sockmap.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877
  1. /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of version 2 of the GNU General Public
  5. * License as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful, but
  8. * WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. * General Public License for more details.
  11. */
  12. /* A BPF sock_map is used to store sock objects. This is primarly used
  13. * for doing socket redirect with BPF helper routines.
  14. *
  15. * A sock map may have BPF programs attached to it, currently a program
  16. * used to parse packets and a program to provide a verdict and redirect
  17. * decision on the packet are supported. Any programs attached to a sock
  18. * map are inherited by sock objects when they are added to the map. If
  19. * no BPF programs are attached the sock object may only be used for sock
  20. * redirect.
  21. *
  22. * A sock object may be in multiple maps, but can only inherit a single
  23. * parse or verdict program. If adding a sock object to a map would result
  24. * in having multiple parsing programs the update will return an EBUSY error.
  25. *
  26. * For reference this program is similar to devmap used in XDP context
  27. * reviewing these together may be useful. For an example please review
  28. * ./samples/bpf/sockmap/.
  29. */
  30. #include <linux/bpf.h>
  31. #include <net/sock.h>
  32. #include <linux/filter.h>
  33. #include <linux/errno.h>
  34. #include <linux/file.h>
  35. #include <linux/kernel.h>
  36. #include <linux/net.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/list.h>
  40. #include <linux/mm.h>
  41. #include <net/strparser.h>
  42. #include <net/tcp.h>
  43. #include <linux/ptr_ring.h>
  44. #include <net/inet_common.h>
  45. #define SOCK_CREATE_FLAG_MASK \
  46. (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
  47. struct bpf_stab {
  48. struct bpf_map map;
  49. struct sock **sock_map;
  50. struct bpf_prog *bpf_tx_msg;
  51. struct bpf_prog *bpf_parse;
  52. struct bpf_prog *bpf_verdict;
  53. };
  54. enum smap_psock_state {
  55. SMAP_TX_RUNNING,
  56. };
  57. struct smap_psock_map_entry {
  58. struct list_head list;
  59. struct sock **entry;
  60. };
  61. struct smap_psock {
  62. struct rcu_head rcu;
  63. refcount_t refcnt;
  64. /* datapath variables */
  65. struct sk_buff_head rxqueue;
  66. bool strp_enabled;
  67. /* datapath error path cache across tx work invocations */
  68. int save_rem;
  69. int save_off;
  70. struct sk_buff *save_skb;
  71. /* datapath variables for tx_msg ULP */
  72. struct sock *sk_redir;
  73. int apply_bytes;
  74. int cork_bytes;
  75. int sg_size;
  76. int eval;
  77. struct sk_msg_buff *cork;
  78. struct list_head ingress;
  79. struct strparser strp;
  80. struct bpf_prog *bpf_tx_msg;
  81. struct bpf_prog *bpf_parse;
  82. struct bpf_prog *bpf_verdict;
  83. struct list_head maps;
  84. /* Back reference used when sock callback trigger sockmap operations */
  85. struct sock *sock;
  86. unsigned long state;
  87. struct work_struct tx_work;
  88. struct work_struct gc_work;
  89. struct proto *sk_proto;
  90. void (*save_close)(struct sock *sk, long timeout);
  91. void (*save_data_ready)(struct sock *sk);
  92. void (*save_write_space)(struct sock *sk);
  93. };
  94. static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
  95. static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
  96. int nonblock, int flags, int *addr_len);
  97. static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
  98. static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
  99. int offset, size_t size, int flags);
  100. static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
  101. {
  102. return rcu_dereference_sk_user_data(sk);
  103. }
  104. static bool bpf_tcp_stream_read(const struct sock *sk)
  105. {
  106. struct smap_psock *psock;
  107. bool empty = true;
  108. rcu_read_lock();
  109. psock = smap_psock_sk(sk);
  110. if (unlikely(!psock))
  111. goto out;
  112. empty = list_empty(&psock->ingress);
  113. out:
  114. rcu_read_unlock();
  115. return !empty;
  116. }
  117. static struct proto tcp_bpf_proto;
  118. static int bpf_tcp_init(struct sock *sk)
  119. {
  120. struct smap_psock *psock;
  121. rcu_read_lock();
  122. psock = smap_psock_sk(sk);
  123. if (unlikely(!psock)) {
  124. rcu_read_unlock();
  125. return -EINVAL;
  126. }
  127. if (unlikely(psock->sk_proto)) {
  128. rcu_read_unlock();
  129. return -EBUSY;
  130. }
  131. psock->save_close = sk->sk_prot->close;
  132. psock->sk_proto = sk->sk_prot;
  133. if (psock->bpf_tx_msg) {
  134. tcp_bpf_proto.sendmsg = bpf_tcp_sendmsg;
  135. tcp_bpf_proto.sendpage = bpf_tcp_sendpage;
  136. tcp_bpf_proto.recvmsg = bpf_tcp_recvmsg;
  137. tcp_bpf_proto.stream_memory_read = bpf_tcp_stream_read;
  138. }
  139. sk->sk_prot = &tcp_bpf_proto;
  140. rcu_read_unlock();
  141. return 0;
  142. }
  143. static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
  144. static int free_start_sg(struct sock *sk, struct sk_msg_buff *md);
  145. static void bpf_tcp_release(struct sock *sk)
  146. {
  147. struct smap_psock *psock;
  148. rcu_read_lock();
  149. psock = smap_psock_sk(sk);
  150. if (unlikely(!psock))
  151. goto out;
  152. if (psock->cork) {
  153. free_start_sg(psock->sock, psock->cork);
  154. kfree(psock->cork);
  155. psock->cork = NULL;
  156. }
  157. if (psock->sk_proto) {
  158. sk->sk_prot = psock->sk_proto;
  159. psock->sk_proto = NULL;
  160. }
  161. out:
  162. rcu_read_unlock();
  163. }
  164. static void bpf_tcp_close(struct sock *sk, long timeout)
  165. {
  166. void (*close_fun)(struct sock *sk, long timeout);
  167. struct smap_psock_map_entry *e, *tmp;
  168. struct sk_msg_buff *md, *mtmp;
  169. struct smap_psock *psock;
  170. struct sock *osk;
  171. rcu_read_lock();
  172. psock = smap_psock_sk(sk);
  173. if (unlikely(!psock)) {
  174. rcu_read_unlock();
  175. return sk->sk_prot->close(sk, timeout);
  176. }
  177. /* The psock may be destroyed anytime after exiting the RCU critial
  178. * section so by the time we use close_fun the psock may no longer
  179. * be valid. However, bpf_tcp_close is called with the sock lock
  180. * held so the close hook and sk are still valid.
  181. */
  182. close_fun = psock->save_close;
  183. write_lock_bh(&sk->sk_callback_lock);
  184. if (psock->cork) {
  185. free_start_sg(psock->sock, psock->cork);
  186. kfree(psock->cork);
  187. psock->cork = NULL;
  188. }
  189. list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
  190. list_del(&md->list);
  191. free_start_sg(psock->sock, md);
  192. kfree(md);
  193. }
  194. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  195. osk = cmpxchg(e->entry, sk, NULL);
  196. if (osk == sk) {
  197. list_del(&e->list);
  198. smap_release_sock(psock, sk);
  199. }
  200. }
  201. write_unlock_bh(&sk->sk_callback_lock);
  202. rcu_read_unlock();
  203. close_fun(sk, timeout);
  204. }
  205. enum __sk_action {
  206. __SK_DROP = 0,
  207. __SK_PASS,
  208. __SK_REDIRECT,
  209. __SK_NONE,
  210. };
  211. static struct tcp_ulp_ops bpf_tcp_ulp_ops __read_mostly = {
  212. .name = "bpf_tcp",
  213. .uid = TCP_ULP_BPF,
  214. .user_visible = false,
  215. .owner = NULL,
  216. .init = bpf_tcp_init,
  217. .release = bpf_tcp_release,
  218. };
  219. static int memcopy_from_iter(struct sock *sk,
  220. struct sk_msg_buff *md,
  221. struct iov_iter *from, int bytes)
  222. {
  223. struct scatterlist *sg = md->sg_data;
  224. int i = md->sg_curr, rc = -ENOSPC;
  225. do {
  226. int copy;
  227. char *to;
  228. if (md->sg_copybreak >= sg[i].length) {
  229. md->sg_copybreak = 0;
  230. if (++i == MAX_SKB_FRAGS)
  231. i = 0;
  232. if (i == md->sg_end)
  233. break;
  234. }
  235. copy = sg[i].length - md->sg_copybreak;
  236. to = sg_virt(&sg[i]) + md->sg_copybreak;
  237. md->sg_copybreak += copy;
  238. if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
  239. rc = copy_from_iter_nocache(to, copy, from);
  240. else
  241. rc = copy_from_iter(to, copy, from);
  242. if (rc != copy) {
  243. rc = -EFAULT;
  244. goto out;
  245. }
  246. bytes -= copy;
  247. if (!bytes)
  248. break;
  249. md->sg_copybreak = 0;
  250. if (++i == MAX_SKB_FRAGS)
  251. i = 0;
  252. } while (i != md->sg_end);
  253. out:
  254. md->sg_curr = i;
  255. return rc;
  256. }
  257. static int bpf_tcp_push(struct sock *sk, int apply_bytes,
  258. struct sk_msg_buff *md,
  259. int flags, bool uncharge)
  260. {
  261. bool apply = apply_bytes;
  262. struct scatterlist *sg;
  263. int offset, ret = 0;
  264. struct page *p;
  265. size_t size;
  266. while (1) {
  267. sg = md->sg_data + md->sg_start;
  268. size = (apply && apply_bytes < sg->length) ?
  269. apply_bytes : sg->length;
  270. offset = sg->offset;
  271. tcp_rate_check_app_limited(sk);
  272. p = sg_page(sg);
  273. retry:
  274. ret = do_tcp_sendpages(sk, p, offset, size, flags);
  275. if (ret != size) {
  276. if (ret > 0) {
  277. if (apply)
  278. apply_bytes -= ret;
  279. size -= ret;
  280. offset += ret;
  281. if (uncharge)
  282. sk_mem_uncharge(sk, ret);
  283. goto retry;
  284. }
  285. sg->length = size;
  286. sg->offset = offset;
  287. return ret;
  288. }
  289. if (apply)
  290. apply_bytes -= ret;
  291. sg->offset += ret;
  292. sg->length -= ret;
  293. if (uncharge)
  294. sk_mem_uncharge(sk, ret);
  295. if (!sg->length) {
  296. put_page(p);
  297. md->sg_start++;
  298. if (md->sg_start == MAX_SKB_FRAGS)
  299. md->sg_start = 0;
  300. sg_init_table(sg, 1);
  301. if (md->sg_start == md->sg_end)
  302. break;
  303. }
  304. if (apply && !apply_bytes)
  305. break;
  306. }
  307. return 0;
  308. }
  309. static inline void bpf_compute_data_pointers_sg(struct sk_msg_buff *md)
  310. {
  311. struct scatterlist *sg = md->sg_data + md->sg_start;
  312. if (md->sg_copy[md->sg_start]) {
  313. md->data = md->data_end = 0;
  314. } else {
  315. md->data = sg_virt(sg);
  316. md->data_end = md->data + sg->length;
  317. }
  318. }
  319. static void return_mem_sg(struct sock *sk, int bytes, struct sk_msg_buff *md)
  320. {
  321. struct scatterlist *sg = md->sg_data;
  322. int i = md->sg_start;
  323. do {
  324. int uncharge = (bytes < sg[i].length) ? bytes : sg[i].length;
  325. sk_mem_uncharge(sk, uncharge);
  326. bytes -= uncharge;
  327. if (!bytes)
  328. break;
  329. i++;
  330. if (i == MAX_SKB_FRAGS)
  331. i = 0;
  332. } while (i != md->sg_end);
  333. }
  334. static void free_bytes_sg(struct sock *sk, int bytes, struct sk_msg_buff *md)
  335. {
  336. struct scatterlist *sg = md->sg_data;
  337. int i = md->sg_start, free;
  338. while (bytes && sg[i].length) {
  339. free = sg[i].length;
  340. if (bytes < free) {
  341. sg[i].length -= bytes;
  342. sg[i].offset += bytes;
  343. sk_mem_uncharge(sk, bytes);
  344. break;
  345. }
  346. sk_mem_uncharge(sk, sg[i].length);
  347. put_page(sg_page(&sg[i]));
  348. bytes -= sg[i].length;
  349. sg[i].length = 0;
  350. sg[i].page_link = 0;
  351. sg[i].offset = 0;
  352. i++;
  353. if (i == MAX_SKB_FRAGS)
  354. i = 0;
  355. }
  356. }
  357. static int free_sg(struct sock *sk, int start, struct sk_msg_buff *md)
  358. {
  359. struct scatterlist *sg = md->sg_data;
  360. int i = start, free = 0;
  361. while (sg[i].length) {
  362. free += sg[i].length;
  363. sk_mem_uncharge(sk, sg[i].length);
  364. put_page(sg_page(&sg[i]));
  365. sg[i].length = 0;
  366. sg[i].page_link = 0;
  367. sg[i].offset = 0;
  368. i++;
  369. if (i == MAX_SKB_FRAGS)
  370. i = 0;
  371. }
  372. return free;
  373. }
  374. static int free_start_sg(struct sock *sk, struct sk_msg_buff *md)
  375. {
  376. int free = free_sg(sk, md->sg_start, md);
  377. md->sg_start = md->sg_end;
  378. return free;
  379. }
  380. static int free_curr_sg(struct sock *sk, struct sk_msg_buff *md)
  381. {
  382. return free_sg(sk, md->sg_curr, md);
  383. }
  384. static int bpf_map_msg_verdict(int _rc, struct sk_msg_buff *md)
  385. {
  386. return ((_rc == SK_PASS) ?
  387. (md->map ? __SK_REDIRECT : __SK_PASS) :
  388. __SK_DROP);
  389. }
  390. static unsigned int smap_do_tx_msg(struct sock *sk,
  391. struct smap_psock *psock,
  392. struct sk_msg_buff *md)
  393. {
  394. struct bpf_prog *prog;
  395. unsigned int rc, _rc;
  396. preempt_disable();
  397. rcu_read_lock();
  398. /* If the policy was removed mid-send then default to 'accept' */
  399. prog = READ_ONCE(psock->bpf_tx_msg);
  400. if (unlikely(!prog)) {
  401. _rc = SK_PASS;
  402. goto verdict;
  403. }
  404. bpf_compute_data_pointers_sg(md);
  405. rc = (*prog->bpf_func)(md, prog->insnsi);
  406. psock->apply_bytes = md->apply_bytes;
  407. /* Moving return codes from UAPI namespace into internal namespace */
  408. _rc = bpf_map_msg_verdict(rc, md);
  409. /* The psock has a refcount on the sock but not on the map and because
  410. * we need to drop rcu read lock here its possible the map could be
  411. * removed between here and when we need it to execute the sock
  412. * redirect. So do the map lookup now for future use.
  413. */
  414. if (_rc == __SK_REDIRECT) {
  415. if (psock->sk_redir)
  416. sock_put(psock->sk_redir);
  417. psock->sk_redir = do_msg_redirect_map(md);
  418. if (!psock->sk_redir) {
  419. _rc = __SK_DROP;
  420. goto verdict;
  421. }
  422. sock_hold(psock->sk_redir);
  423. }
  424. verdict:
  425. rcu_read_unlock();
  426. preempt_enable();
  427. return _rc;
  428. }
  429. static int bpf_tcp_ingress(struct sock *sk, int apply_bytes,
  430. struct smap_psock *psock,
  431. struct sk_msg_buff *md, int flags)
  432. {
  433. bool apply = apply_bytes;
  434. size_t size, copied = 0;
  435. struct sk_msg_buff *r;
  436. int err = 0, i;
  437. r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_KERNEL);
  438. if (unlikely(!r))
  439. return -ENOMEM;
  440. lock_sock(sk);
  441. r->sg_start = md->sg_start;
  442. i = md->sg_start;
  443. do {
  444. r->sg_data[i] = md->sg_data[i];
  445. size = (apply && apply_bytes < md->sg_data[i].length) ?
  446. apply_bytes : md->sg_data[i].length;
  447. if (!sk_wmem_schedule(sk, size)) {
  448. if (!copied)
  449. err = -ENOMEM;
  450. break;
  451. }
  452. sk_mem_charge(sk, size);
  453. r->sg_data[i].length = size;
  454. md->sg_data[i].length -= size;
  455. md->sg_data[i].offset += size;
  456. copied += size;
  457. if (md->sg_data[i].length) {
  458. get_page(sg_page(&r->sg_data[i]));
  459. r->sg_end = (i + 1) == MAX_SKB_FRAGS ? 0 : i + 1;
  460. } else {
  461. i++;
  462. if (i == MAX_SKB_FRAGS)
  463. i = 0;
  464. r->sg_end = i;
  465. }
  466. if (apply) {
  467. apply_bytes -= size;
  468. if (!apply_bytes)
  469. break;
  470. }
  471. } while (i != md->sg_end);
  472. md->sg_start = i;
  473. if (!err) {
  474. list_add_tail(&r->list, &psock->ingress);
  475. sk->sk_data_ready(sk);
  476. } else {
  477. free_start_sg(sk, r);
  478. kfree(r);
  479. }
  480. release_sock(sk);
  481. return err;
  482. }
  483. static int bpf_tcp_sendmsg_do_redirect(struct sock *sk, int send,
  484. struct sk_msg_buff *md,
  485. int flags)
  486. {
  487. struct smap_psock *psock;
  488. struct scatterlist *sg;
  489. int i, err, free = 0;
  490. bool ingress = !!(md->flags & BPF_F_INGRESS);
  491. sg = md->sg_data;
  492. rcu_read_lock();
  493. psock = smap_psock_sk(sk);
  494. if (unlikely(!psock))
  495. goto out_rcu;
  496. if (!refcount_inc_not_zero(&psock->refcnt))
  497. goto out_rcu;
  498. rcu_read_unlock();
  499. if (ingress) {
  500. err = bpf_tcp_ingress(sk, send, psock, md, flags);
  501. } else {
  502. lock_sock(sk);
  503. err = bpf_tcp_push(sk, send, md, flags, false);
  504. release_sock(sk);
  505. }
  506. smap_release_sock(psock, sk);
  507. if (unlikely(err))
  508. goto out;
  509. return 0;
  510. out_rcu:
  511. rcu_read_unlock();
  512. out:
  513. i = md->sg_start;
  514. while (sg[i].length) {
  515. free += sg[i].length;
  516. put_page(sg_page(&sg[i]));
  517. sg[i].length = 0;
  518. i++;
  519. if (i == MAX_SKB_FRAGS)
  520. i = 0;
  521. }
  522. return free;
  523. }
  524. static inline void bpf_md_init(struct smap_psock *psock)
  525. {
  526. if (!psock->apply_bytes) {
  527. psock->eval = __SK_NONE;
  528. if (psock->sk_redir) {
  529. sock_put(psock->sk_redir);
  530. psock->sk_redir = NULL;
  531. }
  532. }
  533. }
  534. static void apply_bytes_dec(struct smap_psock *psock, int i)
  535. {
  536. if (psock->apply_bytes) {
  537. if (psock->apply_bytes < i)
  538. psock->apply_bytes = 0;
  539. else
  540. psock->apply_bytes -= i;
  541. }
  542. }
  543. static int bpf_exec_tx_verdict(struct smap_psock *psock,
  544. struct sk_msg_buff *m,
  545. struct sock *sk,
  546. int *copied, int flags)
  547. {
  548. bool cork = false, enospc = (m->sg_start == m->sg_end);
  549. struct sock *redir;
  550. int err = 0;
  551. int send;
  552. more_data:
  553. if (psock->eval == __SK_NONE)
  554. psock->eval = smap_do_tx_msg(sk, psock, m);
  555. if (m->cork_bytes &&
  556. m->cork_bytes > psock->sg_size && !enospc) {
  557. psock->cork_bytes = m->cork_bytes - psock->sg_size;
  558. if (!psock->cork) {
  559. psock->cork = kcalloc(1,
  560. sizeof(struct sk_msg_buff),
  561. GFP_ATOMIC | __GFP_NOWARN);
  562. if (!psock->cork) {
  563. err = -ENOMEM;
  564. goto out_err;
  565. }
  566. }
  567. memcpy(psock->cork, m, sizeof(*m));
  568. goto out_err;
  569. }
  570. send = psock->sg_size;
  571. if (psock->apply_bytes && psock->apply_bytes < send)
  572. send = psock->apply_bytes;
  573. switch (psock->eval) {
  574. case __SK_PASS:
  575. err = bpf_tcp_push(sk, send, m, flags, true);
  576. if (unlikely(err)) {
  577. *copied -= free_start_sg(sk, m);
  578. break;
  579. }
  580. apply_bytes_dec(psock, send);
  581. psock->sg_size -= send;
  582. break;
  583. case __SK_REDIRECT:
  584. redir = psock->sk_redir;
  585. apply_bytes_dec(psock, send);
  586. if (psock->cork) {
  587. cork = true;
  588. psock->cork = NULL;
  589. }
  590. return_mem_sg(sk, send, m);
  591. release_sock(sk);
  592. err = bpf_tcp_sendmsg_do_redirect(redir, send, m, flags);
  593. lock_sock(sk);
  594. if (cork) {
  595. free_start_sg(sk, m);
  596. kfree(m);
  597. m = NULL;
  598. }
  599. if (unlikely(err))
  600. *copied -= err;
  601. else
  602. psock->sg_size -= send;
  603. break;
  604. case __SK_DROP:
  605. default:
  606. free_bytes_sg(sk, send, m);
  607. apply_bytes_dec(psock, send);
  608. *copied -= send;
  609. psock->sg_size -= send;
  610. err = -EACCES;
  611. break;
  612. }
  613. if (likely(!err)) {
  614. bpf_md_init(psock);
  615. if (m &&
  616. m->sg_data[m->sg_start].page_link &&
  617. m->sg_data[m->sg_start].length)
  618. goto more_data;
  619. }
  620. out_err:
  621. return err;
  622. }
  623. static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
  624. int nonblock, int flags, int *addr_len)
  625. {
  626. struct iov_iter *iter = &msg->msg_iter;
  627. struct smap_psock *psock;
  628. int copied = 0;
  629. if (unlikely(flags & MSG_ERRQUEUE))
  630. return inet_recv_error(sk, msg, len, addr_len);
  631. rcu_read_lock();
  632. psock = smap_psock_sk(sk);
  633. if (unlikely(!psock))
  634. goto out;
  635. if (unlikely(!refcount_inc_not_zero(&psock->refcnt)))
  636. goto out;
  637. rcu_read_unlock();
  638. if (!skb_queue_empty(&sk->sk_receive_queue))
  639. return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
  640. lock_sock(sk);
  641. while (copied != len) {
  642. struct scatterlist *sg;
  643. struct sk_msg_buff *md;
  644. int i;
  645. md = list_first_entry_or_null(&psock->ingress,
  646. struct sk_msg_buff, list);
  647. if (unlikely(!md))
  648. break;
  649. i = md->sg_start;
  650. do {
  651. struct page *page;
  652. int n, copy;
  653. sg = &md->sg_data[i];
  654. copy = sg->length;
  655. page = sg_page(sg);
  656. if (copied + copy > len)
  657. copy = len - copied;
  658. n = copy_page_to_iter(page, sg->offset, copy, iter);
  659. if (n != copy) {
  660. md->sg_start = i;
  661. release_sock(sk);
  662. smap_release_sock(psock, sk);
  663. return -EFAULT;
  664. }
  665. copied += copy;
  666. sg->offset += copy;
  667. sg->length -= copy;
  668. sk_mem_uncharge(sk, copy);
  669. if (!sg->length) {
  670. i++;
  671. if (i == MAX_SKB_FRAGS)
  672. i = 0;
  673. if (!md->skb)
  674. put_page(page);
  675. }
  676. if (copied == len)
  677. break;
  678. } while (i != md->sg_end);
  679. md->sg_start = i;
  680. if (!sg->length && md->sg_start == md->sg_end) {
  681. list_del(&md->list);
  682. if (md->skb)
  683. consume_skb(md->skb);
  684. kfree(md);
  685. }
  686. }
  687. release_sock(sk);
  688. smap_release_sock(psock, sk);
  689. return copied;
  690. out:
  691. rcu_read_unlock();
  692. return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
  693. }
  694. static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
  695. {
  696. int flags = msg->msg_flags | MSG_NO_SHARED_FRAGS;
  697. struct sk_msg_buff md = {0};
  698. unsigned int sg_copy = 0;
  699. struct smap_psock *psock;
  700. int copied = 0, err = 0;
  701. struct scatterlist *sg;
  702. long timeo;
  703. /* Its possible a sock event or user removed the psock _but_ the ops
  704. * have not been reprogrammed yet so we get here. In this case fallback
  705. * to tcp_sendmsg. Note this only works because we _only_ ever allow
  706. * a single ULP there is no hierarchy here.
  707. */
  708. rcu_read_lock();
  709. psock = smap_psock_sk(sk);
  710. if (unlikely(!psock)) {
  711. rcu_read_unlock();
  712. return tcp_sendmsg(sk, msg, size);
  713. }
  714. /* Increment the psock refcnt to ensure its not released while sending a
  715. * message. Required because sk lookup and bpf programs are used in
  716. * separate rcu critical sections. Its OK if we lose the map entry
  717. * but we can't lose the sock reference.
  718. */
  719. if (!refcount_inc_not_zero(&psock->refcnt)) {
  720. rcu_read_unlock();
  721. return tcp_sendmsg(sk, msg, size);
  722. }
  723. sg = md.sg_data;
  724. sg_init_marker(sg, MAX_SKB_FRAGS);
  725. rcu_read_unlock();
  726. lock_sock(sk);
  727. timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
  728. while (msg_data_left(msg)) {
  729. struct sk_msg_buff *m;
  730. bool enospc = false;
  731. int copy;
  732. if (sk->sk_err) {
  733. err = sk->sk_err;
  734. goto out_err;
  735. }
  736. copy = msg_data_left(msg);
  737. if (!sk_stream_memory_free(sk))
  738. goto wait_for_sndbuf;
  739. m = psock->cork_bytes ? psock->cork : &md;
  740. m->sg_curr = m->sg_copybreak ? m->sg_curr : m->sg_end;
  741. err = sk_alloc_sg(sk, copy, m->sg_data,
  742. m->sg_start, &m->sg_end, &sg_copy,
  743. m->sg_end - 1);
  744. if (err) {
  745. if (err != -ENOSPC)
  746. goto wait_for_memory;
  747. enospc = true;
  748. copy = sg_copy;
  749. }
  750. err = memcopy_from_iter(sk, m, &msg->msg_iter, copy);
  751. if (err < 0) {
  752. free_curr_sg(sk, m);
  753. goto out_err;
  754. }
  755. psock->sg_size += copy;
  756. copied += copy;
  757. sg_copy = 0;
  758. /* When bytes are being corked skip running BPF program and
  759. * applying verdict unless there is no more buffer space. In
  760. * the ENOSPC case simply run BPF prorgram with currently
  761. * accumulated data. We don't have much choice at this point
  762. * we could try extending the page frags or chaining complex
  763. * frags but even in these cases _eventually_ we will hit an
  764. * OOM scenario. More complex recovery schemes may be
  765. * implemented in the future, but BPF programs must handle
  766. * the case where apply_cork requests are not honored. The
  767. * canonical method to verify this is to check data length.
  768. */
  769. if (psock->cork_bytes) {
  770. if (copy > psock->cork_bytes)
  771. psock->cork_bytes = 0;
  772. else
  773. psock->cork_bytes -= copy;
  774. if (psock->cork_bytes && !enospc)
  775. goto out_cork;
  776. /* All cork bytes accounted for re-run filter */
  777. psock->eval = __SK_NONE;
  778. psock->cork_bytes = 0;
  779. }
  780. err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
  781. if (unlikely(err < 0))
  782. goto out_err;
  783. continue;
  784. wait_for_sndbuf:
  785. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  786. wait_for_memory:
  787. err = sk_stream_wait_memory(sk, &timeo);
  788. if (err)
  789. goto out_err;
  790. }
  791. out_err:
  792. if (err < 0)
  793. err = sk_stream_error(sk, msg->msg_flags, err);
  794. out_cork:
  795. release_sock(sk);
  796. smap_release_sock(psock, sk);
  797. return copied ? copied : err;
  798. }
  799. static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
  800. int offset, size_t size, int flags)
  801. {
  802. struct sk_msg_buff md = {0}, *m = NULL;
  803. int err = 0, copied = 0;
  804. struct smap_psock *psock;
  805. struct scatterlist *sg;
  806. bool enospc = false;
  807. rcu_read_lock();
  808. psock = smap_psock_sk(sk);
  809. if (unlikely(!psock))
  810. goto accept;
  811. if (!refcount_inc_not_zero(&psock->refcnt))
  812. goto accept;
  813. rcu_read_unlock();
  814. lock_sock(sk);
  815. if (psock->cork_bytes) {
  816. m = psock->cork;
  817. sg = &m->sg_data[m->sg_end];
  818. } else {
  819. m = &md;
  820. sg = m->sg_data;
  821. sg_init_marker(sg, MAX_SKB_FRAGS);
  822. }
  823. /* Catch case where ring is full and sendpage is stalled. */
  824. if (unlikely(m->sg_end == m->sg_start &&
  825. m->sg_data[m->sg_end].length))
  826. goto out_err;
  827. psock->sg_size += size;
  828. sg_set_page(sg, page, size, offset);
  829. get_page(page);
  830. m->sg_copy[m->sg_end] = true;
  831. sk_mem_charge(sk, size);
  832. m->sg_end++;
  833. copied = size;
  834. if (m->sg_end == MAX_SKB_FRAGS)
  835. m->sg_end = 0;
  836. if (m->sg_end == m->sg_start)
  837. enospc = true;
  838. if (psock->cork_bytes) {
  839. if (size > psock->cork_bytes)
  840. psock->cork_bytes = 0;
  841. else
  842. psock->cork_bytes -= size;
  843. if (psock->cork_bytes && !enospc)
  844. goto out_err;
  845. /* All cork bytes accounted for re-run filter */
  846. psock->eval = __SK_NONE;
  847. psock->cork_bytes = 0;
  848. }
  849. err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
  850. out_err:
  851. release_sock(sk);
  852. smap_release_sock(psock, sk);
  853. return copied ? copied : err;
  854. accept:
  855. rcu_read_unlock();
  856. return tcp_sendpage(sk, page, offset, size, flags);
  857. }
  858. static void bpf_tcp_msg_add(struct smap_psock *psock,
  859. struct sock *sk,
  860. struct bpf_prog *tx_msg)
  861. {
  862. struct bpf_prog *orig_tx_msg;
  863. orig_tx_msg = xchg(&psock->bpf_tx_msg, tx_msg);
  864. if (orig_tx_msg)
  865. bpf_prog_put(orig_tx_msg);
  866. }
  867. static int bpf_tcp_ulp_register(void)
  868. {
  869. tcp_bpf_proto = tcp_prot;
  870. tcp_bpf_proto.close = bpf_tcp_close;
  871. /* Once BPF TX ULP is registered it is never unregistered. It
  872. * will be in the ULP list for the lifetime of the system. Doing
  873. * duplicate registers is not a problem.
  874. */
  875. return tcp_register_ulp(&bpf_tcp_ulp_ops);
  876. }
  877. static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
  878. {
  879. struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
  880. int rc;
  881. if (unlikely(!prog))
  882. return __SK_DROP;
  883. skb_orphan(skb);
  884. /* We need to ensure that BPF metadata for maps is also cleared
  885. * when we orphan the skb so that we don't have the possibility
  886. * to reference a stale map.
  887. */
  888. TCP_SKB_CB(skb)->bpf.map = NULL;
  889. skb->sk = psock->sock;
  890. bpf_compute_data_pointers(skb);
  891. preempt_disable();
  892. rc = (*prog->bpf_func)(skb, prog->insnsi);
  893. preempt_enable();
  894. skb->sk = NULL;
  895. /* Moving return codes from UAPI namespace into internal namespace */
  896. return rc == SK_PASS ?
  897. (TCP_SKB_CB(skb)->bpf.map ? __SK_REDIRECT : __SK_PASS) :
  898. __SK_DROP;
  899. }
  900. static int smap_do_ingress(struct smap_psock *psock, struct sk_buff *skb)
  901. {
  902. struct sock *sk = psock->sock;
  903. int copied = 0, num_sg;
  904. struct sk_msg_buff *r;
  905. r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_ATOMIC);
  906. if (unlikely(!r))
  907. return -EAGAIN;
  908. if (!sk_rmem_schedule(sk, skb, skb->len)) {
  909. kfree(r);
  910. return -EAGAIN;
  911. }
  912. sg_init_table(r->sg_data, MAX_SKB_FRAGS);
  913. num_sg = skb_to_sgvec(skb, r->sg_data, 0, skb->len);
  914. if (unlikely(num_sg < 0)) {
  915. kfree(r);
  916. return num_sg;
  917. }
  918. sk_mem_charge(sk, skb->len);
  919. copied = skb->len;
  920. r->sg_start = 0;
  921. r->sg_end = num_sg == MAX_SKB_FRAGS ? 0 : num_sg;
  922. r->skb = skb;
  923. list_add_tail(&r->list, &psock->ingress);
  924. sk->sk_data_ready(sk);
  925. return copied;
  926. }
  927. static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
  928. {
  929. struct smap_psock *peer;
  930. struct sock *sk;
  931. __u32 in;
  932. int rc;
  933. rc = smap_verdict_func(psock, skb);
  934. switch (rc) {
  935. case __SK_REDIRECT:
  936. sk = do_sk_redirect_map(skb);
  937. if (!sk) {
  938. kfree_skb(skb);
  939. break;
  940. }
  941. peer = smap_psock_sk(sk);
  942. in = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
  943. if (unlikely(!peer || sock_flag(sk, SOCK_DEAD) ||
  944. !test_bit(SMAP_TX_RUNNING, &peer->state))) {
  945. kfree_skb(skb);
  946. break;
  947. }
  948. if (!in && sock_writeable(sk)) {
  949. skb_set_owner_w(skb, sk);
  950. skb_queue_tail(&peer->rxqueue, skb);
  951. schedule_work(&peer->tx_work);
  952. break;
  953. } else if (in &&
  954. atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  955. skb_queue_tail(&peer->rxqueue, skb);
  956. schedule_work(&peer->tx_work);
  957. break;
  958. }
  959. /* Fall through and free skb otherwise */
  960. case __SK_DROP:
  961. default:
  962. kfree_skb(skb);
  963. }
  964. }
  965. static void smap_report_sk_error(struct smap_psock *psock, int err)
  966. {
  967. struct sock *sk = psock->sock;
  968. sk->sk_err = err;
  969. sk->sk_error_report(sk);
  970. }
  971. static void smap_read_sock_strparser(struct strparser *strp,
  972. struct sk_buff *skb)
  973. {
  974. struct smap_psock *psock;
  975. rcu_read_lock();
  976. psock = container_of(strp, struct smap_psock, strp);
  977. smap_do_verdict(psock, skb);
  978. rcu_read_unlock();
  979. }
  980. /* Called with lock held on socket */
  981. static void smap_data_ready(struct sock *sk)
  982. {
  983. struct smap_psock *psock;
  984. rcu_read_lock();
  985. psock = smap_psock_sk(sk);
  986. if (likely(psock)) {
  987. write_lock_bh(&sk->sk_callback_lock);
  988. strp_data_ready(&psock->strp);
  989. write_unlock_bh(&sk->sk_callback_lock);
  990. }
  991. rcu_read_unlock();
  992. }
  993. static void smap_tx_work(struct work_struct *w)
  994. {
  995. struct smap_psock *psock;
  996. struct sk_buff *skb;
  997. int rem, off, n;
  998. psock = container_of(w, struct smap_psock, tx_work);
  999. /* lock sock to avoid losing sk_socket at some point during loop */
  1000. lock_sock(psock->sock);
  1001. if (psock->save_skb) {
  1002. skb = psock->save_skb;
  1003. rem = psock->save_rem;
  1004. off = psock->save_off;
  1005. psock->save_skb = NULL;
  1006. goto start;
  1007. }
  1008. while ((skb = skb_dequeue(&psock->rxqueue))) {
  1009. __u32 flags;
  1010. rem = skb->len;
  1011. off = 0;
  1012. start:
  1013. flags = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
  1014. do {
  1015. if (likely(psock->sock->sk_socket)) {
  1016. if (flags)
  1017. n = smap_do_ingress(psock, skb);
  1018. else
  1019. n = skb_send_sock_locked(psock->sock,
  1020. skb, off, rem);
  1021. } else {
  1022. n = -EINVAL;
  1023. }
  1024. if (n <= 0) {
  1025. if (n == -EAGAIN) {
  1026. /* Retry when space is available */
  1027. psock->save_skb = skb;
  1028. psock->save_rem = rem;
  1029. psock->save_off = off;
  1030. goto out;
  1031. }
  1032. /* Hard errors break pipe and stop xmit */
  1033. smap_report_sk_error(psock, n ? -n : EPIPE);
  1034. clear_bit(SMAP_TX_RUNNING, &psock->state);
  1035. kfree_skb(skb);
  1036. goto out;
  1037. }
  1038. rem -= n;
  1039. off += n;
  1040. } while (rem);
  1041. if (!flags)
  1042. kfree_skb(skb);
  1043. }
  1044. out:
  1045. release_sock(psock->sock);
  1046. }
  1047. static void smap_write_space(struct sock *sk)
  1048. {
  1049. struct smap_psock *psock;
  1050. rcu_read_lock();
  1051. psock = smap_psock_sk(sk);
  1052. if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
  1053. schedule_work(&psock->tx_work);
  1054. rcu_read_unlock();
  1055. }
  1056. static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
  1057. {
  1058. if (!psock->strp_enabled)
  1059. return;
  1060. sk->sk_data_ready = psock->save_data_ready;
  1061. sk->sk_write_space = psock->save_write_space;
  1062. psock->save_data_ready = NULL;
  1063. psock->save_write_space = NULL;
  1064. strp_stop(&psock->strp);
  1065. psock->strp_enabled = false;
  1066. }
  1067. static void smap_destroy_psock(struct rcu_head *rcu)
  1068. {
  1069. struct smap_psock *psock = container_of(rcu,
  1070. struct smap_psock, rcu);
  1071. /* Now that a grace period has passed there is no longer
  1072. * any reference to this sock in the sockmap so we can
  1073. * destroy the psock, strparser, and bpf programs. But,
  1074. * because we use workqueue sync operations we can not
  1075. * do it in rcu context
  1076. */
  1077. schedule_work(&psock->gc_work);
  1078. }
  1079. static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
  1080. {
  1081. if (refcount_dec_and_test(&psock->refcnt)) {
  1082. tcp_cleanup_ulp(sock);
  1083. smap_stop_sock(psock, sock);
  1084. clear_bit(SMAP_TX_RUNNING, &psock->state);
  1085. rcu_assign_sk_user_data(sock, NULL);
  1086. call_rcu_sched(&psock->rcu, smap_destroy_psock);
  1087. }
  1088. }
  1089. static int smap_parse_func_strparser(struct strparser *strp,
  1090. struct sk_buff *skb)
  1091. {
  1092. struct smap_psock *psock;
  1093. struct bpf_prog *prog;
  1094. int rc;
  1095. rcu_read_lock();
  1096. psock = container_of(strp, struct smap_psock, strp);
  1097. prog = READ_ONCE(psock->bpf_parse);
  1098. if (unlikely(!prog)) {
  1099. rcu_read_unlock();
  1100. return skb->len;
  1101. }
  1102. /* Attach socket for bpf program to use if needed we can do this
  1103. * because strparser clones the skb before handing it to a upper
  1104. * layer, meaning skb_orphan has been called. We NULL sk on the
  1105. * way out to ensure we don't trigger a BUG_ON in skb/sk operations
  1106. * later and because we are not charging the memory of this skb to
  1107. * any socket yet.
  1108. */
  1109. skb->sk = psock->sock;
  1110. bpf_compute_data_pointers(skb);
  1111. rc = (*prog->bpf_func)(skb, prog->insnsi);
  1112. skb->sk = NULL;
  1113. rcu_read_unlock();
  1114. return rc;
  1115. }
  1116. static int smap_read_sock_done(struct strparser *strp, int err)
  1117. {
  1118. return err;
  1119. }
  1120. static int smap_init_sock(struct smap_psock *psock,
  1121. struct sock *sk)
  1122. {
  1123. static const struct strp_callbacks cb = {
  1124. .rcv_msg = smap_read_sock_strparser,
  1125. .parse_msg = smap_parse_func_strparser,
  1126. .read_sock_done = smap_read_sock_done,
  1127. };
  1128. return strp_init(&psock->strp, sk, &cb);
  1129. }
  1130. static void smap_init_progs(struct smap_psock *psock,
  1131. struct bpf_stab *stab,
  1132. struct bpf_prog *verdict,
  1133. struct bpf_prog *parse)
  1134. {
  1135. struct bpf_prog *orig_parse, *orig_verdict;
  1136. orig_parse = xchg(&psock->bpf_parse, parse);
  1137. orig_verdict = xchg(&psock->bpf_verdict, verdict);
  1138. if (orig_verdict)
  1139. bpf_prog_put(orig_verdict);
  1140. if (orig_parse)
  1141. bpf_prog_put(orig_parse);
  1142. }
  1143. static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
  1144. {
  1145. if (sk->sk_data_ready == smap_data_ready)
  1146. return;
  1147. psock->save_data_ready = sk->sk_data_ready;
  1148. psock->save_write_space = sk->sk_write_space;
  1149. sk->sk_data_ready = smap_data_ready;
  1150. sk->sk_write_space = smap_write_space;
  1151. psock->strp_enabled = true;
  1152. }
  1153. static void sock_map_remove_complete(struct bpf_stab *stab)
  1154. {
  1155. bpf_map_area_free(stab->sock_map);
  1156. kfree(stab);
  1157. }
  1158. static void smap_gc_work(struct work_struct *w)
  1159. {
  1160. struct smap_psock_map_entry *e, *tmp;
  1161. struct sk_msg_buff *md, *mtmp;
  1162. struct smap_psock *psock;
  1163. psock = container_of(w, struct smap_psock, gc_work);
  1164. /* no callback lock needed because we already detached sockmap ops */
  1165. if (psock->strp_enabled)
  1166. strp_done(&psock->strp);
  1167. cancel_work_sync(&psock->tx_work);
  1168. __skb_queue_purge(&psock->rxqueue);
  1169. /* At this point all strparser and xmit work must be complete */
  1170. if (psock->bpf_parse)
  1171. bpf_prog_put(psock->bpf_parse);
  1172. if (psock->bpf_verdict)
  1173. bpf_prog_put(psock->bpf_verdict);
  1174. if (psock->bpf_tx_msg)
  1175. bpf_prog_put(psock->bpf_tx_msg);
  1176. if (psock->cork) {
  1177. free_start_sg(psock->sock, psock->cork);
  1178. kfree(psock->cork);
  1179. }
  1180. list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
  1181. list_del(&md->list);
  1182. free_start_sg(psock->sock, md);
  1183. kfree(md);
  1184. }
  1185. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  1186. list_del(&e->list);
  1187. kfree(e);
  1188. }
  1189. if (psock->sk_redir)
  1190. sock_put(psock->sk_redir);
  1191. sock_put(psock->sock);
  1192. kfree(psock);
  1193. }
  1194. static struct smap_psock *smap_init_psock(struct sock *sock,
  1195. struct bpf_stab *stab)
  1196. {
  1197. struct smap_psock *psock;
  1198. psock = kzalloc_node(sizeof(struct smap_psock),
  1199. GFP_ATOMIC | __GFP_NOWARN,
  1200. stab->map.numa_node);
  1201. if (!psock)
  1202. return ERR_PTR(-ENOMEM);
  1203. psock->eval = __SK_NONE;
  1204. psock->sock = sock;
  1205. skb_queue_head_init(&psock->rxqueue);
  1206. INIT_WORK(&psock->tx_work, smap_tx_work);
  1207. INIT_WORK(&psock->gc_work, smap_gc_work);
  1208. INIT_LIST_HEAD(&psock->maps);
  1209. INIT_LIST_HEAD(&psock->ingress);
  1210. refcount_set(&psock->refcnt, 1);
  1211. rcu_assign_sk_user_data(sock, psock);
  1212. sock_hold(sock);
  1213. return psock;
  1214. }
  1215. static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
  1216. {
  1217. struct bpf_stab *stab;
  1218. u64 cost;
  1219. int err;
  1220. if (!capable(CAP_NET_ADMIN))
  1221. return ERR_PTR(-EPERM);
  1222. /* check sanity of attributes */
  1223. if (attr->max_entries == 0 || attr->key_size != 4 ||
  1224. attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
  1225. return ERR_PTR(-EINVAL);
  1226. err = bpf_tcp_ulp_register();
  1227. if (err && err != -EEXIST)
  1228. return ERR_PTR(err);
  1229. stab = kzalloc(sizeof(*stab), GFP_USER);
  1230. if (!stab)
  1231. return ERR_PTR(-ENOMEM);
  1232. bpf_map_init_from_attr(&stab->map, attr);
  1233. /* make sure page count doesn't overflow */
  1234. cost = (u64) stab->map.max_entries * sizeof(struct sock *);
  1235. err = -EINVAL;
  1236. if (cost >= U32_MAX - PAGE_SIZE)
  1237. goto free_stab;
  1238. stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
  1239. /* if map size is larger than memlock limit, reject it early */
  1240. err = bpf_map_precharge_memlock(stab->map.pages);
  1241. if (err)
  1242. goto free_stab;
  1243. err = -ENOMEM;
  1244. stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
  1245. sizeof(struct sock *),
  1246. stab->map.numa_node);
  1247. if (!stab->sock_map)
  1248. goto free_stab;
  1249. return &stab->map;
  1250. free_stab:
  1251. kfree(stab);
  1252. return ERR_PTR(err);
  1253. }
  1254. static void smap_list_remove(struct smap_psock *psock, struct sock **entry)
  1255. {
  1256. struct smap_psock_map_entry *e, *tmp;
  1257. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  1258. if (e->entry == entry) {
  1259. list_del(&e->list);
  1260. break;
  1261. }
  1262. }
  1263. }
  1264. static void sock_map_free(struct bpf_map *map)
  1265. {
  1266. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1267. int i;
  1268. synchronize_rcu();
  1269. /* At this point no update, lookup or delete operations can happen.
  1270. * However, be aware we can still get a socket state event updates,
  1271. * and data ready callabacks that reference the psock from sk_user_data
  1272. * Also psock worker threads are still in-flight. So smap_release_sock
  1273. * will only free the psock after cancel_sync on the worker threads
  1274. * and a grace period expire to ensure psock is really safe to remove.
  1275. */
  1276. rcu_read_lock();
  1277. for (i = 0; i < stab->map.max_entries; i++) {
  1278. struct smap_psock *psock;
  1279. struct sock *sock;
  1280. sock = xchg(&stab->sock_map[i], NULL);
  1281. if (!sock)
  1282. continue;
  1283. write_lock_bh(&sock->sk_callback_lock);
  1284. psock = smap_psock_sk(sock);
  1285. /* This check handles a racing sock event that can get the
  1286. * sk_callback_lock before this case but after xchg happens
  1287. * causing the refcnt to hit zero and sock user data (psock)
  1288. * to be null and queued for garbage collection.
  1289. */
  1290. if (likely(psock)) {
  1291. smap_list_remove(psock, &stab->sock_map[i]);
  1292. smap_release_sock(psock, sock);
  1293. }
  1294. write_unlock_bh(&sock->sk_callback_lock);
  1295. }
  1296. rcu_read_unlock();
  1297. sock_map_remove_complete(stab);
  1298. }
  1299. static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
  1300. {
  1301. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1302. u32 i = key ? *(u32 *)key : U32_MAX;
  1303. u32 *next = (u32 *)next_key;
  1304. if (i >= stab->map.max_entries) {
  1305. *next = 0;
  1306. return 0;
  1307. }
  1308. if (i == stab->map.max_entries - 1)
  1309. return -ENOENT;
  1310. *next = i + 1;
  1311. return 0;
  1312. }
  1313. struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
  1314. {
  1315. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1316. if (key >= map->max_entries)
  1317. return NULL;
  1318. return READ_ONCE(stab->sock_map[key]);
  1319. }
  1320. static int sock_map_delete_elem(struct bpf_map *map, void *key)
  1321. {
  1322. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1323. struct smap_psock *psock;
  1324. int k = *(u32 *)key;
  1325. struct sock *sock;
  1326. if (k >= map->max_entries)
  1327. return -EINVAL;
  1328. sock = xchg(&stab->sock_map[k], NULL);
  1329. if (!sock)
  1330. return -EINVAL;
  1331. write_lock_bh(&sock->sk_callback_lock);
  1332. psock = smap_psock_sk(sock);
  1333. if (!psock)
  1334. goto out;
  1335. if (psock->bpf_parse)
  1336. smap_stop_sock(psock, sock);
  1337. smap_list_remove(psock, &stab->sock_map[k]);
  1338. smap_release_sock(psock, sock);
  1339. out:
  1340. write_unlock_bh(&sock->sk_callback_lock);
  1341. return 0;
  1342. }
  1343. /* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
  1344. * done inside rcu critical sections. This ensures on updates that the psock
  1345. * will not be released via smap_release_sock() until concurrent updates/deletes
  1346. * complete. All operations operate on sock_map using cmpxchg and xchg
  1347. * operations to ensure we do not get stale references. Any reads into the
  1348. * map must be done with READ_ONCE() because of this.
  1349. *
  1350. * A psock is destroyed via call_rcu and after any worker threads are cancelled
  1351. * and syncd so we are certain all references from the update/lookup/delete
  1352. * operations as well as references in the data path are no longer in use.
  1353. *
  1354. * Psocks may exist in multiple maps, but only a single set of parse/verdict
  1355. * programs may be inherited from the maps it belongs to. A reference count
  1356. * is kept with the total number of references to the psock from all maps. The
  1357. * psock will not be released until this reaches zero. The psock and sock
  1358. * user data data use the sk_callback_lock to protect critical data structures
  1359. * from concurrent access. This allows us to avoid two updates from modifying
  1360. * the user data in sock and the lock is required anyways for modifying
  1361. * callbacks, we simply increase its scope slightly.
  1362. *
  1363. * Rules to follow,
  1364. * - psock must always be read inside RCU critical section
  1365. * - sk_user_data must only be modified inside sk_callback_lock and read
  1366. * inside RCU critical section.
  1367. * - psock->maps list must only be read & modified inside sk_callback_lock
  1368. * - sock_map must use READ_ONCE and (cmp)xchg operations
  1369. * - BPF verdict/parse programs must use READ_ONCE and xchg operations
  1370. */
  1371. static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
  1372. struct bpf_map *map,
  1373. void *key, u64 flags)
  1374. {
  1375. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1376. struct smap_psock_map_entry *e = NULL;
  1377. struct bpf_prog *verdict, *parse, *tx_msg;
  1378. struct sock *osock, *sock;
  1379. struct smap_psock *psock;
  1380. u32 i = *(u32 *)key;
  1381. bool new = false;
  1382. int err;
  1383. if (unlikely(flags > BPF_EXIST))
  1384. return -EINVAL;
  1385. if (unlikely(i >= stab->map.max_entries))
  1386. return -E2BIG;
  1387. sock = READ_ONCE(stab->sock_map[i]);
  1388. if (flags == BPF_EXIST && !sock)
  1389. return -ENOENT;
  1390. else if (flags == BPF_NOEXIST && sock)
  1391. return -EEXIST;
  1392. sock = skops->sk;
  1393. /* 1. If sock map has BPF programs those will be inherited by the
  1394. * sock being added. If the sock is already attached to BPF programs
  1395. * this results in an error.
  1396. */
  1397. verdict = READ_ONCE(stab->bpf_verdict);
  1398. parse = READ_ONCE(stab->bpf_parse);
  1399. tx_msg = READ_ONCE(stab->bpf_tx_msg);
  1400. if (parse && verdict) {
  1401. /* bpf prog refcnt may be zero if a concurrent attach operation
  1402. * removes the program after the above READ_ONCE() but before
  1403. * we increment the refcnt. If this is the case abort with an
  1404. * error.
  1405. */
  1406. verdict = bpf_prog_inc_not_zero(stab->bpf_verdict);
  1407. if (IS_ERR(verdict))
  1408. return PTR_ERR(verdict);
  1409. parse = bpf_prog_inc_not_zero(stab->bpf_parse);
  1410. if (IS_ERR(parse)) {
  1411. bpf_prog_put(verdict);
  1412. return PTR_ERR(parse);
  1413. }
  1414. }
  1415. if (tx_msg) {
  1416. tx_msg = bpf_prog_inc_not_zero(stab->bpf_tx_msg);
  1417. if (IS_ERR(tx_msg)) {
  1418. if (verdict)
  1419. bpf_prog_put(verdict);
  1420. if (parse)
  1421. bpf_prog_put(parse);
  1422. return PTR_ERR(tx_msg);
  1423. }
  1424. }
  1425. write_lock_bh(&sock->sk_callback_lock);
  1426. psock = smap_psock_sk(sock);
  1427. /* 2. Do not allow inheriting programs if psock exists and has
  1428. * already inherited programs. This would create confusion on
  1429. * which parser/verdict program is running. If no psock exists
  1430. * create one. Inside sk_callback_lock to ensure concurrent create
  1431. * doesn't update user data.
  1432. */
  1433. if (psock) {
  1434. if (READ_ONCE(psock->bpf_parse) && parse) {
  1435. err = -EBUSY;
  1436. goto out_progs;
  1437. }
  1438. if (READ_ONCE(psock->bpf_tx_msg) && tx_msg) {
  1439. err = -EBUSY;
  1440. goto out_progs;
  1441. }
  1442. if (!refcount_inc_not_zero(&psock->refcnt)) {
  1443. err = -EAGAIN;
  1444. goto out_progs;
  1445. }
  1446. } else {
  1447. psock = smap_init_psock(sock, stab);
  1448. if (IS_ERR(psock)) {
  1449. err = PTR_ERR(psock);
  1450. goto out_progs;
  1451. }
  1452. set_bit(SMAP_TX_RUNNING, &psock->state);
  1453. new = true;
  1454. }
  1455. e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
  1456. if (!e) {
  1457. err = -ENOMEM;
  1458. goto out_progs;
  1459. }
  1460. e->entry = &stab->sock_map[i];
  1461. /* 3. At this point we have a reference to a valid psock that is
  1462. * running. Attach any BPF programs needed.
  1463. */
  1464. if (tx_msg)
  1465. bpf_tcp_msg_add(psock, sock, tx_msg);
  1466. if (new) {
  1467. err = tcp_set_ulp_id(sock, TCP_ULP_BPF);
  1468. if (err)
  1469. goto out_free;
  1470. }
  1471. if (parse && verdict && !psock->strp_enabled) {
  1472. err = smap_init_sock(psock, sock);
  1473. if (err)
  1474. goto out_free;
  1475. smap_init_progs(psock, stab, verdict, parse);
  1476. smap_start_sock(psock, sock);
  1477. }
  1478. /* 4. Place psock in sockmap for use and stop any programs on
  1479. * the old sock assuming its not the same sock we are replacing
  1480. * it with. Because we can only have a single set of programs if
  1481. * old_sock has a strp we can stop it.
  1482. */
  1483. list_add_tail(&e->list, &psock->maps);
  1484. write_unlock_bh(&sock->sk_callback_lock);
  1485. osock = xchg(&stab->sock_map[i], sock);
  1486. if (osock) {
  1487. struct smap_psock *opsock = smap_psock_sk(osock);
  1488. write_lock_bh(&osock->sk_callback_lock);
  1489. smap_list_remove(opsock, &stab->sock_map[i]);
  1490. smap_release_sock(opsock, osock);
  1491. write_unlock_bh(&osock->sk_callback_lock);
  1492. }
  1493. return 0;
  1494. out_free:
  1495. smap_release_sock(psock, sock);
  1496. out_progs:
  1497. if (verdict)
  1498. bpf_prog_put(verdict);
  1499. if (parse)
  1500. bpf_prog_put(parse);
  1501. if (tx_msg)
  1502. bpf_prog_put(tx_msg);
  1503. write_unlock_bh(&sock->sk_callback_lock);
  1504. kfree(e);
  1505. return err;
  1506. }
  1507. int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
  1508. {
  1509. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1510. struct bpf_prog *orig;
  1511. if (unlikely(map->map_type != BPF_MAP_TYPE_SOCKMAP))
  1512. return -EINVAL;
  1513. switch (type) {
  1514. case BPF_SK_MSG_VERDICT:
  1515. orig = xchg(&stab->bpf_tx_msg, prog);
  1516. break;
  1517. case BPF_SK_SKB_STREAM_PARSER:
  1518. orig = xchg(&stab->bpf_parse, prog);
  1519. break;
  1520. case BPF_SK_SKB_STREAM_VERDICT:
  1521. orig = xchg(&stab->bpf_verdict, prog);
  1522. break;
  1523. default:
  1524. return -EOPNOTSUPP;
  1525. }
  1526. if (orig)
  1527. bpf_prog_put(orig);
  1528. return 0;
  1529. }
  1530. static void *sock_map_lookup(struct bpf_map *map, void *key)
  1531. {
  1532. return NULL;
  1533. }
  1534. static int sock_map_update_elem(struct bpf_map *map,
  1535. void *key, void *value, u64 flags)
  1536. {
  1537. struct bpf_sock_ops_kern skops;
  1538. u32 fd = *(u32 *)value;
  1539. struct socket *socket;
  1540. int err;
  1541. socket = sockfd_lookup(fd, &err);
  1542. if (!socket)
  1543. return err;
  1544. skops.sk = socket->sk;
  1545. if (!skops.sk) {
  1546. fput(socket->file);
  1547. return -EINVAL;
  1548. }
  1549. if (skops.sk->sk_type != SOCK_STREAM ||
  1550. skops.sk->sk_protocol != IPPROTO_TCP) {
  1551. fput(socket->file);
  1552. return -EOPNOTSUPP;
  1553. }
  1554. err = sock_map_ctx_update_elem(&skops, map, key, flags);
  1555. fput(socket->file);
  1556. return err;
  1557. }
  1558. static void sock_map_release(struct bpf_map *map)
  1559. {
  1560. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1561. struct bpf_prog *orig;
  1562. orig = xchg(&stab->bpf_parse, NULL);
  1563. if (orig)
  1564. bpf_prog_put(orig);
  1565. orig = xchg(&stab->bpf_verdict, NULL);
  1566. if (orig)
  1567. bpf_prog_put(orig);
  1568. orig = xchg(&stab->bpf_tx_msg, NULL);
  1569. if (orig)
  1570. bpf_prog_put(orig);
  1571. }
  1572. const struct bpf_map_ops sock_map_ops = {
  1573. .map_alloc = sock_map_alloc,
  1574. .map_free = sock_map_free,
  1575. .map_lookup_elem = sock_map_lookup,
  1576. .map_get_next_key = sock_map_get_next_key,
  1577. .map_update_elem = sock_map_update_elem,
  1578. .map_delete_elem = sock_map_delete_elem,
  1579. .map_release_uref = sock_map_release,
  1580. };
  1581. BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
  1582. struct bpf_map *, map, void *, key, u64, flags)
  1583. {
  1584. WARN_ON_ONCE(!rcu_read_lock_held());
  1585. return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
  1586. }
  1587. const struct bpf_func_proto bpf_sock_map_update_proto = {
  1588. .func = bpf_sock_map_update,
  1589. .gpl_only = false,
  1590. .pkt_access = true,
  1591. .ret_type = RET_INTEGER,
  1592. .arg1_type = ARG_PTR_TO_CTX,
  1593. .arg2_type = ARG_CONST_MAP_PTR,
  1594. .arg3_type = ARG_PTR_TO_MAP_KEY,
  1595. .arg4_type = ARG_ANYTHING,
  1596. };