intel_ringbuffer.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565
  1. #ifndef _INTEL_RINGBUFFER_H_
  2. #define _INTEL_RINGBUFFER_H_
  3. #include <linux/hashtable.h>
  4. #include "i915_gem_batch_pool.h"
  5. #define I915_CMD_HASH_ORDER 9
  6. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  7. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  8. * to give some inclination as to some of the magic values used in the various
  9. * workarounds!
  10. */
  11. #define CACHELINE_BYTES 64
  12. #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  13. /*
  14. * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
  15. * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
  16. * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
  17. *
  18. * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
  19. * cacheline, the Head Pointer must not be greater than the Tail
  20. * Pointer."
  21. */
  22. #define I915_RING_FREE_SPACE 64
  23. struct intel_hw_status_page {
  24. u32 *page_addr;
  25. unsigned int gfx_addr;
  26. struct drm_i915_gem_object *obj;
  27. };
  28. #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  29. #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  30. #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  31. #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  32. #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
  33. #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  34. #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  35. #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  36. #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  37. #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  38. #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  39. #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  40. /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  41. * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  42. */
  43. #define gen8_semaphore_seqno_size sizeof(uint64_t)
  44. #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
  45. (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
  46. #define GEN8_SIGNAL_OFFSET(__ring, to) \
  47. (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
  48. GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  49. #define GEN8_WAIT_OFFSET(__ring, from) \
  50. (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
  51. GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  52. enum intel_engine_hangcheck_action {
  53. HANGCHECK_IDLE = 0,
  54. HANGCHECK_WAIT,
  55. HANGCHECK_ACTIVE,
  56. HANGCHECK_KICK,
  57. HANGCHECK_HUNG,
  58. };
  59. #define HANGCHECK_SCORE_RING_HUNG 31
  60. struct intel_engine_hangcheck {
  61. u64 acthd;
  62. unsigned long user_interrupts;
  63. u32 seqno;
  64. int score;
  65. enum intel_engine_hangcheck_action action;
  66. int deadlock;
  67. u32 instdone[I915_NUM_INSTDONE_REG];
  68. };
  69. struct intel_ring {
  70. struct drm_i915_gem_object *obj;
  71. void *vaddr;
  72. struct i915_vma *vma;
  73. struct intel_engine_cs *engine;
  74. struct list_head link;
  75. u32 head;
  76. u32 tail;
  77. int space;
  78. int size;
  79. int effective_size;
  80. /** We track the position of the requests in the ring buffer, and
  81. * when each is retired we increment last_retired_head as the GPU
  82. * must have finished processing the request and so we know we
  83. * can advance the ringbuffer up to that position.
  84. *
  85. * last_retired_head is set to -1 after the value is consumed so
  86. * we can detect new retirements.
  87. */
  88. u32 last_retired_head;
  89. };
  90. struct i915_gem_context;
  91. struct drm_i915_reg_table;
  92. /*
  93. * we use a single page to load ctx workarounds so all of these
  94. * values are referred in terms of dwords
  95. *
  96. * struct i915_wa_ctx_bb:
  97. * offset: specifies batch starting position, also helpful in case
  98. * if we want to have multiple batches at different offsets based on
  99. * some criteria. It is not a requirement at the moment but provides
  100. * an option for future use.
  101. * size: size of the batch in DWORDS
  102. */
  103. struct i915_ctx_workarounds {
  104. struct i915_wa_ctx_bb {
  105. u32 offset;
  106. u32 size;
  107. } indirect_ctx, per_ctx;
  108. struct drm_i915_gem_object *obj;
  109. };
  110. struct drm_i915_gem_request;
  111. struct intel_engine_cs {
  112. struct drm_i915_private *i915;
  113. const char *name;
  114. enum intel_engine_id {
  115. RCS = 0,
  116. BCS,
  117. VCS,
  118. VCS2, /* Keep instances of the same type engine together. */
  119. VECS
  120. } id;
  121. #define I915_NUM_ENGINES 5
  122. #define _VCS(n) (VCS + (n))
  123. unsigned int exec_id;
  124. unsigned int hw_id;
  125. unsigned int guc_id; /* XXX same as hw_id? */
  126. u64 fence_context;
  127. u32 mmio_base;
  128. unsigned int irq_shift;
  129. struct intel_ring *buffer;
  130. struct list_head buffers;
  131. /* Rather than have every client wait upon all user interrupts,
  132. * with the herd waking after every interrupt and each doing the
  133. * heavyweight seqno dance, we delegate the task (of being the
  134. * bottom-half of the user interrupt) to the first client. After
  135. * every interrupt, we wake up one client, who does the heavyweight
  136. * coherent seqno read and either goes back to sleep (if incomplete),
  137. * or wakes up all the completed clients in parallel, before then
  138. * transferring the bottom-half status to the next client in the queue.
  139. *
  140. * Compared to walking the entire list of waiters in a single dedicated
  141. * bottom-half, we reduce the latency of the first waiter by avoiding
  142. * a context switch, but incur additional coherent seqno reads when
  143. * following the chain of request breadcrumbs. Since it is most likely
  144. * that we have a single client waiting on each seqno, then reducing
  145. * the overhead of waking that client is much preferred.
  146. */
  147. struct intel_breadcrumbs {
  148. struct task_struct *irq_seqno_bh; /* bh for user interrupts */
  149. unsigned long irq_wakeups;
  150. bool irq_posted;
  151. spinlock_t lock; /* protects the lists of requests */
  152. struct rb_root waiters; /* sorted by retirement, priority */
  153. struct rb_root signals; /* sorted by retirement */
  154. struct intel_wait *first_wait; /* oldest waiter by retirement */
  155. struct task_struct *signaler; /* used for fence signalling */
  156. struct drm_i915_gem_request *first_signal;
  157. struct timer_list fake_irq; /* used after a missed interrupt */
  158. bool irq_enabled : 1;
  159. bool rpm_wakelock : 1;
  160. } breadcrumbs;
  161. /*
  162. * A pool of objects to use as shadow copies of client batch buffers
  163. * when the command parser is enabled. Prevents the client from
  164. * modifying the batch contents after software parsing.
  165. */
  166. struct i915_gem_batch_pool batch_pool;
  167. struct intel_hw_status_page status_page;
  168. struct i915_ctx_workarounds wa_ctx;
  169. u32 irq_keep_mask; /* always keep these interrupts */
  170. u32 irq_enable_mask; /* bitmask to enable ring interrupt */
  171. void (*irq_enable)(struct intel_engine_cs *engine);
  172. void (*irq_disable)(struct intel_engine_cs *engine);
  173. int (*init_hw)(struct intel_engine_cs *engine);
  174. int (*init_context)(struct drm_i915_gem_request *req);
  175. void (*write_tail)(struct intel_engine_cs *engine,
  176. u32 value);
  177. int (*add_request)(struct drm_i915_gem_request *req);
  178. /* Some chipsets are not quite as coherent as advertised and need
  179. * an expensive kick to force a true read of the up-to-date seqno.
  180. * However, the up-to-date seqno is not always required and the last
  181. * seen value is good enough. Note that the seqno will always be
  182. * monotonic, even if not coherent.
  183. */
  184. void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
  185. void (*cleanup)(struct intel_engine_cs *engine);
  186. /* GEN8 signal/wait table - never trust comments!
  187. * signal to signal to signal to signal to signal to
  188. * RCS VCS BCS VECS VCS2
  189. * --------------------------------------------------------------------
  190. * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
  191. * |-------------------------------------------------------------------
  192. * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
  193. * |-------------------------------------------------------------------
  194. * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
  195. * |-------------------------------------------------------------------
  196. * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
  197. * |-------------------------------------------------------------------
  198. * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
  199. * |-------------------------------------------------------------------
  200. *
  201. * Generalization:
  202. * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
  203. * ie. transpose of g(x, y)
  204. *
  205. * sync from sync from sync from sync from sync from
  206. * RCS VCS BCS VECS VCS2
  207. * --------------------------------------------------------------------
  208. * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
  209. * |-------------------------------------------------------------------
  210. * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
  211. * |-------------------------------------------------------------------
  212. * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
  213. * |-------------------------------------------------------------------
  214. * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
  215. * |-------------------------------------------------------------------
  216. * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
  217. * |-------------------------------------------------------------------
  218. *
  219. * Generalization:
  220. * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
  221. * ie. transpose of f(x, y)
  222. */
  223. struct {
  224. u32 sync_seqno[I915_NUM_ENGINES-1];
  225. union {
  226. struct {
  227. /* our mbox written by others */
  228. u32 wait[I915_NUM_ENGINES];
  229. /* mboxes this ring signals to */
  230. i915_reg_t signal[I915_NUM_ENGINES];
  231. } mbox;
  232. u64 signal_ggtt[I915_NUM_ENGINES];
  233. };
  234. /* AKA wait() */
  235. int (*sync_to)(struct drm_i915_gem_request *to_req,
  236. struct intel_engine_cs *from,
  237. u32 seqno);
  238. int (*signal)(struct drm_i915_gem_request *signaller_req,
  239. /* num_dwords needed by caller */
  240. unsigned int num_dwords);
  241. } semaphore;
  242. /* Execlists */
  243. struct tasklet_struct irq_tasklet;
  244. spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
  245. struct list_head execlist_queue;
  246. unsigned int fw_domains;
  247. unsigned int next_context_status_buffer;
  248. unsigned int idle_lite_restore_wa;
  249. bool disable_lite_restore_wa;
  250. u32 ctx_desc_template;
  251. int (*emit_request)(struct drm_i915_gem_request *request);
  252. int (*emit_flush)(struct drm_i915_gem_request *request,
  253. u32 mode);
  254. #define EMIT_INVALIDATE BIT(0)
  255. #define EMIT_FLUSH BIT(1)
  256. #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
  257. int (*emit_bb_start)(struct drm_i915_gem_request *req,
  258. u64 offset, u32 length,
  259. unsigned int dispatch_flags);
  260. #define I915_DISPATCH_SECURE 0x1
  261. #define I915_DISPATCH_PINNED 0x2
  262. #define I915_DISPATCH_RS 0x4
  263. /**
  264. * List of objects currently involved in rendering from the
  265. * ringbuffer.
  266. *
  267. * Includes buffers having the contents of their GPU caches
  268. * flushed, not necessarily primitives. last_read_req
  269. * represents when the rendering involved will be completed.
  270. *
  271. * A reference is held on the buffer while on this list.
  272. */
  273. struct list_head active_list;
  274. /**
  275. * List of breadcrumbs associated with GPU requests currently
  276. * outstanding.
  277. */
  278. struct list_head request_list;
  279. /**
  280. * Seqno of request most recently submitted to request_list.
  281. * Used exclusively by hang checker to avoid grabbing lock while
  282. * inspecting request list.
  283. */
  284. u32 last_submitted_seqno;
  285. struct i915_gem_context *last_context;
  286. struct intel_engine_hangcheck hangcheck;
  287. struct {
  288. struct drm_i915_gem_object *obj;
  289. u32 gtt_offset;
  290. } scratch;
  291. bool needs_cmd_parser;
  292. /*
  293. * Table of commands the command parser needs to know about
  294. * for this engine.
  295. */
  296. DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
  297. /*
  298. * Table of registers allowed in commands that read/write registers.
  299. */
  300. const struct drm_i915_reg_table *reg_tables;
  301. int reg_table_count;
  302. /*
  303. * Returns the bitmask for the length field of the specified command.
  304. * Return 0 for an unrecognized/invalid command.
  305. *
  306. * If the command parser finds an entry for a command in the engine's
  307. * cmd_tables, it gets the command's length based on the table entry.
  308. * If not, it calls this function to determine the per-engine length
  309. * field encoding for the command (i.e. different opcode ranges use
  310. * certain bits to encode the command length in the header).
  311. */
  312. u32 (*get_cmd_length_mask)(u32 cmd_header);
  313. };
  314. static inline bool
  315. intel_engine_initialized(const struct intel_engine_cs *engine)
  316. {
  317. return engine->i915 != NULL;
  318. }
  319. static inline unsigned
  320. intel_engine_flag(const struct intel_engine_cs *engine)
  321. {
  322. return 1 << engine->id;
  323. }
  324. static inline u32
  325. intel_engine_sync_index(struct intel_engine_cs *engine,
  326. struct intel_engine_cs *other)
  327. {
  328. int idx;
  329. /*
  330. * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
  331. * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
  332. * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
  333. * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
  334. * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
  335. */
  336. idx = (other - engine) - 1;
  337. if (idx < 0)
  338. idx += I915_NUM_ENGINES;
  339. return idx;
  340. }
  341. static inline void
  342. intel_flush_status_page(struct intel_engine_cs *engine, int reg)
  343. {
  344. mb();
  345. clflush(&engine->status_page.page_addr[reg]);
  346. mb();
  347. }
  348. static inline u32
  349. intel_read_status_page(struct intel_engine_cs *engine, int reg)
  350. {
  351. /* Ensure that the compiler doesn't optimize away the load. */
  352. return READ_ONCE(engine->status_page.page_addr[reg]);
  353. }
  354. static inline void
  355. intel_write_status_page(struct intel_engine_cs *engine,
  356. int reg, u32 value)
  357. {
  358. engine->status_page.page_addr[reg] = value;
  359. }
  360. /*
  361. * Reads a dword out of the status page, which is written to from the command
  362. * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
  363. * MI_STORE_DATA_IMM.
  364. *
  365. * The following dwords have a reserved meaning:
  366. * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
  367. * 0x04: ring 0 head pointer
  368. * 0x05: ring 1 head pointer (915-class)
  369. * 0x06: ring 2 head pointer (915-class)
  370. * 0x10-0x1b: Context status DWords (GM45)
  371. * 0x1f: Last written status offset. (GM45)
  372. * 0x20-0x2f: Reserved (Gen6+)
  373. *
  374. * The area from dword 0x30 to 0x3ff is available for driver usage.
  375. */
  376. #define I915_GEM_HWS_INDEX 0x30
  377. #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  378. #define I915_GEM_HWS_SCRATCH_INDEX 0x40
  379. #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  380. struct intel_ring *
  381. intel_engine_create_ring(struct intel_engine_cs *engine, int size);
  382. int intel_ring_pin(struct intel_ring *ring);
  383. void intel_ring_unpin(struct intel_ring *ring);
  384. void intel_ring_free(struct intel_ring *ring);
  385. void intel_engine_stop(struct intel_engine_cs *engine);
  386. void intel_engine_cleanup(struct intel_engine_cs *engine);
  387. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
  388. int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
  389. int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
  390. static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
  391. {
  392. *(uint32_t *)(ring->vaddr + ring->tail) = data;
  393. ring->tail += 4;
  394. }
  395. static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
  396. {
  397. intel_ring_emit(ring, i915_mmio_reg_offset(reg));
  398. }
  399. static inline void intel_ring_advance(struct intel_ring *ring)
  400. {
  401. ring->tail &= ring->size - 1;
  402. }
  403. int __intel_ring_space(int head, int tail, int size);
  404. void intel_ring_update_space(struct intel_ring *ring);
  405. int __must_check intel_engine_idle(struct intel_engine_cs *engine);
  406. void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno);
  407. int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
  408. void intel_fini_pipe_control(struct intel_engine_cs *engine);
  409. void intel_engine_setup_common(struct intel_engine_cs *engine);
  410. int intel_engine_init_common(struct intel_engine_cs *engine);
  411. int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
  412. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
  413. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
  414. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
  415. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
  416. u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
  417. static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
  418. {
  419. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  420. }
  421. int init_workarounds_ring(struct intel_engine_cs *engine);
  422. /*
  423. * Arbitrary size for largest possible 'add request' sequence. The code paths
  424. * are complex and variable. Empirical measurement shows that the worst case
  425. * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
  426. * we need to allocate double the largest single packet within that emission
  427. * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
  428. */
  429. #define MIN_SPACE_FOR_ADD_REQUEST 336
  430. static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
  431. {
  432. return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
  433. }
  434. /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
  435. struct intel_wait {
  436. struct rb_node node;
  437. struct task_struct *tsk;
  438. u32 seqno;
  439. };
  440. struct intel_signal_node {
  441. struct rb_node node;
  442. struct intel_wait wait;
  443. };
  444. int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
  445. static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
  446. {
  447. wait->tsk = current;
  448. wait->seqno = seqno;
  449. }
  450. static inline bool intel_wait_complete(const struct intel_wait *wait)
  451. {
  452. return RB_EMPTY_NODE(&wait->node);
  453. }
  454. bool intel_engine_add_wait(struct intel_engine_cs *engine,
  455. struct intel_wait *wait);
  456. void intel_engine_remove_wait(struct intel_engine_cs *engine,
  457. struct intel_wait *wait);
  458. void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
  459. static inline bool intel_engine_has_waiter(struct intel_engine_cs *engine)
  460. {
  461. return READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
  462. }
  463. static inline bool intel_engine_wakeup(struct intel_engine_cs *engine)
  464. {
  465. bool wakeup = false;
  466. struct task_struct *tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
  467. /* Note that for this not to dangerously chase a dangling pointer,
  468. * the caller is responsible for ensure that the task remain valid for
  469. * wake_up_process() i.e. that the RCU grace period cannot expire.
  470. *
  471. * Also note that tsk is likely to be in !TASK_RUNNING state so an
  472. * early test for tsk->state != TASK_RUNNING before wake_up_process()
  473. * is unlikely to be beneficial.
  474. */
  475. if (tsk)
  476. wakeup = wake_up_process(tsk);
  477. return wakeup;
  478. }
  479. void intel_engine_enable_fake_irq(struct intel_engine_cs *engine);
  480. void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
  481. unsigned int intel_kick_waiters(struct drm_i915_private *i915);
  482. unsigned int intel_kick_signalers(struct drm_i915_private *i915);
  483. #endif /* _INTEL_RINGBUFFER_H_ */