huge_memory.c 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/highmem.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/shrinker.h>
  16. #include <linux/mm_inline.h>
  17. #include <linux/swapops.h>
  18. #include <linux/dax.h>
  19. #include <linux/kthread.h>
  20. #include <linux/khugepaged.h>
  21. #include <linux/freezer.h>
  22. #include <linux/pfn_t.h>
  23. #include <linux/mman.h>
  24. #include <linux/memremap.h>
  25. #include <linux/pagemap.h>
  26. #include <linux/debugfs.h>
  27. #include <linux/migrate.h>
  28. #include <linux/hashtable.h>
  29. #include <linux/userfaultfd_k.h>
  30. #include <linux/page_idle.h>
  31. #include <asm/tlb.h>
  32. #include <asm/pgalloc.h>
  33. #include "internal.h"
  34. enum scan_result {
  35. SCAN_FAIL,
  36. SCAN_SUCCEED,
  37. SCAN_PMD_NULL,
  38. SCAN_EXCEED_NONE_PTE,
  39. SCAN_PTE_NON_PRESENT,
  40. SCAN_PAGE_RO,
  41. SCAN_NO_REFERENCED_PAGE,
  42. SCAN_PAGE_NULL,
  43. SCAN_SCAN_ABORT,
  44. SCAN_PAGE_COUNT,
  45. SCAN_PAGE_LRU,
  46. SCAN_PAGE_LOCK,
  47. SCAN_PAGE_ANON,
  48. SCAN_PAGE_COMPOUND,
  49. SCAN_ANY_PROCESS,
  50. SCAN_VMA_NULL,
  51. SCAN_VMA_CHECK,
  52. SCAN_ADDRESS_RANGE,
  53. SCAN_SWAP_CACHE_PAGE,
  54. SCAN_DEL_PAGE_LRU,
  55. SCAN_ALLOC_HUGE_PAGE_FAIL,
  56. SCAN_CGROUP_CHARGE_FAIL,
  57. SCAN_EXCEED_SWAP_PTE
  58. };
  59. #define CREATE_TRACE_POINTS
  60. #include <trace/events/huge_memory.h>
  61. /*
  62. * By default transparent hugepage support is disabled in order that avoid
  63. * to risk increase the memory footprint of applications without a guaranteed
  64. * benefit. When transparent hugepage support is enabled, is for all mappings,
  65. * and khugepaged scans all mappings.
  66. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  67. * for all hugepage allocations.
  68. */
  69. unsigned long transparent_hugepage_flags __read_mostly =
  70. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  71. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  72. #endif
  73. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  74. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  75. #endif
  76. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  77. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  78. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  79. /* default scan 8*512 pte (or vmas) every 30 second */
  80. static unsigned int khugepaged_pages_to_scan __read_mostly;
  81. static unsigned int khugepaged_pages_collapsed;
  82. static unsigned int khugepaged_full_scans;
  83. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  84. /* during fragmentation poll the hugepage allocator once every minute */
  85. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  86. static unsigned long khugepaged_sleep_expire;
  87. static struct task_struct *khugepaged_thread __read_mostly;
  88. static DEFINE_MUTEX(khugepaged_mutex);
  89. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  90. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  91. /*
  92. * default collapse hugepages if there is at least one pte mapped like
  93. * it would have happened if the vma was large enough during page
  94. * fault.
  95. */
  96. static unsigned int khugepaged_max_ptes_none __read_mostly;
  97. static unsigned int khugepaged_max_ptes_swap __read_mostly;
  98. static int khugepaged(void *none);
  99. static int khugepaged_slab_init(void);
  100. static void khugepaged_slab_exit(void);
  101. #define MM_SLOTS_HASH_BITS 10
  102. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  103. static struct kmem_cache *mm_slot_cache __read_mostly;
  104. /**
  105. * struct mm_slot - hash lookup from mm to mm_slot
  106. * @hash: hash collision list
  107. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  108. * @mm: the mm that this information is valid for
  109. */
  110. struct mm_slot {
  111. struct hlist_node hash;
  112. struct list_head mm_node;
  113. struct mm_struct *mm;
  114. };
  115. /**
  116. * struct khugepaged_scan - cursor for scanning
  117. * @mm_head: the head of the mm list to scan
  118. * @mm_slot: the current mm_slot we are scanning
  119. * @address: the next address inside that to be scanned
  120. *
  121. * There is only the one khugepaged_scan instance of this cursor structure.
  122. */
  123. struct khugepaged_scan {
  124. struct list_head mm_head;
  125. struct mm_slot *mm_slot;
  126. unsigned long address;
  127. };
  128. static struct khugepaged_scan khugepaged_scan = {
  129. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  130. };
  131. static struct shrinker deferred_split_shrinker;
  132. static void set_recommended_min_free_kbytes(void)
  133. {
  134. struct zone *zone;
  135. int nr_zones = 0;
  136. unsigned long recommended_min;
  137. for_each_populated_zone(zone)
  138. nr_zones++;
  139. /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
  140. recommended_min = pageblock_nr_pages * nr_zones * 2;
  141. /*
  142. * Make sure that on average at least two pageblocks are almost free
  143. * of another type, one for a migratetype to fall back to and a
  144. * second to avoid subsequent fallbacks of other types There are 3
  145. * MIGRATE_TYPES we care about.
  146. */
  147. recommended_min += pageblock_nr_pages * nr_zones *
  148. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  149. /* don't ever allow to reserve more than 5% of the lowmem */
  150. recommended_min = min(recommended_min,
  151. (unsigned long) nr_free_buffer_pages() / 20);
  152. recommended_min <<= (PAGE_SHIFT-10);
  153. if (recommended_min > min_free_kbytes) {
  154. if (user_min_free_kbytes >= 0)
  155. pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
  156. min_free_kbytes, recommended_min);
  157. min_free_kbytes = recommended_min;
  158. }
  159. setup_per_zone_wmarks();
  160. }
  161. static int start_stop_khugepaged(void)
  162. {
  163. int err = 0;
  164. if (khugepaged_enabled()) {
  165. if (!khugepaged_thread)
  166. khugepaged_thread = kthread_run(khugepaged, NULL,
  167. "khugepaged");
  168. if (IS_ERR(khugepaged_thread)) {
  169. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  170. err = PTR_ERR(khugepaged_thread);
  171. khugepaged_thread = NULL;
  172. goto fail;
  173. }
  174. if (!list_empty(&khugepaged_scan.mm_head))
  175. wake_up_interruptible(&khugepaged_wait);
  176. set_recommended_min_free_kbytes();
  177. } else if (khugepaged_thread) {
  178. kthread_stop(khugepaged_thread);
  179. khugepaged_thread = NULL;
  180. }
  181. fail:
  182. return err;
  183. }
  184. static atomic_t huge_zero_refcount;
  185. struct page *huge_zero_page __read_mostly;
  186. struct page *get_huge_zero_page(void)
  187. {
  188. struct page *zero_page;
  189. retry:
  190. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  191. return READ_ONCE(huge_zero_page);
  192. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  193. HPAGE_PMD_ORDER);
  194. if (!zero_page) {
  195. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  196. return NULL;
  197. }
  198. count_vm_event(THP_ZERO_PAGE_ALLOC);
  199. preempt_disable();
  200. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  201. preempt_enable();
  202. __free_pages(zero_page, compound_order(zero_page));
  203. goto retry;
  204. }
  205. /* We take additional reference here. It will be put back by shrinker */
  206. atomic_set(&huge_zero_refcount, 2);
  207. preempt_enable();
  208. return READ_ONCE(huge_zero_page);
  209. }
  210. void put_huge_zero_page(void)
  211. {
  212. /*
  213. * Counter should never go to zero here. Only shrinker can put
  214. * last reference.
  215. */
  216. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  217. }
  218. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  219. struct shrink_control *sc)
  220. {
  221. /* we can free zero page only if last reference remains */
  222. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  223. }
  224. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  225. struct shrink_control *sc)
  226. {
  227. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  228. struct page *zero_page = xchg(&huge_zero_page, NULL);
  229. BUG_ON(zero_page == NULL);
  230. __free_pages(zero_page, compound_order(zero_page));
  231. return HPAGE_PMD_NR;
  232. }
  233. return 0;
  234. }
  235. static struct shrinker huge_zero_page_shrinker = {
  236. .count_objects = shrink_huge_zero_page_count,
  237. .scan_objects = shrink_huge_zero_page_scan,
  238. .seeks = DEFAULT_SEEKS,
  239. };
  240. #ifdef CONFIG_SYSFS
  241. static ssize_t triple_flag_store(struct kobject *kobj,
  242. struct kobj_attribute *attr,
  243. const char *buf, size_t count,
  244. enum transparent_hugepage_flag enabled,
  245. enum transparent_hugepage_flag deferred,
  246. enum transparent_hugepage_flag req_madv)
  247. {
  248. if (!memcmp("defer", buf,
  249. min(sizeof("defer")-1, count))) {
  250. if (enabled == deferred)
  251. return -EINVAL;
  252. clear_bit(enabled, &transparent_hugepage_flags);
  253. clear_bit(req_madv, &transparent_hugepage_flags);
  254. set_bit(deferred, &transparent_hugepage_flags);
  255. } else if (!memcmp("always", buf,
  256. min(sizeof("always")-1, count))) {
  257. clear_bit(deferred, &transparent_hugepage_flags);
  258. clear_bit(req_madv, &transparent_hugepage_flags);
  259. set_bit(enabled, &transparent_hugepage_flags);
  260. } else if (!memcmp("madvise", buf,
  261. min(sizeof("madvise")-1, count))) {
  262. clear_bit(enabled, &transparent_hugepage_flags);
  263. clear_bit(deferred, &transparent_hugepage_flags);
  264. set_bit(req_madv, &transparent_hugepage_flags);
  265. } else if (!memcmp("never", buf,
  266. min(sizeof("never")-1, count))) {
  267. clear_bit(enabled, &transparent_hugepage_flags);
  268. clear_bit(req_madv, &transparent_hugepage_flags);
  269. clear_bit(deferred, &transparent_hugepage_flags);
  270. } else
  271. return -EINVAL;
  272. return count;
  273. }
  274. static ssize_t enabled_show(struct kobject *kobj,
  275. struct kobj_attribute *attr, char *buf)
  276. {
  277. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  278. return sprintf(buf, "[always] madvise never\n");
  279. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  280. return sprintf(buf, "always [madvise] never\n");
  281. else
  282. return sprintf(buf, "always madvise [never]\n");
  283. }
  284. static ssize_t enabled_store(struct kobject *kobj,
  285. struct kobj_attribute *attr,
  286. const char *buf, size_t count)
  287. {
  288. ssize_t ret;
  289. ret = triple_flag_store(kobj, attr, buf, count,
  290. TRANSPARENT_HUGEPAGE_FLAG,
  291. TRANSPARENT_HUGEPAGE_FLAG,
  292. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  293. if (ret > 0) {
  294. int err;
  295. mutex_lock(&khugepaged_mutex);
  296. err = start_stop_khugepaged();
  297. mutex_unlock(&khugepaged_mutex);
  298. if (err)
  299. ret = err;
  300. }
  301. return ret;
  302. }
  303. static struct kobj_attribute enabled_attr =
  304. __ATTR(enabled, 0644, enabled_show, enabled_store);
  305. static ssize_t single_flag_show(struct kobject *kobj,
  306. struct kobj_attribute *attr, char *buf,
  307. enum transparent_hugepage_flag flag)
  308. {
  309. return sprintf(buf, "%d\n",
  310. !!test_bit(flag, &transparent_hugepage_flags));
  311. }
  312. static ssize_t single_flag_store(struct kobject *kobj,
  313. struct kobj_attribute *attr,
  314. const char *buf, size_t count,
  315. enum transparent_hugepage_flag flag)
  316. {
  317. unsigned long value;
  318. int ret;
  319. ret = kstrtoul(buf, 10, &value);
  320. if (ret < 0)
  321. return ret;
  322. if (value > 1)
  323. return -EINVAL;
  324. if (value)
  325. set_bit(flag, &transparent_hugepage_flags);
  326. else
  327. clear_bit(flag, &transparent_hugepage_flags);
  328. return count;
  329. }
  330. /*
  331. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  332. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  333. * memory just to allocate one more hugepage.
  334. */
  335. static ssize_t defrag_show(struct kobject *kobj,
  336. struct kobj_attribute *attr, char *buf)
  337. {
  338. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  339. return sprintf(buf, "[always] defer madvise never\n");
  340. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  341. return sprintf(buf, "always [defer] madvise never\n");
  342. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  343. return sprintf(buf, "always defer [madvise] never\n");
  344. else
  345. return sprintf(buf, "always defer madvise [never]\n");
  346. }
  347. static ssize_t defrag_store(struct kobject *kobj,
  348. struct kobj_attribute *attr,
  349. const char *buf, size_t count)
  350. {
  351. return triple_flag_store(kobj, attr, buf, count,
  352. TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
  353. TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
  354. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  355. }
  356. static struct kobj_attribute defrag_attr =
  357. __ATTR(defrag, 0644, defrag_show, defrag_store);
  358. static ssize_t use_zero_page_show(struct kobject *kobj,
  359. struct kobj_attribute *attr, char *buf)
  360. {
  361. return single_flag_show(kobj, attr, buf,
  362. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  363. }
  364. static ssize_t use_zero_page_store(struct kobject *kobj,
  365. struct kobj_attribute *attr, const char *buf, size_t count)
  366. {
  367. return single_flag_store(kobj, attr, buf, count,
  368. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  369. }
  370. static struct kobj_attribute use_zero_page_attr =
  371. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  372. #ifdef CONFIG_DEBUG_VM
  373. static ssize_t debug_cow_show(struct kobject *kobj,
  374. struct kobj_attribute *attr, char *buf)
  375. {
  376. return single_flag_show(kobj, attr, buf,
  377. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  378. }
  379. static ssize_t debug_cow_store(struct kobject *kobj,
  380. struct kobj_attribute *attr,
  381. const char *buf, size_t count)
  382. {
  383. return single_flag_store(kobj, attr, buf, count,
  384. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  385. }
  386. static struct kobj_attribute debug_cow_attr =
  387. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  388. #endif /* CONFIG_DEBUG_VM */
  389. static struct attribute *hugepage_attr[] = {
  390. &enabled_attr.attr,
  391. &defrag_attr.attr,
  392. &use_zero_page_attr.attr,
  393. #ifdef CONFIG_DEBUG_VM
  394. &debug_cow_attr.attr,
  395. #endif
  396. NULL,
  397. };
  398. static struct attribute_group hugepage_attr_group = {
  399. .attrs = hugepage_attr,
  400. };
  401. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  402. struct kobj_attribute *attr,
  403. char *buf)
  404. {
  405. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  406. }
  407. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  408. struct kobj_attribute *attr,
  409. const char *buf, size_t count)
  410. {
  411. unsigned long msecs;
  412. int err;
  413. err = kstrtoul(buf, 10, &msecs);
  414. if (err || msecs > UINT_MAX)
  415. return -EINVAL;
  416. khugepaged_scan_sleep_millisecs = msecs;
  417. khugepaged_sleep_expire = 0;
  418. wake_up_interruptible(&khugepaged_wait);
  419. return count;
  420. }
  421. static struct kobj_attribute scan_sleep_millisecs_attr =
  422. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  423. scan_sleep_millisecs_store);
  424. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  425. struct kobj_attribute *attr,
  426. char *buf)
  427. {
  428. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  429. }
  430. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  431. struct kobj_attribute *attr,
  432. const char *buf, size_t count)
  433. {
  434. unsigned long msecs;
  435. int err;
  436. err = kstrtoul(buf, 10, &msecs);
  437. if (err || msecs > UINT_MAX)
  438. return -EINVAL;
  439. khugepaged_alloc_sleep_millisecs = msecs;
  440. khugepaged_sleep_expire = 0;
  441. wake_up_interruptible(&khugepaged_wait);
  442. return count;
  443. }
  444. static struct kobj_attribute alloc_sleep_millisecs_attr =
  445. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  446. alloc_sleep_millisecs_store);
  447. static ssize_t pages_to_scan_show(struct kobject *kobj,
  448. struct kobj_attribute *attr,
  449. char *buf)
  450. {
  451. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  452. }
  453. static ssize_t pages_to_scan_store(struct kobject *kobj,
  454. struct kobj_attribute *attr,
  455. const char *buf, size_t count)
  456. {
  457. int err;
  458. unsigned long pages;
  459. err = kstrtoul(buf, 10, &pages);
  460. if (err || !pages || pages > UINT_MAX)
  461. return -EINVAL;
  462. khugepaged_pages_to_scan = pages;
  463. return count;
  464. }
  465. static struct kobj_attribute pages_to_scan_attr =
  466. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  467. pages_to_scan_store);
  468. static ssize_t pages_collapsed_show(struct kobject *kobj,
  469. struct kobj_attribute *attr,
  470. char *buf)
  471. {
  472. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  473. }
  474. static struct kobj_attribute pages_collapsed_attr =
  475. __ATTR_RO(pages_collapsed);
  476. static ssize_t full_scans_show(struct kobject *kobj,
  477. struct kobj_attribute *attr,
  478. char *buf)
  479. {
  480. return sprintf(buf, "%u\n", khugepaged_full_scans);
  481. }
  482. static struct kobj_attribute full_scans_attr =
  483. __ATTR_RO(full_scans);
  484. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  485. struct kobj_attribute *attr, char *buf)
  486. {
  487. return single_flag_show(kobj, attr, buf,
  488. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  489. }
  490. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  491. struct kobj_attribute *attr,
  492. const char *buf, size_t count)
  493. {
  494. return single_flag_store(kobj, attr, buf, count,
  495. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  496. }
  497. static struct kobj_attribute khugepaged_defrag_attr =
  498. __ATTR(defrag, 0644, khugepaged_defrag_show,
  499. khugepaged_defrag_store);
  500. /*
  501. * max_ptes_none controls if khugepaged should collapse hugepages over
  502. * any unmapped ptes in turn potentially increasing the memory
  503. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  504. * reduce the available free memory in the system as it
  505. * runs. Increasing max_ptes_none will instead potentially reduce the
  506. * free memory in the system during the khugepaged scan.
  507. */
  508. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  509. struct kobj_attribute *attr,
  510. char *buf)
  511. {
  512. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  513. }
  514. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  515. struct kobj_attribute *attr,
  516. const char *buf, size_t count)
  517. {
  518. int err;
  519. unsigned long max_ptes_none;
  520. err = kstrtoul(buf, 10, &max_ptes_none);
  521. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  522. return -EINVAL;
  523. khugepaged_max_ptes_none = max_ptes_none;
  524. return count;
  525. }
  526. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  527. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  528. khugepaged_max_ptes_none_store);
  529. static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
  530. struct kobj_attribute *attr,
  531. char *buf)
  532. {
  533. return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
  534. }
  535. static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
  536. struct kobj_attribute *attr,
  537. const char *buf, size_t count)
  538. {
  539. int err;
  540. unsigned long max_ptes_swap;
  541. err = kstrtoul(buf, 10, &max_ptes_swap);
  542. if (err || max_ptes_swap > HPAGE_PMD_NR-1)
  543. return -EINVAL;
  544. khugepaged_max_ptes_swap = max_ptes_swap;
  545. return count;
  546. }
  547. static struct kobj_attribute khugepaged_max_ptes_swap_attr =
  548. __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
  549. khugepaged_max_ptes_swap_store);
  550. static struct attribute *khugepaged_attr[] = {
  551. &khugepaged_defrag_attr.attr,
  552. &khugepaged_max_ptes_none_attr.attr,
  553. &pages_to_scan_attr.attr,
  554. &pages_collapsed_attr.attr,
  555. &full_scans_attr.attr,
  556. &scan_sleep_millisecs_attr.attr,
  557. &alloc_sleep_millisecs_attr.attr,
  558. &khugepaged_max_ptes_swap_attr.attr,
  559. NULL,
  560. };
  561. static struct attribute_group khugepaged_attr_group = {
  562. .attrs = khugepaged_attr,
  563. .name = "khugepaged",
  564. };
  565. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  566. {
  567. int err;
  568. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  569. if (unlikely(!*hugepage_kobj)) {
  570. pr_err("failed to create transparent hugepage kobject\n");
  571. return -ENOMEM;
  572. }
  573. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  574. if (err) {
  575. pr_err("failed to register transparent hugepage group\n");
  576. goto delete_obj;
  577. }
  578. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  579. if (err) {
  580. pr_err("failed to register transparent hugepage group\n");
  581. goto remove_hp_group;
  582. }
  583. return 0;
  584. remove_hp_group:
  585. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  586. delete_obj:
  587. kobject_put(*hugepage_kobj);
  588. return err;
  589. }
  590. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  591. {
  592. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  593. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  594. kobject_put(hugepage_kobj);
  595. }
  596. #else
  597. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  598. {
  599. return 0;
  600. }
  601. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  602. {
  603. }
  604. #endif /* CONFIG_SYSFS */
  605. static int __init hugepage_init(void)
  606. {
  607. int err;
  608. struct kobject *hugepage_kobj;
  609. if (!has_transparent_hugepage()) {
  610. transparent_hugepage_flags = 0;
  611. return -EINVAL;
  612. }
  613. khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
  614. khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
  615. khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
  616. /*
  617. * hugepages can't be allocated by the buddy allocator
  618. */
  619. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  620. /*
  621. * we use page->mapping and page->index in second tail page
  622. * as list_head: assuming THP order >= 2
  623. */
  624. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  625. err = hugepage_init_sysfs(&hugepage_kobj);
  626. if (err)
  627. goto err_sysfs;
  628. err = khugepaged_slab_init();
  629. if (err)
  630. goto err_slab;
  631. err = register_shrinker(&huge_zero_page_shrinker);
  632. if (err)
  633. goto err_hzp_shrinker;
  634. err = register_shrinker(&deferred_split_shrinker);
  635. if (err)
  636. goto err_split_shrinker;
  637. /*
  638. * By default disable transparent hugepages on smaller systems,
  639. * where the extra memory used could hurt more than TLB overhead
  640. * is likely to save. The admin can still enable it through /sys.
  641. */
  642. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  643. transparent_hugepage_flags = 0;
  644. return 0;
  645. }
  646. err = start_stop_khugepaged();
  647. if (err)
  648. goto err_khugepaged;
  649. return 0;
  650. err_khugepaged:
  651. unregister_shrinker(&deferred_split_shrinker);
  652. err_split_shrinker:
  653. unregister_shrinker(&huge_zero_page_shrinker);
  654. err_hzp_shrinker:
  655. khugepaged_slab_exit();
  656. err_slab:
  657. hugepage_exit_sysfs(hugepage_kobj);
  658. err_sysfs:
  659. return err;
  660. }
  661. subsys_initcall(hugepage_init);
  662. static int __init setup_transparent_hugepage(char *str)
  663. {
  664. int ret = 0;
  665. if (!str)
  666. goto out;
  667. if (!strcmp(str, "always")) {
  668. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  669. &transparent_hugepage_flags);
  670. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  671. &transparent_hugepage_flags);
  672. ret = 1;
  673. } else if (!strcmp(str, "madvise")) {
  674. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  675. &transparent_hugepage_flags);
  676. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  677. &transparent_hugepage_flags);
  678. ret = 1;
  679. } else if (!strcmp(str, "never")) {
  680. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  681. &transparent_hugepage_flags);
  682. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  683. &transparent_hugepage_flags);
  684. ret = 1;
  685. }
  686. out:
  687. if (!ret)
  688. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  689. return ret;
  690. }
  691. __setup("transparent_hugepage=", setup_transparent_hugepage);
  692. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  693. {
  694. if (likely(vma->vm_flags & VM_WRITE))
  695. pmd = pmd_mkwrite(pmd);
  696. return pmd;
  697. }
  698. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  699. {
  700. return pmd_mkhuge(mk_pmd(page, prot));
  701. }
  702. static inline struct list_head *page_deferred_list(struct page *page)
  703. {
  704. /*
  705. * ->lru in the tail pages is occupied by compound_head.
  706. * Let's use ->mapping + ->index in the second tail page as list_head.
  707. */
  708. return (struct list_head *)&page[2].mapping;
  709. }
  710. void prep_transhuge_page(struct page *page)
  711. {
  712. /*
  713. * we use page->mapping and page->indexlru in second tail page
  714. * as list_head: assuming THP order >= 2
  715. */
  716. INIT_LIST_HEAD(page_deferred_list(page));
  717. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  718. }
  719. static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
  720. gfp_t gfp)
  721. {
  722. struct vm_area_struct *vma = fe->vma;
  723. struct mem_cgroup *memcg;
  724. pgtable_t pgtable;
  725. unsigned long haddr = fe->address & HPAGE_PMD_MASK;
  726. VM_BUG_ON_PAGE(!PageCompound(page), page);
  727. if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
  728. put_page(page);
  729. count_vm_event(THP_FAULT_FALLBACK);
  730. return VM_FAULT_FALLBACK;
  731. }
  732. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  733. if (unlikely(!pgtable)) {
  734. mem_cgroup_cancel_charge(page, memcg, true);
  735. put_page(page);
  736. return VM_FAULT_OOM;
  737. }
  738. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  739. /*
  740. * The memory barrier inside __SetPageUptodate makes sure that
  741. * clear_huge_page writes become visible before the set_pmd_at()
  742. * write.
  743. */
  744. __SetPageUptodate(page);
  745. fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
  746. if (unlikely(!pmd_none(*fe->pmd))) {
  747. spin_unlock(fe->ptl);
  748. mem_cgroup_cancel_charge(page, memcg, true);
  749. put_page(page);
  750. pte_free(vma->vm_mm, pgtable);
  751. } else {
  752. pmd_t entry;
  753. /* Deliver the page fault to userland */
  754. if (userfaultfd_missing(vma)) {
  755. int ret;
  756. spin_unlock(fe->ptl);
  757. mem_cgroup_cancel_charge(page, memcg, true);
  758. put_page(page);
  759. pte_free(vma->vm_mm, pgtable);
  760. ret = handle_userfault(fe, VM_UFFD_MISSING);
  761. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  762. return ret;
  763. }
  764. entry = mk_huge_pmd(page, vma->vm_page_prot);
  765. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  766. page_add_new_anon_rmap(page, vma, haddr, true);
  767. mem_cgroup_commit_charge(page, memcg, false, true);
  768. lru_cache_add_active_or_unevictable(page, vma);
  769. pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
  770. set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
  771. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  772. atomic_long_inc(&vma->vm_mm->nr_ptes);
  773. spin_unlock(fe->ptl);
  774. count_vm_event(THP_FAULT_ALLOC);
  775. }
  776. return 0;
  777. }
  778. /*
  779. * If THP is set to always then directly reclaim/compact as necessary
  780. * If set to defer then do no reclaim and defer to khugepaged
  781. * If set to madvise and the VMA is flagged then directly reclaim/compact
  782. */
  783. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  784. {
  785. gfp_t reclaim_flags = 0;
  786. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
  787. (vma->vm_flags & VM_HUGEPAGE))
  788. reclaim_flags = __GFP_DIRECT_RECLAIM;
  789. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  790. reclaim_flags = __GFP_KSWAPD_RECLAIM;
  791. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  792. reclaim_flags = __GFP_DIRECT_RECLAIM;
  793. return GFP_TRANSHUGE | reclaim_flags;
  794. }
  795. /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
  796. static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
  797. {
  798. return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
  799. }
  800. /* Caller must hold page table lock. */
  801. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  802. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  803. struct page *zero_page)
  804. {
  805. pmd_t entry;
  806. if (!pmd_none(*pmd))
  807. return false;
  808. entry = mk_pmd(zero_page, vma->vm_page_prot);
  809. entry = pmd_mkhuge(entry);
  810. if (pgtable)
  811. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  812. set_pmd_at(mm, haddr, pmd, entry);
  813. atomic_long_inc(&mm->nr_ptes);
  814. return true;
  815. }
  816. int do_huge_pmd_anonymous_page(struct fault_env *fe)
  817. {
  818. struct vm_area_struct *vma = fe->vma;
  819. gfp_t gfp;
  820. struct page *page;
  821. unsigned long haddr = fe->address & HPAGE_PMD_MASK;
  822. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  823. return VM_FAULT_FALLBACK;
  824. if (unlikely(anon_vma_prepare(vma)))
  825. return VM_FAULT_OOM;
  826. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  827. return VM_FAULT_OOM;
  828. if (!(fe->flags & FAULT_FLAG_WRITE) &&
  829. !mm_forbids_zeropage(vma->vm_mm) &&
  830. transparent_hugepage_use_zero_page()) {
  831. pgtable_t pgtable;
  832. struct page *zero_page;
  833. bool set;
  834. int ret;
  835. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  836. if (unlikely(!pgtable))
  837. return VM_FAULT_OOM;
  838. zero_page = get_huge_zero_page();
  839. if (unlikely(!zero_page)) {
  840. pte_free(vma->vm_mm, pgtable);
  841. count_vm_event(THP_FAULT_FALLBACK);
  842. return VM_FAULT_FALLBACK;
  843. }
  844. fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
  845. ret = 0;
  846. set = false;
  847. if (pmd_none(*fe->pmd)) {
  848. if (userfaultfd_missing(vma)) {
  849. spin_unlock(fe->ptl);
  850. ret = handle_userfault(fe, VM_UFFD_MISSING);
  851. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  852. } else {
  853. set_huge_zero_page(pgtable, vma->vm_mm, vma,
  854. haddr, fe->pmd, zero_page);
  855. spin_unlock(fe->ptl);
  856. set = true;
  857. }
  858. } else
  859. spin_unlock(fe->ptl);
  860. if (!set) {
  861. pte_free(vma->vm_mm, pgtable);
  862. put_huge_zero_page();
  863. }
  864. return ret;
  865. }
  866. gfp = alloc_hugepage_direct_gfpmask(vma);
  867. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  868. if (unlikely(!page)) {
  869. count_vm_event(THP_FAULT_FALLBACK);
  870. return VM_FAULT_FALLBACK;
  871. }
  872. prep_transhuge_page(page);
  873. return __do_huge_pmd_anonymous_page(fe, page, gfp);
  874. }
  875. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  876. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
  877. {
  878. struct mm_struct *mm = vma->vm_mm;
  879. pmd_t entry;
  880. spinlock_t *ptl;
  881. ptl = pmd_lock(mm, pmd);
  882. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  883. if (pfn_t_devmap(pfn))
  884. entry = pmd_mkdevmap(entry);
  885. if (write) {
  886. entry = pmd_mkyoung(pmd_mkdirty(entry));
  887. entry = maybe_pmd_mkwrite(entry, vma);
  888. }
  889. set_pmd_at(mm, addr, pmd, entry);
  890. update_mmu_cache_pmd(vma, addr, pmd);
  891. spin_unlock(ptl);
  892. }
  893. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  894. pmd_t *pmd, pfn_t pfn, bool write)
  895. {
  896. pgprot_t pgprot = vma->vm_page_prot;
  897. /*
  898. * If we had pmd_special, we could avoid all these restrictions,
  899. * but we need to be consistent with PTEs and architectures that
  900. * can't support a 'special' bit.
  901. */
  902. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  903. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  904. (VM_PFNMAP|VM_MIXEDMAP));
  905. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  906. BUG_ON(!pfn_t_devmap(pfn));
  907. if (addr < vma->vm_start || addr >= vma->vm_end)
  908. return VM_FAULT_SIGBUS;
  909. if (track_pfn_insert(vma, &pgprot, pfn))
  910. return VM_FAULT_SIGBUS;
  911. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
  912. return VM_FAULT_NOPAGE;
  913. }
  914. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
  915. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  916. pmd_t *pmd)
  917. {
  918. pmd_t _pmd;
  919. /*
  920. * We should set the dirty bit only for FOLL_WRITE but for now
  921. * the dirty bit in the pmd is meaningless. And if the dirty
  922. * bit will become meaningful and we'll only set it with
  923. * FOLL_WRITE, an atomic set_bit will be required on the pmd to
  924. * set the young bit, instead of the current set_pmd_at.
  925. */
  926. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  927. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  928. pmd, _pmd, 1))
  929. update_mmu_cache_pmd(vma, addr, pmd);
  930. }
  931. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  932. pmd_t *pmd, int flags)
  933. {
  934. unsigned long pfn = pmd_pfn(*pmd);
  935. struct mm_struct *mm = vma->vm_mm;
  936. struct dev_pagemap *pgmap;
  937. struct page *page;
  938. assert_spin_locked(pmd_lockptr(mm, pmd));
  939. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  940. return NULL;
  941. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  942. /* pass */;
  943. else
  944. return NULL;
  945. if (flags & FOLL_TOUCH)
  946. touch_pmd(vma, addr, pmd);
  947. /*
  948. * device mapped pages can only be returned if the
  949. * caller will manage the page reference count.
  950. */
  951. if (!(flags & FOLL_GET))
  952. return ERR_PTR(-EEXIST);
  953. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  954. pgmap = get_dev_pagemap(pfn, NULL);
  955. if (!pgmap)
  956. return ERR_PTR(-EFAULT);
  957. page = pfn_to_page(pfn);
  958. get_page(page);
  959. put_dev_pagemap(pgmap);
  960. return page;
  961. }
  962. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  963. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  964. struct vm_area_struct *vma)
  965. {
  966. spinlock_t *dst_ptl, *src_ptl;
  967. struct page *src_page;
  968. pmd_t pmd;
  969. pgtable_t pgtable = NULL;
  970. int ret;
  971. if (!vma_is_dax(vma)) {
  972. ret = -ENOMEM;
  973. pgtable = pte_alloc_one(dst_mm, addr);
  974. if (unlikely(!pgtable))
  975. goto out;
  976. }
  977. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  978. src_ptl = pmd_lockptr(src_mm, src_pmd);
  979. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  980. ret = -EAGAIN;
  981. pmd = *src_pmd;
  982. if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
  983. pte_free(dst_mm, pgtable);
  984. goto out_unlock;
  985. }
  986. /*
  987. * When page table lock is held, the huge zero pmd should not be
  988. * under splitting since we don't split the page itself, only pmd to
  989. * a page table.
  990. */
  991. if (is_huge_zero_pmd(pmd)) {
  992. struct page *zero_page;
  993. /*
  994. * get_huge_zero_page() will never allocate a new page here,
  995. * since we already have a zero page to copy. It just takes a
  996. * reference.
  997. */
  998. zero_page = get_huge_zero_page();
  999. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  1000. zero_page);
  1001. ret = 0;
  1002. goto out_unlock;
  1003. }
  1004. if (!vma_is_dax(vma)) {
  1005. /* thp accounting separate from pmd_devmap accounting */
  1006. src_page = pmd_page(pmd);
  1007. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  1008. get_page(src_page);
  1009. page_dup_rmap(src_page, true);
  1010. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1011. atomic_long_inc(&dst_mm->nr_ptes);
  1012. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  1013. }
  1014. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  1015. pmd = pmd_mkold(pmd_wrprotect(pmd));
  1016. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  1017. ret = 0;
  1018. out_unlock:
  1019. spin_unlock(src_ptl);
  1020. spin_unlock(dst_ptl);
  1021. out:
  1022. return ret;
  1023. }
  1024. void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
  1025. {
  1026. pmd_t entry;
  1027. unsigned long haddr;
  1028. fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
  1029. if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
  1030. goto unlock;
  1031. entry = pmd_mkyoung(orig_pmd);
  1032. haddr = fe->address & HPAGE_PMD_MASK;
  1033. if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
  1034. fe->flags & FAULT_FLAG_WRITE))
  1035. update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
  1036. unlock:
  1037. spin_unlock(fe->ptl);
  1038. }
  1039. static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
  1040. struct page *page)
  1041. {
  1042. struct vm_area_struct *vma = fe->vma;
  1043. unsigned long haddr = fe->address & HPAGE_PMD_MASK;
  1044. struct mem_cgroup *memcg;
  1045. pgtable_t pgtable;
  1046. pmd_t _pmd;
  1047. int ret = 0, i;
  1048. struct page **pages;
  1049. unsigned long mmun_start; /* For mmu_notifiers */
  1050. unsigned long mmun_end; /* For mmu_notifiers */
  1051. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  1052. GFP_KERNEL);
  1053. if (unlikely(!pages)) {
  1054. ret |= VM_FAULT_OOM;
  1055. goto out;
  1056. }
  1057. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1058. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  1059. __GFP_OTHER_NODE, vma,
  1060. fe->address, page_to_nid(page));
  1061. if (unlikely(!pages[i] ||
  1062. mem_cgroup_try_charge(pages[i], vma->vm_mm,
  1063. GFP_KERNEL, &memcg, false))) {
  1064. if (pages[i])
  1065. put_page(pages[i]);
  1066. while (--i >= 0) {
  1067. memcg = (void *)page_private(pages[i]);
  1068. set_page_private(pages[i], 0);
  1069. mem_cgroup_cancel_charge(pages[i], memcg,
  1070. false);
  1071. put_page(pages[i]);
  1072. }
  1073. kfree(pages);
  1074. ret |= VM_FAULT_OOM;
  1075. goto out;
  1076. }
  1077. set_page_private(pages[i], (unsigned long)memcg);
  1078. }
  1079. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1080. copy_user_highpage(pages[i], page + i,
  1081. haddr + PAGE_SIZE * i, vma);
  1082. __SetPageUptodate(pages[i]);
  1083. cond_resched();
  1084. }
  1085. mmun_start = haddr;
  1086. mmun_end = haddr + HPAGE_PMD_SIZE;
  1087. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1088. fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
  1089. if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
  1090. goto out_free_pages;
  1091. VM_BUG_ON_PAGE(!PageHead(page), page);
  1092. pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
  1093. /* leave pmd empty until pte is filled */
  1094. pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
  1095. pmd_populate(vma->vm_mm, &_pmd, pgtable);
  1096. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1097. pte_t entry;
  1098. entry = mk_pte(pages[i], vma->vm_page_prot);
  1099. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1100. memcg = (void *)page_private(pages[i]);
  1101. set_page_private(pages[i], 0);
  1102. page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
  1103. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  1104. lru_cache_add_active_or_unevictable(pages[i], vma);
  1105. fe->pte = pte_offset_map(&_pmd, haddr);
  1106. VM_BUG_ON(!pte_none(*fe->pte));
  1107. set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
  1108. pte_unmap(fe->pte);
  1109. }
  1110. kfree(pages);
  1111. smp_wmb(); /* make pte visible before pmd */
  1112. pmd_populate(vma->vm_mm, fe->pmd, pgtable);
  1113. page_remove_rmap(page, true);
  1114. spin_unlock(fe->ptl);
  1115. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1116. ret |= VM_FAULT_WRITE;
  1117. put_page(page);
  1118. out:
  1119. return ret;
  1120. out_free_pages:
  1121. spin_unlock(fe->ptl);
  1122. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1123. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1124. memcg = (void *)page_private(pages[i]);
  1125. set_page_private(pages[i], 0);
  1126. mem_cgroup_cancel_charge(pages[i], memcg, false);
  1127. put_page(pages[i]);
  1128. }
  1129. kfree(pages);
  1130. goto out;
  1131. }
  1132. int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
  1133. {
  1134. struct vm_area_struct *vma = fe->vma;
  1135. struct page *page = NULL, *new_page;
  1136. struct mem_cgroup *memcg;
  1137. unsigned long haddr = fe->address & HPAGE_PMD_MASK;
  1138. unsigned long mmun_start; /* For mmu_notifiers */
  1139. unsigned long mmun_end; /* For mmu_notifiers */
  1140. gfp_t huge_gfp; /* for allocation and charge */
  1141. int ret = 0;
  1142. fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
  1143. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1144. if (is_huge_zero_pmd(orig_pmd))
  1145. goto alloc;
  1146. spin_lock(fe->ptl);
  1147. if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
  1148. goto out_unlock;
  1149. page = pmd_page(orig_pmd);
  1150. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1151. /*
  1152. * We can only reuse the page if nobody else maps the huge page or it's
  1153. * part.
  1154. */
  1155. if (page_trans_huge_mapcount(page, NULL) == 1) {
  1156. pmd_t entry;
  1157. entry = pmd_mkyoung(orig_pmd);
  1158. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1159. if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
  1160. update_mmu_cache_pmd(vma, fe->address, fe->pmd);
  1161. ret |= VM_FAULT_WRITE;
  1162. goto out_unlock;
  1163. }
  1164. get_page(page);
  1165. spin_unlock(fe->ptl);
  1166. alloc:
  1167. if (transparent_hugepage_enabled(vma) &&
  1168. !transparent_hugepage_debug_cow()) {
  1169. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  1170. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1171. } else
  1172. new_page = NULL;
  1173. if (likely(new_page)) {
  1174. prep_transhuge_page(new_page);
  1175. } else {
  1176. if (!page) {
  1177. split_huge_pmd(vma, fe->pmd, fe->address);
  1178. ret |= VM_FAULT_FALLBACK;
  1179. } else {
  1180. ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
  1181. if (ret & VM_FAULT_OOM) {
  1182. split_huge_pmd(vma, fe->pmd, fe->address);
  1183. ret |= VM_FAULT_FALLBACK;
  1184. }
  1185. put_page(page);
  1186. }
  1187. count_vm_event(THP_FAULT_FALLBACK);
  1188. goto out;
  1189. }
  1190. if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
  1191. huge_gfp, &memcg, true))) {
  1192. put_page(new_page);
  1193. split_huge_pmd(vma, fe->pmd, fe->address);
  1194. if (page)
  1195. put_page(page);
  1196. ret |= VM_FAULT_FALLBACK;
  1197. count_vm_event(THP_FAULT_FALLBACK);
  1198. goto out;
  1199. }
  1200. count_vm_event(THP_FAULT_ALLOC);
  1201. if (!page)
  1202. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1203. else
  1204. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1205. __SetPageUptodate(new_page);
  1206. mmun_start = haddr;
  1207. mmun_end = haddr + HPAGE_PMD_SIZE;
  1208. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1209. spin_lock(fe->ptl);
  1210. if (page)
  1211. put_page(page);
  1212. if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
  1213. spin_unlock(fe->ptl);
  1214. mem_cgroup_cancel_charge(new_page, memcg, true);
  1215. put_page(new_page);
  1216. goto out_mn;
  1217. } else {
  1218. pmd_t entry;
  1219. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1220. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1221. pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
  1222. page_add_new_anon_rmap(new_page, vma, haddr, true);
  1223. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1224. lru_cache_add_active_or_unevictable(new_page, vma);
  1225. set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
  1226. update_mmu_cache_pmd(vma, fe->address, fe->pmd);
  1227. if (!page) {
  1228. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1229. put_huge_zero_page();
  1230. } else {
  1231. VM_BUG_ON_PAGE(!PageHead(page), page);
  1232. page_remove_rmap(page, true);
  1233. put_page(page);
  1234. }
  1235. ret |= VM_FAULT_WRITE;
  1236. }
  1237. spin_unlock(fe->ptl);
  1238. out_mn:
  1239. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1240. out:
  1241. return ret;
  1242. out_unlock:
  1243. spin_unlock(fe->ptl);
  1244. return ret;
  1245. }
  1246. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1247. unsigned long addr,
  1248. pmd_t *pmd,
  1249. unsigned int flags)
  1250. {
  1251. struct mm_struct *mm = vma->vm_mm;
  1252. struct page *page = NULL;
  1253. assert_spin_locked(pmd_lockptr(mm, pmd));
  1254. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1255. goto out;
  1256. /* Avoid dumping huge zero page */
  1257. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1258. return ERR_PTR(-EFAULT);
  1259. /* Full NUMA hinting faults to serialise migration in fault paths */
  1260. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1261. goto out;
  1262. page = pmd_page(*pmd);
  1263. VM_BUG_ON_PAGE(!PageHead(page), page);
  1264. if (flags & FOLL_TOUCH)
  1265. touch_pmd(vma, addr, pmd);
  1266. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1267. /*
  1268. * We don't mlock() pte-mapped THPs. This way we can avoid
  1269. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1270. *
  1271. * In most cases the pmd is the only mapping of the page as we
  1272. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1273. * writable private mappings in populate_vma_page_range().
  1274. *
  1275. * The only scenario when we have the page shared here is if we
  1276. * mlocking read-only mapping shared over fork(). We skip
  1277. * mlocking such pages.
  1278. */
  1279. if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
  1280. page->mapping && trylock_page(page)) {
  1281. lru_add_drain();
  1282. if (page->mapping)
  1283. mlock_vma_page(page);
  1284. unlock_page(page);
  1285. }
  1286. }
  1287. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1288. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1289. if (flags & FOLL_GET)
  1290. get_page(page);
  1291. out:
  1292. return page;
  1293. }
  1294. /* NUMA hinting page fault entry point for trans huge pmds */
  1295. int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
  1296. {
  1297. struct vm_area_struct *vma = fe->vma;
  1298. struct anon_vma *anon_vma = NULL;
  1299. struct page *page;
  1300. unsigned long haddr = fe->address & HPAGE_PMD_MASK;
  1301. int page_nid = -1, this_nid = numa_node_id();
  1302. int target_nid, last_cpupid = -1;
  1303. bool page_locked;
  1304. bool migrated = false;
  1305. bool was_writable;
  1306. int flags = 0;
  1307. /* A PROT_NONE fault should not end up here */
  1308. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  1309. fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
  1310. if (unlikely(!pmd_same(pmd, *fe->pmd)))
  1311. goto out_unlock;
  1312. /*
  1313. * If there are potential migrations, wait for completion and retry
  1314. * without disrupting NUMA hinting information. Do not relock and
  1315. * check_same as the page may no longer be mapped.
  1316. */
  1317. if (unlikely(pmd_trans_migrating(*fe->pmd))) {
  1318. page = pmd_page(*fe->pmd);
  1319. spin_unlock(fe->ptl);
  1320. wait_on_page_locked(page);
  1321. goto out;
  1322. }
  1323. page = pmd_page(pmd);
  1324. BUG_ON(is_huge_zero_page(page));
  1325. page_nid = page_to_nid(page);
  1326. last_cpupid = page_cpupid_last(page);
  1327. count_vm_numa_event(NUMA_HINT_FAULTS);
  1328. if (page_nid == this_nid) {
  1329. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1330. flags |= TNF_FAULT_LOCAL;
  1331. }
  1332. /* See similar comment in do_numa_page for explanation */
  1333. if (!(vma->vm_flags & VM_WRITE))
  1334. flags |= TNF_NO_GROUP;
  1335. /*
  1336. * Acquire the page lock to serialise THP migrations but avoid dropping
  1337. * page_table_lock if at all possible
  1338. */
  1339. page_locked = trylock_page(page);
  1340. target_nid = mpol_misplaced(page, vma, haddr);
  1341. if (target_nid == -1) {
  1342. /* If the page was locked, there are no parallel migrations */
  1343. if (page_locked)
  1344. goto clear_pmdnuma;
  1345. }
  1346. /* Migration could have started since the pmd_trans_migrating check */
  1347. if (!page_locked) {
  1348. spin_unlock(fe->ptl);
  1349. wait_on_page_locked(page);
  1350. page_nid = -1;
  1351. goto out;
  1352. }
  1353. /*
  1354. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1355. * to serialises splits
  1356. */
  1357. get_page(page);
  1358. spin_unlock(fe->ptl);
  1359. anon_vma = page_lock_anon_vma_read(page);
  1360. /* Confirm the PMD did not change while page_table_lock was released */
  1361. spin_lock(fe->ptl);
  1362. if (unlikely(!pmd_same(pmd, *fe->pmd))) {
  1363. unlock_page(page);
  1364. put_page(page);
  1365. page_nid = -1;
  1366. goto out_unlock;
  1367. }
  1368. /* Bail if we fail to protect against THP splits for any reason */
  1369. if (unlikely(!anon_vma)) {
  1370. put_page(page);
  1371. page_nid = -1;
  1372. goto clear_pmdnuma;
  1373. }
  1374. /*
  1375. * Migrate the THP to the requested node, returns with page unlocked
  1376. * and access rights restored.
  1377. */
  1378. spin_unlock(fe->ptl);
  1379. migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
  1380. fe->pmd, pmd, fe->address, page, target_nid);
  1381. if (migrated) {
  1382. flags |= TNF_MIGRATED;
  1383. page_nid = target_nid;
  1384. } else
  1385. flags |= TNF_MIGRATE_FAIL;
  1386. goto out;
  1387. clear_pmdnuma:
  1388. BUG_ON(!PageLocked(page));
  1389. was_writable = pmd_write(pmd);
  1390. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1391. pmd = pmd_mkyoung(pmd);
  1392. if (was_writable)
  1393. pmd = pmd_mkwrite(pmd);
  1394. set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
  1395. update_mmu_cache_pmd(vma, fe->address, fe->pmd);
  1396. unlock_page(page);
  1397. out_unlock:
  1398. spin_unlock(fe->ptl);
  1399. out:
  1400. if (anon_vma)
  1401. page_unlock_anon_vma_read(anon_vma);
  1402. if (page_nid != -1)
  1403. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
  1404. return 0;
  1405. }
  1406. int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1407. pmd_t *pmd, unsigned long addr, unsigned long next)
  1408. {
  1409. spinlock_t *ptl;
  1410. pmd_t orig_pmd;
  1411. struct page *page;
  1412. struct mm_struct *mm = tlb->mm;
  1413. int ret = 0;
  1414. ptl = pmd_trans_huge_lock(pmd, vma);
  1415. if (!ptl)
  1416. goto out_unlocked;
  1417. orig_pmd = *pmd;
  1418. if (is_huge_zero_pmd(orig_pmd)) {
  1419. ret = 1;
  1420. goto out;
  1421. }
  1422. page = pmd_page(orig_pmd);
  1423. /*
  1424. * If other processes are mapping this page, we couldn't discard
  1425. * the page unless they all do MADV_FREE so let's skip the page.
  1426. */
  1427. if (page_mapcount(page) != 1)
  1428. goto out;
  1429. if (!trylock_page(page))
  1430. goto out;
  1431. /*
  1432. * If user want to discard part-pages of THP, split it so MADV_FREE
  1433. * will deactivate only them.
  1434. */
  1435. if (next - addr != HPAGE_PMD_SIZE) {
  1436. get_page(page);
  1437. spin_unlock(ptl);
  1438. split_huge_page(page);
  1439. put_page(page);
  1440. unlock_page(page);
  1441. goto out_unlocked;
  1442. }
  1443. if (PageDirty(page))
  1444. ClearPageDirty(page);
  1445. unlock_page(page);
  1446. if (PageActive(page))
  1447. deactivate_page(page);
  1448. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1449. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1450. tlb->fullmm);
  1451. orig_pmd = pmd_mkold(orig_pmd);
  1452. orig_pmd = pmd_mkclean(orig_pmd);
  1453. set_pmd_at(mm, addr, pmd, orig_pmd);
  1454. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1455. }
  1456. ret = 1;
  1457. out:
  1458. spin_unlock(ptl);
  1459. out_unlocked:
  1460. return ret;
  1461. }
  1462. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1463. pmd_t *pmd, unsigned long addr)
  1464. {
  1465. pmd_t orig_pmd;
  1466. spinlock_t *ptl;
  1467. ptl = __pmd_trans_huge_lock(pmd, vma);
  1468. if (!ptl)
  1469. return 0;
  1470. /*
  1471. * For architectures like ppc64 we look at deposited pgtable
  1472. * when calling pmdp_huge_get_and_clear. So do the
  1473. * pgtable_trans_huge_withdraw after finishing pmdp related
  1474. * operations.
  1475. */
  1476. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1477. tlb->fullmm);
  1478. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1479. if (vma_is_dax(vma)) {
  1480. spin_unlock(ptl);
  1481. if (is_huge_zero_pmd(orig_pmd))
  1482. tlb_remove_page(tlb, pmd_page(orig_pmd));
  1483. } else if (is_huge_zero_pmd(orig_pmd)) {
  1484. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1485. atomic_long_dec(&tlb->mm->nr_ptes);
  1486. spin_unlock(ptl);
  1487. tlb_remove_page(tlb, pmd_page(orig_pmd));
  1488. } else {
  1489. struct page *page = pmd_page(orig_pmd);
  1490. page_remove_rmap(page, true);
  1491. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1492. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1493. VM_BUG_ON_PAGE(!PageHead(page), page);
  1494. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1495. atomic_long_dec(&tlb->mm->nr_ptes);
  1496. spin_unlock(ptl);
  1497. tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
  1498. }
  1499. return 1;
  1500. }
  1501. bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
  1502. unsigned long new_addr, unsigned long old_end,
  1503. pmd_t *old_pmd, pmd_t *new_pmd)
  1504. {
  1505. spinlock_t *old_ptl, *new_ptl;
  1506. pmd_t pmd;
  1507. struct mm_struct *mm = vma->vm_mm;
  1508. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1509. (new_addr & ~HPAGE_PMD_MASK) ||
  1510. old_end - old_addr < HPAGE_PMD_SIZE)
  1511. return false;
  1512. /*
  1513. * The destination pmd shouldn't be established, free_pgtables()
  1514. * should have release it.
  1515. */
  1516. if (WARN_ON(!pmd_none(*new_pmd))) {
  1517. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1518. return false;
  1519. }
  1520. /*
  1521. * We don't have to worry about the ordering of src and dst
  1522. * ptlocks because exclusive mmap_sem prevents deadlock.
  1523. */
  1524. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1525. if (old_ptl) {
  1526. new_ptl = pmd_lockptr(mm, new_pmd);
  1527. if (new_ptl != old_ptl)
  1528. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1529. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1530. VM_BUG_ON(!pmd_none(*new_pmd));
  1531. if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
  1532. vma_is_anonymous(vma)) {
  1533. pgtable_t pgtable;
  1534. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1535. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1536. }
  1537. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1538. if (new_ptl != old_ptl)
  1539. spin_unlock(new_ptl);
  1540. spin_unlock(old_ptl);
  1541. return true;
  1542. }
  1543. return false;
  1544. }
  1545. /*
  1546. * Returns
  1547. * - 0 if PMD could not be locked
  1548. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1549. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1550. */
  1551. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1552. unsigned long addr, pgprot_t newprot, int prot_numa)
  1553. {
  1554. struct mm_struct *mm = vma->vm_mm;
  1555. spinlock_t *ptl;
  1556. int ret = 0;
  1557. ptl = __pmd_trans_huge_lock(pmd, vma);
  1558. if (ptl) {
  1559. pmd_t entry;
  1560. bool preserve_write = prot_numa && pmd_write(*pmd);
  1561. ret = 1;
  1562. /*
  1563. * Avoid trapping faults against the zero page. The read-only
  1564. * data is likely to be read-cached on the local CPU and
  1565. * local/remote hits to the zero page are not interesting.
  1566. */
  1567. if (prot_numa && is_huge_zero_pmd(*pmd)) {
  1568. spin_unlock(ptl);
  1569. return ret;
  1570. }
  1571. if (!prot_numa || !pmd_protnone(*pmd)) {
  1572. entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
  1573. entry = pmd_modify(entry, newprot);
  1574. if (preserve_write)
  1575. entry = pmd_mkwrite(entry);
  1576. ret = HPAGE_PMD_NR;
  1577. set_pmd_at(mm, addr, pmd, entry);
  1578. BUG_ON(!preserve_write && pmd_write(entry));
  1579. }
  1580. spin_unlock(ptl);
  1581. }
  1582. return ret;
  1583. }
  1584. /*
  1585. * Returns true if a given pmd maps a thp, false otherwise.
  1586. *
  1587. * Note that if it returns true, this routine returns without unlocking page
  1588. * table lock. So callers must unlock it.
  1589. */
  1590. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1591. {
  1592. spinlock_t *ptl;
  1593. ptl = pmd_lock(vma->vm_mm, pmd);
  1594. if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
  1595. return ptl;
  1596. spin_unlock(ptl);
  1597. return NULL;
  1598. }
  1599. #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
  1600. int hugepage_madvise(struct vm_area_struct *vma,
  1601. unsigned long *vm_flags, int advice)
  1602. {
  1603. switch (advice) {
  1604. case MADV_HUGEPAGE:
  1605. #ifdef CONFIG_S390
  1606. /*
  1607. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  1608. * can't handle this properly after s390_enable_sie, so we simply
  1609. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  1610. */
  1611. if (mm_has_pgste(vma->vm_mm))
  1612. return 0;
  1613. #endif
  1614. /*
  1615. * Be somewhat over-protective like KSM for now!
  1616. */
  1617. if (*vm_flags & VM_NO_THP)
  1618. return -EINVAL;
  1619. *vm_flags &= ~VM_NOHUGEPAGE;
  1620. *vm_flags |= VM_HUGEPAGE;
  1621. /*
  1622. * If the vma become good for khugepaged to scan,
  1623. * register it here without waiting a page fault that
  1624. * may not happen any time soon.
  1625. */
  1626. if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
  1627. return -ENOMEM;
  1628. break;
  1629. case MADV_NOHUGEPAGE:
  1630. /*
  1631. * Be somewhat over-protective like KSM for now!
  1632. */
  1633. if (*vm_flags & VM_NO_THP)
  1634. return -EINVAL;
  1635. *vm_flags &= ~VM_HUGEPAGE;
  1636. *vm_flags |= VM_NOHUGEPAGE;
  1637. /*
  1638. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1639. * this vma even if we leave the mm registered in khugepaged if
  1640. * it got registered before VM_NOHUGEPAGE was set.
  1641. */
  1642. break;
  1643. }
  1644. return 0;
  1645. }
  1646. static int __init khugepaged_slab_init(void)
  1647. {
  1648. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1649. sizeof(struct mm_slot),
  1650. __alignof__(struct mm_slot), 0, NULL);
  1651. if (!mm_slot_cache)
  1652. return -ENOMEM;
  1653. return 0;
  1654. }
  1655. static void __init khugepaged_slab_exit(void)
  1656. {
  1657. kmem_cache_destroy(mm_slot_cache);
  1658. }
  1659. static inline struct mm_slot *alloc_mm_slot(void)
  1660. {
  1661. if (!mm_slot_cache) /* initialization failed */
  1662. return NULL;
  1663. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1664. }
  1665. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1666. {
  1667. kmem_cache_free(mm_slot_cache, mm_slot);
  1668. }
  1669. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1670. {
  1671. struct mm_slot *mm_slot;
  1672. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1673. if (mm == mm_slot->mm)
  1674. return mm_slot;
  1675. return NULL;
  1676. }
  1677. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1678. struct mm_slot *mm_slot)
  1679. {
  1680. mm_slot->mm = mm;
  1681. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1682. }
  1683. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1684. {
  1685. return atomic_read(&mm->mm_users) == 0;
  1686. }
  1687. int __khugepaged_enter(struct mm_struct *mm)
  1688. {
  1689. struct mm_slot *mm_slot;
  1690. int wakeup;
  1691. mm_slot = alloc_mm_slot();
  1692. if (!mm_slot)
  1693. return -ENOMEM;
  1694. /* __khugepaged_exit() must not run from under us */
  1695. VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
  1696. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1697. free_mm_slot(mm_slot);
  1698. return 0;
  1699. }
  1700. spin_lock(&khugepaged_mm_lock);
  1701. insert_to_mm_slots_hash(mm, mm_slot);
  1702. /*
  1703. * Insert just behind the scanning cursor, to let the area settle
  1704. * down a little.
  1705. */
  1706. wakeup = list_empty(&khugepaged_scan.mm_head);
  1707. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1708. spin_unlock(&khugepaged_mm_lock);
  1709. atomic_inc(&mm->mm_count);
  1710. if (wakeup)
  1711. wake_up_interruptible(&khugepaged_wait);
  1712. return 0;
  1713. }
  1714. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  1715. unsigned long vm_flags)
  1716. {
  1717. unsigned long hstart, hend;
  1718. if (!vma->anon_vma)
  1719. /*
  1720. * Not yet faulted in so we will register later in the
  1721. * page fault if needed.
  1722. */
  1723. return 0;
  1724. if (vma->vm_ops || (vm_flags & VM_NO_THP))
  1725. /* khugepaged not yet working on file or special mappings */
  1726. return 0;
  1727. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1728. hend = vma->vm_end & HPAGE_PMD_MASK;
  1729. if (hstart < hend)
  1730. return khugepaged_enter(vma, vm_flags);
  1731. return 0;
  1732. }
  1733. void __khugepaged_exit(struct mm_struct *mm)
  1734. {
  1735. struct mm_slot *mm_slot;
  1736. int free = 0;
  1737. spin_lock(&khugepaged_mm_lock);
  1738. mm_slot = get_mm_slot(mm);
  1739. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1740. hash_del(&mm_slot->hash);
  1741. list_del(&mm_slot->mm_node);
  1742. free = 1;
  1743. }
  1744. spin_unlock(&khugepaged_mm_lock);
  1745. if (free) {
  1746. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1747. free_mm_slot(mm_slot);
  1748. mmdrop(mm);
  1749. } else if (mm_slot) {
  1750. /*
  1751. * This is required to serialize against
  1752. * khugepaged_test_exit() (which is guaranteed to run
  1753. * under mmap sem read mode). Stop here (after we
  1754. * return all pagetables will be destroyed) until
  1755. * khugepaged has finished working on the pagetables
  1756. * under the mmap_sem.
  1757. */
  1758. down_write(&mm->mmap_sem);
  1759. up_write(&mm->mmap_sem);
  1760. }
  1761. }
  1762. static void release_pte_page(struct page *page)
  1763. {
  1764. /* 0 stands for page_is_file_cache(page) == false */
  1765. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1766. unlock_page(page);
  1767. putback_lru_page(page);
  1768. }
  1769. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1770. {
  1771. while (--_pte >= pte) {
  1772. pte_t pteval = *_pte;
  1773. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  1774. release_pte_page(pte_page(pteval));
  1775. }
  1776. }
  1777. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1778. unsigned long address,
  1779. pte_t *pte)
  1780. {
  1781. struct page *page = NULL;
  1782. pte_t *_pte;
  1783. int none_or_zero = 0, result = 0;
  1784. bool referenced = false, writable = false;
  1785. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1786. _pte++, address += PAGE_SIZE) {
  1787. pte_t pteval = *_pte;
  1788. if (pte_none(pteval) || (pte_present(pteval) &&
  1789. is_zero_pfn(pte_pfn(pteval)))) {
  1790. if (!userfaultfd_armed(vma) &&
  1791. ++none_or_zero <= khugepaged_max_ptes_none) {
  1792. continue;
  1793. } else {
  1794. result = SCAN_EXCEED_NONE_PTE;
  1795. goto out;
  1796. }
  1797. }
  1798. if (!pte_present(pteval)) {
  1799. result = SCAN_PTE_NON_PRESENT;
  1800. goto out;
  1801. }
  1802. page = vm_normal_page(vma, address, pteval);
  1803. if (unlikely(!page)) {
  1804. result = SCAN_PAGE_NULL;
  1805. goto out;
  1806. }
  1807. VM_BUG_ON_PAGE(PageCompound(page), page);
  1808. VM_BUG_ON_PAGE(!PageAnon(page), page);
  1809. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1810. /*
  1811. * We can do it before isolate_lru_page because the
  1812. * page can't be freed from under us. NOTE: PG_lock
  1813. * is needed to serialize against split_huge_page
  1814. * when invoked from the VM.
  1815. */
  1816. if (!trylock_page(page)) {
  1817. result = SCAN_PAGE_LOCK;
  1818. goto out;
  1819. }
  1820. /*
  1821. * cannot use mapcount: can't collapse if there's a gup pin.
  1822. * The page must only be referenced by the scanned process
  1823. * and page swap cache.
  1824. */
  1825. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  1826. unlock_page(page);
  1827. result = SCAN_PAGE_COUNT;
  1828. goto out;
  1829. }
  1830. if (pte_write(pteval)) {
  1831. writable = true;
  1832. } else {
  1833. if (PageSwapCache(page) &&
  1834. !reuse_swap_page(page, NULL)) {
  1835. unlock_page(page);
  1836. result = SCAN_SWAP_CACHE_PAGE;
  1837. goto out;
  1838. }
  1839. /*
  1840. * Page is not in the swap cache. It can be collapsed
  1841. * into a THP.
  1842. */
  1843. }
  1844. /*
  1845. * Isolate the page to avoid collapsing an hugepage
  1846. * currently in use by the VM.
  1847. */
  1848. if (isolate_lru_page(page)) {
  1849. unlock_page(page);
  1850. result = SCAN_DEL_PAGE_LRU;
  1851. goto out;
  1852. }
  1853. /* 0 stands for page_is_file_cache(page) == false */
  1854. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1855. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1856. VM_BUG_ON_PAGE(PageLRU(page), page);
  1857. /* If there is no mapped pte young don't collapse the page */
  1858. if (pte_young(pteval) ||
  1859. page_is_young(page) || PageReferenced(page) ||
  1860. mmu_notifier_test_young(vma->vm_mm, address))
  1861. referenced = true;
  1862. }
  1863. if (likely(writable)) {
  1864. if (likely(referenced)) {
  1865. result = SCAN_SUCCEED;
  1866. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  1867. referenced, writable, result);
  1868. return 1;
  1869. }
  1870. } else {
  1871. result = SCAN_PAGE_RO;
  1872. }
  1873. out:
  1874. release_pte_pages(pte, _pte);
  1875. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  1876. referenced, writable, result);
  1877. return 0;
  1878. }
  1879. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1880. struct vm_area_struct *vma,
  1881. unsigned long address,
  1882. spinlock_t *ptl)
  1883. {
  1884. pte_t *_pte;
  1885. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1886. pte_t pteval = *_pte;
  1887. struct page *src_page;
  1888. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  1889. clear_user_highpage(page, address);
  1890. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1891. if (is_zero_pfn(pte_pfn(pteval))) {
  1892. /*
  1893. * ptl mostly unnecessary.
  1894. */
  1895. spin_lock(ptl);
  1896. /*
  1897. * paravirt calls inside pte_clear here are
  1898. * superfluous.
  1899. */
  1900. pte_clear(vma->vm_mm, address, _pte);
  1901. spin_unlock(ptl);
  1902. }
  1903. } else {
  1904. src_page = pte_page(pteval);
  1905. copy_user_highpage(page, src_page, address, vma);
  1906. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  1907. release_pte_page(src_page);
  1908. /*
  1909. * ptl mostly unnecessary, but preempt has to
  1910. * be disabled to update the per-cpu stats
  1911. * inside page_remove_rmap().
  1912. */
  1913. spin_lock(ptl);
  1914. /*
  1915. * paravirt calls inside pte_clear here are
  1916. * superfluous.
  1917. */
  1918. pte_clear(vma->vm_mm, address, _pte);
  1919. page_remove_rmap(src_page, false);
  1920. spin_unlock(ptl);
  1921. free_page_and_swap_cache(src_page);
  1922. }
  1923. address += PAGE_SIZE;
  1924. page++;
  1925. }
  1926. }
  1927. static void khugepaged_alloc_sleep(void)
  1928. {
  1929. DEFINE_WAIT(wait);
  1930. add_wait_queue(&khugepaged_wait, &wait);
  1931. freezable_schedule_timeout_interruptible(
  1932. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1933. remove_wait_queue(&khugepaged_wait, &wait);
  1934. }
  1935. static int khugepaged_node_load[MAX_NUMNODES];
  1936. static bool khugepaged_scan_abort(int nid)
  1937. {
  1938. int i;
  1939. /*
  1940. * If zone_reclaim_mode is disabled, then no extra effort is made to
  1941. * allocate memory locally.
  1942. */
  1943. if (!zone_reclaim_mode)
  1944. return false;
  1945. /* If there is a count for this node already, it must be acceptable */
  1946. if (khugepaged_node_load[nid])
  1947. return false;
  1948. for (i = 0; i < MAX_NUMNODES; i++) {
  1949. if (!khugepaged_node_load[i])
  1950. continue;
  1951. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  1952. return true;
  1953. }
  1954. return false;
  1955. }
  1956. #ifdef CONFIG_NUMA
  1957. static int khugepaged_find_target_node(void)
  1958. {
  1959. static int last_khugepaged_target_node = NUMA_NO_NODE;
  1960. int nid, target_node = 0, max_value = 0;
  1961. /* find first node with max normal pages hit */
  1962. for (nid = 0; nid < MAX_NUMNODES; nid++)
  1963. if (khugepaged_node_load[nid] > max_value) {
  1964. max_value = khugepaged_node_load[nid];
  1965. target_node = nid;
  1966. }
  1967. /* do some balance if several nodes have the same hit record */
  1968. if (target_node <= last_khugepaged_target_node)
  1969. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  1970. nid++)
  1971. if (max_value == khugepaged_node_load[nid]) {
  1972. target_node = nid;
  1973. break;
  1974. }
  1975. last_khugepaged_target_node = target_node;
  1976. return target_node;
  1977. }
  1978. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1979. {
  1980. if (IS_ERR(*hpage)) {
  1981. if (!*wait)
  1982. return false;
  1983. *wait = false;
  1984. *hpage = NULL;
  1985. khugepaged_alloc_sleep();
  1986. } else if (*hpage) {
  1987. put_page(*hpage);
  1988. *hpage = NULL;
  1989. }
  1990. return true;
  1991. }
  1992. static struct page *
  1993. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  1994. unsigned long address, int node)
  1995. {
  1996. VM_BUG_ON_PAGE(*hpage, *hpage);
  1997. /*
  1998. * Before allocating the hugepage, release the mmap_sem read lock.
  1999. * The allocation can take potentially a long time if it involves
  2000. * sync compaction, and we do not need to hold the mmap_sem during
  2001. * that. We will recheck the vma after taking it again in write mode.
  2002. */
  2003. up_read(&mm->mmap_sem);
  2004. *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
  2005. if (unlikely(!*hpage)) {
  2006. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2007. *hpage = ERR_PTR(-ENOMEM);
  2008. return NULL;
  2009. }
  2010. prep_transhuge_page(*hpage);
  2011. count_vm_event(THP_COLLAPSE_ALLOC);
  2012. return *hpage;
  2013. }
  2014. #else
  2015. static int khugepaged_find_target_node(void)
  2016. {
  2017. return 0;
  2018. }
  2019. static inline struct page *alloc_khugepaged_hugepage(void)
  2020. {
  2021. struct page *page;
  2022. page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
  2023. HPAGE_PMD_ORDER);
  2024. if (page)
  2025. prep_transhuge_page(page);
  2026. return page;
  2027. }
  2028. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2029. {
  2030. struct page *hpage;
  2031. do {
  2032. hpage = alloc_khugepaged_hugepage();
  2033. if (!hpage) {
  2034. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2035. if (!*wait)
  2036. return NULL;
  2037. *wait = false;
  2038. khugepaged_alloc_sleep();
  2039. } else
  2040. count_vm_event(THP_COLLAPSE_ALLOC);
  2041. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2042. return hpage;
  2043. }
  2044. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2045. {
  2046. if (!*hpage)
  2047. *hpage = khugepaged_alloc_hugepage(wait);
  2048. if (unlikely(!*hpage))
  2049. return false;
  2050. return true;
  2051. }
  2052. static struct page *
  2053. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2054. unsigned long address, int node)
  2055. {
  2056. up_read(&mm->mmap_sem);
  2057. VM_BUG_ON(!*hpage);
  2058. return *hpage;
  2059. }
  2060. #endif
  2061. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2062. {
  2063. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2064. (vma->vm_flags & VM_NOHUGEPAGE))
  2065. return false;
  2066. if (!vma->anon_vma || vma->vm_ops)
  2067. return false;
  2068. if (is_vma_temporary_stack(vma))
  2069. return false;
  2070. return !(vma->vm_flags & VM_NO_THP);
  2071. }
  2072. /*
  2073. * If mmap_sem temporarily dropped, revalidate vma
  2074. * before taking mmap_sem.
  2075. * Return 0 if succeeds, otherwise return none-zero
  2076. * value (scan code).
  2077. */
  2078. static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
  2079. {
  2080. struct vm_area_struct *vma;
  2081. unsigned long hstart, hend;
  2082. if (unlikely(khugepaged_test_exit(mm)))
  2083. return SCAN_ANY_PROCESS;
  2084. vma = find_vma(mm, address);
  2085. if (!vma)
  2086. return SCAN_VMA_NULL;
  2087. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2088. hend = vma->vm_end & HPAGE_PMD_MASK;
  2089. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2090. return SCAN_ADDRESS_RANGE;
  2091. if (!hugepage_vma_check(vma))
  2092. return SCAN_VMA_CHECK;
  2093. return 0;
  2094. }
  2095. /*
  2096. * Bring missing pages in from swap, to complete THP collapse.
  2097. * Only done if khugepaged_scan_pmd believes it is worthwhile.
  2098. *
  2099. * Called and returns without pte mapped or spinlocks held,
  2100. * but with mmap_sem held to protect against vma changes.
  2101. */
  2102. static bool __collapse_huge_page_swapin(struct mm_struct *mm,
  2103. struct vm_area_struct *vma,
  2104. unsigned long address, pmd_t *pmd)
  2105. {
  2106. pte_t pteval;
  2107. int swapped_in = 0, ret = 0;
  2108. struct fault_env fe = {
  2109. .vma = vma,
  2110. .address = address,
  2111. .flags = FAULT_FLAG_ALLOW_RETRY,
  2112. .pmd = pmd,
  2113. };
  2114. fe.pte = pte_offset_map(pmd, address);
  2115. for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
  2116. fe.pte++, fe.address += PAGE_SIZE) {
  2117. pteval = *fe.pte;
  2118. if (!is_swap_pte(pteval))
  2119. continue;
  2120. swapped_in++;
  2121. ret = do_swap_page(&fe, pteval);
  2122. /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
  2123. if (ret & VM_FAULT_RETRY) {
  2124. down_read(&mm->mmap_sem);
  2125. /* vma is no longer available, don't continue to swapin */
  2126. if (hugepage_vma_revalidate(mm, address))
  2127. return false;
  2128. /* check if the pmd is still valid */
  2129. if (mm_find_pmd(mm, address) != pmd)
  2130. return false;
  2131. }
  2132. if (ret & VM_FAULT_ERROR) {
  2133. trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
  2134. return false;
  2135. }
  2136. /* pte is unmapped now, we need to map it */
  2137. fe.pte = pte_offset_map(pmd, fe.address);
  2138. }
  2139. fe.pte--;
  2140. pte_unmap(fe.pte);
  2141. trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
  2142. return true;
  2143. }
  2144. static void collapse_huge_page(struct mm_struct *mm,
  2145. unsigned long address,
  2146. struct page **hpage,
  2147. struct vm_area_struct *vma,
  2148. int node)
  2149. {
  2150. pmd_t *pmd, _pmd;
  2151. pte_t *pte;
  2152. pgtable_t pgtable;
  2153. struct page *new_page;
  2154. spinlock_t *pmd_ptl, *pte_ptl;
  2155. int isolated = 0, result = 0;
  2156. struct mem_cgroup *memcg;
  2157. unsigned long mmun_start; /* For mmu_notifiers */
  2158. unsigned long mmun_end; /* For mmu_notifiers */
  2159. gfp_t gfp;
  2160. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2161. /* Only allocate from the target node */
  2162. gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
  2163. /* release the mmap_sem read lock. */
  2164. new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
  2165. if (!new_page) {
  2166. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  2167. goto out_nolock;
  2168. }
  2169. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  2170. result = SCAN_CGROUP_CHARGE_FAIL;
  2171. goto out_nolock;
  2172. }
  2173. down_read(&mm->mmap_sem);
  2174. result = hugepage_vma_revalidate(mm, address);
  2175. if (result) {
  2176. mem_cgroup_cancel_charge(new_page, memcg, true);
  2177. up_read(&mm->mmap_sem);
  2178. goto out_nolock;
  2179. }
  2180. pmd = mm_find_pmd(mm, address);
  2181. if (!pmd) {
  2182. result = SCAN_PMD_NULL;
  2183. mem_cgroup_cancel_charge(new_page, memcg, true);
  2184. up_read(&mm->mmap_sem);
  2185. goto out_nolock;
  2186. }
  2187. /*
  2188. * __collapse_huge_page_swapin always returns with mmap_sem locked.
  2189. * If it fails, release mmap_sem and jump directly out.
  2190. * Continuing to collapse causes inconsistency.
  2191. */
  2192. if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
  2193. mem_cgroup_cancel_charge(new_page, memcg, true);
  2194. up_read(&mm->mmap_sem);
  2195. goto out_nolock;
  2196. }
  2197. up_read(&mm->mmap_sem);
  2198. /*
  2199. * Prevent all access to pagetables with the exception of
  2200. * gup_fast later handled by the ptep_clear_flush and the VM
  2201. * handled by the anon_vma lock + PG_lock.
  2202. */
  2203. down_write(&mm->mmap_sem);
  2204. result = hugepage_vma_revalidate(mm, address);
  2205. if (result)
  2206. goto out;
  2207. /* check if the pmd is still valid */
  2208. if (mm_find_pmd(mm, address) != pmd)
  2209. goto out;
  2210. anon_vma_lock_write(vma->anon_vma);
  2211. pte = pte_offset_map(pmd, address);
  2212. pte_ptl = pte_lockptr(mm, pmd);
  2213. mmun_start = address;
  2214. mmun_end = address + HPAGE_PMD_SIZE;
  2215. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2216. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  2217. /*
  2218. * After this gup_fast can't run anymore. This also removes
  2219. * any huge TLB entry from the CPU so we won't allow
  2220. * huge and small TLB entries for the same virtual address
  2221. * to avoid the risk of CPU bugs in that area.
  2222. */
  2223. _pmd = pmdp_collapse_flush(vma, address, pmd);
  2224. spin_unlock(pmd_ptl);
  2225. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2226. spin_lock(pte_ptl);
  2227. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2228. spin_unlock(pte_ptl);
  2229. if (unlikely(!isolated)) {
  2230. pte_unmap(pte);
  2231. spin_lock(pmd_ptl);
  2232. BUG_ON(!pmd_none(*pmd));
  2233. /*
  2234. * We can only use set_pmd_at when establishing
  2235. * hugepmds and never for establishing regular pmds that
  2236. * points to regular pagetables. Use pmd_populate for that
  2237. */
  2238. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2239. spin_unlock(pmd_ptl);
  2240. anon_vma_unlock_write(vma->anon_vma);
  2241. result = SCAN_FAIL;
  2242. goto out;
  2243. }
  2244. /*
  2245. * All pages are isolated and locked so anon_vma rmap
  2246. * can't run anymore.
  2247. */
  2248. anon_vma_unlock_write(vma->anon_vma);
  2249. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  2250. pte_unmap(pte);
  2251. __SetPageUptodate(new_page);
  2252. pgtable = pmd_pgtable(_pmd);
  2253. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2254. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2255. /*
  2256. * spin_lock() below is not the equivalent of smp_wmb(), so
  2257. * this is needed to avoid the copy_huge_page writes to become
  2258. * visible after the set_pmd_at() write.
  2259. */
  2260. smp_wmb();
  2261. spin_lock(pmd_ptl);
  2262. BUG_ON(!pmd_none(*pmd));
  2263. page_add_new_anon_rmap(new_page, vma, address, true);
  2264. mem_cgroup_commit_charge(new_page, memcg, false, true);
  2265. lru_cache_add_active_or_unevictable(new_page, vma);
  2266. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2267. set_pmd_at(mm, address, pmd, _pmd);
  2268. update_mmu_cache_pmd(vma, address, pmd);
  2269. spin_unlock(pmd_ptl);
  2270. *hpage = NULL;
  2271. khugepaged_pages_collapsed++;
  2272. result = SCAN_SUCCEED;
  2273. out_up_write:
  2274. up_write(&mm->mmap_sem);
  2275. out_nolock:
  2276. trace_mm_collapse_huge_page(mm, isolated, result);
  2277. return;
  2278. out:
  2279. mem_cgroup_cancel_charge(new_page, memcg, true);
  2280. goto out_up_write;
  2281. }
  2282. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2283. struct vm_area_struct *vma,
  2284. unsigned long address,
  2285. struct page **hpage)
  2286. {
  2287. pmd_t *pmd;
  2288. pte_t *pte, *_pte;
  2289. int ret = 0, none_or_zero = 0, result = 0;
  2290. struct page *page = NULL;
  2291. unsigned long _address;
  2292. spinlock_t *ptl;
  2293. int node = NUMA_NO_NODE, unmapped = 0;
  2294. bool writable = false, referenced = false;
  2295. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2296. pmd = mm_find_pmd(mm, address);
  2297. if (!pmd) {
  2298. result = SCAN_PMD_NULL;
  2299. goto out;
  2300. }
  2301. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2302. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2303. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2304. _pte++, _address += PAGE_SIZE) {
  2305. pte_t pteval = *_pte;
  2306. if (is_swap_pte(pteval)) {
  2307. if (++unmapped <= khugepaged_max_ptes_swap) {
  2308. continue;
  2309. } else {
  2310. result = SCAN_EXCEED_SWAP_PTE;
  2311. goto out_unmap;
  2312. }
  2313. }
  2314. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  2315. if (!userfaultfd_armed(vma) &&
  2316. ++none_or_zero <= khugepaged_max_ptes_none) {
  2317. continue;
  2318. } else {
  2319. result = SCAN_EXCEED_NONE_PTE;
  2320. goto out_unmap;
  2321. }
  2322. }
  2323. if (!pte_present(pteval)) {
  2324. result = SCAN_PTE_NON_PRESENT;
  2325. goto out_unmap;
  2326. }
  2327. if (pte_write(pteval))
  2328. writable = true;
  2329. page = vm_normal_page(vma, _address, pteval);
  2330. if (unlikely(!page)) {
  2331. result = SCAN_PAGE_NULL;
  2332. goto out_unmap;
  2333. }
  2334. /* TODO: teach khugepaged to collapse THP mapped with pte */
  2335. if (PageCompound(page)) {
  2336. result = SCAN_PAGE_COMPOUND;
  2337. goto out_unmap;
  2338. }
  2339. /*
  2340. * Record which node the original page is from and save this
  2341. * information to khugepaged_node_load[].
  2342. * Khupaged will allocate hugepage from the node has the max
  2343. * hit record.
  2344. */
  2345. node = page_to_nid(page);
  2346. if (khugepaged_scan_abort(node)) {
  2347. result = SCAN_SCAN_ABORT;
  2348. goto out_unmap;
  2349. }
  2350. khugepaged_node_load[node]++;
  2351. if (!PageLRU(page)) {
  2352. result = SCAN_PAGE_LRU;
  2353. goto out_unmap;
  2354. }
  2355. if (PageLocked(page)) {
  2356. result = SCAN_PAGE_LOCK;
  2357. goto out_unmap;
  2358. }
  2359. if (!PageAnon(page)) {
  2360. result = SCAN_PAGE_ANON;
  2361. goto out_unmap;
  2362. }
  2363. /*
  2364. * cannot use mapcount: can't collapse if there's a gup pin.
  2365. * The page must only be referenced by the scanned process
  2366. * and page swap cache.
  2367. */
  2368. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  2369. result = SCAN_PAGE_COUNT;
  2370. goto out_unmap;
  2371. }
  2372. if (pte_young(pteval) ||
  2373. page_is_young(page) || PageReferenced(page) ||
  2374. mmu_notifier_test_young(vma->vm_mm, address))
  2375. referenced = true;
  2376. }
  2377. if (writable) {
  2378. if (referenced) {
  2379. result = SCAN_SUCCEED;
  2380. ret = 1;
  2381. } else {
  2382. result = SCAN_NO_REFERENCED_PAGE;
  2383. }
  2384. } else {
  2385. result = SCAN_PAGE_RO;
  2386. }
  2387. out_unmap:
  2388. pte_unmap_unlock(pte, ptl);
  2389. if (ret) {
  2390. node = khugepaged_find_target_node();
  2391. /* collapse_huge_page will return with the mmap_sem released */
  2392. collapse_huge_page(mm, address, hpage, vma, node);
  2393. }
  2394. out:
  2395. trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
  2396. none_or_zero, result, unmapped);
  2397. return ret;
  2398. }
  2399. static void collect_mm_slot(struct mm_slot *mm_slot)
  2400. {
  2401. struct mm_struct *mm = mm_slot->mm;
  2402. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2403. if (khugepaged_test_exit(mm)) {
  2404. /* free mm_slot */
  2405. hash_del(&mm_slot->hash);
  2406. list_del(&mm_slot->mm_node);
  2407. /*
  2408. * Not strictly needed because the mm exited already.
  2409. *
  2410. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2411. */
  2412. /* khugepaged_mm_lock actually not necessary for the below */
  2413. free_mm_slot(mm_slot);
  2414. mmdrop(mm);
  2415. }
  2416. }
  2417. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2418. struct page **hpage)
  2419. __releases(&khugepaged_mm_lock)
  2420. __acquires(&khugepaged_mm_lock)
  2421. {
  2422. struct mm_slot *mm_slot;
  2423. struct mm_struct *mm;
  2424. struct vm_area_struct *vma;
  2425. int progress = 0;
  2426. VM_BUG_ON(!pages);
  2427. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2428. if (khugepaged_scan.mm_slot)
  2429. mm_slot = khugepaged_scan.mm_slot;
  2430. else {
  2431. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2432. struct mm_slot, mm_node);
  2433. khugepaged_scan.address = 0;
  2434. khugepaged_scan.mm_slot = mm_slot;
  2435. }
  2436. spin_unlock(&khugepaged_mm_lock);
  2437. mm = mm_slot->mm;
  2438. down_read(&mm->mmap_sem);
  2439. if (unlikely(khugepaged_test_exit(mm)))
  2440. vma = NULL;
  2441. else
  2442. vma = find_vma(mm, khugepaged_scan.address);
  2443. progress++;
  2444. for (; vma; vma = vma->vm_next) {
  2445. unsigned long hstart, hend;
  2446. cond_resched();
  2447. if (unlikely(khugepaged_test_exit(mm))) {
  2448. progress++;
  2449. break;
  2450. }
  2451. if (!hugepage_vma_check(vma)) {
  2452. skip:
  2453. progress++;
  2454. continue;
  2455. }
  2456. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2457. hend = vma->vm_end & HPAGE_PMD_MASK;
  2458. if (hstart >= hend)
  2459. goto skip;
  2460. if (khugepaged_scan.address > hend)
  2461. goto skip;
  2462. if (khugepaged_scan.address < hstart)
  2463. khugepaged_scan.address = hstart;
  2464. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2465. while (khugepaged_scan.address < hend) {
  2466. int ret;
  2467. cond_resched();
  2468. if (unlikely(khugepaged_test_exit(mm)))
  2469. goto breakouterloop;
  2470. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2471. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2472. hend);
  2473. ret = khugepaged_scan_pmd(mm, vma,
  2474. khugepaged_scan.address,
  2475. hpage);
  2476. /* move to next address */
  2477. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2478. progress += HPAGE_PMD_NR;
  2479. if (ret)
  2480. /* we released mmap_sem so break loop */
  2481. goto breakouterloop_mmap_sem;
  2482. if (progress >= pages)
  2483. goto breakouterloop;
  2484. }
  2485. }
  2486. breakouterloop:
  2487. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2488. breakouterloop_mmap_sem:
  2489. spin_lock(&khugepaged_mm_lock);
  2490. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2491. /*
  2492. * Release the current mm_slot if this mm is about to die, or
  2493. * if we scanned all vmas of this mm.
  2494. */
  2495. if (khugepaged_test_exit(mm) || !vma) {
  2496. /*
  2497. * Make sure that if mm_users is reaching zero while
  2498. * khugepaged runs here, khugepaged_exit will find
  2499. * mm_slot not pointing to the exiting mm.
  2500. */
  2501. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2502. khugepaged_scan.mm_slot = list_entry(
  2503. mm_slot->mm_node.next,
  2504. struct mm_slot, mm_node);
  2505. khugepaged_scan.address = 0;
  2506. } else {
  2507. khugepaged_scan.mm_slot = NULL;
  2508. khugepaged_full_scans++;
  2509. }
  2510. collect_mm_slot(mm_slot);
  2511. }
  2512. return progress;
  2513. }
  2514. static int khugepaged_has_work(void)
  2515. {
  2516. return !list_empty(&khugepaged_scan.mm_head) &&
  2517. khugepaged_enabled();
  2518. }
  2519. static int khugepaged_wait_event(void)
  2520. {
  2521. return !list_empty(&khugepaged_scan.mm_head) ||
  2522. kthread_should_stop();
  2523. }
  2524. static void khugepaged_do_scan(void)
  2525. {
  2526. struct page *hpage = NULL;
  2527. unsigned int progress = 0, pass_through_head = 0;
  2528. unsigned int pages = khugepaged_pages_to_scan;
  2529. bool wait = true;
  2530. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2531. while (progress < pages) {
  2532. if (!khugepaged_prealloc_page(&hpage, &wait))
  2533. break;
  2534. cond_resched();
  2535. if (unlikely(kthread_should_stop() || try_to_freeze()))
  2536. break;
  2537. spin_lock(&khugepaged_mm_lock);
  2538. if (!khugepaged_scan.mm_slot)
  2539. pass_through_head++;
  2540. if (khugepaged_has_work() &&
  2541. pass_through_head < 2)
  2542. progress += khugepaged_scan_mm_slot(pages - progress,
  2543. &hpage);
  2544. else
  2545. progress = pages;
  2546. spin_unlock(&khugepaged_mm_lock);
  2547. }
  2548. if (!IS_ERR_OR_NULL(hpage))
  2549. put_page(hpage);
  2550. }
  2551. static bool khugepaged_should_wakeup(void)
  2552. {
  2553. return kthread_should_stop() ||
  2554. time_after_eq(jiffies, khugepaged_sleep_expire);
  2555. }
  2556. static void khugepaged_wait_work(void)
  2557. {
  2558. if (khugepaged_has_work()) {
  2559. const unsigned long scan_sleep_jiffies =
  2560. msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
  2561. if (!scan_sleep_jiffies)
  2562. return;
  2563. khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
  2564. wait_event_freezable_timeout(khugepaged_wait,
  2565. khugepaged_should_wakeup(),
  2566. scan_sleep_jiffies);
  2567. return;
  2568. }
  2569. if (khugepaged_enabled())
  2570. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2571. }
  2572. static int khugepaged(void *none)
  2573. {
  2574. struct mm_slot *mm_slot;
  2575. set_freezable();
  2576. set_user_nice(current, MAX_NICE);
  2577. while (!kthread_should_stop()) {
  2578. khugepaged_do_scan();
  2579. khugepaged_wait_work();
  2580. }
  2581. spin_lock(&khugepaged_mm_lock);
  2582. mm_slot = khugepaged_scan.mm_slot;
  2583. khugepaged_scan.mm_slot = NULL;
  2584. if (mm_slot)
  2585. collect_mm_slot(mm_slot);
  2586. spin_unlock(&khugepaged_mm_lock);
  2587. return 0;
  2588. }
  2589. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2590. unsigned long haddr, pmd_t *pmd)
  2591. {
  2592. struct mm_struct *mm = vma->vm_mm;
  2593. pgtable_t pgtable;
  2594. pmd_t _pmd;
  2595. int i;
  2596. /* leave pmd empty until pte is filled */
  2597. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2598. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2599. pmd_populate(mm, &_pmd, pgtable);
  2600. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2601. pte_t *pte, entry;
  2602. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2603. entry = pte_mkspecial(entry);
  2604. pte = pte_offset_map(&_pmd, haddr);
  2605. VM_BUG_ON(!pte_none(*pte));
  2606. set_pte_at(mm, haddr, pte, entry);
  2607. pte_unmap(pte);
  2608. }
  2609. smp_wmb(); /* make pte visible before pmd */
  2610. pmd_populate(mm, pmd, pgtable);
  2611. put_huge_zero_page();
  2612. }
  2613. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  2614. unsigned long haddr, bool freeze)
  2615. {
  2616. struct mm_struct *mm = vma->vm_mm;
  2617. struct page *page;
  2618. pgtable_t pgtable;
  2619. pmd_t _pmd;
  2620. bool young, write, dirty;
  2621. unsigned long addr;
  2622. int i;
  2623. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  2624. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  2625. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  2626. VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
  2627. count_vm_event(THP_SPLIT_PMD);
  2628. if (vma_is_dax(vma)) {
  2629. pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2630. if (is_huge_zero_pmd(_pmd))
  2631. put_huge_zero_page();
  2632. return;
  2633. } else if (is_huge_zero_pmd(*pmd)) {
  2634. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  2635. }
  2636. page = pmd_page(*pmd);
  2637. VM_BUG_ON_PAGE(!page_count(page), page);
  2638. page_ref_add(page, HPAGE_PMD_NR - 1);
  2639. write = pmd_write(*pmd);
  2640. young = pmd_young(*pmd);
  2641. dirty = pmd_dirty(*pmd);
  2642. pmdp_huge_split_prepare(vma, haddr, pmd);
  2643. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2644. pmd_populate(mm, &_pmd, pgtable);
  2645. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  2646. pte_t entry, *pte;
  2647. /*
  2648. * Note that NUMA hinting access restrictions are not
  2649. * transferred to avoid any possibility of altering
  2650. * permissions across VMAs.
  2651. */
  2652. if (freeze) {
  2653. swp_entry_t swp_entry;
  2654. swp_entry = make_migration_entry(page + i, write);
  2655. entry = swp_entry_to_pte(swp_entry);
  2656. } else {
  2657. entry = mk_pte(page + i, vma->vm_page_prot);
  2658. entry = maybe_mkwrite(entry, vma);
  2659. if (!write)
  2660. entry = pte_wrprotect(entry);
  2661. if (!young)
  2662. entry = pte_mkold(entry);
  2663. }
  2664. if (dirty)
  2665. SetPageDirty(page + i);
  2666. pte = pte_offset_map(&_pmd, addr);
  2667. BUG_ON(!pte_none(*pte));
  2668. set_pte_at(mm, addr, pte, entry);
  2669. atomic_inc(&page[i]._mapcount);
  2670. pte_unmap(pte);
  2671. }
  2672. /*
  2673. * Set PG_double_map before dropping compound_mapcount to avoid
  2674. * false-negative page_mapped().
  2675. */
  2676. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  2677. for (i = 0; i < HPAGE_PMD_NR; i++)
  2678. atomic_inc(&page[i]._mapcount);
  2679. }
  2680. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  2681. /* Last compound_mapcount is gone. */
  2682. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  2683. if (TestClearPageDoubleMap(page)) {
  2684. /* No need in mapcount reference anymore */
  2685. for (i = 0; i < HPAGE_PMD_NR; i++)
  2686. atomic_dec(&page[i]._mapcount);
  2687. }
  2688. }
  2689. smp_wmb(); /* make pte visible before pmd */
  2690. /*
  2691. * Up to this point the pmd is present and huge and userland has the
  2692. * whole access to the hugepage during the split (which happens in
  2693. * place). If we overwrite the pmd with the not-huge version pointing
  2694. * to the pte here (which of course we could if all CPUs were bug
  2695. * free), userland could trigger a small page size TLB miss on the
  2696. * small sized TLB while the hugepage TLB entry is still established in
  2697. * the huge TLB. Some CPU doesn't like that.
  2698. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  2699. * 383 on page 93. Intel should be safe but is also warns that it's
  2700. * only safe if the permission and cache attributes of the two entries
  2701. * loaded in the two TLB is identical (which should be the case here).
  2702. * But it is generally safer to never allow small and huge TLB entries
  2703. * for the same virtual address to be loaded simultaneously. So instead
  2704. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  2705. * current pmd notpresent (atomically because here the pmd_trans_huge
  2706. * and pmd_trans_splitting must remain set at all times on the pmd
  2707. * until the split is complete for this pmd), then we flush the SMP TLB
  2708. * and finally we write the non-huge version of the pmd entry with
  2709. * pmd_populate.
  2710. */
  2711. pmdp_invalidate(vma, haddr, pmd);
  2712. pmd_populate(mm, pmd, pgtable);
  2713. if (freeze) {
  2714. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2715. page_remove_rmap(page + i, false);
  2716. put_page(page + i);
  2717. }
  2718. }
  2719. }
  2720. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  2721. unsigned long address, bool freeze, struct page *page)
  2722. {
  2723. spinlock_t *ptl;
  2724. struct mm_struct *mm = vma->vm_mm;
  2725. unsigned long haddr = address & HPAGE_PMD_MASK;
  2726. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  2727. ptl = pmd_lock(mm, pmd);
  2728. /*
  2729. * If caller asks to setup a migration entries, we need a page to check
  2730. * pmd against. Otherwise we can end up replacing wrong page.
  2731. */
  2732. VM_BUG_ON(freeze && !page);
  2733. if (page && page != pmd_page(*pmd))
  2734. goto out;
  2735. if (pmd_trans_huge(*pmd)) {
  2736. page = pmd_page(*pmd);
  2737. if (PageMlocked(page))
  2738. clear_page_mlock(page);
  2739. } else if (!pmd_devmap(*pmd))
  2740. goto out;
  2741. __split_huge_pmd_locked(vma, pmd, haddr, freeze);
  2742. out:
  2743. spin_unlock(ptl);
  2744. mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
  2745. }
  2746. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  2747. bool freeze, struct page *page)
  2748. {
  2749. pgd_t *pgd;
  2750. pud_t *pud;
  2751. pmd_t *pmd;
  2752. pgd = pgd_offset(vma->vm_mm, address);
  2753. if (!pgd_present(*pgd))
  2754. return;
  2755. pud = pud_offset(pgd, address);
  2756. if (!pud_present(*pud))
  2757. return;
  2758. pmd = pmd_offset(pud, address);
  2759. __split_huge_pmd(vma, pmd, address, freeze, page);
  2760. }
  2761. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2762. unsigned long start,
  2763. unsigned long end,
  2764. long adjust_next)
  2765. {
  2766. /*
  2767. * If the new start address isn't hpage aligned and it could
  2768. * previously contain an hugepage: check if we need to split
  2769. * an huge pmd.
  2770. */
  2771. if (start & ~HPAGE_PMD_MASK &&
  2772. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2773. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2774. split_huge_pmd_address(vma, start, false, NULL);
  2775. /*
  2776. * If the new end address isn't hpage aligned and it could
  2777. * previously contain an hugepage: check if we need to split
  2778. * an huge pmd.
  2779. */
  2780. if (end & ~HPAGE_PMD_MASK &&
  2781. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2782. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2783. split_huge_pmd_address(vma, end, false, NULL);
  2784. /*
  2785. * If we're also updating the vma->vm_next->vm_start, if the new
  2786. * vm_next->vm_start isn't page aligned and it could previously
  2787. * contain an hugepage: check if we need to split an huge pmd.
  2788. */
  2789. if (adjust_next > 0) {
  2790. struct vm_area_struct *next = vma->vm_next;
  2791. unsigned long nstart = next->vm_start;
  2792. nstart += adjust_next << PAGE_SHIFT;
  2793. if (nstart & ~HPAGE_PMD_MASK &&
  2794. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2795. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2796. split_huge_pmd_address(next, nstart, false, NULL);
  2797. }
  2798. }
  2799. static void freeze_page(struct page *page)
  2800. {
  2801. enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
  2802. TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
  2803. int i, ret;
  2804. VM_BUG_ON_PAGE(!PageHead(page), page);
  2805. /* We only need TTU_SPLIT_HUGE_PMD once */
  2806. ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
  2807. for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
  2808. /* Cut short if the page is unmapped */
  2809. if (page_count(page) == 1)
  2810. return;
  2811. ret = try_to_unmap(page + i, ttu_flags);
  2812. }
  2813. VM_BUG_ON(ret);
  2814. }
  2815. static void unfreeze_page(struct page *page)
  2816. {
  2817. int i;
  2818. for (i = 0; i < HPAGE_PMD_NR; i++)
  2819. remove_migration_ptes(page + i, page + i, true);
  2820. }
  2821. static void __split_huge_page_tail(struct page *head, int tail,
  2822. struct lruvec *lruvec, struct list_head *list)
  2823. {
  2824. struct page *page_tail = head + tail;
  2825. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  2826. VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
  2827. /*
  2828. * tail_page->_refcount is zero and not changing from under us. But
  2829. * get_page_unless_zero() may be running from under us on the
  2830. * tail_page. If we used atomic_set() below instead of atomic_inc(), we
  2831. * would then run atomic_set() concurrently with
  2832. * get_page_unless_zero(), and atomic_set() is implemented in C not
  2833. * using locked ops. spin_unlock on x86 sometime uses locked ops
  2834. * because of PPro errata 66, 92, so unless somebody can guarantee
  2835. * atomic_set() here would be safe on all archs (and not only on x86),
  2836. * it's safer to use atomic_inc().
  2837. */
  2838. page_ref_inc(page_tail);
  2839. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  2840. page_tail->flags |= (head->flags &
  2841. ((1L << PG_referenced) |
  2842. (1L << PG_swapbacked) |
  2843. (1L << PG_mlocked) |
  2844. (1L << PG_uptodate) |
  2845. (1L << PG_active) |
  2846. (1L << PG_locked) |
  2847. (1L << PG_unevictable) |
  2848. (1L << PG_dirty)));
  2849. /*
  2850. * After clearing PageTail the gup refcount can be released.
  2851. * Page flags also must be visible before we make the page non-compound.
  2852. */
  2853. smp_wmb();
  2854. clear_compound_head(page_tail);
  2855. if (page_is_young(head))
  2856. set_page_young(page_tail);
  2857. if (page_is_idle(head))
  2858. set_page_idle(page_tail);
  2859. /* ->mapping in first tail page is compound_mapcount */
  2860. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  2861. page_tail);
  2862. page_tail->mapping = head->mapping;
  2863. page_tail->index = head->index + tail;
  2864. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  2865. lru_add_page_tail(head, page_tail, lruvec, list);
  2866. }
  2867. static void __split_huge_page(struct page *page, struct list_head *list)
  2868. {
  2869. struct page *head = compound_head(page);
  2870. struct zone *zone = page_zone(head);
  2871. struct lruvec *lruvec;
  2872. int i;
  2873. /* prevent PageLRU to go away from under us, and freeze lru stats */
  2874. spin_lock_irq(&zone->lru_lock);
  2875. lruvec = mem_cgroup_page_lruvec(head, zone);
  2876. /* complete memcg works before add pages to LRU */
  2877. mem_cgroup_split_huge_fixup(head);
  2878. for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
  2879. __split_huge_page_tail(head, i, lruvec, list);
  2880. ClearPageCompound(head);
  2881. spin_unlock_irq(&zone->lru_lock);
  2882. unfreeze_page(head);
  2883. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2884. struct page *subpage = head + i;
  2885. if (subpage == page)
  2886. continue;
  2887. unlock_page(subpage);
  2888. /*
  2889. * Subpages may be freed if there wasn't any mapping
  2890. * like if add_to_swap() is running on a lru page that
  2891. * had its mapping zapped. And freeing these pages
  2892. * requires taking the lru_lock so we do the put_page
  2893. * of the tail pages after the split is complete.
  2894. */
  2895. put_page(subpage);
  2896. }
  2897. }
  2898. int total_mapcount(struct page *page)
  2899. {
  2900. int i, ret;
  2901. VM_BUG_ON_PAGE(PageTail(page), page);
  2902. if (likely(!PageCompound(page)))
  2903. return atomic_read(&page->_mapcount) + 1;
  2904. ret = compound_mapcount(page);
  2905. if (PageHuge(page))
  2906. return ret;
  2907. for (i = 0; i < HPAGE_PMD_NR; i++)
  2908. ret += atomic_read(&page[i]._mapcount) + 1;
  2909. if (PageDoubleMap(page))
  2910. ret -= HPAGE_PMD_NR;
  2911. return ret;
  2912. }
  2913. /*
  2914. * This calculates accurately how many mappings a transparent hugepage
  2915. * has (unlike page_mapcount() which isn't fully accurate). This full
  2916. * accuracy is primarily needed to know if copy-on-write faults can
  2917. * reuse the page and change the mapping to read-write instead of
  2918. * copying them. At the same time this returns the total_mapcount too.
  2919. *
  2920. * The function returns the highest mapcount any one of the subpages
  2921. * has. If the return value is one, even if different processes are
  2922. * mapping different subpages of the transparent hugepage, they can
  2923. * all reuse it, because each process is reusing a different subpage.
  2924. *
  2925. * The total_mapcount is instead counting all virtual mappings of the
  2926. * subpages. If the total_mapcount is equal to "one", it tells the
  2927. * caller all mappings belong to the same "mm" and in turn the
  2928. * anon_vma of the transparent hugepage can become the vma->anon_vma
  2929. * local one as no other process may be mapping any of the subpages.
  2930. *
  2931. * It would be more accurate to replace page_mapcount() with
  2932. * page_trans_huge_mapcount(), however we only use
  2933. * page_trans_huge_mapcount() in the copy-on-write faults where we
  2934. * need full accuracy to avoid breaking page pinning, because
  2935. * page_trans_huge_mapcount() is slower than page_mapcount().
  2936. */
  2937. int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
  2938. {
  2939. int i, ret, _total_mapcount, mapcount;
  2940. /* hugetlbfs shouldn't call it */
  2941. VM_BUG_ON_PAGE(PageHuge(page), page);
  2942. if (likely(!PageTransCompound(page))) {
  2943. mapcount = atomic_read(&page->_mapcount) + 1;
  2944. if (total_mapcount)
  2945. *total_mapcount = mapcount;
  2946. return mapcount;
  2947. }
  2948. page = compound_head(page);
  2949. _total_mapcount = ret = 0;
  2950. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2951. mapcount = atomic_read(&page[i]._mapcount) + 1;
  2952. ret = max(ret, mapcount);
  2953. _total_mapcount += mapcount;
  2954. }
  2955. if (PageDoubleMap(page)) {
  2956. ret -= 1;
  2957. _total_mapcount -= HPAGE_PMD_NR;
  2958. }
  2959. mapcount = compound_mapcount(page);
  2960. ret += mapcount;
  2961. _total_mapcount += mapcount;
  2962. if (total_mapcount)
  2963. *total_mapcount = _total_mapcount;
  2964. return ret;
  2965. }
  2966. /*
  2967. * This function splits huge page into normal pages. @page can point to any
  2968. * subpage of huge page to split. Split doesn't change the position of @page.
  2969. *
  2970. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2971. * The huge page must be locked.
  2972. *
  2973. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2974. *
  2975. * Both head page and tail pages will inherit mapping, flags, and so on from
  2976. * the hugepage.
  2977. *
  2978. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2979. * they are not mapped.
  2980. *
  2981. * Returns 0 if the hugepage is split successfully.
  2982. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2983. * us.
  2984. */
  2985. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2986. {
  2987. struct page *head = compound_head(page);
  2988. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  2989. struct anon_vma *anon_vma;
  2990. int count, mapcount, ret;
  2991. bool mlocked;
  2992. unsigned long flags;
  2993. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  2994. VM_BUG_ON_PAGE(!PageAnon(page), page);
  2995. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2996. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  2997. VM_BUG_ON_PAGE(!PageCompound(page), page);
  2998. /*
  2999. * The caller does not necessarily hold an mmap_sem that would prevent
  3000. * the anon_vma disappearing so we first we take a reference to it
  3001. * and then lock the anon_vma for write. This is similar to
  3002. * page_lock_anon_vma_read except the write lock is taken to serialise
  3003. * against parallel split or collapse operations.
  3004. */
  3005. anon_vma = page_get_anon_vma(head);
  3006. if (!anon_vma) {
  3007. ret = -EBUSY;
  3008. goto out;
  3009. }
  3010. anon_vma_lock_write(anon_vma);
  3011. /*
  3012. * Racy check if we can split the page, before freeze_page() will
  3013. * split PMDs
  3014. */
  3015. if (total_mapcount(head) != page_count(head) - 1) {
  3016. ret = -EBUSY;
  3017. goto out_unlock;
  3018. }
  3019. mlocked = PageMlocked(page);
  3020. freeze_page(head);
  3021. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  3022. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  3023. if (mlocked)
  3024. lru_add_drain();
  3025. /* Prevent deferred_split_scan() touching ->_refcount */
  3026. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  3027. count = page_count(head);
  3028. mapcount = total_mapcount(head);
  3029. if (!mapcount && count == 1) {
  3030. if (!list_empty(page_deferred_list(head))) {
  3031. pgdata->split_queue_len--;
  3032. list_del(page_deferred_list(head));
  3033. }
  3034. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3035. __split_huge_page(page, list);
  3036. ret = 0;
  3037. } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  3038. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3039. pr_alert("total_mapcount: %u, page_count(): %u\n",
  3040. mapcount, count);
  3041. if (PageTail(page))
  3042. dump_page(head, NULL);
  3043. dump_page(page, "total_mapcount(head) > 0");
  3044. BUG();
  3045. } else {
  3046. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3047. unfreeze_page(head);
  3048. ret = -EBUSY;
  3049. }
  3050. out_unlock:
  3051. anon_vma_unlock_write(anon_vma);
  3052. put_anon_vma(anon_vma);
  3053. out:
  3054. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  3055. return ret;
  3056. }
  3057. void free_transhuge_page(struct page *page)
  3058. {
  3059. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  3060. unsigned long flags;
  3061. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  3062. if (!list_empty(page_deferred_list(page))) {
  3063. pgdata->split_queue_len--;
  3064. list_del(page_deferred_list(page));
  3065. }
  3066. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3067. free_compound_page(page);
  3068. }
  3069. void deferred_split_huge_page(struct page *page)
  3070. {
  3071. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  3072. unsigned long flags;
  3073. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  3074. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  3075. if (list_empty(page_deferred_list(page))) {
  3076. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  3077. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  3078. pgdata->split_queue_len++;
  3079. }
  3080. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3081. }
  3082. static unsigned long deferred_split_count(struct shrinker *shrink,
  3083. struct shrink_control *sc)
  3084. {
  3085. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  3086. return ACCESS_ONCE(pgdata->split_queue_len);
  3087. }
  3088. static unsigned long deferred_split_scan(struct shrinker *shrink,
  3089. struct shrink_control *sc)
  3090. {
  3091. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  3092. unsigned long flags;
  3093. LIST_HEAD(list), *pos, *next;
  3094. struct page *page;
  3095. int split = 0;
  3096. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  3097. /* Take pin on all head pages to avoid freeing them under us */
  3098. list_for_each_safe(pos, next, &pgdata->split_queue) {
  3099. page = list_entry((void *)pos, struct page, mapping);
  3100. page = compound_head(page);
  3101. if (get_page_unless_zero(page)) {
  3102. list_move(page_deferred_list(page), &list);
  3103. } else {
  3104. /* We lost race with put_compound_page() */
  3105. list_del_init(page_deferred_list(page));
  3106. pgdata->split_queue_len--;
  3107. }
  3108. if (!--sc->nr_to_scan)
  3109. break;
  3110. }
  3111. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3112. list_for_each_safe(pos, next, &list) {
  3113. page = list_entry((void *)pos, struct page, mapping);
  3114. lock_page(page);
  3115. /* split_huge_page() removes page from list on success */
  3116. if (!split_huge_page(page))
  3117. split++;
  3118. unlock_page(page);
  3119. put_page(page);
  3120. }
  3121. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  3122. list_splice_tail(&list, &pgdata->split_queue);
  3123. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3124. /*
  3125. * Stop shrinker if we didn't split any page, but the queue is empty.
  3126. * This can happen if pages were freed under us.
  3127. */
  3128. if (!split && list_empty(&pgdata->split_queue))
  3129. return SHRINK_STOP;
  3130. return split;
  3131. }
  3132. static struct shrinker deferred_split_shrinker = {
  3133. .count_objects = deferred_split_count,
  3134. .scan_objects = deferred_split_scan,
  3135. .seeks = DEFAULT_SEEKS,
  3136. .flags = SHRINKER_NUMA_AWARE,
  3137. };
  3138. #ifdef CONFIG_DEBUG_FS
  3139. static int split_huge_pages_set(void *data, u64 val)
  3140. {
  3141. struct zone *zone;
  3142. struct page *page;
  3143. unsigned long pfn, max_zone_pfn;
  3144. unsigned long total = 0, split = 0;
  3145. if (val != 1)
  3146. return -EINVAL;
  3147. for_each_populated_zone(zone) {
  3148. max_zone_pfn = zone_end_pfn(zone);
  3149. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  3150. if (!pfn_valid(pfn))
  3151. continue;
  3152. page = pfn_to_page(pfn);
  3153. if (!get_page_unless_zero(page))
  3154. continue;
  3155. if (zone != page_zone(page))
  3156. goto next;
  3157. if (!PageHead(page) || !PageAnon(page) ||
  3158. PageHuge(page))
  3159. goto next;
  3160. total++;
  3161. lock_page(page);
  3162. if (!split_huge_page(page))
  3163. split++;
  3164. unlock_page(page);
  3165. next:
  3166. put_page(page);
  3167. }
  3168. }
  3169. pr_info("%lu of %lu THP split\n", split, total);
  3170. return 0;
  3171. }
  3172. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  3173. "%llu\n");
  3174. static int __init split_huge_pages_debugfs(void)
  3175. {
  3176. void *ret;
  3177. ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
  3178. &split_huge_pages_fops);
  3179. if (!ret)
  3180. pr_warn("Failed to create split_huge_pages in debugfs");
  3181. return 0;
  3182. }
  3183. late_initcall(split_huge_pages_debugfs);
  3184. #endif