fork.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/mm.h>
  30. #include <linux/vmacache.h>
  31. #include <linux/nsproxy.h>
  32. #include <linux/capability.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/security.h>
  36. #include <linux/hugetlb.h>
  37. #include <linux/seccomp.h>
  38. #include <linux/swap.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/jiffies.h>
  41. #include <linux/futex.h>
  42. #include <linux/compat.h>
  43. #include <linux/kthread.h>
  44. #include <linux/task_io_accounting_ops.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/ptrace.h>
  47. #include <linux/mount.h>
  48. #include <linux/audit.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/ftrace.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/profile.h>
  53. #include <linux/rmap.h>
  54. #include <linux/ksm.h>
  55. #include <linux/acct.h>
  56. #include <linux/tsacct_kern.h>
  57. #include <linux/cn_proc.h>
  58. #include <linux/freezer.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/taskstats_kern.h>
  61. #include <linux/random.h>
  62. #include <linux/tty.h>
  63. #include <linux/blkdev.h>
  64. #include <linux/fs_struct.h>
  65. #include <linux/magic.h>
  66. #include <linux/perf_event.h>
  67. #include <linux/posix-timers.h>
  68. #include <linux/user-return-notifier.h>
  69. #include <linux/oom.h>
  70. #include <linux/khugepaged.h>
  71. #include <linux/signalfd.h>
  72. #include <linux/uprobes.h>
  73. #include <linux/aio.h>
  74. #include <linux/compiler.h>
  75. #include <linux/sysctl.h>
  76. #include <linux/kcov.h>
  77. #include <asm/pgtable.h>
  78. #include <asm/pgalloc.h>
  79. #include <asm/uaccess.h>
  80. #include <asm/mmu_context.h>
  81. #include <asm/cacheflush.h>
  82. #include <asm/tlbflush.h>
  83. #include <trace/events/sched.h>
  84. #define CREATE_TRACE_POINTS
  85. #include <trace/events/task.h>
  86. /*
  87. * Minimum number of threads to boot the kernel
  88. */
  89. #define MIN_THREADS 20
  90. /*
  91. * Maximum number of threads
  92. */
  93. #define MAX_THREADS FUTEX_TID_MASK
  94. /*
  95. * Protected counters by write_lock_irq(&tasklist_lock)
  96. */
  97. unsigned long total_forks; /* Handle normal Linux uptimes. */
  98. int nr_threads; /* The idle threads do not count.. */
  99. int max_threads; /* tunable limit on nr_threads */
  100. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  101. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  102. #ifdef CONFIG_PROVE_RCU
  103. int lockdep_tasklist_lock_is_held(void)
  104. {
  105. return lockdep_is_held(&tasklist_lock);
  106. }
  107. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  108. #endif /* #ifdef CONFIG_PROVE_RCU */
  109. int nr_processes(void)
  110. {
  111. int cpu;
  112. int total = 0;
  113. for_each_possible_cpu(cpu)
  114. total += per_cpu(process_counts, cpu);
  115. return total;
  116. }
  117. void __weak arch_release_task_struct(struct task_struct *tsk)
  118. {
  119. }
  120. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  121. static struct kmem_cache *task_struct_cachep;
  122. static inline struct task_struct *alloc_task_struct_node(int node)
  123. {
  124. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  125. }
  126. static inline void free_task_struct(struct task_struct *tsk)
  127. {
  128. kmem_cache_free(task_struct_cachep, tsk);
  129. }
  130. #endif
  131. void __weak arch_release_thread_stack(unsigned long *stack)
  132. {
  133. }
  134. #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
  135. /*
  136. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  137. * kmemcache based allocator.
  138. */
  139. # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
  140. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
  141. {
  142. #ifdef CONFIG_VMAP_STACK
  143. void *stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
  144. VMALLOC_START, VMALLOC_END,
  145. THREADINFO_GFP | __GFP_HIGHMEM,
  146. PAGE_KERNEL,
  147. 0, node,
  148. __builtin_return_address(0));
  149. /*
  150. * We can't call find_vm_area() in interrupt context, and
  151. * free_thread_stack() can be called in interrupt context,
  152. * so cache the vm_struct.
  153. */
  154. if (stack)
  155. tsk->stack_vm_area = find_vm_area(stack);
  156. return stack;
  157. #else
  158. struct page *page = alloc_pages_node(node, THREADINFO_GFP,
  159. THREAD_SIZE_ORDER);
  160. return page ? page_address(page) : NULL;
  161. #endif
  162. }
  163. static inline void free_thread_stack(struct task_struct *tsk)
  164. {
  165. if (task_stack_vm_area(tsk))
  166. vfree(tsk->stack);
  167. else
  168. __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
  169. }
  170. # else
  171. static struct kmem_cache *thread_stack_cache;
  172. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
  173. int node)
  174. {
  175. return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
  176. }
  177. static void free_thread_stack(struct task_struct *tsk)
  178. {
  179. kmem_cache_free(thread_stack_cache, tsk->stack);
  180. }
  181. void thread_stack_cache_init(void)
  182. {
  183. thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
  184. THREAD_SIZE, 0, NULL);
  185. BUG_ON(thread_stack_cache == NULL);
  186. }
  187. # endif
  188. #endif
  189. /* SLAB cache for signal_struct structures (tsk->signal) */
  190. static struct kmem_cache *signal_cachep;
  191. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  192. struct kmem_cache *sighand_cachep;
  193. /* SLAB cache for files_struct structures (tsk->files) */
  194. struct kmem_cache *files_cachep;
  195. /* SLAB cache for fs_struct structures (tsk->fs) */
  196. struct kmem_cache *fs_cachep;
  197. /* SLAB cache for vm_area_struct structures */
  198. struct kmem_cache *vm_area_cachep;
  199. /* SLAB cache for mm_struct structures (tsk->mm) */
  200. static struct kmem_cache *mm_cachep;
  201. static void account_kernel_stack(struct task_struct *tsk, int account)
  202. {
  203. void *stack = task_stack_page(tsk);
  204. struct vm_struct *vm = task_stack_vm_area(tsk);
  205. BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
  206. if (vm) {
  207. int i;
  208. BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
  209. for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
  210. mod_zone_page_state(page_zone(vm->pages[i]),
  211. NR_KERNEL_STACK_KB,
  212. PAGE_SIZE / 1024 * account);
  213. }
  214. /* All stack pages belong to the same memcg. */
  215. memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
  216. account * (THREAD_SIZE / 1024));
  217. } else {
  218. /*
  219. * All stack pages are in the same zone and belong to the
  220. * same memcg.
  221. */
  222. struct page *first_page = virt_to_page(stack);
  223. mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
  224. THREAD_SIZE / 1024 * account);
  225. memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
  226. account * (THREAD_SIZE / 1024));
  227. }
  228. }
  229. void free_task(struct task_struct *tsk)
  230. {
  231. account_kernel_stack(tsk, -1);
  232. arch_release_thread_stack(tsk->stack);
  233. free_thread_stack(tsk);
  234. rt_mutex_debug_task_free(tsk);
  235. ftrace_graph_exit_task(tsk);
  236. put_seccomp_filter(tsk);
  237. arch_release_task_struct(tsk);
  238. free_task_struct(tsk);
  239. }
  240. EXPORT_SYMBOL(free_task);
  241. static inline void free_signal_struct(struct signal_struct *sig)
  242. {
  243. taskstats_tgid_free(sig);
  244. sched_autogroup_exit(sig);
  245. kmem_cache_free(signal_cachep, sig);
  246. }
  247. static inline void put_signal_struct(struct signal_struct *sig)
  248. {
  249. if (atomic_dec_and_test(&sig->sigcnt))
  250. free_signal_struct(sig);
  251. }
  252. void __put_task_struct(struct task_struct *tsk)
  253. {
  254. WARN_ON(!tsk->exit_state);
  255. WARN_ON(atomic_read(&tsk->usage));
  256. WARN_ON(tsk == current);
  257. cgroup_free(tsk);
  258. task_numa_free(tsk);
  259. security_task_free(tsk);
  260. exit_creds(tsk);
  261. delayacct_tsk_free(tsk);
  262. put_signal_struct(tsk->signal);
  263. if (!profile_handoff_task(tsk))
  264. free_task(tsk);
  265. }
  266. EXPORT_SYMBOL_GPL(__put_task_struct);
  267. void __init __weak arch_task_cache_init(void) { }
  268. /*
  269. * set_max_threads
  270. */
  271. static void set_max_threads(unsigned int max_threads_suggested)
  272. {
  273. u64 threads;
  274. /*
  275. * The number of threads shall be limited such that the thread
  276. * structures may only consume a small part of the available memory.
  277. */
  278. if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
  279. threads = MAX_THREADS;
  280. else
  281. threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
  282. (u64) THREAD_SIZE * 8UL);
  283. if (threads > max_threads_suggested)
  284. threads = max_threads_suggested;
  285. max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
  286. }
  287. #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
  288. /* Initialized by the architecture: */
  289. int arch_task_struct_size __read_mostly;
  290. #endif
  291. void __init fork_init(void)
  292. {
  293. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  294. #ifndef ARCH_MIN_TASKALIGN
  295. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  296. #endif
  297. /* create a slab on which task_structs can be allocated */
  298. task_struct_cachep = kmem_cache_create("task_struct",
  299. arch_task_struct_size, ARCH_MIN_TASKALIGN,
  300. SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
  301. #endif
  302. /* do the arch specific task caches init */
  303. arch_task_cache_init();
  304. set_max_threads(MAX_THREADS);
  305. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  306. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  307. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  308. init_task.signal->rlim[RLIMIT_NPROC];
  309. }
  310. int __weak arch_dup_task_struct(struct task_struct *dst,
  311. struct task_struct *src)
  312. {
  313. *dst = *src;
  314. return 0;
  315. }
  316. void set_task_stack_end_magic(struct task_struct *tsk)
  317. {
  318. unsigned long *stackend;
  319. stackend = end_of_stack(tsk);
  320. *stackend = STACK_END_MAGIC; /* for overflow detection */
  321. }
  322. static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
  323. {
  324. struct task_struct *tsk;
  325. unsigned long *stack;
  326. struct vm_struct *stack_vm_area;
  327. int err;
  328. if (node == NUMA_NO_NODE)
  329. node = tsk_fork_get_node(orig);
  330. tsk = alloc_task_struct_node(node);
  331. if (!tsk)
  332. return NULL;
  333. stack = alloc_thread_stack_node(tsk, node);
  334. if (!stack)
  335. goto free_tsk;
  336. stack_vm_area = task_stack_vm_area(tsk);
  337. err = arch_dup_task_struct(tsk, orig);
  338. /*
  339. * arch_dup_task_struct() clobbers the stack-related fields. Make
  340. * sure they're properly initialized before using any stack-related
  341. * functions again.
  342. */
  343. tsk->stack = stack;
  344. #ifdef CONFIG_VMAP_STACK
  345. tsk->stack_vm_area = stack_vm_area;
  346. #endif
  347. if (err)
  348. goto free_stack;
  349. #ifdef CONFIG_SECCOMP
  350. /*
  351. * We must handle setting up seccomp filters once we're under
  352. * the sighand lock in case orig has changed between now and
  353. * then. Until then, filter must be NULL to avoid messing up
  354. * the usage counts on the error path calling free_task.
  355. */
  356. tsk->seccomp.filter = NULL;
  357. #endif
  358. setup_thread_stack(tsk, orig);
  359. clear_user_return_notifier(tsk);
  360. clear_tsk_need_resched(tsk);
  361. set_task_stack_end_magic(tsk);
  362. #ifdef CONFIG_CC_STACKPROTECTOR
  363. tsk->stack_canary = get_random_int();
  364. #endif
  365. /*
  366. * One for us, one for whoever does the "release_task()" (usually
  367. * parent)
  368. */
  369. atomic_set(&tsk->usage, 2);
  370. #ifdef CONFIG_BLK_DEV_IO_TRACE
  371. tsk->btrace_seq = 0;
  372. #endif
  373. tsk->splice_pipe = NULL;
  374. tsk->task_frag.page = NULL;
  375. tsk->wake_q.next = NULL;
  376. account_kernel_stack(tsk, 1);
  377. kcov_task_init(tsk);
  378. return tsk;
  379. free_stack:
  380. free_thread_stack(tsk);
  381. free_tsk:
  382. free_task_struct(tsk);
  383. return NULL;
  384. }
  385. #ifdef CONFIG_MMU
  386. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  387. {
  388. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  389. struct rb_node **rb_link, *rb_parent;
  390. int retval;
  391. unsigned long charge;
  392. uprobe_start_dup_mmap();
  393. if (down_write_killable(&oldmm->mmap_sem)) {
  394. retval = -EINTR;
  395. goto fail_uprobe_end;
  396. }
  397. flush_cache_dup_mm(oldmm);
  398. uprobe_dup_mmap(oldmm, mm);
  399. /*
  400. * Not linked in yet - no deadlock potential:
  401. */
  402. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  403. /* No ordering required: file already has been exposed. */
  404. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  405. mm->total_vm = oldmm->total_vm;
  406. mm->data_vm = oldmm->data_vm;
  407. mm->exec_vm = oldmm->exec_vm;
  408. mm->stack_vm = oldmm->stack_vm;
  409. rb_link = &mm->mm_rb.rb_node;
  410. rb_parent = NULL;
  411. pprev = &mm->mmap;
  412. retval = ksm_fork(mm, oldmm);
  413. if (retval)
  414. goto out;
  415. retval = khugepaged_fork(mm, oldmm);
  416. if (retval)
  417. goto out;
  418. prev = NULL;
  419. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  420. struct file *file;
  421. if (mpnt->vm_flags & VM_DONTCOPY) {
  422. vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
  423. continue;
  424. }
  425. charge = 0;
  426. if (mpnt->vm_flags & VM_ACCOUNT) {
  427. unsigned long len = vma_pages(mpnt);
  428. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  429. goto fail_nomem;
  430. charge = len;
  431. }
  432. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  433. if (!tmp)
  434. goto fail_nomem;
  435. *tmp = *mpnt;
  436. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  437. retval = vma_dup_policy(mpnt, tmp);
  438. if (retval)
  439. goto fail_nomem_policy;
  440. tmp->vm_mm = mm;
  441. if (anon_vma_fork(tmp, mpnt))
  442. goto fail_nomem_anon_vma_fork;
  443. tmp->vm_flags &=
  444. ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
  445. tmp->vm_next = tmp->vm_prev = NULL;
  446. tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
  447. file = tmp->vm_file;
  448. if (file) {
  449. struct inode *inode = file_inode(file);
  450. struct address_space *mapping = file->f_mapping;
  451. get_file(file);
  452. if (tmp->vm_flags & VM_DENYWRITE)
  453. atomic_dec(&inode->i_writecount);
  454. i_mmap_lock_write(mapping);
  455. if (tmp->vm_flags & VM_SHARED)
  456. atomic_inc(&mapping->i_mmap_writable);
  457. flush_dcache_mmap_lock(mapping);
  458. /* insert tmp into the share list, just after mpnt */
  459. vma_interval_tree_insert_after(tmp, mpnt,
  460. &mapping->i_mmap);
  461. flush_dcache_mmap_unlock(mapping);
  462. i_mmap_unlock_write(mapping);
  463. }
  464. /*
  465. * Clear hugetlb-related page reserves for children. This only
  466. * affects MAP_PRIVATE mappings. Faults generated by the child
  467. * are not guaranteed to succeed, even if read-only
  468. */
  469. if (is_vm_hugetlb_page(tmp))
  470. reset_vma_resv_huge_pages(tmp);
  471. /*
  472. * Link in the new vma and copy the page table entries.
  473. */
  474. *pprev = tmp;
  475. pprev = &tmp->vm_next;
  476. tmp->vm_prev = prev;
  477. prev = tmp;
  478. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  479. rb_link = &tmp->vm_rb.rb_right;
  480. rb_parent = &tmp->vm_rb;
  481. mm->map_count++;
  482. retval = copy_page_range(mm, oldmm, mpnt);
  483. if (tmp->vm_ops && tmp->vm_ops->open)
  484. tmp->vm_ops->open(tmp);
  485. if (retval)
  486. goto out;
  487. }
  488. /* a new mm has just been created */
  489. arch_dup_mmap(oldmm, mm);
  490. retval = 0;
  491. out:
  492. up_write(&mm->mmap_sem);
  493. flush_tlb_mm(oldmm);
  494. up_write(&oldmm->mmap_sem);
  495. fail_uprobe_end:
  496. uprobe_end_dup_mmap();
  497. return retval;
  498. fail_nomem_anon_vma_fork:
  499. mpol_put(vma_policy(tmp));
  500. fail_nomem_policy:
  501. kmem_cache_free(vm_area_cachep, tmp);
  502. fail_nomem:
  503. retval = -ENOMEM;
  504. vm_unacct_memory(charge);
  505. goto out;
  506. }
  507. static inline int mm_alloc_pgd(struct mm_struct *mm)
  508. {
  509. mm->pgd = pgd_alloc(mm);
  510. if (unlikely(!mm->pgd))
  511. return -ENOMEM;
  512. return 0;
  513. }
  514. static inline void mm_free_pgd(struct mm_struct *mm)
  515. {
  516. pgd_free(mm, mm->pgd);
  517. }
  518. #else
  519. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  520. {
  521. down_write(&oldmm->mmap_sem);
  522. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  523. up_write(&oldmm->mmap_sem);
  524. return 0;
  525. }
  526. #define mm_alloc_pgd(mm) (0)
  527. #define mm_free_pgd(mm)
  528. #endif /* CONFIG_MMU */
  529. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  530. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  531. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  532. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  533. static int __init coredump_filter_setup(char *s)
  534. {
  535. default_dump_filter =
  536. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  537. MMF_DUMP_FILTER_MASK;
  538. return 1;
  539. }
  540. __setup("coredump_filter=", coredump_filter_setup);
  541. #include <linux/init_task.h>
  542. static void mm_init_aio(struct mm_struct *mm)
  543. {
  544. #ifdef CONFIG_AIO
  545. spin_lock_init(&mm->ioctx_lock);
  546. mm->ioctx_table = NULL;
  547. #endif
  548. }
  549. static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  550. {
  551. #ifdef CONFIG_MEMCG
  552. mm->owner = p;
  553. #endif
  554. }
  555. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  556. {
  557. mm->mmap = NULL;
  558. mm->mm_rb = RB_ROOT;
  559. mm->vmacache_seqnum = 0;
  560. atomic_set(&mm->mm_users, 1);
  561. atomic_set(&mm->mm_count, 1);
  562. init_rwsem(&mm->mmap_sem);
  563. INIT_LIST_HEAD(&mm->mmlist);
  564. mm->core_state = NULL;
  565. atomic_long_set(&mm->nr_ptes, 0);
  566. mm_nr_pmds_init(mm);
  567. mm->map_count = 0;
  568. mm->locked_vm = 0;
  569. mm->pinned_vm = 0;
  570. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  571. spin_lock_init(&mm->page_table_lock);
  572. mm_init_cpumask(mm);
  573. mm_init_aio(mm);
  574. mm_init_owner(mm, p);
  575. mmu_notifier_mm_init(mm);
  576. clear_tlb_flush_pending(mm);
  577. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  578. mm->pmd_huge_pte = NULL;
  579. #endif
  580. if (current->mm) {
  581. mm->flags = current->mm->flags & MMF_INIT_MASK;
  582. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  583. } else {
  584. mm->flags = default_dump_filter;
  585. mm->def_flags = 0;
  586. }
  587. if (mm_alloc_pgd(mm))
  588. goto fail_nopgd;
  589. if (init_new_context(p, mm))
  590. goto fail_nocontext;
  591. return mm;
  592. fail_nocontext:
  593. mm_free_pgd(mm);
  594. fail_nopgd:
  595. free_mm(mm);
  596. return NULL;
  597. }
  598. static void check_mm(struct mm_struct *mm)
  599. {
  600. int i;
  601. for (i = 0; i < NR_MM_COUNTERS; i++) {
  602. long x = atomic_long_read(&mm->rss_stat.count[i]);
  603. if (unlikely(x))
  604. printk(KERN_ALERT "BUG: Bad rss-counter state "
  605. "mm:%p idx:%d val:%ld\n", mm, i, x);
  606. }
  607. if (atomic_long_read(&mm->nr_ptes))
  608. pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
  609. atomic_long_read(&mm->nr_ptes));
  610. if (mm_nr_pmds(mm))
  611. pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
  612. mm_nr_pmds(mm));
  613. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  614. VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
  615. #endif
  616. }
  617. /*
  618. * Allocate and initialize an mm_struct.
  619. */
  620. struct mm_struct *mm_alloc(void)
  621. {
  622. struct mm_struct *mm;
  623. mm = allocate_mm();
  624. if (!mm)
  625. return NULL;
  626. memset(mm, 0, sizeof(*mm));
  627. return mm_init(mm, current);
  628. }
  629. /*
  630. * Called when the last reference to the mm
  631. * is dropped: either by a lazy thread or by
  632. * mmput. Free the page directory and the mm.
  633. */
  634. void __mmdrop(struct mm_struct *mm)
  635. {
  636. BUG_ON(mm == &init_mm);
  637. mm_free_pgd(mm);
  638. destroy_context(mm);
  639. mmu_notifier_mm_destroy(mm);
  640. check_mm(mm);
  641. free_mm(mm);
  642. }
  643. EXPORT_SYMBOL_GPL(__mmdrop);
  644. static inline void __mmput(struct mm_struct *mm)
  645. {
  646. VM_BUG_ON(atomic_read(&mm->mm_users));
  647. uprobe_clear_state(mm);
  648. exit_aio(mm);
  649. ksm_exit(mm);
  650. khugepaged_exit(mm); /* must run before exit_mmap */
  651. exit_mmap(mm);
  652. set_mm_exe_file(mm, NULL);
  653. if (!list_empty(&mm->mmlist)) {
  654. spin_lock(&mmlist_lock);
  655. list_del(&mm->mmlist);
  656. spin_unlock(&mmlist_lock);
  657. }
  658. if (mm->binfmt)
  659. module_put(mm->binfmt->module);
  660. mmdrop(mm);
  661. }
  662. /*
  663. * Decrement the use count and release all resources for an mm.
  664. */
  665. void mmput(struct mm_struct *mm)
  666. {
  667. might_sleep();
  668. if (atomic_dec_and_test(&mm->mm_users))
  669. __mmput(mm);
  670. }
  671. EXPORT_SYMBOL_GPL(mmput);
  672. #ifdef CONFIG_MMU
  673. static void mmput_async_fn(struct work_struct *work)
  674. {
  675. struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
  676. __mmput(mm);
  677. }
  678. void mmput_async(struct mm_struct *mm)
  679. {
  680. if (atomic_dec_and_test(&mm->mm_users)) {
  681. INIT_WORK(&mm->async_put_work, mmput_async_fn);
  682. schedule_work(&mm->async_put_work);
  683. }
  684. }
  685. #endif
  686. /**
  687. * set_mm_exe_file - change a reference to the mm's executable file
  688. *
  689. * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
  690. *
  691. * Main users are mmput() and sys_execve(). Callers prevent concurrent
  692. * invocations: in mmput() nobody alive left, in execve task is single
  693. * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
  694. * mm->exe_file, but does so without using set_mm_exe_file() in order
  695. * to do avoid the need for any locks.
  696. */
  697. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  698. {
  699. struct file *old_exe_file;
  700. /*
  701. * It is safe to dereference the exe_file without RCU as
  702. * this function is only called if nobody else can access
  703. * this mm -- see comment above for justification.
  704. */
  705. old_exe_file = rcu_dereference_raw(mm->exe_file);
  706. if (new_exe_file)
  707. get_file(new_exe_file);
  708. rcu_assign_pointer(mm->exe_file, new_exe_file);
  709. if (old_exe_file)
  710. fput(old_exe_file);
  711. }
  712. /**
  713. * get_mm_exe_file - acquire a reference to the mm's executable file
  714. *
  715. * Returns %NULL if mm has no associated executable file.
  716. * User must release file via fput().
  717. */
  718. struct file *get_mm_exe_file(struct mm_struct *mm)
  719. {
  720. struct file *exe_file;
  721. rcu_read_lock();
  722. exe_file = rcu_dereference(mm->exe_file);
  723. if (exe_file && !get_file_rcu(exe_file))
  724. exe_file = NULL;
  725. rcu_read_unlock();
  726. return exe_file;
  727. }
  728. EXPORT_SYMBOL(get_mm_exe_file);
  729. /**
  730. * get_task_mm - acquire a reference to the task's mm
  731. *
  732. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  733. * this kernel workthread has transiently adopted a user mm with use_mm,
  734. * to do its AIO) is not set and if so returns a reference to it, after
  735. * bumping up the use count. User must release the mm via mmput()
  736. * after use. Typically used by /proc and ptrace.
  737. */
  738. struct mm_struct *get_task_mm(struct task_struct *task)
  739. {
  740. struct mm_struct *mm;
  741. task_lock(task);
  742. mm = task->mm;
  743. if (mm) {
  744. if (task->flags & PF_KTHREAD)
  745. mm = NULL;
  746. else
  747. atomic_inc(&mm->mm_users);
  748. }
  749. task_unlock(task);
  750. return mm;
  751. }
  752. EXPORT_SYMBOL_GPL(get_task_mm);
  753. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  754. {
  755. struct mm_struct *mm;
  756. int err;
  757. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  758. if (err)
  759. return ERR_PTR(err);
  760. mm = get_task_mm(task);
  761. if (mm && mm != current->mm &&
  762. !ptrace_may_access(task, mode)) {
  763. mmput(mm);
  764. mm = ERR_PTR(-EACCES);
  765. }
  766. mutex_unlock(&task->signal->cred_guard_mutex);
  767. return mm;
  768. }
  769. static void complete_vfork_done(struct task_struct *tsk)
  770. {
  771. struct completion *vfork;
  772. task_lock(tsk);
  773. vfork = tsk->vfork_done;
  774. if (likely(vfork)) {
  775. tsk->vfork_done = NULL;
  776. complete(vfork);
  777. }
  778. task_unlock(tsk);
  779. }
  780. static int wait_for_vfork_done(struct task_struct *child,
  781. struct completion *vfork)
  782. {
  783. int killed;
  784. freezer_do_not_count();
  785. killed = wait_for_completion_killable(vfork);
  786. freezer_count();
  787. if (killed) {
  788. task_lock(child);
  789. child->vfork_done = NULL;
  790. task_unlock(child);
  791. }
  792. put_task_struct(child);
  793. return killed;
  794. }
  795. /* Please note the differences between mmput and mm_release.
  796. * mmput is called whenever we stop holding onto a mm_struct,
  797. * error success whatever.
  798. *
  799. * mm_release is called after a mm_struct has been removed
  800. * from the current process.
  801. *
  802. * This difference is important for error handling, when we
  803. * only half set up a mm_struct for a new process and need to restore
  804. * the old one. Because we mmput the new mm_struct before
  805. * restoring the old one. . .
  806. * Eric Biederman 10 January 1998
  807. */
  808. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  809. {
  810. /* Get rid of any futexes when releasing the mm */
  811. #ifdef CONFIG_FUTEX
  812. if (unlikely(tsk->robust_list)) {
  813. exit_robust_list(tsk);
  814. tsk->robust_list = NULL;
  815. }
  816. #ifdef CONFIG_COMPAT
  817. if (unlikely(tsk->compat_robust_list)) {
  818. compat_exit_robust_list(tsk);
  819. tsk->compat_robust_list = NULL;
  820. }
  821. #endif
  822. if (unlikely(!list_empty(&tsk->pi_state_list)))
  823. exit_pi_state_list(tsk);
  824. #endif
  825. uprobe_free_utask(tsk);
  826. /* Get rid of any cached register state */
  827. deactivate_mm(tsk, mm);
  828. /*
  829. * If we're exiting normally, clear a user-space tid field if
  830. * requested. We leave this alone when dying by signal, to leave
  831. * the value intact in a core dump, and to save the unnecessary
  832. * trouble, say, a killed vfork parent shouldn't touch this mm.
  833. * Userland only wants this done for a sys_exit.
  834. */
  835. if (tsk->clear_child_tid) {
  836. if (!(tsk->flags & PF_SIGNALED) &&
  837. atomic_read(&mm->mm_users) > 1) {
  838. /*
  839. * We don't check the error code - if userspace has
  840. * not set up a proper pointer then tough luck.
  841. */
  842. put_user(0, tsk->clear_child_tid);
  843. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  844. 1, NULL, NULL, 0);
  845. }
  846. tsk->clear_child_tid = NULL;
  847. }
  848. /*
  849. * All done, finally we can wake up parent and return this mm to him.
  850. * Also kthread_stop() uses this completion for synchronization.
  851. */
  852. if (tsk->vfork_done)
  853. complete_vfork_done(tsk);
  854. }
  855. /*
  856. * Allocate a new mm structure and copy contents from the
  857. * mm structure of the passed in task structure.
  858. */
  859. static struct mm_struct *dup_mm(struct task_struct *tsk)
  860. {
  861. struct mm_struct *mm, *oldmm = current->mm;
  862. int err;
  863. mm = allocate_mm();
  864. if (!mm)
  865. goto fail_nomem;
  866. memcpy(mm, oldmm, sizeof(*mm));
  867. if (!mm_init(mm, tsk))
  868. goto fail_nomem;
  869. err = dup_mmap(mm, oldmm);
  870. if (err)
  871. goto free_pt;
  872. mm->hiwater_rss = get_mm_rss(mm);
  873. mm->hiwater_vm = mm->total_vm;
  874. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  875. goto free_pt;
  876. return mm;
  877. free_pt:
  878. /* don't put binfmt in mmput, we haven't got module yet */
  879. mm->binfmt = NULL;
  880. mmput(mm);
  881. fail_nomem:
  882. return NULL;
  883. }
  884. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  885. {
  886. struct mm_struct *mm, *oldmm;
  887. int retval;
  888. tsk->min_flt = tsk->maj_flt = 0;
  889. tsk->nvcsw = tsk->nivcsw = 0;
  890. #ifdef CONFIG_DETECT_HUNG_TASK
  891. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  892. #endif
  893. tsk->mm = NULL;
  894. tsk->active_mm = NULL;
  895. /*
  896. * Are we cloning a kernel thread?
  897. *
  898. * We need to steal a active VM for that..
  899. */
  900. oldmm = current->mm;
  901. if (!oldmm)
  902. return 0;
  903. /* initialize the new vmacache entries */
  904. vmacache_flush(tsk);
  905. if (clone_flags & CLONE_VM) {
  906. atomic_inc(&oldmm->mm_users);
  907. mm = oldmm;
  908. goto good_mm;
  909. }
  910. retval = -ENOMEM;
  911. mm = dup_mm(tsk);
  912. if (!mm)
  913. goto fail_nomem;
  914. good_mm:
  915. tsk->mm = mm;
  916. tsk->active_mm = mm;
  917. return 0;
  918. fail_nomem:
  919. return retval;
  920. }
  921. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  922. {
  923. struct fs_struct *fs = current->fs;
  924. if (clone_flags & CLONE_FS) {
  925. /* tsk->fs is already what we want */
  926. spin_lock(&fs->lock);
  927. if (fs->in_exec) {
  928. spin_unlock(&fs->lock);
  929. return -EAGAIN;
  930. }
  931. fs->users++;
  932. spin_unlock(&fs->lock);
  933. return 0;
  934. }
  935. tsk->fs = copy_fs_struct(fs);
  936. if (!tsk->fs)
  937. return -ENOMEM;
  938. return 0;
  939. }
  940. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  941. {
  942. struct files_struct *oldf, *newf;
  943. int error = 0;
  944. /*
  945. * A background process may not have any files ...
  946. */
  947. oldf = current->files;
  948. if (!oldf)
  949. goto out;
  950. if (clone_flags & CLONE_FILES) {
  951. atomic_inc(&oldf->count);
  952. goto out;
  953. }
  954. newf = dup_fd(oldf, &error);
  955. if (!newf)
  956. goto out;
  957. tsk->files = newf;
  958. error = 0;
  959. out:
  960. return error;
  961. }
  962. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  963. {
  964. #ifdef CONFIG_BLOCK
  965. struct io_context *ioc = current->io_context;
  966. struct io_context *new_ioc;
  967. if (!ioc)
  968. return 0;
  969. /*
  970. * Share io context with parent, if CLONE_IO is set
  971. */
  972. if (clone_flags & CLONE_IO) {
  973. ioc_task_link(ioc);
  974. tsk->io_context = ioc;
  975. } else if (ioprio_valid(ioc->ioprio)) {
  976. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  977. if (unlikely(!new_ioc))
  978. return -ENOMEM;
  979. new_ioc->ioprio = ioc->ioprio;
  980. put_io_context(new_ioc);
  981. }
  982. #endif
  983. return 0;
  984. }
  985. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  986. {
  987. struct sighand_struct *sig;
  988. if (clone_flags & CLONE_SIGHAND) {
  989. atomic_inc(&current->sighand->count);
  990. return 0;
  991. }
  992. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  993. rcu_assign_pointer(tsk->sighand, sig);
  994. if (!sig)
  995. return -ENOMEM;
  996. atomic_set(&sig->count, 1);
  997. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  998. return 0;
  999. }
  1000. void __cleanup_sighand(struct sighand_struct *sighand)
  1001. {
  1002. if (atomic_dec_and_test(&sighand->count)) {
  1003. signalfd_cleanup(sighand);
  1004. /*
  1005. * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
  1006. * without an RCU grace period, see __lock_task_sighand().
  1007. */
  1008. kmem_cache_free(sighand_cachep, sighand);
  1009. }
  1010. }
  1011. /*
  1012. * Initialize POSIX timer handling for a thread group.
  1013. */
  1014. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  1015. {
  1016. unsigned long cpu_limit;
  1017. cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  1018. if (cpu_limit != RLIM_INFINITY) {
  1019. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  1020. sig->cputimer.running = true;
  1021. }
  1022. /* The timer lists. */
  1023. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  1024. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  1025. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  1026. }
  1027. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  1028. {
  1029. struct signal_struct *sig;
  1030. if (clone_flags & CLONE_THREAD)
  1031. return 0;
  1032. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  1033. tsk->signal = sig;
  1034. if (!sig)
  1035. return -ENOMEM;
  1036. sig->nr_threads = 1;
  1037. atomic_set(&sig->live, 1);
  1038. atomic_set(&sig->sigcnt, 1);
  1039. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  1040. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  1041. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  1042. init_waitqueue_head(&sig->wait_chldexit);
  1043. sig->curr_target = tsk;
  1044. init_sigpending(&sig->shared_pending);
  1045. INIT_LIST_HEAD(&sig->posix_timers);
  1046. seqlock_init(&sig->stats_lock);
  1047. prev_cputime_init(&sig->prev_cputime);
  1048. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1049. sig->real_timer.function = it_real_fn;
  1050. task_lock(current->group_leader);
  1051. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  1052. task_unlock(current->group_leader);
  1053. posix_cpu_timers_init_group(sig);
  1054. tty_audit_fork(sig);
  1055. sched_autogroup_fork(sig);
  1056. sig->oom_score_adj = current->signal->oom_score_adj;
  1057. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  1058. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  1059. current->signal->is_child_subreaper;
  1060. mutex_init(&sig->cred_guard_mutex);
  1061. return 0;
  1062. }
  1063. static void copy_seccomp(struct task_struct *p)
  1064. {
  1065. #ifdef CONFIG_SECCOMP
  1066. /*
  1067. * Must be called with sighand->lock held, which is common to
  1068. * all threads in the group. Holding cred_guard_mutex is not
  1069. * needed because this new task is not yet running and cannot
  1070. * be racing exec.
  1071. */
  1072. assert_spin_locked(&current->sighand->siglock);
  1073. /* Ref-count the new filter user, and assign it. */
  1074. get_seccomp_filter(current);
  1075. p->seccomp = current->seccomp;
  1076. /*
  1077. * Explicitly enable no_new_privs here in case it got set
  1078. * between the task_struct being duplicated and holding the
  1079. * sighand lock. The seccomp state and nnp must be in sync.
  1080. */
  1081. if (task_no_new_privs(current))
  1082. task_set_no_new_privs(p);
  1083. /*
  1084. * If the parent gained a seccomp mode after copying thread
  1085. * flags and between before we held the sighand lock, we have
  1086. * to manually enable the seccomp thread flag here.
  1087. */
  1088. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  1089. set_tsk_thread_flag(p, TIF_SECCOMP);
  1090. #endif
  1091. }
  1092. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  1093. {
  1094. current->clear_child_tid = tidptr;
  1095. return task_pid_vnr(current);
  1096. }
  1097. static void rt_mutex_init_task(struct task_struct *p)
  1098. {
  1099. raw_spin_lock_init(&p->pi_lock);
  1100. #ifdef CONFIG_RT_MUTEXES
  1101. p->pi_waiters = RB_ROOT;
  1102. p->pi_waiters_leftmost = NULL;
  1103. p->pi_blocked_on = NULL;
  1104. #endif
  1105. }
  1106. /*
  1107. * Initialize POSIX timer handling for a single task.
  1108. */
  1109. static void posix_cpu_timers_init(struct task_struct *tsk)
  1110. {
  1111. tsk->cputime_expires.prof_exp = 0;
  1112. tsk->cputime_expires.virt_exp = 0;
  1113. tsk->cputime_expires.sched_exp = 0;
  1114. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  1115. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  1116. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  1117. }
  1118. static inline void
  1119. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  1120. {
  1121. task->pids[type].pid = pid;
  1122. }
  1123. /*
  1124. * This creates a new process as a copy of the old one,
  1125. * but does not actually start it yet.
  1126. *
  1127. * It copies the registers, and all the appropriate
  1128. * parts of the process environment (as per the clone
  1129. * flags). The actual kick-off is left to the caller.
  1130. */
  1131. static struct task_struct *copy_process(unsigned long clone_flags,
  1132. unsigned long stack_start,
  1133. unsigned long stack_size,
  1134. int __user *child_tidptr,
  1135. struct pid *pid,
  1136. int trace,
  1137. unsigned long tls,
  1138. int node)
  1139. {
  1140. int retval;
  1141. struct task_struct *p;
  1142. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1143. return ERR_PTR(-EINVAL);
  1144. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  1145. return ERR_PTR(-EINVAL);
  1146. /*
  1147. * Thread groups must share signals as well, and detached threads
  1148. * can only be started up within the thread group.
  1149. */
  1150. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1151. return ERR_PTR(-EINVAL);
  1152. /*
  1153. * Shared signal handlers imply shared VM. By way of the above,
  1154. * thread groups also imply shared VM. Blocking this case allows
  1155. * for various simplifications in other code.
  1156. */
  1157. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1158. return ERR_PTR(-EINVAL);
  1159. /*
  1160. * Siblings of global init remain as zombies on exit since they are
  1161. * not reaped by their parent (swapper). To solve this and to avoid
  1162. * multi-rooted process trees, prevent global and container-inits
  1163. * from creating siblings.
  1164. */
  1165. if ((clone_flags & CLONE_PARENT) &&
  1166. current->signal->flags & SIGNAL_UNKILLABLE)
  1167. return ERR_PTR(-EINVAL);
  1168. /*
  1169. * If the new process will be in a different pid or user namespace
  1170. * do not allow it to share a thread group with the forking task.
  1171. */
  1172. if (clone_flags & CLONE_THREAD) {
  1173. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1174. (task_active_pid_ns(current) !=
  1175. current->nsproxy->pid_ns_for_children))
  1176. return ERR_PTR(-EINVAL);
  1177. }
  1178. retval = security_task_create(clone_flags);
  1179. if (retval)
  1180. goto fork_out;
  1181. retval = -ENOMEM;
  1182. p = dup_task_struct(current, node);
  1183. if (!p)
  1184. goto fork_out;
  1185. ftrace_graph_init_task(p);
  1186. rt_mutex_init_task(p);
  1187. #ifdef CONFIG_PROVE_LOCKING
  1188. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1189. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1190. #endif
  1191. retval = -EAGAIN;
  1192. if (atomic_read(&p->real_cred->user->processes) >=
  1193. task_rlimit(p, RLIMIT_NPROC)) {
  1194. if (p->real_cred->user != INIT_USER &&
  1195. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1196. goto bad_fork_free;
  1197. }
  1198. current->flags &= ~PF_NPROC_EXCEEDED;
  1199. retval = copy_creds(p, clone_flags);
  1200. if (retval < 0)
  1201. goto bad_fork_free;
  1202. /*
  1203. * If multiple threads are within copy_process(), then this check
  1204. * triggers too late. This doesn't hurt, the check is only there
  1205. * to stop root fork bombs.
  1206. */
  1207. retval = -EAGAIN;
  1208. if (nr_threads >= max_threads)
  1209. goto bad_fork_cleanup_count;
  1210. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1211. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  1212. p->flags |= PF_FORKNOEXEC;
  1213. INIT_LIST_HEAD(&p->children);
  1214. INIT_LIST_HEAD(&p->sibling);
  1215. rcu_copy_process(p);
  1216. p->vfork_done = NULL;
  1217. spin_lock_init(&p->alloc_lock);
  1218. init_sigpending(&p->pending);
  1219. p->utime = p->stime = p->gtime = 0;
  1220. p->utimescaled = p->stimescaled = 0;
  1221. prev_cputime_init(&p->prev_cputime);
  1222. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1223. seqcount_init(&p->vtime_seqcount);
  1224. p->vtime_snap = 0;
  1225. p->vtime_snap_whence = VTIME_INACTIVE;
  1226. #endif
  1227. #if defined(SPLIT_RSS_COUNTING)
  1228. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1229. #endif
  1230. p->default_timer_slack_ns = current->timer_slack_ns;
  1231. task_io_accounting_init(&p->ioac);
  1232. acct_clear_integrals(p);
  1233. posix_cpu_timers_init(p);
  1234. p->start_time = ktime_get_ns();
  1235. p->real_start_time = ktime_get_boot_ns();
  1236. p->io_context = NULL;
  1237. p->audit_context = NULL;
  1238. threadgroup_change_begin(current);
  1239. cgroup_fork(p);
  1240. #ifdef CONFIG_NUMA
  1241. p->mempolicy = mpol_dup(p->mempolicy);
  1242. if (IS_ERR(p->mempolicy)) {
  1243. retval = PTR_ERR(p->mempolicy);
  1244. p->mempolicy = NULL;
  1245. goto bad_fork_cleanup_threadgroup_lock;
  1246. }
  1247. #endif
  1248. #ifdef CONFIG_CPUSETS
  1249. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1250. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1251. seqcount_init(&p->mems_allowed_seq);
  1252. #endif
  1253. #ifdef CONFIG_TRACE_IRQFLAGS
  1254. p->irq_events = 0;
  1255. p->hardirqs_enabled = 0;
  1256. p->hardirq_enable_ip = 0;
  1257. p->hardirq_enable_event = 0;
  1258. p->hardirq_disable_ip = _THIS_IP_;
  1259. p->hardirq_disable_event = 0;
  1260. p->softirqs_enabled = 1;
  1261. p->softirq_enable_ip = _THIS_IP_;
  1262. p->softirq_enable_event = 0;
  1263. p->softirq_disable_ip = 0;
  1264. p->softirq_disable_event = 0;
  1265. p->hardirq_context = 0;
  1266. p->softirq_context = 0;
  1267. #endif
  1268. p->pagefault_disabled = 0;
  1269. #ifdef CONFIG_LOCKDEP
  1270. p->lockdep_depth = 0; /* no locks held yet */
  1271. p->curr_chain_key = 0;
  1272. p->lockdep_recursion = 0;
  1273. #endif
  1274. #ifdef CONFIG_DEBUG_MUTEXES
  1275. p->blocked_on = NULL; /* not blocked yet */
  1276. #endif
  1277. #ifdef CONFIG_BCACHE
  1278. p->sequential_io = 0;
  1279. p->sequential_io_avg = 0;
  1280. #endif
  1281. /* Perform scheduler related setup. Assign this task to a CPU. */
  1282. retval = sched_fork(clone_flags, p);
  1283. if (retval)
  1284. goto bad_fork_cleanup_policy;
  1285. retval = perf_event_init_task(p);
  1286. if (retval)
  1287. goto bad_fork_cleanup_policy;
  1288. retval = audit_alloc(p);
  1289. if (retval)
  1290. goto bad_fork_cleanup_perf;
  1291. /* copy all the process information */
  1292. shm_init_task(p);
  1293. retval = copy_semundo(clone_flags, p);
  1294. if (retval)
  1295. goto bad_fork_cleanup_audit;
  1296. retval = copy_files(clone_flags, p);
  1297. if (retval)
  1298. goto bad_fork_cleanup_semundo;
  1299. retval = copy_fs(clone_flags, p);
  1300. if (retval)
  1301. goto bad_fork_cleanup_files;
  1302. retval = copy_sighand(clone_flags, p);
  1303. if (retval)
  1304. goto bad_fork_cleanup_fs;
  1305. retval = copy_signal(clone_flags, p);
  1306. if (retval)
  1307. goto bad_fork_cleanup_sighand;
  1308. retval = copy_mm(clone_flags, p);
  1309. if (retval)
  1310. goto bad_fork_cleanup_signal;
  1311. retval = copy_namespaces(clone_flags, p);
  1312. if (retval)
  1313. goto bad_fork_cleanup_mm;
  1314. retval = copy_io(clone_flags, p);
  1315. if (retval)
  1316. goto bad_fork_cleanup_namespaces;
  1317. retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
  1318. if (retval)
  1319. goto bad_fork_cleanup_io;
  1320. if (pid != &init_struct_pid) {
  1321. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1322. if (IS_ERR(pid)) {
  1323. retval = PTR_ERR(pid);
  1324. goto bad_fork_cleanup_thread;
  1325. }
  1326. }
  1327. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1328. /*
  1329. * Clear TID on mm_release()?
  1330. */
  1331. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1332. #ifdef CONFIG_BLOCK
  1333. p->plug = NULL;
  1334. #endif
  1335. #ifdef CONFIG_FUTEX
  1336. p->robust_list = NULL;
  1337. #ifdef CONFIG_COMPAT
  1338. p->compat_robust_list = NULL;
  1339. #endif
  1340. INIT_LIST_HEAD(&p->pi_state_list);
  1341. p->pi_state_cache = NULL;
  1342. #endif
  1343. /*
  1344. * sigaltstack should be cleared when sharing the same VM
  1345. */
  1346. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1347. sas_ss_reset(p);
  1348. /*
  1349. * Syscall tracing and stepping should be turned off in the
  1350. * child regardless of CLONE_PTRACE.
  1351. */
  1352. user_disable_single_step(p);
  1353. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1354. #ifdef TIF_SYSCALL_EMU
  1355. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1356. #endif
  1357. clear_all_latency_tracing(p);
  1358. /* ok, now we should be set up.. */
  1359. p->pid = pid_nr(pid);
  1360. if (clone_flags & CLONE_THREAD) {
  1361. p->exit_signal = -1;
  1362. p->group_leader = current->group_leader;
  1363. p->tgid = current->tgid;
  1364. } else {
  1365. if (clone_flags & CLONE_PARENT)
  1366. p->exit_signal = current->group_leader->exit_signal;
  1367. else
  1368. p->exit_signal = (clone_flags & CSIGNAL);
  1369. p->group_leader = p;
  1370. p->tgid = p->pid;
  1371. }
  1372. p->nr_dirtied = 0;
  1373. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1374. p->dirty_paused_when = 0;
  1375. p->pdeath_signal = 0;
  1376. INIT_LIST_HEAD(&p->thread_group);
  1377. p->task_works = NULL;
  1378. /*
  1379. * Ensure that the cgroup subsystem policies allow the new process to be
  1380. * forked. It should be noted the the new process's css_set can be changed
  1381. * between here and cgroup_post_fork() if an organisation operation is in
  1382. * progress.
  1383. */
  1384. retval = cgroup_can_fork(p);
  1385. if (retval)
  1386. goto bad_fork_free_pid;
  1387. /*
  1388. * Make it visible to the rest of the system, but dont wake it up yet.
  1389. * Need tasklist lock for parent etc handling!
  1390. */
  1391. write_lock_irq(&tasklist_lock);
  1392. /* CLONE_PARENT re-uses the old parent */
  1393. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1394. p->real_parent = current->real_parent;
  1395. p->parent_exec_id = current->parent_exec_id;
  1396. } else {
  1397. p->real_parent = current;
  1398. p->parent_exec_id = current->self_exec_id;
  1399. }
  1400. spin_lock(&current->sighand->siglock);
  1401. /*
  1402. * Copy seccomp details explicitly here, in case they were changed
  1403. * before holding sighand lock.
  1404. */
  1405. copy_seccomp(p);
  1406. /*
  1407. * Process group and session signals need to be delivered to just the
  1408. * parent before the fork or both the parent and the child after the
  1409. * fork. Restart if a signal comes in before we add the new process to
  1410. * it's process group.
  1411. * A fatal signal pending means that current will exit, so the new
  1412. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1413. */
  1414. recalc_sigpending();
  1415. if (signal_pending(current)) {
  1416. spin_unlock(&current->sighand->siglock);
  1417. write_unlock_irq(&tasklist_lock);
  1418. retval = -ERESTARTNOINTR;
  1419. goto bad_fork_cancel_cgroup;
  1420. }
  1421. if (likely(p->pid)) {
  1422. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1423. init_task_pid(p, PIDTYPE_PID, pid);
  1424. if (thread_group_leader(p)) {
  1425. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1426. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1427. if (is_child_reaper(pid)) {
  1428. ns_of_pid(pid)->child_reaper = p;
  1429. p->signal->flags |= SIGNAL_UNKILLABLE;
  1430. }
  1431. p->signal->leader_pid = pid;
  1432. p->signal->tty = tty_kref_get(current->signal->tty);
  1433. list_add_tail(&p->sibling, &p->real_parent->children);
  1434. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1435. attach_pid(p, PIDTYPE_PGID);
  1436. attach_pid(p, PIDTYPE_SID);
  1437. __this_cpu_inc(process_counts);
  1438. } else {
  1439. current->signal->nr_threads++;
  1440. atomic_inc(&current->signal->live);
  1441. atomic_inc(&current->signal->sigcnt);
  1442. list_add_tail_rcu(&p->thread_group,
  1443. &p->group_leader->thread_group);
  1444. list_add_tail_rcu(&p->thread_node,
  1445. &p->signal->thread_head);
  1446. }
  1447. attach_pid(p, PIDTYPE_PID);
  1448. nr_threads++;
  1449. }
  1450. total_forks++;
  1451. spin_unlock(&current->sighand->siglock);
  1452. syscall_tracepoint_update(p);
  1453. write_unlock_irq(&tasklist_lock);
  1454. proc_fork_connector(p);
  1455. cgroup_post_fork(p);
  1456. threadgroup_change_end(current);
  1457. perf_event_fork(p);
  1458. trace_task_newtask(p, clone_flags);
  1459. uprobe_copy_process(p, clone_flags);
  1460. return p;
  1461. bad_fork_cancel_cgroup:
  1462. cgroup_cancel_fork(p);
  1463. bad_fork_free_pid:
  1464. if (pid != &init_struct_pid)
  1465. free_pid(pid);
  1466. bad_fork_cleanup_thread:
  1467. exit_thread(p);
  1468. bad_fork_cleanup_io:
  1469. if (p->io_context)
  1470. exit_io_context(p);
  1471. bad_fork_cleanup_namespaces:
  1472. exit_task_namespaces(p);
  1473. bad_fork_cleanup_mm:
  1474. if (p->mm)
  1475. mmput(p->mm);
  1476. bad_fork_cleanup_signal:
  1477. if (!(clone_flags & CLONE_THREAD))
  1478. free_signal_struct(p->signal);
  1479. bad_fork_cleanup_sighand:
  1480. __cleanup_sighand(p->sighand);
  1481. bad_fork_cleanup_fs:
  1482. exit_fs(p); /* blocking */
  1483. bad_fork_cleanup_files:
  1484. exit_files(p); /* blocking */
  1485. bad_fork_cleanup_semundo:
  1486. exit_sem(p);
  1487. bad_fork_cleanup_audit:
  1488. audit_free(p);
  1489. bad_fork_cleanup_perf:
  1490. perf_event_free_task(p);
  1491. bad_fork_cleanup_policy:
  1492. #ifdef CONFIG_NUMA
  1493. mpol_put(p->mempolicy);
  1494. bad_fork_cleanup_threadgroup_lock:
  1495. #endif
  1496. threadgroup_change_end(current);
  1497. delayacct_tsk_free(p);
  1498. bad_fork_cleanup_count:
  1499. atomic_dec(&p->cred->user->processes);
  1500. exit_creds(p);
  1501. bad_fork_free:
  1502. free_task(p);
  1503. fork_out:
  1504. return ERR_PTR(retval);
  1505. }
  1506. static inline void init_idle_pids(struct pid_link *links)
  1507. {
  1508. enum pid_type type;
  1509. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1510. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1511. links[type].pid = &init_struct_pid;
  1512. }
  1513. }
  1514. struct task_struct *fork_idle(int cpu)
  1515. {
  1516. struct task_struct *task;
  1517. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
  1518. cpu_to_node(cpu));
  1519. if (!IS_ERR(task)) {
  1520. init_idle_pids(task->pids);
  1521. init_idle(task, cpu);
  1522. }
  1523. return task;
  1524. }
  1525. /*
  1526. * Ok, this is the main fork-routine.
  1527. *
  1528. * It copies the process, and if successful kick-starts
  1529. * it and waits for it to finish using the VM if required.
  1530. */
  1531. long _do_fork(unsigned long clone_flags,
  1532. unsigned long stack_start,
  1533. unsigned long stack_size,
  1534. int __user *parent_tidptr,
  1535. int __user *child_tidptr,
  1536. unsigned long tls)
  1537. {
  1538. struct task_struct *p;
  1539. int trace = 0;
  1540. long nr;
  1541. /*
  1542. * Determine whether and which event to report to ptracer. When
  1543. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1544. * requested, no event is reported; otherwise, report if the event
  1545. * for the type of forking is enabled.
  1546. */
  1547. if (!(clone_flags & CLONE_UNTRACED)) {
  1548. if (clone_flags & CLONE_VFORK)
  1549. trace = PTRACE_EVENT_VFORK;
  1550. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1551. trace = PTRACE_EVENT_CLONE;
  1552. else
  1553. trace = PTRACE_EVENT_FORK;
  1554. if (likely(!ptrace_event_enabled(current, trace)))
  1555. trace = 0;
  1556. }
  1557. p = copy_process(clone_flags, stack_start, stack_size,
  1558. child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
  1559. /*
  1560. * Do this prior waking up the new thread - the thread pointer
  1561. * might get invalid after that point, if the thread exits quickly.
  1562. */
  1563. if (!IS_ERR(p)) {
  1564. struct completion vfork;
  1565. struct pid *pid;
  1566. trace_sched_process_fork(current, p);
  1567. pid = get_task_pid(p, PIDTYPE_PID);
  1568. nr = pid_vnr(pid);
  1569. if (clone_flags & CLONE_PARENT_SETTID)
  1570. put_user(nr, parent_tidptr);
  1571. if (clone_flags & CLONE_VFORK) {
  1572. p->vfork_done = &vfork;
  1573. init_completion(&vfork);
  1574. get_task_struct(p);
  1575. }
  1576. wake_up_new_task(p);
  1577. /* forking complete and child started to run, tell ptracer */
  1578. if (unlikely(trace))
  1579. ptrace_event_pid(trace, pid);
  1580. if (clone_flags & CLONE_VFORK) {
  1581. if (!wait_for_vfork_done(p, &vfork))
  1582. ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
  1583. }
  1584. put_pid(pid);
  1585. } else {
  1586. nr = PTR_ERR(p);
  1587. }
  1588. return nr;
  1589. }
  1590. #ifndef CONFIG_HAVE_COPY_THREAD_TLS
  1591. /* For compatibility with architectures that call do_fork directly rather than
  1592. * using the syscall entry points below. */
  1593. long do_fork(unsigned long clone_flags,
  1594. unsigned long stack_start,
  1595. unsigned long stack_size,
  1596. int __user *parent_tidptr,
  1597. int __user *child_tidptr)
  1598. {
  1599. return _do_fork(clone_flags, stack_start, stack_size,
  1600. parent_tidptr, child_tidptr, 0);
  1601. }
  1602. #endif
  1603. /*
  1604. * Create a kernel thread.
  1605. */
  1606. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1607. {
  1608. return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1609. (unsigned long)arg, NULL, NULL, 0);
  1610. }
  1611. #ifdef __ARCH_WANT_SYS_FORK
  1612. SYSCALL_DEFINE0(fork)
  1613. {
  1614. #ifdef CONFIG_MMU
  1615. return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
  1616. #else
  1617. /* can not support in nommu mode */
  1618. return -EINVAL;
  1619. #endif
  1620. }
  1621. #endif
  1622. #ifdef __ARCH_WANT_SYS_VFORK
  1623. SYSCALL_DEFINE0(vfork)
  1624. {
  1625. return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1626. 0, NULL, NULL, 0);
  1627. }
  1628. #endif
  1629. #ifdef __ARCH_WANT_SYS_CLONE
  1630. #ifdef CONFIG_CLONE_BACKWARDS
  1631. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1632. int __user *, parent_tidptr,
  1633. unsigned long, tls,
  1634. int __user *, child_tidptr)
  1635. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1636. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1637. int __user *, parent_tidptr,
  1638. int __user *, child_tidptr,
  1639. unsigned long, tls)
  1640. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1641. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1642. int, stack_size,
  1643. int __user *, parent_tidptr,
  1644. int __user *, child_tidptr,
  1645. unsigned long, tls)
  1646. #else
  1647. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1648. int __user *, parent_tidptr,
  1649. int __user *, child_tidptr,
  1650. unsigned long, tls)
  1651. #endif
  1652. {
  1653. return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
  1654. }
  1655. #endif
  1656. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1657. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1658. #endif
  1659. static void sighand_ctor(void *data)
  1660. {
  1661. struct sighand_struct *sighand = data;
  1662. spin_lock_init(&sighand->siglock);
  1663. init_waitqueue_head(&sighand->signalfd_wqh);
  1664. }
  1665. void __init proc_caches_init(void)
  1666. {
  1667. sighand_cachep = kmem_cache_create("sighand_cache",
  1668. sizeof(struct sighand_struct), 0,
  1669. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1670. SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
  1671. signal_cachep = kmem_cache_create("signal_cache",
  1672. sizeof(struct signal_struct), 0,
  1673. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1674. NULL);
  1675. files_cachep = kmem_cache_create("files_cache",
  1676. sizeof(struct files_struct), 0,
  1677. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1678. NULL);
  1679. fs_cachep = kmem_cache_create("fs_cache",
  1680. sizeof(struct fs_struct), 0,
  1681. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1682. NULL);
  1683. /*
  1684. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1685. * whole struct cpumask for the OFFSTACK case. We could change
  1686. * this to *only* allocate as much of it as required by the
  1687. * maximum number of CPU's we can ever have. The cpumask_allocation
  1688. * is at the end of the structure, exactly for that reason.
  1689. */
  1690. mm_cachep = kmem_cache_create("mm_struct",
  1691. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1692. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1693. NULL);
  1694. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
  1695. mmap_init();
  1696. nsproxy_cache_init();
  1697. }
  1698. /*
  1699. * Check constraints on flags passed to the unshare system call.
  1700. */
  1701. static int check_unshare_flags(unsigned long unshare_flags)
  1702. {
  1703. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1704. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1705. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1706. CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
  1707. return -EINVAL;
  1708. /*
  1709. * Not implemented, but pretend it works if there is nothing
  1710. * to unshare. Note that unsharing the address space or the
  1711. * signal handlers also need to unshare the signal queues (aka
  1712. * CLONE_THREAD).
  1713. */
  1714. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1715. if (!thread_group_empty(current))
  1716. return -EINVAL;
  1717. }
  1718. if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
  1719. if (atomic_read(&current->sighand->count) > 1)
  1720. return -EINVAL;
  1721. }
  1722. if (unshare_flags & CLONE_VM) {
  1723. if (!current_is_single_threaded())
  1724. return -EINVAL;
  1725. }
  1726. return 0;
  1727. }
  1728. /*
  1729. * Unshare the filesystem structure if it is being shared
  1730. */
  1731. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1732. {
  1733. struct fs_struct *fs = current->fs;
  1734. if (!(unshare_flags & CLONE_FS) || !fs)
  1735. return 0;
  1736. /* don't need lock here; in the worst case we'll do useless copy */
  1737. if (fs->users == 1)
  1738. return 0;
  1739. *new_fsp = copy_fs_struct(fs);
  1740. if (!*new_fsp)
  1741. return -ENOMEM;
  1742. return 0;
  1743. }
  1744. /*
  1745. * Unshare file descriptor table if it is being shared
  1746. */
  1747. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1748. {
  1749. struct files_struct *fd = current->files;
  1750. int error = 0;
  1751. if ((unshare_flags & CLONE_FILES) &&
  1752. (fd && atomic_read(&fd->count) > 1)) {
  1753. *new_fdp = dup_fd(fd, &error);
  1754. if (!*new_fdp)
  1755. return error;
  1756. }
  1757. return 0;
  1758. }
  1759. /*
  1760. * unshare allows a process to 'unshare' part of the process
  1761. * context which was originally shared using clone. copy_*
  1762. * functions used by do_fork() cannot be used here directly
  1763. * because they modify an inactive task_struct that is being
  1764. * constructed. Here we are modifying the current, active,
  1765. * task_struct.
  1766. */
  1767. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1768. {
  1769. struct fs_struct *fs, *new_fs = NULL;
  1770. struct files_struct *fd, *new_fd = NULL;
  1771. struct cred *new_cred = NULL;
  1772. struct nsproxy *new_nsproxy = NULL;
  1773. int do_sysvsem = 0;
  1774. int err;
  1775. /*
  1776. * If unsharing a user namespace must also unshare the thread group
  1777. * and unshare the filesystem root and working directories.
  1778. */
  1779. if (unshare_flags & CLONE_NEWUSER)
  1780. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1781. /*
  1782. * If unsharing vm, must also unshare signal handlers.
  1783. */
  1784. if (unshare_flags & CLONE_VM)
  1785. unshare_flags |= CLONE_SIGHAND;
  1786. /*
  1787. * If unsharing a signal handlers, must also unshare the signal queues.
  1788. */
  1789. if (unshare_flags & CLONE_SIGHAND)
  1790. unshare_flags |= CLONE_THREAD;
  1791. /*
  1792. * If unsharing namespace, must also unshare filesystem information.
  1793. */
  1794. if (unshare_flags & CLONE_NEWNS)
  1795. unshare_flags |= CLONE_FS;
  1796. err = check_unshare_flags(unshare_flags);
  1797. if (err)
  1798. goto bad_unshare_out;
  1799. /*
  1800. * CLONE_NEWIPC must also detach from the undolist: after switching
  1801. * to a new ipc namespace, the semaphore arrays from the old
  1802. * namespace are unreachable.
  1803. */
  1804. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1805. do_sysvsem = 1;
  1806. err = unshare_fs(unshare_flags, &new_fs);
  1807. if (err)
  1808. goto bad_unshare_out;
  1809. err = unshare_fd(unshare_flags, &new_fd);
  1810. if (err)
  1811. goto bad_unshare_cleanup_fs;
  1812. err = unshare_userns(unshare_flags, &new_cred);
  1813. if (err)
  1814. goto bad_unshare_cleanup_fd;
  1815. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1816. new_cred, new_fs);
  1817. if (err)
  1818. goto bad_unshare_cleanup_cred;
  1819. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1820. if (do_sysvsem) {
  1821. /*
  1822. * CLONE_SYSVSEM is equivalent to sys_exit().
  1823. */
  1824. exit_sem(current);
  1825. }
  1826. if (unshare_flags & CLONE_NEWIPC) {
  1827. /* Orphan segments in old ns (see sem above). */
  1828. exit_shm(current);
  1829. shm_init_task(current);
  1830. }
  1831. if (new_nsproxy)
  1832. switch_task_namespaces(current, new_nsproxy);
  1833. task_lock(current);
  1834. if (new_fs) {
  1835. fs = current->fs;
  1836. spin_lock(&fs->lock);
  1837. current->fs = new_fs;
  1838. if (--fs->users)
  1839. new_fs = NULL;
  1840. else
  1841. new_fs = fs;
  1842. spin_unlock(&fs->lock);
  1843. }
  1844. if (new_fd) {
  1845. fd = current->files;
  1846. current->files = new_fd;
  1847. new_fd = fd;
  1848. }
  1849. task_unlock(current);
  1850. if (new_cred) {
  1851. /* Install the new user namespace */
  1852. commit_creds(new_cred);
  1853. new_cred = NULL;
  1854. }
  1855. }
  1856. bad_unshare_cleanup_cred:
  1857. if (new_cred)
  1858. put_cred(new_cred);
  1859. bad_unshare_cleanup_fd:
  1860. if (new_fd)
  1861. put_files_struct(new_fd);
  1862. bad_unshare_cleanup_fs:
  1863. if (new_fs)
  1864. free_fs_struct(new_fs);
  1865. bad_unshare_out:
  1866. return err;
  1867. }
  1868. /*
  1869. * Helper to unshare the files of the current task.
  1870. * We don't want to expose copy_files internals to
  1871. * the exec layer of the kernel.
  1872. */
  1873. int unshare_files(struct files_struct **displaced)
  1874. {
  1875. struct task_struct *task = current;
  1876. struct files_struct *copy = NULL;
  1877. int error;
  1878. error = unshare_fd(CLONE_FILES, &copy);
  1879. if (error || !copy) {
  1880. *displaced = NULL;
  1881. return error;
  1882. }
  1883. *displaced = task->files;
  1884. task_lock(task);
  1885. task->files = copy;
  1886. task_unlock(task);
  1887. return 0;
  1888. }
  1889. int sysctl_max_threads(struct ctl_table *table, int write,
  1890. void __user *buffer, size_t *lenp, loff_t *ppos)
  1891. {
  1892. struct ctl_table t;
  1893. int ret;
  1894. int threads = max_threads;
  1895. int min = MIN_THREADS;
  1896. int max = MAX_THREADS;
  1897. t = *table;
  1898. t.data = &threads;
  1899. t.extra1 = &min;
  1900. t.extra2 = &max;
  1901. ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1902. if (ret || !write)
  1903. return ret;
  1904. set_max_threads(threads);
  1905. return 0;
  1906. }