sdma_v4_0.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734
  1. /*
  2. * Copyright 2016 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_ucode.h"
  27. #include "amdgpu_trace.h"
  28. #include "sdma0/sdma0_4_0_offset.h"
  29. #include "sdma0/sdma0_4_0_sh_mask.h"
  30. #include "sdma1/sdma1_4_0_offset.h"
  31. #include "sdma1/sdma1_4_0_sh_mask.h"
  32. #include "mmhub/mmhub_1_0_offset.h"
  33. #include "mmhub/mmhub_1_0_sh_mask.h"
  34. #include "hdp/hdp_4_0_offset.h"
  35. #include "sdma0/sdma0_4_1_default.h"
  36. #include "soc15_common.h"
  37. #include "soc15.h"
  38. #include "vega10_sdma_pkt_open.h"
  39. MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  40. MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  41. MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  42. #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
  43. #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  44. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  45. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  46. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  47. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  48. static const struct soc15_reg_golden golden_settings_sdma_4[] = {
  49. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  50. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
  51. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  52. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  53. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  54. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  55. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
  56. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  57. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  58. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  59. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  60. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
  61. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
  62. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
  63. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  64. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  65. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  66. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  67. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
  68. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  69. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  70. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  71. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  72. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0)
  73. };
  74. static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
  75. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
  76. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
  77. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
  78. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
  79. };
  80. static const struct soc15_reg_golden golden_settings_sdma_4_1[] =
  81. {
  82. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  83. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
  84. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
  85. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  86. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
  87. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
  88. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  89. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
  90. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  91. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0)
  92. };
  93. static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
  94. {
  95. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
  96. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
  97. };
  98. static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
  99. u32 instance, u32 offset)
  100. {
  101. return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
  102. (adev->reg_offset[SDMA1_HWIP][0][0] + offset));
  103. }
  104. static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
  105. {
  106. switch (adev->asic_type) {
  107. case CHIP_VEGA10:
  108. soc15_program_register_sequence(adev,
  109. golden_settings_sdma_4,
  110. ARRAY_SIZE(golden_settings_sdma_4));
  111. soc15_program_register_sequence(adev,
  112. golden_settings_sdma_vg10,
  113. ARRAY_SIZE(golden_settings_sdma_vg10));
  114. break;
  115. case CHIP_RAVEN:
  116. soc15_program_register_sequence(adev,
  117. golden_settings_sdma_4_1,
  118. ARRAY_SIZE(golden_settings_sdma_4_1));
  119. soc15_program_register_sequence(adev,
  120. golden_settings_sdma_rv1,
  121. ARRAY_SIZE(golden_settings_sdma_rv1));
  122. break;
  123. default:
  124. break;
  125. }
  126. }
  127. /**
  128. * sdma_v4_0_init_microcode - load ucode images from disk
  129. *
  130. * @adev: amdgpu_device pointer
  131. *
  132. * Use the firmware interface to load the ucode images into
  133. * the driver (not loaded into hw).
  134. * Returns 0 on success, error on failure.
  135. */
  136. // emulation only, won't work on real chip
  137. // vega10 real chip need to use PSP to load firmware
  138. static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
  139. {
  140. const char *chip_name;
  141. char fw_name[30];
  142. int err = 0, i;
  143. struct amdgpu_firmware_info *info = NULL;
  144. const struct common_firmware_header *header = NULL;
  145. const struct sdma_firmware_header_v1_0 *hdr;
  146. DRM_DEBUG("\n");
  147. switch (adev->asic_type) {
  148. case CHIP_VEGA10:
  149. chip_name = "vega10";
  150. break;
  151. case CHIP_RAVEN:
  152. chip_name = "raven";
  153. break;
  154. default:
  155. BUG();
  156. }
  157. for (i = 0; i < adev->sdma.num_instances; i++) {
  158. if (i == 0)
  159. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  160. else
  161. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  162. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  163. if (err)
  164. goto out;
  165. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  166. if (err)
  167. goto out;
  168. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  169. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  170. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  171. if (adev->sdma.instance[i].feature_version >= 20)
  172. adev->sdma.instance[i].burst_nop = true;
  173. DRM_DEBUG("psp_load == '%s'\n",
  174. adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
  175. if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
  176. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  177. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  178. info->fw = adev->sdma.instance[i].fw;
  179. header = (const struct common_firmware_header *)info->fw->data;
  180. adev->firmware.fw_size +=
  181. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  182. }
  183. }
  184. out:
  185. if (err) {
  186. DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
  187. for (i = 0; i < adev->sdma.num_instances; i++) {
  188. release_firmware(adev->sdma.instance[i].fw);
  189. adev->sdma.instance[i].fw = NULL;
  190. }
  191. }
  192. return err;
  193. }
  194. /**
  195. * sdma_v4_0_ring_get_rptr - get the current read pointer
  196. *
  197. * @ring: amdgpu ring pointer
  198. *
  199. * Get the current rptr from the hardware (VEGA10+).
  200. */
  201. static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
  202. {
  203. u64 *rptr;
  204. /* XXX check if swapping is necessary on BE */
  205. rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
  206. DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
  207. return ((*rptr) >> 2);
  208. }
  209. /**
  210. * sdma_v4_0_ring_get_wptr - get the current write pointer
  211. *
  212. * @ring: amdgpu ring pointer
  213. *
  214. * Get the current wptr from the hardware (VEGA10+).
  215. */
  216. static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
  217. {
  218. struct amdgpu_device *adev = ring->adev;
  219. u64 *wptr = NULL;
  220. uint64_t local_wptr = 0;
  221. if (ring->use_doorbell) {
  222. /* XXX check if swapping is necessary on BE */
  223. wptr = ((u64 *)&adev->wb.wb[ring->wptr_offs]);
  224. DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", *wptr);
  225. *wptr = (*wptr) >> 2;
  226. DRM_DEBUG("wptr/doorbell after shift == 0x%016llx\n", *wptr);
  227. } else {
  228. u32 lowbit, highbit;
  229. int me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
  230. wptr = &local_wptr;
  231. lowbit = RREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR)) >> 2;
  232. highbit = RREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
  233. DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
  234. me, highbit, lowbit);
  235. *wptr = highbit;
  236. *wptr = (*wptr) << 32;
  237. *wptr |= lowbit;
  238. }
  239. return *wptr;
  240. }
  241. /**
  242. * sdma_v4_0_ring_set_wptr - commit the write pointer
  243. *
  244. * @ring: amdgpu ring pointer
  245. *
  246. * Write the wptr back to the hardware (VEGA10+).
  247. */
  248. static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
  249. {
  250. struct amdgpu_device *adev = ring->adev;
  251. DRM_DEBUG("Setting write pointer\n");
  252. if (ring->use_doorbell) {
  253. u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
  254. DRM_DEBUG("Using doorbell -- "
  255. "wptr_offs == 0x%08x "
  256. "lower_32_bits(ring->wptr) << 2 == 0x%08x "
  257. "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
  258. ring->wptr_offs,
  259. lower_32_bits(ring->wptr << 2),
  260. upper_32_bits(ring->wptr << 2));
  261. /* XXX check if swapping is necessary on BE */
  262. WRITE_ONCE(*wb, (ring->wptr << 2));
  263. DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
  264. ring->doorbell_index, ring->wptr << 2);
  265. WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
  266. } else {
  267. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  268. DRM_DEBUG("Not using doorbell -- "
  269. "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
  270. "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
  271. me,
  272. lower_32_bits(ring->wptr << 2),
  273. me,
  274. upper_32_bits(ring->wptr << 2));
  275. WREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
  276. WREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
  277. }
  278. }
  279. static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  280. {
  281. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  282. int i;
  283. for (i = 0; i < count; i++)
  284. if (sdma && sdma->burst_nop && (i == 0))
  285. amdgpu_ring_write(ring, ring->funcs->nop |
  286. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  287. else
  288. amdgpu_ring_write(ring, ring->funcs->nop);
  289. }
  290. /**
  291. * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
  292. *
  293. * @ring: amdgpu ring pointer
  294. * @ib: IB object to schedule
  295. *
  296. * Schedule an IB in the DMA ring (VEGA10).
  297. */
  298. static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
  299. struct amdgpu_ib *ib,
  300. unsigned vmid, bool ctx_switch)
  301. {
  302. /* IB packet must end on a 8 DW boundary */
  303. sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  304. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  305. SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
  306. /* base must be 32 byte aligned */
  307. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  308. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  309. amdgpu_ring_write(ring, ib->length_dw);
  310. amdgpu_ring_write(ring, 0);
  311. amdgpu_ring_write(ring, 0);
  312. }
  313. /**
  314. * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  315. *
  316. * @ring: amdgpu ring pointer
  317. *
  318. * Emit an hdp flush packet on the requested DMA ring.
  319. */
  320. static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  321. {
  322. struct amdgpu_device *adev = ring->adev;
  323. u32 ref_and_mask = 0;
  324. const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
  325. if (ring == &ring->adev->sdma.instance[0].ring)
  326. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
  327. else
  328. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
  329. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  330. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  331. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  332. amdgpu_ring_write(ring, (adev->nbio_funcs->get_hdp_flush_done_offset(adev)) << 2);
  333. amdgpu_ring_write(ring, (adev->nbio_funcs->get_hdp_flush_req_offset(adev)) << 2);
  334. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  335. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  336. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  337. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  338. }
  339. static void sdma_v4_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  340. {
  341. struct amdgpu_device *adev = ring->adev;
  342. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  343. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  344. amdgpu_ring_write(ring, SOC15_REG_OFFSET(HDP, 0, mmHDP_READ_CACHE_INVALIDATE));
  345. amdgpu_ring_write(ring, 1);
  346. }
  347. /**
  348. * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
  349. *
  350. * @ring: amdgpu ring pointer
  351. * @fence: amdgpu fence object
  352. *
  353. * Add a DMA fence packet to the ring to write
  354. * the fence seq number and DMA trap packet to generate
  355. * an interrupt if needed (VEGA10).
  356. */
  357. static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  358. unsigned flags)
  359. {
  360. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  361. /* write the fence */
  362. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  363. /* zero in first two bits */
  364. BUG_ON(addr & 0x3);
  365. amdgpu_ring_write(ring, lower_32_bits(addr));
  366. amdgpu_ring_write(ring, upper_32_bits(addr));
  367. amdgpu_ring_write(ring, lower_32_bits(seq));
  368. /* optionally write high bits as well */
  369. if (write64bit) {
  370. addr += 4;
  371. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  372. /* zero in first two bits */
  373. BUG_ON(addr & 0x3);
  374. amdgpu_ring_write(ring, lower_32_bits(addr));
  375. amdgpu_ring_write(ring, upper_32_bits(addr));
  376. amdgpu_ring_write(ring, upper_32_bits(seq));
  377. }
  378. /* generate an interrupt */
  379. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  380. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  381. }
  382. /**
  383. * sdma_v4_0_gfx_stop - stop the gfx async dma engines
  384. *
  385. * @adev: amdgpu_device pointer
  386. *
  387. * Stop the gfx async dma ring buffers (VEGA10).
  388. */
  389. static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
  390. {
  391. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  392. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  393. u32 rb_cntl, ib_cntl;
  394. int i;
  395. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  396. (adev->mman.buffer_funcs_ring == sdma1))
  397. amdgpu_ttm_set_active_vram_size(adev, adev->gmc.visible_vram_size);
  398. for (i = 0; i < adev->sdma.num_instances; i++) {
  399. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
  400. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  401. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  402. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
  403. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  404. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  405. }
  406. sdma0->ready = false;
  407. sdma1->ready = false;
  408. }
  409. /**
  410. * sdma_v4_0_rlc_stop - stop the compute async dma engines
  411. *
  412. * @adev: amdgpu_device pointer
  413. *
  414. * Stop the compute async dma queues (VEGA10).
  415. */
  416. static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
  417. {
  418. /* XXX todo */
  419. }
  420. /**
  421. * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
  422. *
  423. * @adev: amdgpu_device pointer
  424. * @enable: enable/disable the DMA MEs context switch.
  425. *
  426. * Halt or unhalt the async dma engines context switch (VEGA10).
  427. */
  428. static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  429. {
  430. u32 f32_cntl, phase_quantum = 0;
  431. int i;
  432. if (amdgpu_sdma_phase_quantum) {
  433. unsigned value = amdgpu_sdma_phase_quantum;
  434. unsigned unit = 0;
  435. while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  436. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
  437. value = (value + 1) >> 1;
  438. unit++;
  439. }
  440. if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  441. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
  442. value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  443. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
  444. unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  445. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
  446. WARN_ONCE(1,
  447. "clamping sdma_phase_quantum to %uK clock cycles\n",
  448. value << unit);
  449. }
  450. phase_quantum =
  451. value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
  452. unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
  453. }
  454. for (i = 0; i < adev->sdma.num_instances; i++) {
  455. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
  456. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  457. AUTO_CTXSW_ENABLE, enable ? 1 : 0);
  458. if (enable && amdgpu_sdma_phase_quantum) {
  459. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
  460. phase_quantum);
  461. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
  462. phase_quantum);
  463. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
  464. phase_quantum);
  465. }
  466. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
  467. }
  468. }
  469. /**
  470. * sdma_v4_0_enable - stop the async dma engines
  471. *
  472. * @adev: amdgpu_device pointer
  473. * @enable: enable/disable the DMA MEs.
  474. *
  475. * Halt or unhalt the async dma engines (VEGA10).
  476. */
  477. static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
  478. {
  479. u32 f32_cntl;
  480. int i;
  481. if (enable == false) {
  482. sdma_v4_0_gfx_stop(adev);
  483. sdma_v4_0_rlc_stop(adev);
  484. }
  485. for (i = 0; i < adev->sdma.num_instances; i++) {
  486. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
  487. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
  488. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
  489. }
  490. }
  491. /**
  492. * sdma_v4_0_gfx_resume - setup and start the async dma engines
  493. *
  494. * @adev: amdgpu_device pointer
  495. *
  496. * Set up the gfx DMA ring buffers and enable them (VEGA10).
  497. * Returns 0 for success, error for failure.
  498. */
  499. static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
  500. {
  501. struct amdgpu_ring *ring;
  502. u32 rb_cntl, ib_cntl, wptr_poll_cntl;
  503. u32 rb_bufsz;
  504. u32 wb_offset;
  505. u32 doorbell;
  506. u32 doorbell_offset;
  507. u32 temp;
  508. u64 wptr_gpu_addr;
  509. int i, r;
  510. for (i = 0; i < adev->sdma.num_instances; i++) {
  511. ring = &adev->sdma.instance[i].ring;
  512. wb_offset = (ring->rptr_offs * 4);
  513. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
  514. /* Set ring buffer size in dwords */
  515. rb_bufsz = order_base_2(ring->ring_size / 4);
  516. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
  517. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  518. #ifdef __BIG_ENDIAN
  519. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  520. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  521. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  522. #endif
  523. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  524. /* Initialize the ring buffer's read and write pointers */
  525. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
  526. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
  527. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
  528. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
  529. /* set the wb address whether it's enabled or not */
  530. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
  531. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  532. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
  533. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  534. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  535. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
  536. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
  537. ring->wptr = 0;
  538. /* before programing wptr to a less value, need set minor_ptr_update first */
  539. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
  540. if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
  541. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
  542. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
  543. }
  544. doorbell = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
  545. doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
  546. if (ring->use_doorbell) {
  547. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  548. doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
  549. OFFSET, ring->doorbell_index);
  550. } else {
  551. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  552. }
  553. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
  554. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
  555. adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
  556. ring->doorbell_index);
  557. if (amdgpu_sriov_vf(adev))
  558. sdma_v4_0_ring_set_wptr(ring);
  559. /* set minor_ptr_update to 0 after wptr programed */
  560. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
  561. /* set utc l1 enable flag always to 1 */
  562. temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
  563. temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
  564. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
  565. if (!amdgpu_sriov_vf(adev)) {
  566. /* unhalt engine */
  567. temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
  568. temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
  569. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
  570. }
  571. /* setup the wptr shadow polling */
  572. wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
  573. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
  574. lower_32_bits(wptr_gpu_addr));
  575. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
  576. upper_32_bits(wptr_gpu_addr));
  577. wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
  578. if (amdgpu_sriov_vf(adev))
  579. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
  580. else
  581. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
  582. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
  583. /* enable DMA RB */
  584. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  585. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  586. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
  587. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  588. #ifdef __BIG_ENDIAN
  589. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  590. #endif
  591. /* enable DMA IBs */
  592. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  593. ring->ready = true;
  594. if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
  595. sdma_v4_0_ctx_switch_enable(adev, true);
  596. sdma_v4_0_enable(adev, true);
  597. }
  598. r = amdgpu_ring_test_ring(ring);
  599. if (r) {
  600. ring->ready = false;
  601. return r;
  602. }
  603. if (adev->mman.buffer_funcs_ring == ring)
  604. amdgpu_ttm_set_active_vram_size(adev, adev->gmc.real_vram_size);
  605. }
  606. return 0;
  607. }
  608. static void
  609. sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
  610. {
  611. uint32_t def, data;
  612. if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
  613. /* disable idle interrupt */
  614. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  615. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  616. if (data != def)
  617. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  618. } else {
  619. /* disable idle interrupt */
  620. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  621. data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  622. if (data != def)
  623. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  624. }
  625. }
  626. static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
  627. {
  628. uint32_t def, data;
  629. /* Enable HW based PG. */
  630. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  631. data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
  632. if (data != def)
  633. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  634. /* enable interrupt */
  635. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  636. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  637. if (data != def)
  638. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  639. /* Configure hold time to filter in-valid power on/off request. Use default right now */
  640. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  641. data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
  642. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
  643. /* Configure switch time for hysteresis purpose. Use default right now */
  644. data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
  645. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
  646. if(data != def)
  647. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  648. }
  649. static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
  650. {
  651. if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
  652. return;
  653. switch (adev->asic_type) {
  654. case CHIP_RAVEN:
  655. sdma_v4_1_init_power_gating(adev);
  656. sdma_v4_1_update_power_gating(adev, true);
  657. break;
  658. default:
  659. break;
  660. }
  661. }
  662. /**
  663. * sdma_v4_0_rlc_resume - setup and start the async dma engines
  664. *
  665. * @adev: amdgpu_device pointer
  666. *
  667. * Set up the compute DMA queues and enable them (VEGA10).
  668. * Returns 0 for success, error for failure.
  669. */
  670. static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
  671. {
  672. sdma_v4_0_init_pg(adev);
  673. return 0;
  674. }
  675. /**
  676. * sdma_v4_0_load_microcode - load the sDMA ME ucode
  677. *
  678. * @adev: amdgpu_device pointer
  679. *
  680. * Loads the sDMA0/1 ucode.
  681. * Returns 0 for success, -EINVAL if the ucode is not available.
  682. */
  683. static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
  684. {
  685. const struct sdma_firmware_header_v1_0 *hdr;
  686. const __le32 *fw_data;
  687. u32 fw_size;
  688. int i, j;
  689. /* halt the MEs */
  690. sdma_v4_0_enable(adev, false);
  691. for (i = 0; i < adev->sdma.num_instances; i++) {
  692. if (!adev->sdma.instance[i].fw)
  693. return -EINVAL;
  694. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  695. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  696. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  697. fw_data = (const __le32 *)
  698. (adev->sdma.instance[i].fw->data +
  699. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  700. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
  701. for (j = 0; j < fw_size; j++)
  702. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
  703. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
  704. }
  705. return 0;
  706. }
  707. /**
  708. * sdma_v4_0_start - setup and start the async dma engines
  709. *
  710. * @adev: amdgpu_device pointer
  711. *
  712. * Set up the DMA engines and enable them (VEGA10).
  713. * Returns 0 for success, error for failure.
  714. */
  715. static int sdma_v4_0_start(struct amdgpu_device *adev)
  716. {
  717. int r = 0;
  718. if (amdgpu_sriov_vf(adev)) {
  719. sdma_v4_0_ctx_switch_enable(adev, false);
  720. sdma_v4_0_enable(adev, false);
  721. /* set RB registers */
  722. r = sdma_v4_0_gfx_resume(adev);
  723. return r;
  724. }
  725. if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
  726. r = sdma_v4_0_load_microcode(adev);
  727. if (r)
  728. return r;
  729. }
  730. /* unhalt the MEs */
  731. sdma_v4_0_enable(adev, true);
  732. /* enable sdma ring preemption */
  733. sdma_v4_0_ctx_switch_enable(adev, true);
  734. /* start the gfx rings and rlc compute queues */
  735. r = sdma_v4_0_gfx_resume(adev);
  736. if (r)
  737. return r;
  738. r = sdma_v4_0_rlc_resume(adev);
  739. return r;
  740. }
  741. /**
  742. * sdma_v4_0_ring_test_ring - simple async dma engine test
  743. *
  744. * @ring: amdgpu_ring structure holding ring information
  745. *
  746. * Test the DMA engine by writing using it to write an
  747. * value to memory. (VEGA10).
  748. * Returns 0 for success, error for failure.
  749. */
  750. static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
  751. {
  752. struct amdgpu_device *adev = ring->adev;
  753. unsigned i;
  754. unsigned index;
  755. int r;
  756. u32 tmp;
  757. u64 gpu_addr;
  758. r = amdgpu_device_wb_get(adev, &index);
  759. if (r) {
  760. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  761. return r;
  762. }
  763. gpu_addr = adev->wb.gpu_addr + (index * 4);
  764. tmp = 0xCAFEDEAD;
  765. adev->wb.wb[index] = cpu_to_le32(tmp);
  766. r = amdgpu_ring_alloc(ring, 5);
  767. if (r) {
  768. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  769. amdgpu_device_wb_free(adev, index);
  770. return r;
  771. }
  772. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  773. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  774. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  775. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  776. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
  777. amdgpu_ring_write(ring, 0xDEADBEEF);
  778. amdgpu_ring_commit(ring);
  779. for (i = 0; i < adev->usec_timeout; i++) {
  780. tmp = le32_to_cpu(adev->wb.wb[index]);
  781. if (tmp == 0xDEADBEEF)
  782. break;
  783. DRM_UDELAY(1);
  784. }
  785. if (i < adev->usec_timeout) {
  786. DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  787. } else {
  788. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  789. ring->idx, tmp);
  790. r = -EINVAL;
  791. }
  792. amdgpu_device_wb_free(adev, index);
  793. return r;
  794. }
  795. /**
  796. * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
  797. *
  798. * @ring: amdgpu_ring structure holding ring information
  799. *
  800. * Test a simple IB in the DMA ring (VEGA10).
  801. * Returns 0 on success, error on failure.
  802. */
  803. static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  804. {
  805. struct amdgpu_device *adev = ring->adev;
  806. struct amdgpu_ib ib;
  807. struct dma_fence *f = NULL;
  808. unsigned index;
  809. long r;
  810. u32 tmp = 0;
  811. u64 gpu_addr;
  812. r = amdgpu_device_wb_get(adev, &index);
  813. if (r) {
  814. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  815. return r;
  816. }
  817. gpu_addr = adev->wb.gpu_addr + (index * 4);
  818. tmp = 0xCAFEDEAD;
  819. adev->wb.wb[index] = cpu_to_le32(tmp);
  820. memset(&ib, 0, sizeof(ib));
  821. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  822. if (r) {
  823. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  824. goto err0;
  825. }
  826. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  827. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  828. ib.ptr[1] = lower_32_bits(gpu_addr);
  829. ib.ptr[2] = upper_32_bits(gpu_addr);
  830. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
  831. ib.ptr[4] = 0xDEADBEEF;
  832. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  833. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  834. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  835. ib.length_dw = 8;
  836. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  837. if (r)
  838. goto err1;
  839. r = dma_fence_wait_timeout(f, false, timeout);
  840. if (r == 0) {
  841. DRM_ERROR("amdgpu: IB test timed out\n");
  842. r = -ETIMEDOUT;
  843. goto err1;
  844. } else if (r < 0) {
  845. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  846. goto err1;
  847. }
  848. tmp = le32_to_cpu(adev->wb.wb[index]);
  849. if (tmp == 0xDEADBEEF) {
  850. DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
  851. r = 0;
  852. } else {
  853. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  854. r = -EINVAL;
  855. }
  856. err1:
  857. amdgpu_ib_free(adev, &ib, NULL);
  858. dma_fence_put(f);
  859. err0:
  860. amdgpu_device_wb_free(adev, index);
  861. return r;
  862. }
  863. /**
  864. * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
  865. *
  866. * @ib: indirect buffer to fill with commands
  867. * @pe: addr of the page entry
  868. * @src: src addr to copy from
  869. * @count: number of page entries to update
  870. *
  871. * Update PTEs by copying them from the GART using sDMA (VEGA10).
  872. */
  873. static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
  874. uint64_t pe, uint64_t src,
  875. unsigned count)
  876. {
  877. unsigned bytes = count * 8;
  878. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  879. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  880. ib->ptr[ib->length_dw++] = bytes - 1;
  881. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  882. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  883. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  884. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  885. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  886. }
  887. /**
  888. * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
  889. *
  890. * @ib: indirect buffer to fill with commands
  891. * @pe: addr of the page entry
  892. * @addr: dst addr to write into pe
  893. * @count: number of page entries to update
  894. * @incr: increase next addr by incr bytes
  895. * @flags: access flags
  896. *
  897. * Update PTEs by writing them manually using sDMA (VEGA10).
  898. */
  899. static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  900. uint64_t value, unsigned count,
  901. uint32_t incr)
  902. {
  903. unsigned ndw = count * 2;
  904. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  905. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  906. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  907. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  908. ib->ptr[ib->length_dw++] = ndw - 1;
  909. for (; ndw > 0; ndw -= 2) {
  910. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  911. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  912. value += incr;
  913. }
  914. }
  915. /**
  916. * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
  917. *
  918. * @ib: indirect buffer to fill with commands
  919. * @pe: addr of the page entry
  920. * @addr: dst addr to write into pe
  921. * @count: number of page entries to update
  922. * @incr: increase next addr by incr bytes
  923. * @flags: access flags
  924. *
  925. * Update the page tables using sDMA (VEGA10).
  926. */
  927. static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  928. uint64_t pe,
  929. uint64_t addr, unsigned count,
  930. uint32_t incr, uint64_t flags)
  931. {
  932. /* for physically contiguous pages (vram) */
  933. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
  934. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  935. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  936. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  937. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  938. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  939. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  940. ib->ptr[ib->length_dw++] = incr; /* increment size */
  941. ib->ptr[ib->length_dw++] = 0;
  942. ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
  943. }
  944. /**
  945. * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
  946. *
  947. * @ib: indirect buffer to fill with padding
  948. *
  949. */
  950. static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  951. {
  952. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  953. u32 pad_count;
  954. int i;
  955. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  956. for (i = 0; i < pad_count; i++)
  957. if (sdma && sdma->burst_nop && (i == 0))
  958. ib->ptr[ib->length_dw++] =
  959. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  960. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  961. else
  962. ib->ptr[ib->length_dw++] =
  963. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  964. }
  965. /**
  966. * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
  967. *
  968. * @ring: amdgpu_ring pointer
  969. *
  970. * Make sure all previous operations are completed (CIK).
  971. */
  972. static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  973. {
  974. uint32_t seq = ring->fence_drv.sync_seq;
  975. uint64_t addr = ring->fence_drv.gpu_addr;
  976. /* wait for idle */
  977. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  978. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  979. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  980. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  981. amdgpu_ring_write(ring, addr & 0xfffffffc);
  982. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  983. amdgpu_ring_write(ring, seq); /* reference */
  984. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  985. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  986. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  987. }
  988. /**
  989. * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
  990. *
  991. * @ring: amdgpu_ring pointer
  992. * @vm: amdgpu_vm pointer
  993. *
  994. * Update the page table base and flush the VM TLB
  995. * using sDMA (VEGA10).
  996. */
  997. static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  998. unsigned vmid, uint64_t pd_addr)
  999. {
  1000. struct amdgpu_vmhub *hub = &ring->adev->vmhub[ring->funcs->vmhub];
  1001. uint32_t req = ring->adev->gmc.gmc_funcs->get_invalidate_req(vmid);
  1002. uint64_t flags = AMDGPU_PTE_VALID;
  1003. unsigned eng = ring->vm_inv_eng;
  1004. amdgpu_gmc_get_vm_pde(ring->adev, -1, &pd_addr, &flags);
  1005. pd_addr |= flags;
  1006. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1007. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1008. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_lo32 + vmid * 2);
  1009. amdgpu_ring_write(ring, lower_32_bits(pd_addr));
  1010. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1011. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1012. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_hi32 + vmid * 2);
  1013. amdgpu_ring_write(ring, upper_32_bits(pd_addr));
  1014. /* flush TLB */
  1015. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1016. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1017. amdgpu_ring_write(ring, hub->vm_inv_eng0_req + eng);
  1018. amdgpu_ring_write(ring, req);
  1019. /* wait for flush */
  1020. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1021. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1022. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
  1023. amdgpu_ring_write(ring, (hub->vm_inv_eng0_ack + eng) << 2);
  1024. amdgpu_ring_write(ring, 0);
  1025. amdgpu_ring_write(ring, 1 << vmid); /* reference */
  1026. amdgpu_ring_write(ring, 1 << vmid); /* mask */
  1027. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1028. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
  1029. }
  1030. static int sdma_v4_0_early_init(void *handle)
  1031. {
  1032. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1033. if (adev->asic_type == CHIP_RAVEN)
  1034. adev->sdma.num_instances = 1;
  1035. else
  1036. adev->sdma.num_instances = 2;
  1037. sdma_v4_0_set_ring_funcs(adev);
  1038. sdma_v4_0_set_buffer_funcs(adev);
  1039. sdma_v4_0_set_vm_pte_funcs(adev);
  1040. sdma_v4_0_set_irq_funcs(adev);
  1041. return 0;
  1042. }
  1043. static int sdma_v4_0_sw_init(void *handle)
  1044. {
  1045. struct amdgpu_ring *ring;
  1046. int r, i;
  1047. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1048. /* SDMA trap event */
  1049. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA0, 224,
  1050. &adev->sdma.trap_irq);
  1051. if (r)
  1052. return r;
  1053. /* SDMA trap event */
  1054. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA1, 224,
  1055. &adev->sdma.trap_irq);
  1056. if (r)
  1057. return r;
  1058. r = sdma_v4_0_init_microcode(adev);
  1059. if (r) {
  1060. DRM_ERROR("Failed to load sdma firmware!\n");
  1061. return r;
  1062. }
  1063. for (i = 0; i < adev->sdma.num_instances; i++) {
  1064. ring = &adev->sdma.instance[i].ring;
  1065. ring->ring_obj = NULL;
  1066. ring->use_doorbell = true;
  1067. DRM_INFO("use_doorbell being set to: [%s]\n",
  1068. ring->use_doorbell?"true":"false");
  1069. ring->doorbell_index = (i == 0) ?
  1070. (AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
  1071. : (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
  1072. sprintf(ring->name, "sdma%d", i);
  1073. r = amdgpu_ring_init(adev, ring, 1024,
  1074. &adev->sdma.trap_irq,
  1075. (i == 0) ?
  1076. AMDGPU_SDMA_IRQ_TRAP0 :
  1077. AMDGPU_SDMA_IRQ_TRAP1);
  1078. if (r)
  1079. return r;
  1080. }
  1081. return r;
  1082. }
  1083. static int sdma_v4_0_sw_fini(void *handle)
  1084. {
  1085. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1086. int i;
  1087. for (i = 0; i < adev->sdma.num_instances; i++)
  1088. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1089. for (i = 0; i < adev->sdma.num_instances; i++) {
  1090. release_firmware(adev->sdma.instance[i].fw);
  1091. adev->sdma.instance[i].fw = NULL;
  1092. }
  1093. return 0;
  1094. }
  1095. static int sdma_v4_0_hw_init(void *handle)
  1096. {
  1097. int r;
  1098. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1099. sdma_v4_0_init_golden_registers(adev);
  1100. r = sdma_v4_0_start(adev);
  1101. return r;
  1102. }
  1103. static int sdma_v4_0_hw_fini(void *handle)
  1104. {
  1105. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1106. if (amdgpu_sriov_vf(adev))
  1107. return 0;
  1108. sdma_v4_0_ctx_switch_enable(adev, false);
  1109. sdma_v4_0_enable(adev, false);
  1110. return 0;
  1111. }
  1112. static int sdma_v4_0_suspend(void *handle)
  1113. {
  1114. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1115. return sdma_v4_0_hw_fini(adev);
  1116. }
  1117. static int sdma_v4_0_resume(void *handle)
  1118. {
  1119. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1120. return sdma_v4_0_hw_init(adev);
  1121. }
  1122. static bool sdma_v4_0_is_idle(void *handle)
  1123. {
  1124. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1125. u32 i;
  1126. for (i = 0; i < adev->sdma.num_instances; i++) {
  1127. u32 tmp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
  1128. if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
  1129. return false;
  1130. }
  1131. return true;
  1132. }
  1133. static int sdma_v4_0_wait_for_idle(void *handle)
  1134. {
  1135. unsigned i;
  1136. u32 sdma0, sdma1;
  1137. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1138. for (i = 0; i < adev->usec_timeout; i++) {
  1139. sdma0 = RREG32(sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
  1140. sdma1 = RREG32(sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
  1141. if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
  1142. return 0;
  1143. udelay(1);
  1144. }
  1145. return -ETIMEDOUT;
  1146. }
  1147. static int sdma_v4_0_soft_reset(void *handle)
  1148. {
  1149. /* todo */
  1150. return 0;
  1151. }
  1152. static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
  1153. struct amdgpu_irq_src *source,
  1154. unsigned type,
  1155. enum amdgpu_interrupt_state state)
  1156. {
  1157. u32 sdma_cntl;
  1158. u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
  1159. sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
  1160. sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
  1161. sdma_cntl = RREG32(reg_offset);
  1162. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
  1163. state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
  1164. WREG32(reg_offset, sdma_cntl);
  1165. return 0;
  1166. }
  1167. static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
  1168. struct amdgpu_irq_src *source,
  1169. struct amdgpu_iv_entry *entry)
  1170. {
  1171. DRM_DEBUG("IH: SDMA trap\n");
  1172. switch (entry->client_id) {
  1173. case AMDGPU_IH_CLIENTID_SDMA0:
  1174. switch (entry->ring_id) {
  1175. case 0:
  1176. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1177. break;
  1178. case 1:
  1179. /* XXX compute */
  1180. break;
  1181. case 2:
  1182. /* XXX compute */
  1183. break;
  1184. case 3:
  1185. /* XXX page queue*/
  1186. break;
  1187. }
  1188. break;
  1189. case AMDGPU_IH_CLIENTID_SDMA1:
  1190. switch (entry->ring_id) {
  1191. case 0:
  1192. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1193. break;
  1194. case 1:
  1195. /* XXX compute */
  1196. break;
  1197. case 2:
  1198. /* XXX compute */
  1199. break;
  1200. case 3:
  1201. /* XXX page queue*/
  1202. break;
  1203. }
  1204. break;
  1205. }
  1206. return 0;
  1207. }
  1208. static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1209. struct amdgpu_irq_src *source,
  1210. struct amdgpu_iv_entry *entry)
  1211. {
  1212. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1213. schedule_work(&adev->reset_work);
  1214. return 0;
  1215. }
  1216. static void sdma_v4_0_update_medium_grain_clock_gating(
  1217. struct amdgpu_device *adev,
  1218. bool enable)
  1219. {
  1220. uint32_t data, def;
  1221. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1222. /* enable sdma0 clock gating */
  1223. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1224. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1225. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1226. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1227. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1228. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1229. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1230. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1231. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1232. if (def != data)
  1233. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1234. if (adev->asic_type == CHIP_VEGA10) {
  1235. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1236. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1237. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1238. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1239. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1240. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1241. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1242. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1243. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1244. if (def != data)
  1245. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1246. }
  1247. } else {
  1248. /* disable sdma0 clock gating */
  1249. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1250. data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1251. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1252. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1253. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1254. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1255. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1256. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1257. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1258. if (def != data)
  1259. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1260. if (adev->asic_type == CHIP_VEGA10) {
  1261. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1262. data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1263. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1264. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1265. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1266. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1267. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1268. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1269. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1270. if (def != data)
  1271. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1272. }
  1273. }
  1274. }
  1275. static void sdma_v4_0_update_medium_grain_light_sleep(
  1276. struct amdgpu_device *adev,
  1277. bool enable)
  1278. {
  1279. uint32_t data, def;
  1280. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1281. /* 1-not override: enable sdma0 mem light sleep */
  1282. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1283. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1284. if (def != data)
  1285. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1286. /* 1-not override: enable sdma1 mem light sleep */
  1287. if (adev->asic_type == CHIP_VEGA10) {
  1288. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1289. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1290. if (def != data)
  1291. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1292. }
  1293. } else {
  1294. /* 0-override:disable sdma0 mem light sleep */
  1295. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1296. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1297. if (def != data)
  1298. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1299. /* 0-override:disable sdma1 mem light sleep */
  1300. if (adev->asic_type == CHIP_VEGA10) {
  1301. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1302. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1303. if (def != data)
  1304. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1305. }
  1306. }
  1307. }
  1308. static int sdma_v4_0_set_clockgating_state(void *handle,
  1309. enum amd_clockgating_state state)
  1310. {
  1311. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1312. if (amdgpu_sriov_vf(adev))
  1313. return 0;
  1314. switch (adev->asic_type) {
  1315. case CHIP_VEGA10:
  1316. case CHIP_RAVEN:
  1317. sdma_v4_0_update_medium_grain_clock_gating(adev,
  1318. state == AMD_CG_STATE_GATE ? true : false);
  1319. sdma_v4_0_update_medium_grain_light_sleep(adev,
  1320. state == AMD_CG_STATE_GATE ? true : false);
  1321. break;
  1322. default:
  1323. break;
  1324. }
  1325. return 0;
  1326. }
  1327. static int sdma_v4_0_set_powergating_state(void *handle,
  1328. enum amd_powergating_state state)
  1329. {
  1330. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1331. switch (adev->asic_type) {
  1332. case CHIP_RAVEN:
  1333. sdma_v4_1_update_power_gating(adev,
  1334. state == AMD_PG_STATE_GATE ? true : false);
  1335. break;
  1336. default:
  1337. break;
  1338. }
  1339. return 0;
  1340. }
  1341. static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
  1342. {
  1343. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1344. int data;
  1345. if (amdgpu_sriov_vf(adev))
  1346. *flags = 0;
  1347. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1348. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1349. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
  1350. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1351. /* AMD_CG_SUPPORT_SDMA_LS */
  1352. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1353. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1354. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1355. }
  1356. const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
  1357. .name = "sdma_v4_0",
  1358. .early_init = sdma_v4_0_early_init,
  1359. .late_init = NULL,
  1360. .sw_init = sdma_v4_0_sw_init,
  1361. .sw_fini = sdma_v4_0_sw_fini,
  1362. .hw_init = sdma_v4_0_hw_init,
  1363. .hw_fini = sdma_v4_0_hw_fini,
  1364. .suspend = sdma_v4_0_suspend,
  1365. .resume = sdma_v4_0_resume,
  1366. .is_idle = sdma_v4_0_is_idle,
  1367. .wait_for_idle = sdma_v4_0_wait_for_idle,
  1368. .soft_reset = sdma_v4_0_soft_reset,
  1369. .set_clockgating_state = sdma_v4_0_set_clockgating_state,
  1370. .set_powergating_state = sdma_v4_0_set_powergating_state,
  1371. .get_clockgating_state = sdma_v4_0_get_clockgating_state,
  1372. };
  1373. static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
  1374. .type = AMDGPU_RING_TYPE_SDMA,
  1375. .align_mask = 0xf,
  1376. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1377. .support_64bit_ptrs = true,
  1378. .vmhub = AMDGPU_MMHUB,
  1379. .get_rptr = sdma_v4_0_ring_get_rptr,
  1380. .get_wptr = sdma_v4_0_ring_get_wptr,
  1381. .set_wptr = sdma_v4_0_ring_set_wptr,
  1382. .emit_frame_size =
  1383. 6 + /* sdma_v4_0_ring_emit_hdp_flush */
  1384. 3 + /* sdma_v4_0_ring_emit_hdp_invalidate */
  1385. 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
  1386. 18 + /* sdma_v4_0_ring_emit_vm_flush */
  1387. 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
  1388. .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
  1389. .emit_ib = sdma_v4_0_ring_emit_ib,
  1390. .emit_fence = sdma_v4_0_ring_emit_fence,
  1391. .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
  1392. .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
  1393. .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
  1394. .emit_hdp_invalidate = sdma_v4_0_ring_emit_hdp_invalidate,
  1395. .test_ring = sdma_v4_0_ring_test_ring,
  1396. .test_ib = sdma_v4_0_ring_test_ib,
  1397. .insert_nop = sdma_v4_0_ring_insert_nop,
  1398. .pad_ib = sdma_v4_0_ring_pad_ib,
  1399. };
  1400. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
  1401. {
  1402. int i;
  1403. for (i = 0; i < adev->sdma.num_instances; i++)
  1404. adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
  1405. }
  1406. static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
  1407. .set = sdma_v4_0_set_trap_irq_state,
  1408. .process = sdma_v4_0_process_trap_irq,
  1409. };
  1410. static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
  1411. .process = sdma_v4_0_process_illegal_inst_irq,
  1412. };
  1413. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
  1414. {
  1415. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1416. adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
  1417. adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
  1418. }
  1419. /**
  1420. * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
  1421. *
  1422. * @ring: amdgpu_ring structure holding ring information
  1423. * @src_offset: src GPU address
  1424. * @dst_offset: dst GPU address
  1425. * @byte_count: number of bytes to xfer
  1426. *
  1427. * Copy GPU buffers using the DMA engine (VEGA10).
  1428. * Used by the amdgpu ttm implementation to move pages if
  1429. * registered as the asic copy callback.
  1430. */
  1431. static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1432. uint64_t src_offset,
  1433. uint64_t dst_offset,
  1434. uint32_t byte_count)
  1435. {
  1436. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1437. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1438. ib->ptr[ib->length_dw++] = byte_count - 1;
  1439. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1440. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1441. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1442. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1443. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1444. }
  1445. /**
  1446. * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
  1447. *
  1448. * @ring: amdgpu_ring structure holding ring information
  1449. * @src_data: value to write to buffer
  1450. * @dst_offset: dst GPU address
  1451. * @byte_count: number of bytes to xfer
  1452. *
  1453. * Fill GPU buffers using the DMA engine (VEGA10).
  1454. */
  1455. static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1456. uint32_t src_data,
  1457. uint64_t dst_offset,
  1458. uint32_t byte_count)
  1459. {
  1460. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1461. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1462. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1463. ib->ptr[ib->length_dw++] = src_data;
  1464. ib->ptr[ib->length_dw++] = byte_count - 1;
  1465. }
  1466. static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
  1467. .copy_max_bytes = 0x400000,
  1468. .copy_num_dw = 7,
  1469. .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
  1470. .fill_max_bytes = 0x400000,
  1471. .fill_num_dw = 5,
  1472. .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
  1473. };
  1474. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
  1475. {
  1476. if (adev->mman.buffer_funcs == NULL) {
  1477. adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
  1478. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1479. }
  1480. }
  1481. static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
  1482. .copy_pte_num_dw = 7,
  1483. .copy_pte = sdma_v4_0_vm_copy_pte,
  1484. .write_pte = sdma_v4_0_vm_write_pte,
  1485. .set_max_nums_pte_pde = 0x400000 >> 3,
  1486. .set_pte_pde_num_dw = 10,
  1487. .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
  1488. };
  1489. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1490. {
  1491. unsigned i;
  1492. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1493. adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
  1494. for (i = 0; i < adev->sdma.num_instances; i++)
  1495. adev->vm_manager.vm_pte_rings[i] =
  1496. &adev->sdma.instance[i].ring;
  1497. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1498. }
  1499. }
  1500. const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
  1501. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1502. .major = 4,
  1503. .minor = 0,
  1504. .rev = 0,
  1505. .funcs = &sdma_v4_0_ip_funcs,
  1506. };