->vma->vm_mm, fe->pmd);
  2999. spin_lock(fe->ptl);
  3000. if (unlikely(!pte_same(*fe->pte, entry)))
  3001. goto unlock;
  3002. if (fe->flags & FAULT_FLAG_WRITE) {
  3003. if (!pte_write(entry))
  3004. return do_wp_page(fe, entry);
  3005. entry = pte_mkdirty(entry);
  3006. }
  3007. entry = pte_mkyoung(entry);
  3008. if (ptep_set_access_flags(fe->vma, fe->address, fe->pte, entry,
  3009. fe->flags & FAULT_FLAG_WRITE)) {
  3010. update_mmu_cache(fe->vma, fe->address, fe->pte);
  3011. } else {
  3012. /*
  3013. * This is needed only for protection faults but the arch code
  3014. * is not yet telling us if this is a protection fault or not.
  3015. * This still avoids useless tlb flushes for .text page faults
  3016. * with threads.
  3017. */
  3018. if (fe->flags & FAULT_FLAG_WRITE)
  3019. flush_tlb_fix_spurious_fault(fe->vma, fe->address);
  3020. }
  3021. unlock:
  3022. pte_unmap_unlock(fe->pte, fe->ptl);
  3023. return 0;
  3024. }
  3025. /*
  3026. * By the time we get here, we already hold the mm semaphore
  3027. *
  3028. * The mmap_sem may have been released depending on flags and our
  3029. * return value. See filemap_fault() and __lock_page_or_retry().
  3030. */
  3031. static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  3032. unsigned int flags)
  3033. {
  3034. struct fault_env fe = {
  3035. .vma = vma,
  3036. .address = address,
  3037. .flags = flags,
  3038. };
  3039. struct mm_struct *mm = vma->vm_mm;
  3040. pgd_t *pgd;
  3041. pud_t *pud;
  3042. pgd = pgd_offset(mm, address);
  3043. pud = pud_alloc(mm, pgd, address);
  3044. if (!pud)
  3045. return VM_FAULT_OOM;
  3046. fe.pmd = pmd_alloc(mm, pud, address);
  3047. if (!fe.pmd)
  3048. return VM_FAULT_OOM;
  3049. if (pmd_none(*fe.pmd) && transparent_hugepage_enabled(vma)) {
  3050. int ret = create_huge_pmd(&fe);
  3051. if (!(ret & VM_FAULT_FALLBACK))
  3052. return ret;
  3053. } else {
  3054. pmd_t orig_pmd = *fe.pmd;
  3055. int ret;
  3056. barrier();
  3057. if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
  3058. if (pmd_protnone(orig_pmd))
  3059. return do_huge_pmd_numa_page(&fe, orig_pmd);
  3060. if ((fe.flags & FAULT_FLAG_WRITE) &&
  3061. !pmd_write(orig_pmd)) {
  3062. ret = wp_huge_pmd(&fe, orig_pmd);
  3063. if (!(ret & VM_FAULT_FALLBACK))
  3064. return ret;
  3065. } else {
  3066. huge_pmd_set_accessed(&fe, orig_pmd);
  3067. return 0;
  3068. }
  3069. }
  3070. }
  3071. /*
  3072. * Use pte_alloc() instead of pte_alloc_map, because we can't
  3073. * run pte_offset_map on the pmd, if an huge pmd could
  3074. * materialize from under us from a different thread.
  3075. */
  3076. if (unlikely(pte_alloc(fe.vma->vm_mm, fe.pmd, fe.address)))
  3077. return VM_FAULT_OOM;
  3078. /*
  3079. * If a huge pmd materialized under us just retry later. Use
  3080. * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
  3081. * didn't become pmd_trans_huge under us and then back to pmd_none, as
  3082. * a result of MADV_DONTNEED running immediately after a huge pmd fault
  3083. * in a different thread of this mm, in turn leading to a misleading
  3084. * pmd_trans_huge() retval. All we have to ensure is that it is a
  3085. * regular pmd that we can walk with pte_offset_map() and we can do that
  3086. * through an atomic read in C, which is what pmd_trans_unstable()
  3087. * provides.
  3088. */
  3089. if (unlikely(pmd_trans_unstable(fe.pmd) || pmd_devmap(*fe.pmd)))
  3090. return 0;
  3091. /*
  3092. * A regular pmd is established and it can't morph into a huge pmd
  3093. * from under us anymore at this point because we hold the mmap_sem
  3094. * read mode and khugepaged takes it in write mode. So now it's
  3095. * safe to run pte_offset_map().
  3096. */
  3097. fe.pte = pte_offset_map(fe.pmd, fe.address);
  3098. return handle_pte_fault(&fe);
  3099. }
  3100. /*
  3101. * By the time we get here, we already hold the mm semaphore
  3102. *
  3103. * The mmap_sem may have been released depending on flags and our
  3104. * return value. See filemap_fault() and __lock_page_or_retry().
  3105. */
  3106. int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  3107. unsigned int flags)
  3108. {
  3109. int ret;
  3110. __set_current_state(TASK_RUNNING);
  3111. count_vm_event(PGFAULT);
  3112. mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
  3113. /* do counter updates before entering really critical section. */
  3114. check_sync_rss_stat(current);
  3115. /*
  3116. * Enable the memcg OOM handling for faults triggered in user
  3117. * space. Kernel faults are handled more gracefully.
  3118. */
  3119. if (flags & FAULT_FLAG_USER)
  3120. mem_cgroup_oom_enable();
  3121. if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
  3122. flags & FAULT_FLAG_INSTRUCTION,
  3123. flags & FAULT_FLAG_REMOTE))
  3124. return VM_FAULT_SIGSEGV;
  3125. if (unlikely(is_vm_hugetlb_page(vma)))
  3126. ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
  3127. else
  3128. ret = __handle_mm_fault(vma, address, flags);
  3129. if (flags & FAULT_FLAG_USER) {
  3130. mem_cgroup_oom_disable();
  3131. /*
  3132. * The task may have entered a memcg OOM situation but
  3133. * if the allocation error was handled gracefully (no
  3134. * VM_FAULT_OOM), there is no need to kill anything.
  3135. * Just clean up the OOM state peacefully.
  3136. */
  3137. if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
  3138. mem_cgroup_oom_synchronize(false);
  3139. }
  3140. return ret;
  3141. }
  3142. EXPORT_SYMBOL_GPL(handle_mm_fault);
  3143. #ifndef __PAGETABLE_PUD_FOLDED
  3144. /*
  3145. * Allocate page upper directory.
  3146. * We've already handled the fast-path in-line.
  3147. */
  3148. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3149. {
  3150. pud_t *new = pud_alloc_one(mm, address);
  3151. if (!new)
  3152. return -ENOMEM;
  3153. smp_wmb(); /* See comment in __pte_alloc */
  3154. spin_lock(&mm->page_table_lock);
  3155. if (pgd_present(*pgd)) /* Another has populated it */
  3156. pud_free(mm, new);
  3157. else
  3158. pgd_populate(mm, pgd, new);
  3159. spin_unlock(&mm->page_table_lock);
  3160. return 0;
  3161. }
  3162. #endif /* __PAGETABLE_PUD_FOLDED */
  3163. #ifndef __PAGETABLE_PMD_FOLDED
  3164. /*
  3165. * Allocate page middle directory.
  3166. * We've already handled the fast-path in-line.
  3167. */
  3168. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3169. {
  3170. pmd_t *new = pmd_alloc_one(mm, address);
  3171. if (!new)
  3172. return -ENOMEM;
  3173. smp_wmb(); /* See comment in __pte_alloc */
  3174. spin_lock(&mm->page_table_lock);
  3175. #ifndef __ARCH_HAS_4LEVEL_HACK
  3176. if (!pud_present(*pud)) {
  3177. mm_inc_nr_pmds(mm);
  3178. pud_populate(mm, pud, new);
  3179. } else /* Another has populated it */
  3180. pmd_free(mm, new);
  3181. #else
  3182. if (!pgd_present(*pud)) {
  3183. mm_inc_nr_pmds(mm);
  3184. pgd_populate(mm, pud, new);
  3185. } else /* Another has populated it */
  3186. pmd_free(mm, new);
  3187. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3188. spin_unlock(&mm->page_table_lock);
  3189. return 0;
  3190. }
  3191. #endif /* __PAGETABLE_PMD_FOLDED */
  3192. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3193. pte_t **ptepp, spinlock_t **ptlp)
  3194. {
  3195. pgd_t *pgd;
  3196. pud_t *pud;
  3197. pmd_t *pmd;
  3198. pte_t *ptep;
  3199. pgd = pgd_offset(mm, address);
  3200. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3201. goto out;
  3202. pud = pud_offset(pgd, address);
  3203. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3204. goto out;
  3205. pmd = pmd_offset(pud, address);
  3206. VM_BUG_ON(pmd_trans_huge(*pmd));
  3207. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3208. goto out;
  3209. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3210. if (pmd_huge(*pmd))
  3211. goto out;
  3212. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3213. if (!ptep)
  3214. goto out;
  3215. if (!pte_present(*ptep))
  3216. goto unlock;
  3217. *ptepp = ptep;
  3218. return 0;
  3219. unlock:
  3220. pte_unmap_unlock(ptep, *ptlp);
  3221. out:
  3222. return -EINVAL;
  3223. }
  3224. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3225. pte_t **ptepp, spinlock_t **ptlp)
  3226. {
  3227. int res;
  3228. /* (void) is needed to make gcc happy */
  3229. (void) __cond_lock(*ptlp,
  3230. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3231. return res;
  3232. }
  3233. /**
  3234. * follow_pfn - look up PFN at a user virtual address
  3235. * @vma: memory mapping
  3236. * @address: user virtual address
  3237. * @pfn: location to store found PFN
  3238. *
  3239. * Only IO mappings and raw PFN mappings are allowed.
  3240. *
  3241. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3242. */
  3243. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3244. unsigned long *pfn)
  3245. {
  3246. int ret = -EINVAL;
  3247. spinlock_t *ptl;
  3248. pte_t *ptep;
  3249. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3250. return ret;
  3251. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3252. if (ret)
  3253. return ret;
  3254. *pfn = pte_pfn(*ptep);
  3255. pte_unmap_unlock(ptep, ptl);
  3256. return 0;
  3257. }
  3258. EXPORT_SYMBOL(follow_pfn);
  3259. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3260. int follow_phys(struct vm_area_struct *vma,
  3261. unsigned long address, unsigned int flags,
  3262. unsigned long *prot, resource_size_t *phys)
  3263. {
  3264. int ret = -EINVAL;
  3265. pte_t *ptep, pte;
  3266. spinlock_t *ptl;
  3267. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3268. goto out;
  3269. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3270. goto out;
  3271. pte = *ptep;
  3272. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3273. goto unlock;
  3274. *prot = pgprot_val(pte_pgprot(pte));
  3275. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3276. ret = 0;
  3277. unlock:
  3278. pte_unmap_unlock(ptep, ptl);
  3279. out:
  3280. return ret;
  3281. }
  3282. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3283. void *buf, int len, int write)
  3284. {
  3285. resource_size_t phys_addr;
  3286. unsigned long prot = 0;
  3287. void __iomem *maddr;
  3288. int offset = addr & (PAGE_SIZE-1);
  3289. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3290. return -EINVAL;
  3291. maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
  3292. if (write)
  3293. memcpy_toio(maddr + offset, buf, len);
  3294. else
  3295. memcpy_fromio(buf, maddr + offset, len);
  3296. iounmap(maddr);
  3297. return len;
  3298. }
  3299. EXPORT_SYMBOL_GPL(generic_access_phys);
  3300. #endif
  3301. /*
  3302. * Access another process' address space as given in mm. If non-NULL, use the
  3303. * given task for page fault accounting.
  3304. */
  3305. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3306. unsigned long addr, void *buf, int len, int write)
  3307. {
  3308. struct vm_area_struct *vma;
  3309. void *old_buf = buf;
  3310. down_read(&mm->mmap_sem);
  3311. /* ignore errors, just check how much was successfully transferred */
  3312. while (len) {
  3313. int bytes, ret, offset;
  3314. void *maddr;
  3315. struct page *page = NULL;
  3316. ret = get_user_pages_remote(tsk, mm, addr, 1,
  3317. write, 1, &page, &vma);
  3318. if (ret <= 0) {
  3319. #ifndef CONFIG_HAVE_IOREMAP_PROT
  3320. break;
  3321. #else
  3322. /*
  3323. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3324. * we can access using slightly different code.
  3325. */
  3326. vma = find_vma(mm, addr);
  3327. if (!vma || vma->vm_start > addr)
  3328. break;
  3329. if (vma->vm_ops && vma->vm_ops->access)
  3330. ret = vma->vm_ops->access(vma, addr, buf,
  3331. len, write);
  3332. if (ret <= 0)
  3333. break;
  3334. bytes = ret;
  3335. #endif
  3336. } else {
  3337. bytes = len;
  3338. offset = addr & (PAGE_SIZE-1);
  3339. if (bytes > PAGE_SIZE-offset)
  3340. bytes = PAGE_SIZE-offset;
  3341. maddr = kmap(page);
  3342. if (write) {
  3343. copy_to_user_page(vma, page, addr,
  3344. maddr + offset, buf, bytes);
  3345. set_page_dirty_lock(page);
  3346. } else {
  3347. copy_from_user_page(vma, page, addr,
  3348. buf, maddr + offset, bytes);
  3349. }
  3350. kunmap(page);
  3351. put_page(page);
  3352. }
  3353. len -= bytes;
  3354. buf += bytes;
  3355. addr += bytes;
  3356. }
  3357. up_read(&mm->mmap_sem);
  3358. return buf - old_buf;
  3359. }
  3360. /**
  3361. * access_remote_vm - access another process' address space
  3362. * @mm: the mm_struct of the target address space
  3363. * @addr: start address to access
  3364. * @buf: source or destination buffer
  3365. * @len: number of bytes to transfer
  3366. * @write: whether the access is a write
  3367. *
  3368. * The caller must hold a reference on @mm.
  3369. */
  3370. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3371. void *buf, int len, int write)
  3372. {
  3373. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3374. }
  3375. /*
  3376. * Access another process' address space.
  3377. * Source/target buffer must be kernel space,
  3378. * Do not walk the page table directly, use get_user_pages
  3379. */
  3380. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3381. void *buf, int len, int write)
  3382. {
  3383. struct mm_struct *mm;
  3384. int ret;
  3385. mm = get_task_mm(tsk);
  3386. if (!mm)
  3387. return 0;
  3388. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3389. mmput(mm);
  3390. return ret;
  3391. }
  3392. /*
  3393. * Print the name of a VMA.
  3394. */
  3395. void print_vma_addr(char *prefix, unsigned long ip)
  3396. {
  3397. struct mm_struct *mm = current->mm;
  3398. struct vm_area_struct *vma;
  3399. /*
  3400. * Do not print if we are in atomic
  3401. * contexts (in exception stacks, etc.):
  3402. */
  3403. if (preempt_count())
  3404. return;
  3405. down_read(&mm->mmap_sem);
  3406. vma = find_vma(mm, ip);
  3407. if (vma && vma->vm_file) {
  3408. struct file *f = vma->vm_file;
  3409. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3410. if (buf) {
  3411. char *p;
  3412. p = file_path(f, buf, PAGE_SIZE);
  3413. if (IS_ERR(p))
  3414. p = "?";
  3415. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3416. vma->vm_start,
  3417. vma->vm_end - vma->vm_start);
  3418. free_page((unsigned long)buf);
  3419. }
  3420. }
  3421. up_read(&mm->mmap_sem);
  3422. }
  3423. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3424. void __might_fault(const char *file, int line)
  3425. {
  3426. /*
  3427. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3428. * holding the mmap_sem, this is safe because kernel memory doesn't
  3429. * get paged out, therefore we'll never actually fault, and the
  3430. * below annotations will generate false positives.
  3431. */
  3432. if (segment_eq(get_fs(), KERNEL_DS))
  3433. return;
  3434. if (pagefault_disabled())
  3435. return;
  3436. __might_sleep(file, line, 0);
  3437. #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3438. if (current->mm)
  3439. might_lock_read(&current->mm->mmap_sem);
  3440. #endif
  3441. }
  3442. EXPORT_SYMBOL(__might_fault);
  3443. #endif
  3444. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3445. static void clear_gigantic_page(struct page *page,
  3446. unsigned long addr,
  3447. unsigned int pages_per_huge_page)
  3448. {
  3449. int i;
  3450. struct page *p = page;
  3451. might_sleep();
  3452. for (i = 0; i < pages_per_huge_page;
  3453. i++, p = mem_map_next(p, page, i)) {
  3454. cond_resched();
  3455. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3456. }
  3457. }
  3458. void clear_huge_page(struct page *page,
  3459. unsigned long addr, unsigned int pages_per_huge_page)
  3460. {
  3461. int i;
  3462. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3463. clear_gigantic_page(page, addr, pages_per_huge_page);
  3464. return;
  3465. }
  3466. might_sleep();
  3467. for (i = 0; i < pages_per_huge_page; i++) {
  3468. cond_resched();
  3469. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3470. }
  3471. }
  3472. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3473. unsigned long addr,
  3474. struct vm_area_struct *vma,
  3475. unsigned int pages_per_huge_page)
  3476. {
  3477. int i;
  3478. struct page *dst_base = dst;
  3479. struct page *src_base = src;
  3480. for (i = 0; i < pages_per_huge_page; ) {
  3481. cond_resched();
  3482. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3483. i++;
  3484. dst = mem_map_next(dst, dst_base, i);
  3485. src = mem_map_next(src, src_base, i);
  3486. }
  3487. }
  3488. void copy_user_huge_page(struct page *dst, struct page *src,
  3489. unsigned long addr, struct vm_area_struct *vma,
  3490. unsigned int pages_per_huge_page)
  3491. {
  3492. int i;
  3493. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3494. copy_user_gigantic_page(dst, src, addr, vma,
  3495. pages_per_huge_page);
  3496. return;
  3497. }
  3498. might_sleep();
  3499. for (i = 0; i < pages_per_huge_page; i++) {
  3500. cond_resched();
  3501. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3502. }
  3503. }
  3504. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  3505. #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
  3506. static struct kmem_cache *page_ptl_cachep;
  3507. void __init ptlock_cache_init(void)
  3508. {
  3509. page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
  3510. SLAB_PANIC, NULL);
  3511. }
  3512. bool ptlock_alloc(struct page *page)
  3513. {
  3514. spinlock_t *ptl;
  3515. ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
  3516. if (!ptl)
  3517. return false;
  3518. page->ptl = ptl;
  3519. return true;
  3520. }
  3521. void ptlock_free(struct page *page)
  3522. {
  3523. kmem_cache_free(page_ptl_cachep, page->ptl);
  3524. }
  3525. #endif