amdgpu_dpm.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994
  1. /*
  2. * Copyright 2011 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_atombios.h"
  27. #include "amdgpu_i2c.h"
  28. #include "amdgpu_dpm.h"
  29. #include "atom.h"
  30. #include "amd_pcie.h"
  31. void amdgpu_dpm_print_class_info(u32 class, u32 class2)
  32. {
  33. const char *s;
  34. switch (class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) {
  35. case ATOM_PPLIB_CLASSIFICATION_UI_NONE:
  36. default:
  37. s = "none";
  38. break;
  39. case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY:
  40. s = "battery";
  41. break;
  42. case ATOM_PPLIB_CLASSIFICATION_UI_BALANCED:
  43. s = "balanced";
  44. break;
  45. case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE:
  46. s = "performance";
  47. break;
  48. }
  49. printk("\tui class: %s\n", s);
  50. printk("\tinternal class:");
  51. if (((class & ~ATOM_PPLIB_CLASSIFICATION_UI_MASK) == 0) &&
  52. (class2 == 0))
  53. pr_cont(" none");
  54. else {
  55. if (class & ATOM_PPLIB_CLASSIFICATION_BOOT)
  56. pr_cont(" boot");
  57. if (class & ATOM_PPLIB_CLASSIFICATION_THERMAL)
  58. pr_cont(" thermal");
  59. if (class & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
  60. pr_cont(" limited_pwr");
  61. if (class & ATOM_PPLIB_CLASSIFICATION_REST)
  62. pr_cont(" rest");
  63. if (class & ATOM_PPLIB_CLASSIFICATION_FORCED)
  64. pr_cont(" forced");
  65. if (class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE)
  66. pr_cont(" 3d_perf");
  67. if (class & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE)
  68. pr_cont(" ovrdrv");
  69. if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  70. pr_cont(" uvd");
  71. if (class & ATOM_PPLIB_CLASSIFICATION_3DLOW)
  72. pr_cont(" 3d_low");
  73. if (class & ATOM_PPLIB_CLASSIFICATION_ACPI)
  74. pr_cont(" acpi");
  75. if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
  76. pr_cont(" uvd_hd2");
  77. if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
  78. pr_cont(" uvd_hd");
  79. if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
  80. pr_cont(" uvd_sd");
  81. if (class2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
  82. pr_cont(" limited_pwr2");
  83. if (class2 & ATOM_PPLIB_CLASSIFICATION2_ULV)
  84. pr_cont(" ulv");
  85. if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
  86. pr_cont(" uvd_mvc");
  87. }
  88. pr_cont("\n");
  89. }
  90. void amdgpu_dpm_print_cap_info(u32 caps)
  91. {
  92. printk("\tcaps:");
  93. if (caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY)
  94. pr_cont(" single_disp");
  95. if (caps & ATOM_PPLIB_SUPPORTS_VIDEO_PLAYBACK)
  96. pr_cont(" video");
  97. if (caps & ATOM_PPLIB_DISALLOW_ON_DC)
  98. pr_cont(" no_dc");
  99. pr_cont("\n");
  100. }
  101. void amdgpu_dpm_print_ps_status(struct amdgpu_device *adev,
  102. struct amdgpu_ps *rps)
  103. {
  104. printk("\tstatus:");
  105. if (rps == adev->pm.dpm.current_ps)
  106. pr_cont(" c");
  107. if (rps == adev->pm.dpm.requested_ps)
  108. pr_cont(" r");
  109. if (rps == adev->pm.dpm.boot_ps)
  110. pr_cont(" b");
  111. pr_cont("\n");
  112. }
  113. void amdgpu_dpm_get_active_displays(struct amdgpu_device *adev)
  114. {
  115. struct drm_device *ddev = adev->ddev;
  116. struct drm_crtc *crtc;
  117. struct amdgpu_crtc *amdgpu_crtc;
  118. adev->pm.dpm.new_active_crtcs = 0;
  119. adev->pm.dpm.new_active_crtc_count = 0;
  120. if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
  121. list_for_each_entry(crtc,
  122. &ddev->mode_config.crtc_list, head) {
  123. amdgpu_crtc = to_amdgpu_crtc(crtc);
  124. if (amdgpu_crtc->enabled) {
  125. adev->pm.dpm.new_active_crtcs |= (1 << amdgpu_crtc->crtc_id);
  126. adev->pm.dpm.new_active_crtc_count++;
  127. }
  128. }
  129. }
  130. }
  131. u32 amdgpu_dpm_get_vblank_time(struct amdgpu_device *adev)
  132. {
  133. struct drm_device *dev = adev->ddev;
  134. struct drm_crtc *crtc;
  135. struct amdgpu_crtc *amdgpu_crtc;
  136. u32 vblank_in_pixels;
  137. u32 vblank_time_us = 0xffffffff; /* if the displays are off, vblank time is max */
  138. if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
  139. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  140. amdgpu_crtc = to_amdgpu_crtc(crtc);
  141. if (crtc->enabled && amdgpu_crtc->enabled && amdgpu_crtc->hw_mode.clock) {
  142. vblank_in_pixels =
  143. amdgpu_crtc->hw_mode.crtc_htotal *
  144. (amdgpu_crtc->hw_mode.crtc_vblank_end -
  145. amdgpu_crtc->hw_mode.crtc_vdisplay +
  146. (amdgpu_crtc->v_border * 2));
  147. vblank_time_us = vblank_in_pixels * 1000 / amdgpu_crtc->hw_mode.clock;
  148. break;
  149. }
  150. }
  151. }
  152. return vblank_time_us;
  153. }
  154. u32 amdgpu_dpm_get_vrefresh(struct amdgpu_device *adev)
  155. {
  156. struct drm_device *dev = adev->ddev;
  157. struct drm_crtc *crtc;
  158. struct amdgpu_crtc *amdgpu_crtc;
  159. u32 vrefresh = 0;
  160. if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
  161. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  162. amdgpu_crtc = to_amdgpu_crtc(crtc);
  163. if (crtc->enabled && amdgpu_crtc->enabled && amdgpu_crtc->hw_mode.clock) {
  164. vrefresh = drm_mode_vrefresh(&amdgpu_crtc->hw_mode);
  165. break;
  166. }
  167. }
  168. }
  169. return vrefresh;
  170. }
  171. void amdgpu_calculate_u_and_p(u32 i, u32 r_c, u32 p_b,
  172. u32 *p, u32 *u)
  173. {
  174. u32 b_c = 0;
  175. u32 i_c;
  176. u32 tmp;
  177. i_c = (i * r_c) / 100;
  178. tmp = i_c >> p_b;
  179. while (tmp) {
  180. b_c++;
  181. tmp >>= 1;
  182. }
  183. *u = (b_c + 1) / 2;
  184. *p = i_c / (1 << (2 * (*u)));
  185. }
  186. int amdgpu_calculate_at(u32 t, u32 h, u32 fh, u32 fl, u32 *tl, u32 *th)
  187. {
  188. u32 k, a, ah, al;
  189. u32 t1;
  190. if ((fl == 0) || (fh == 0) || (fl > fh))
  191. return -EINVAL;
  192. k = (100 * fh) / fl;
  193. t1 = (t * (k - 100));
  194. a = (1000 * (100 * h + t1)) / (10000 + (t1 / 100));
  195. a = (a + 5) / 10;
  196. ah = ((a * t) + 5000) / 10000;
  197. al = a - ah;
  198. *th = t - ah;
  199. *tl = t + al;
  200. return 0;
  201. }
  202. bool amdgpu_is_uvd_state(u32 class, u32 class2)
  203. {
  204. if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  205. return true;
  206. if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
  207. return true;
  208. if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
  209. return true;
  210. if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
  211. return true;
  212. if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
  213. return true;
  214. return false;
  215. }
  216. bool amdgpu_is_internal_thermal_sensor(enum amdgpu_int_thermal_type sensor)
  217. {
  218. switch (sensor) {
  219. case THERMAL_TYPE_RV6XX:
  220. case THERMAL_TYPE_RV770:
  221. case THERMAL_TYPE_EVERGREEN:
  222. case THERMAL_TYPE_SUMO:
  223. case THERMAL_TYPE_NI:
  224. case THERMAL_TYPE_SI:
  225. case THERMAL_TYPE_CI:
  226. case THERMAL_TYPE_KV:
  227. return true;
  228. case THERMAL_TYPE_ADT7473_WITH_INTERNAL:
  229. case THERMAL_TYPE_EMC2103_WITH_INTERNAL:
  230. return false; /* need special handling */
  231. case THERMAL_TYPE_NONE:
  232. case THERMAL_TYPE_EXTERNAL:
  233. case THERMAL_TYPE_EXTERNAL_GPIO:
  234. default:
  235. return false;
  236. }
  237. }
  238. union power_info {
  239. struct _ATOM_POWERPLAY_INFO info;
  240. struct _ATOM_POWERPLAY_INFO_V2 info_2;
  241. struct _ATOM_POWERPLAY_INFO_V3 info_3;
  242. struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
  243. struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
  244. struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
  245. struct _ATOM_PPLIB_POWERPLAYTABLE4 pplib4;
  246. struct _ATOM_PPLIB_POWERPLAYTABLE5 pplib5;
  247. };
  248. union fan_info {
  249. struct _ATOM_PPLIB_FANTABLE fan;
  250. struct _ATOM_PPLIB_FANTABLE2 fan2;
  251. struct _ATOM_PPLIB_FANTABLE3 fan3;
  252. };
  253. static int amdgpu_parse_clk_voltage_dep_table(struct amdgpu_clock_voltage_dependency_table *amdgpu_table,
  254. ATOM_PPLIB_Clock_Voltage_Dependency_Table *atom_table)
  255. {
  256. u32 size = atom_table->ucNumEntries *
  257. sizeof(struct amdgpu_clock_voltage_dependency_entry);
  258. int i;
  259. ATOM_PPLIB_Clock_Voltage_Dependency_Record *entry;
  260. amdgpu_table->entries = kzalloc(size, GFP_KERNEL);
  261. if (!amdgpu_table->entries)
  262. return -ENOMEM;
  263. entry = &atom_table->entries[0];
  264. for (i = 0; i < atom_table->ucNumEntries; i++) {
  265. amdgpu_table->entries[i].clk = le16_to_cpu(entry->usClockLow) |
  266. (entry->ucClockHigh << 16);
  267. amdgpu_table->entries[i].v = le16_to_cpu(entry->usVoltage);
  268. entry = (ATOM_PPLIB_Clock_Voltage_Dependency_Record *)
  269. ((u8 *)entry + sizeof(ATOM_PPLIB_Clock_Voltage_Dependency_Record));
  270. }
  271. amdgpu_table->count = atom_table->ucNumEntries;
  272. return 0;
  273. }
  274. int amdgpu_get_platform_caps(struct amdgpu_device *adev)
  275. {
  276. struct amdgpu_mode_info *mode_info = &adev->mode_info;
  277. union power_info *power_info;
  278. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  279. u16 data_offset;
  280. u8 frev, crev;
  281. if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
  282. &frev, &crev, &data_offset))
  283. return -EINVAL;
  284. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  285. adev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
  286. adev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
  287. adev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);
  288. return 0;
  289. }
  290. /* sizeof(ATOM_PPLIB_EXTENDEDHEADER) */
  291. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12
  292. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14
  293. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16
  294. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18
  295. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20
  296. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22
  297. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8 24
  298. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V9 26
  299. int amdgpu_parse_extended_power_table(struct amdgpu_device *adev)
  300. {
  301. struct amdgpu_mode_info *mode_info = &adev->mode_info;
  302. union power_info *power_info;
  303. union fan_info *fan_info;
  304. ATOM_PPLIB_Clock_Voltage_Dependency_Table *dep_table;
  305. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  306. u16 data_offset;
  307. u8 frev, crev;
  308. int ret, i;
  309. if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
  310. &frev, &crev, &data_offset))
  311. return -EINVAL;
  312. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  313. /* fan table */
  314. if (le16_to_cpu(power_info->pplib.usTableSize) >=
  315. sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
  316. if (power_info->pplib3.usFanTableOffset) {
  317. fan_info = (union fan_info *)(mode_info->atom_context->bios + data_offset +
  318. le16_to_cpu(power_info->pplib3.usFanTableOffset));
  319. adev->pm.dpm.fan.t_hyst = fan_info->fan.ucTHyst;
  320. adev->pm.dpm.fan.t_min = le16_to_cpu(fan_info->fan.usTMin);
  321. adev->pm.dpm.fan.t_med = le16_to_cpu(fan_info->fan.usTMed);
  322. adev->pm.dpm.fan.t_high = le16_to_cpu(fan_info->fan.usTHigh);
  323. adev->pm.dpm.fan.pwm_min = le16_to_cpu(fan_info->fan.usPWMMin);
  324. adev->pm.dpm.fan.pwm_med = le16_to_cpu(fan_info->fan.usPWMMed);
  325. adev->pm.dpm.fan.pwm_high = le16_to_cpu(fan_info->fan.usPWMHigh);
  326. if (fan_info->fan.ucFanTableFormat >= 2)
  327. adev->pm.dpm.fan.t_max = le16_to_cpu(fan_info->fan2.usTMax);
  328. else
  329. adev->pm.dpm.fan.t_max = 10900;
  330. adev->pm.dpm.fan.cycle_delay = 100000;
  331. if (fan_info->fan.ucFanTableFormat >= 3) {
  332. adev->pm.dpm.fan.control_mode = fan_info->fan3.ucFanControlMode;
  333. adev->pm.dpm.fan.default_max_fan_pwm =
  334. le16_to_cpu(fan_info->fan3.usFanPWMMax);
  335. adev->pm.dpm.fan.default_fan_output_sensitivity = 4836;
  336. adev->pm.dpm.fan.fan_output_sensitivity =
  337. le16_to_cpu(fan_info->fan3.usFanOutputSensitivity);
  338. }
  339. adev->pm.dpm.fan.ucode_fan_control = true;
  340. }
  341. }
  342. /* clock dependancy tables, shedding tables */
  343. if (le16_to_cpu(power_info->pplib.usTableSize) >=
  344. sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE4)) {
  345. if (power_info->pplib4.usVddcDependencyOnSCLKOffset) {
  346. dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
  347. (mode_info->atom_context->bios + data_offset +
  348. le16_to_cpu(power_info->pplib4.usVddcDependencyOnSCLKOffset));
  349. ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk,
  350. dep_table);
  351. if (ret) {
  352. amdgpu_free_extended_power_table(adev);
  353. return ret;
  354. }
  355. }
  356. if (power_info->pplib4.usVddciDependencyOnMCLKOffset) {
  357. dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
  358. (mode_info->atom_context->bios + data_offset +
  359. le16_to_cpu(power_info->pplib4.usVddciDependencyOnMCLKOffset));
  360. ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
  361. dep_table);
  362. if (ret) {
  363. amdgpu_free_extended_power_table(adev);
  364. return ret;
  365. }
  366. }
  367. if (power_info->pplib4.usVddcDependencyOnMCLKOffset) {
  368. dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
  369. (mode_info->atom_context->bios + data_offset +
  370. le16_to_cpu(power_info->pplib4.usVddcDependencyOnMCLKOffset));
  371. ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
  372. dep_table);
  373. if (ret) {
  374. amdgpu_free_extended_power_table(adev);
  375. return ret;
  376. }
  377. }
  378. if (power_info->pplib4.usMvddDependencyOnMCLKOffset) {
  379. dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
  380. (mode_info->atom_context->bios + data_offset +
  381. le16_to_cpu(power_info->pplib4.usMvddDependencyOnMCLKOffset));
  382. ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.mvdd_dependency_on_mclk,
  383. dep_table);
  384. if (ret) {
  385. amdgpu_free_extended_power_table(adev);
  386. return ret;
  387. }
  388. }
  389. if (power_info->pplib4.usMaxClockVoltageOnDCOffset) {
  390. ATOM_PPLIB_Clock_Voltage_Limit_Table *clk_v =
  391. (ATOM_PPLIB_Clock_Voltage_Limit_Table *)
  392. (mode_info->atom_context->bios + data_offset +
  393. le16_to_cpu(power_info->pplib4.usMaxClockVoltageOnDCOffset));
  394. if (clk_v->ucNumEntries) {
  395. adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk =
  396. le16_to_cpu(clk_v->entries[0].usSclkLow) |
  397. (clk_v->entries[0].ucSclkHigh << 16);
  398. adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk =
  399. le16_to_cpu(clk_v->entries[0].usMclkLow) |
  400. (clk_v->entries[0].ucMclkHigh << 16);
  401. adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddc =
  402. le16_to_cpu(clk_v->entries[0].usVddc);
  403. adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddci =
  404. le16_to_cpu(clk_v->entries[0].usVddci);
  405. }
  406. }
  407. if (power_info->pplib4.usVddcPhaseShedLimitsTableOffset) {
  408. ATOM_PPLIB_PhaseSheddingLimits_Table *psl =
  409. (ATOM_PPLIB_PhaseSheddingLimits_Table *)
  410. (mode_info->atom_context->bios + data_offset +
  411. le16_to_cpu(power_info->pplib4.usVddcPhaseShedLimitsTableOffset));
  412. ATOM_PPLIB_PhaseSheddingLimits_Record *entry;
  413. adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries =
  414. kcalloc(psl->ucNumEntries,
  415. sizeof(struct amdgpu_phase_shedding_limits_entry),
  416. GFP_KERNEL);
  417. if (!adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries) {
  418. amdgpu_free_extended_power_table(adev);
  419. return -ENOMEM;
  420. }
  421. entry = &psl->entries[0];
  422. for (i = 0; i < psl->ucNumEntries; i++) {
  423. adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].sclk =
  424. le16_to_cpu(entry->usSclkLow) | (entry->ucSclkHigh << 16);
  425. adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].mclk =
  426. le16_to_cpu(entry->usMclkLow) | (entry->ucMclkHigh << 16);
  427. adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].voltage =
  428. le16_to_cpu(entry->usVoltage);
  429. entry = (ATOM_PPLIB_PhaseSheddingLimits_Record *)
  430. ((u8 *)entry + sizeof(ATOM_PPLIB_PhaseSheddingLimits_Record));
  431. }
  432. adev->pm.dpm.dyn_state.phase_shedding_limits_table.count =
  433. psl->ucNumEntries;
  434. }
  435. }
  436. /* cac data */
  437. if (le16_to_cpu(power_info->pplib.usTableSize) >=
  438. sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE5)) {
  439. adev->pm.dpm.tdp_limit = le32_to_cpu(power_info->pplib5.ulTDPLimit);
  440. adev->pm.dpm.near_tdp_limit = le32_to_cpu(power_info->pplib5.ulNearTDPLimit);
  441. adev->pm.dpm.near_tdp_limit_adjusted = adev->pm.dpm.near_tdp_limit;
  442. adev->pm.dpm.tdp_od_limit = le16_to_cpu(power_info->pplib5.usTDPODLimit);
  443. if (adev->pm.dpm.tdp_od_limit)
  444. adev->pm.dpm.power_control = true;
  445. else
  446. adev->pm.dpm.power_control = false;
  447. adev->pm.dpm.tdp_adjustment = 0;
  448. adev->pm.dpm.sq_ramping_threshold = le32_to_cpu(power_info->pplib5.ulSQRampingThreshold);
  449. adev->pm.dpm.cac_leakage = le32_to_cpu(power_info->pplib5.ulCACLeakage);
  450. adev->pm.dpm.load_line_slope = le16_to_cpu(power_info->pplib5.usLoadLineSlope);
  451. if (power_info->pplib5.usCACLeakageTableOffset) {
  452. ATOM_PPLIB_CAC_Leakage_Table *cac_table =
  453. (ATOM_PPLIB_CAC_Leakage_Table *)
  454. (mode_info->atom_context->bios + data_offset +
  455. le16_to_cpu(power_info->pplib5.usCACLeakageTableOffset));
  456. ATOM_PPLIB_CAC_Leakage_Record *entry;
  457. u32 size = cac_table->ucNumEntries * sizeof(struct amdgpu_cac_leakage_table);
  458. adev->pm.dpm.dyn_state.cac_leakage_table.entries = kzalloc(size, GFP_KERNEL);
  459. if (!adev->pm.dpm.dyn_state.cac_leakage_table.entries) {
  460. amdgpu_free_extended_power_table(adev);
  461. return -ENOMEM;
  462. }
  463. entry = &cac_table->entries[0];
  464. for (i = 0; i < cac_table->ucNumEntries; i++) {
  465. if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) {
  466. adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc1 =
  467. le16_to_cpu(entry->usVddc1);
  468. adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc2 =
  469. le16_to_cpu(entry->usVddc2);
  470. adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc3 =
  471. le16_to_cpu(entry->usVddc3);
  472. } else {
  473. adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc =
  474. le16_to_cpu(entry->usVddc);
  475. adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage =
  476. le32_to_cpu(entry->ulLeakageValue);
  477. }
  478. entry = (ATOM_PPLIB_CAC_Leakage_Record *)
  479. ((u8 *)entry + sizeof(ATOM_PPLIB_CAC_Leakage_Record));
  480. }
  481. adev->pm.dpm.dyn_state.cac_leakage_table.count = cac_table->ucNumEntries;
  482. }
  483. }
  484. /* ext tables */
  485. if (le16_to_cpu(power_info->pplib.usTableSize) >=
  486. sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
  487. ATOM_PPLIB_EXTENDEDHEADER *ext_hdr = (ATOM_PPLIB_EXTENDEDHEADER *)
  488. (mode_info->atom_context->bios + data_offset +
  489. le16_to_cpu(power_info->pplib3.usExtendendedHeaderOffset));
  490. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2) &&
  491. ext_hdr->usVCETableOffset) {
  492. VCEClockInfoArray *array = (VCEClockInfoArray *)
  493. (mode_info->atom_context->bios + data_offset +
  494. le16_to_cpu(ext_hdr->usVCETableOffset) + 1);
  495. ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *limits =
  496. (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)
  497. (mode_info->atom_context->bios + data_offset +
  498. le16_to_cpu(ext_hdr->usVCETableOffset) + 1 +
  499. 1 + array->ucNumEntries * sizeof(VCEClockInfo));
  500. ATOM_PPLIB_VCE_State_Table *states =
  501. (ATOM_PPLIB_VCE_State_Table *)
  502. (mode_info->atom_context->bios + data_offset +
  503. le16_to_cpu(ext_hdr->usVCETableOffset) + 1 +
  504. 1 + (array->ucNumEntries * sizeof (VCEClockInfo)) +
  505. 1 + (limits->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record)));
  506. ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *entry;
  507. ATOM_PPLIB_VCE_State_Record *state_entry;
  508. VCEClockInfo *vce_clk;
  509. u32 size = limits->numEntries *
  510. sizeof(struct amdgpu_vce_clock_voltage_dependency_entry);
  511. adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries =
  512. kzalloc(size, GFP_KERNEL);
  513. if (!adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries) {
  514. amdgpu_free_extended_power_table(adev);
  515. return -ENOMEM;
  516. }
  517. adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count =
  518. limits->numEntries;
  519. entry = &limits->entries[0];
  520. state_entry = &states->entries[0];
  521. for (i = 0; i < limits->numEntries; i++) {
  522. vce_clk = (VCEClockInfo *)
  523. ((u8 *)&array->entries[0] +
  524. (entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo)));
  525. adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].evclk =
  526. le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16);
  527. adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].ecclk =
  528. le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16);
  529. adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].v =
  530. le16_to_cpu(entry->usVoltage);
  531. entry = (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *)
  532. ((u8 *)entry + sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record));
  533. }
  534. adev->pm.dpm.num_of_vce_states =
  535. states->numEntries > AMD_MAX_VCE_LEVELS ?
  536. AMD_MAX_VCE_LEVELS : states->numEntries;
  537. for (i = 0; i < adev->pm.dpm.num_of_vce_states; i++) {
  538. vce_clk = (VCEClockInfo *)
  539. ((u8 *)&array->entries[0] +
  540. (state_entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo)));
  541. adev->pm.dpm.vce_states[i].evclk =
  542. le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16);
  543. adev->pm.dpm.vce_states[i].ecclk =
  544. le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16);
  545. adev->pm.dpm.vce_states[i].clk_idx =
  546. state_entry->ucClockInfoIndex & 0x3f;
  547. adev->pm.dpm.vce_states[i].pstate =
  548. (state_entry->ucClockInfoIndex & 0xc0) >> 6;
  549. state_entry = (ATOM_PPLIB_VCE_State_Record *)
  550. ((u8 *)state_entry + sizeof(ATOM_PPLIB_VCE_State_Record));
  551. }
  552. }
  553. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3) &&
  554. ext_hdr->usUVDTableOffset) {
  555. UVDClockInfoArray *array = (UVDClockInfoArray *)
  556. (mode_info->atom_context->bios + data_offset +
  557. le16_to_cpu(ext_hdr->usUVDTableOffset) + 1);
  558. ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *limits =
  559. (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *)
  560. (mode_info->atom_context->bios + data_offset +
  561. le16_to_cpu(ext_hdr->usUVDTableOffset) + 1 +
  562. 1 + (array->ucNumEntries * sizeof (UVDClockInfo)));
  563. ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *entry;
  564. u32 size = limits->numEntries *
  565. sizeof(struct amdgpu_uvd_clock_voltage_dependency_entry);
  566. adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries =
  567. kzalloc(size, GFP_KERNEL);
  568. if (!adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries) {
  569. amdgpu_free_extended_power_table(adev);
  570. return -ENOMEM;
  571. }
  572. adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count =
  573. limits->numEntries;
  574. entry = &limits->entries[0];
  575. for (i = 0; i < limits->numEntries; i++) {
  576. UVDClockInfo *uvd_clk = (UVDClockInfo *)
  577. ((u8 *)&array->entries[0] +
  578. (entry->ucUVDClockInfoIndex * sizeof(UVDClockInfo)));
  579. adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].vclk =
  580. le16_to_cpu(uvd_clk->usVClkLow) | (uvd_clk->ucVClkHigh << 16);
  581. adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].dclk =
  582. le16_to_cpu(uvd_clk->usDClkLow) | (uvd_clk->ucDClkHigh << 16);
  583. adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].v =
  584. le16_to_cpu(entry->usVoltage);
  585. entry = (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *)
  586. ((u8 *)entry + sizeof(ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record));
  587. }
  588. }
  589. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4) &&
  590. ext_hdr->usSAMUTableOffset) {
  591. ATOM_PPLIB_SAMClk_Voltage_Limit_Table *limits =
  592. (ATOM_PPLIB_SAMClk_Voltage_Limit_Table *)
  593. (mode_info->atom_context->bios + data_offset +
  594. le16_to_cpu(ext_hdr->usSAMUTableOffset) + 1);
  595. ATOM_PPLIB_SAMClk_Voltage_Limit_Record *entry;
  596. u32 size = limits->numEntries *
  597. sizeof(struct amdgpu_clock_voltage_dependency_entry);
  598. adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries =
  599. kzalloc(size, GFP_KERNEL);
  600. if (!adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries) {
  601. amdgpu_free_extended_power_table(adev);
  602. return -ENOMEM;
  603. }
  604. adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count =
  605. limits->numEntries;
  606. entry = &limits->entries[0];
  607. for (i = 0; i < limits->numEntries; i++) {
  608. adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].clk =
  609. le16_to_cpu(entry->usSAMClockLow) | (entry->ucSAMClockHigh << 16);
  610. adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].v =
  611. le16_to_cpu(entry->usVoltage);
  612. entry = (ATOM_PPLIB_SAMClk_Voltage_Limit_Record *)
  613. ((u8 *)entry + sizeof(ATOM_PPLIB_SAMClk_Voltage_Limit_Record));
  614. }
  615. }
  616. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) &&
  617. ext_hdr->usPPMTableOffset) {
  618. ATOM_PPLIB_PPM_Table *ppm = (ATOM_PPLIB_PPM_Table *)
  619. (mode_info->atom_context->bios + data_offset +
  620. le16_to_cpu(ext_hdr->usPPMTableOffset));
  621. adev->pm.dpm.dyn_state.ppm_table =
  622. kzalloc(sizeof(struct amdgpu_ppm_table), GFP_KERNEL);
  623. if (!adev->pm.dpm.dyn_state.ppm_table) {
  624. amdgpu_free_extended_power_table(adev);
  625. return -ENOMEM;
  626. }
  627. adev->pm.dpm.dyn_state.ppm_table->ppm_design = ppm->ucPpmDesign;
  628. adev->pm.dpm.dyn_state.ppm_table->cpu_core_number =
  629. le16_to_cpu(ppm->usCpuCoreNumber);
  630. adev->pm.dpm.dyn_state.ppm_table->platform_tdp =
  631. le32_to_cpu(ppm->ulPlatformTDP);
  632. adev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdp =
  633. le32_to_cpu(ppm->ulSmallACPlatformTDP);
  634. adev->pm.dpm.dyn_state.ppm_table->platform_tdc =
  635. le32_to_cpu(ppm->ulPlatformTDC);
  636. adev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdc =
  637. le32_to_cpu(ppm->ulSmallACPlatformTDC);
  638. adev->pm.dpm.dyn_state.ppm_table->apu_tdp =
  639. le32_to_cpu(ppm->ulApuTDP);
  640. adev->pm.dpm.dyn_state.ppm_table->dgpu_tdp =
  641. le32_to_cpu(ppm->ulDGpuTDP);
  642. adev->pm.dpm.dyn_state.ppm_table->dgpu_ulv_power =
  643. le32_to_cpu(ppm->ulDGpuUlvPower);
  644. adev->pm.dpm.dyn_state.ppm_table->tj_max =
  645. le32_to_cpu(ppm->ulTjmax);
  646. }
  647. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6) &&
  648. ext_hdr->usACPTableOffset) {
  649. ATOM_PPLIB_ACPClk_Voltage_Limit_Table *limits =
  650. (ATOM_PPLIB_ACPClk_Voltage_Limit_Table *)
  651. (mode_info->atom_context->bios + data_offset +
  652. le16_to_cpu(ext_hdr->usACPTableOffset) + 1);
  653. ATOM_PPLIB_ACPClk_Voltage_Limit_Record *entry;
  654. u32 size = limits->numEntries *
  655. sizeof(struct amdgpu_clock_voltage_dependency_entry);
  656. adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries =
  657. kzalloc(size, GFP_KERNEL);
  658. if (!adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries) {
  659. amdgpu_free_extended_power_table(adev);
  660. return -ENOMEM;
  661. }
  662. adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count =
  663. limits->numEntries;
  664. entry = &limits->entries[0];
  665. for (i = 0; i < limits->numEntries; i++) {
  666. adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].clk =
  667. le16_to_cpu(entry->usACPClockLow) | (entry->ucACPClockHigh << 16);
  668. adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].v =
  669. le16_to_cpu(entry->usVoltage);
  670. entry = (ATOM_PPLIB_ACPClk_Voltage_Limit_Record *)
  671. ((u8 *)entry + sizeof(ATOM_PPLIB_ACPClk_Voltage_Limit_Record));
  672. }
  673. }
  674. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7) &&
  675. ext_hdr->usPowerTuneTableOffset) {
  676. u8 rev = *(u8 *)(mode_info->atom_context->bios + data_offset +
  677. le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
  678. ATOM_PowerTune_Table *pt;
  679. adev->pm.dpm.dyn_state.cac_tdp_table =
  680. kzalloc(sizeof(struct amdgpu_cac_tdp_table), GFP_KERNEL);
  681. if (!adev->pm.dpm.dyn_state.cac_tdp_table) {
  682. amdgpu_free_extended_power_table(adev);
  683. return -ENOMEM;
  684. }
  685. if (rev > 0) {
  686. ATOM_PPLIB_POWERTUNE_Table_V1 *ppt = (ATOM_PPLIB_POWERTUNE_Table_V1 *)
  687. (mode_info->atom_context->bios + data_offset +
  688. le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
  689. adev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit =
  690. ppt->usMaximumPowerDeliveryLimit;
  691. pt = &ppt->power_tune_table;
  692. } else {
  693. ATOM_PPLIB_POWERTUNE_Table *ppt = (ATOM_PPLIB_POWERTUNE_Table *)
  694. (mode_info->atom_context->bios + data_offset +
  695. le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
  696. adev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit = 255;
  697. pt = &ppt->power_tune_table;
  698. }
  699. adev->pm.dpm.dyn_state.cac_tdp_table->tdp = le16_to_cpu(pt->usTDP);
  700. adev->pm.dpm.dyn_state.cac_tdp_table->configurable_tdp =
  701. le16_to_cpu(pt->usConfigurableTDP);
  702. adev->pm.dpm.dyn_state.cac_tdp_table->tdc = le16_to_cpu(pt->usTDC);
  703. adev->pm.dpm.dyn_state.cac_tdp_table->battery_power_limit =
  704. le16_to_cpu(pt->usBatteryPowerLimit);
  705. adev->pm.dpm.dyn_state.cac_tdp_table->small_power_limit =
  706. le16_to_cpu(pt->usSmallPowerLimit);
  707. adev->pm.dpm.dyn_state.cac_tdp_table->low_cac_leakage =
  708. le16_to_cpu(pt->usLowCACLeakage);
  709. adev->pm.dpm.dyn_state.cac_tdp_table->high_cac_leakage =
  710. le16_to_cpu(pt->usHighCACLeakage);
  711. }
  712. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8) &&
  713. ext_hdr->usSclkVddgfxTableOffset) {
  714. dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
  715. (mode_info->atom_context->bios + data_offset +
  716. le16_to_cpu(ext_hdr->usSclkVddgfxTableOffset));
  717. ret = amdgpu_parse_clk_voltage_dep_table(
  718. &adev->pm.dpm.dyn_state.vddgfx_dependency_on_sclk,
  719. dep_table);
  720. if (ret) {
  721. kfree(adev->pm.dpm.dyn_state.vddgfx_dependency_on_sclk.entries);
  722. return ret;
  723. }
  724. }
  725. }
  726. return 0;
  727. }
  728. void amdgpu_free_extended_power_table(struct amdgpu_device *adev)
  729. {
  730. struct amdgpu_dpm_dynamic_state *dyn_state = &adev->pm.dpm.dyn_state;
  731. kfree(dyn_state->vddc_dependency_on_sclk.entries);
  732. kfree(dyn_state->vddci_dependency_on_mclk.entries);
  733. kfree(dyn_state->vddc_dependency_on_mclk.entries);
  734. kfree(dyn_state->mvdd_dependency_on_mclk.entries);
  735. kfree(dyn_state->cac_leakage_table.entries);
  736. kfree(dyn_state->phase_shedding_limits_table.entries);
  737. kfree(dyn_state->ppm_table);
  738. kfree(dyn_state->cac_tdp_table);
  739. kfree(dyn_state->vce_clock_voltage_dependency_table.entries);
  740. kfree(dyn_state->uvd_clock_voltage_dependency_table.entries);
  741. kfree(dyn_state->samu_clock_voltage_dependency_table.entries);
  742. kfree(dyn_state->acp_clock_voltage_dependency_table.entries);
  743. kfree(dyn_state->vddgfx_dependency_on_sclk.entries);
  744. }
  745. static const char *pp_lib_thermal_controller_names[] = {
  746. "NONE",
  747. "lm63",
  748. "adm1032",
  749. "adm1030",
  750. "max6649",
  751. "lm64",
  752. "f75375",
  753. "RV6xx",
  754. "RV770",
  755. "adt7473",
  756. "NONE",
  757. "External GPIO",
  758. "Evergreen",
  759. "emc2103",
  760. "Sumo",
  761. "Northern Islands",
  762. "Southern Islands",
  763. "lm96163",
  764. "Sea Islands",
  765. "Kaveri/Kabini",
  766. };
  767. void amdgpu_add_thermal_controller(struct amdgpu_device *adev)
  768. {
  769. struct amdgpu_mode_info *mode_info = &adev->mode_info;
  770. ATOM_PPLIB_POWERPLAYTABLE *power_table;
  771. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  772. ATOM_PPLIB_THERMALCONTROLLER *controller;
  773. struct amdgpu_i2c_bus_rec i2c_bus;
  774. u16 data_offset;
  775. u8 frev, crev;
  776. if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
  777. &frev, &crev, &data_offset))
  778. return;
  779. power_table = (ATOM_PPLIB_POWERPLAYTABLE *)
  780. (mode_info->atom_context->bios + data_offset);
  781. controller = &power_table->sThermalController;
  782. /* add the i2c bus for thermal/fan chip */
  783. if (controller->ucType > 0) {
  784. if (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN)
  785. adev->pm.no_fan = true;
  786. adev->pm.fan_pulses_per_revolution =
  787. controller->ucFanParameters & ATOM_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
  788. if (adev->pm.fan_pulses_per_revolution) {
  789. adev->pm.fan_min_rpm = controller->ucFanMinRPM;
  790. adev->pm.fan_max_rpm = controller->ucFanMaxRPM;
  791. }
  792. if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV6xx) {
  793. DRM_INFO("Internal thermal controller %s fan control\n",
  794. (controller->ucFanParameters &
  795. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  796. adev->pm.int_thermal_type = THERMAL_TYPE_RV6XX;
  797. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV770) {
  798. DRM_INFO("Internal thermal controller %s fan control\n",
  799. (controller->ucFanParameters &
  800. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  801. adev->pm.int_thermal_type = THERMAL_TYPE_RV770;
  802. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EVERGREEN) {
  803. DRM_INFO("Internal thermal controller %s fan control\n",
  804. (controller->ucFanParameters &
  805. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  806. adev->pm.int_thermal_type = THERMAL_TYPE_EVERGREEN;
  807. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SUMO) {
  808. DRM_INFO("Internal thermal controller %s fan control\n",
  809. (controller->ucFanParameters &
  810. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  811. adev->pm.int_thermal_type = THERMAL_TYPE_SUMO;
  812. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_NISLANDS) {
  813. DRM_INFO("Internal thermal controller %s fan control\n",
  814. (controller->ucFanParameters &
  815. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  816. adev->pm.int_thermal_type = THERMAL_TYPE_NI;
  817. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SISLANDS) {
  818. DRM_INFO("Internal thermal controller %s fan control\n",
  819. (controller->ucFanParameters &
  820. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  821. adev->pm.int_thermal_type = THERMAL_TYPE_SI;
  822. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_CISLANDS) {
  823. DRM_INFO("Internal thermal controller %s fan control\n",
  824. (controller->ucFanParameters &
  825. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  826. adev->pm.int_thermal_type = THERMAL_TYPE_CI;
  827. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_KAVERI) {
  828. DRM_INFO("Internal thermal controller %s fan control\n",
  829. (controller->ucFanParameters &
  830. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  831. adev->pm.int_thermal_type = THERMAL_TYPE_KV;
  832. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EXTERNAL_GPIO) {
  833. DRM_INFO("External GPIO thermal controller %s fan control\n",
  834. (controller->ucFanParameters &
  835. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  836. adev->pm.int_thermal_type = THERMAL_TYPE_EXTERNAL_GPIO;
  837. } else if (controller->ucType ==
  838. ATOM_PP_THERMALCONTROLLER_ADT7473_WITH_INTERNAL) {
  839. DRM_INFO("ADT7473 with internal thermal controller %s fan control\n",
  840. (controller->ucFanParameters &
  841. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  842. adev->pm.int_thermal_type = THERMAL_TYPE_ADT7473_WITH_INTERNAL;
  843. } else if (controller->ucType ==
  844. ATOM_PP_THERMALCONTROLLER_EMC2103_WITH_INTERNAL) {
  845. DRM_INFO("EMC2103 with internal thermal controller %s fan control\n",
  846. (controller->ucFanParameters &
  847. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  848. adev->pm.int_thermal_type = THERMAL_TYPE_EMC2103_WITH_INTERNAL;
  849. } else if (controller->ucType < ARRAY_SIZE(pp_lib_thermal_controller_names)) {
  850. DRM_INFO("Possible %s thermal controller at 0x%02x %s fan control\n",
  851. pp_lib_thermal_controller_names[controller->ucType],
  852. controller->ucI2cAddress >> 1,
  853. (controller->ucFanParameters &
  854. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  855. adev->pm.int_thermal_type = THERMAL_TYPE_EXTERNAL;
  856. i2c_bus = amdgpu_atombios_lookup_i2c_gpio(adev, controller->ucI2cLine);
  857. adev->pm.i2c_bus = amdgpu_i2c_lookup(adev, &i2c_bus);
  858. if (adev->pm.i2c_bus) {
  859. struct i2c_board_info info = { };
  860. const char *name = pp_lib_thermal_controller_names[controller->ucType];
  861. info.addr = controller->ucI2cAddress >> 1;
  862. strlcpy(info.type, name, sizeof(info.type));
  863. i2c_new_device(&adev->pm.i2c_bus->adapter, &info);
  864. }
  865. } else {
  866. DRM_INFO("Unknown thermal controller type %d at 0x%02x %s fan control\n",
  867. controller->ucType,
  868. controller->ucI2cAddress >> 1,
  869. (controller->ucFanParameters &
  870. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  871. }
  872. }
  873. }
  874. enum amdgpu_pcie_gen amdgpu_get_pcie_gen_support(struct amdgpu_device *adev,
  875. u32 sys_mask,
  876. enum amdgpu_pcie_gen asic_gen,
  877. enum amdgpu_pcie_gen default_gen)
  878. {
  879. switch (asic_gen) {
  880. case AMDGPU_PCIE_GEN1:
  881. return AMDGPU_PCIE_GEN1;
  882. case AMDGPU_PCIE_GEN2:
  883. return AMDGPU_PCIE_GEN2;
  884. case AMDGPU_PCIE_GEN3:
  885. return AMDGPU_PCIE_GEN3;
  886. default:
  887. if ((sys_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) &&
  888. (default_gen == AMDGPU_PCIE_GEN3))
  889. return AMDGPU_PCIE_GEN3;
  890. else if ((sys_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) &&
  891. (default_gen == AMDGPU_PCIE_GEN2))
  892. return AMDGPU_PCIE_GEN2;
  893. else
  894. return AMDGPU_PCIE_GEN1;
  895. }
  896. return AMDGPU_PCIE_GEN1;
  897. }
  898. u16 amdgpu_get_pcie_lane_support(struct amdgpu_device *adev,
  899. u16 asic_lanes,
  900. u16 default_lanes)
  901. {
  902. switch (asic_lanes) {
  903. case 0:
  904. default:
  905. return default_lanes;
  906. case 1:
  907. return 1;
  908. case 2:
  909. return 2;
  910. case 4:
  911. return 4;
  912. case 8:
  913. return 8;
  914. case 12:
  915. return 12;
  916. case 16:
  917. return 16;
  918. }
  919. }
  920. u8 amdgpu_encode_pci_lane_width(u32 lanes)
  921. {
  922. u8 encoded_lanes[] = { 0, 1, 2, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6 };
  923. if (lanes > 16)
  924. return 0;
  925. return encoded_lanes[lanes];
  926. }
  927. struct amd_vce_state*
  928. amdgpu_get_vce_clock_state(void *handle, u32 idx)
  929. {
  930. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  931. if (idx < adev->pm.dpm.num_of_vce_states)
  932. return &adev->pm.dpm.vce_states[idx];
  933. return NULL;
  934. }