mm.h 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _LINUX_MM_H
  3. #define _LINUX_MM_H
  4. #include <linux/errno.h>
  5. #ifdef __KERNEL__
  6. #include <linux/mmdebug.h>
  7. #include <linux/gfp.h>
  8. #include <linux/bug.h>
  9. #include <linux/list.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/rbtree.h>
  12. #include <linux/atomic.h>
  13. #include <linux/debug_locks.h>
  14. #include <linux/mm_types.h>
  15. #include <linux/range.h>
  16. #include <linux/pfn.h>
  17. #include <linux/percpu-refcount.h>
  18. #include <linux/bit_spinlock.h>
  19. #include <linux/shrinker.h>
  20. #include <linux/resource.h>
  21. #include <linux/page_ext.h>
  22. #include <linux/err.h>
  23. #include <linux/page_ref.h>
  24. #include <linux/memremap.h>
  25. struct mempolicy;
  26. struct anon_vma;
  27. struct anon_vma_chain;
  28. struct file_ra_state;
  29. struct user_struct;
  30. struct writeback_control;
  31. struct bdi_writeback;
  32. void init_mm_internals(void);
  33. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  34. extern unsigned long max_mapnr;
  35. static inline void set_max_mapnr(unsigned long limit)
  36. {
  37. max_mapnr = limit;
  38. }
  39. #else
  40. static inline void set_max_mapnr(unsigned long limit) { }
  41. #endif
  42. extern unsigned long totalram_pages;
  43. extern void * high_memory;
  44. extern int page_cluster;
  45. #ifdef CONFIG_SYSCTL
  46. extern int sysctl_legacy_va_layout;
  47. #else
  48. #define sysctl_legacy_va_layout 0
  49. #endif
  50. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  51. extern const int mmap_rnd_bits_min;
  52. extern const int mmap_rnd_bits_max;
  53. extern int mmap_rnd_bits __read_mostly;
  54. #endif
  55. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  56. extern const int mmap_rnd_compat_bits_min;
  57. extern const int mmap_rnd_compat_bits_max;
  58. extern int mmap_rnd_compat_bits __read_mostly;
  59. #endif
  60. #include <asm/page.h>
  61. #include <asm/pgtable.h>
  62. #include <asm/processor.h>
  63. #ifndef __pa_symbol
  64. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  65. #endif
  66. #ifndef page_to_virt
  67. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  68. #endif
  69. #ifndef lm_alias
  70. #define lm_alias(x) __va(__pa_symbol(x))
  71. #endif
  72. /*
  73. * To prevent common memory management code establishing
  74. * a zero page mapping on a read fault.
  75. * This macro should be defined within <asm/pgtable.h>.
  76. * s390 does this to prevent multiplexing of hardware bits
  77. * related to the physical page in case of virtualization.
  78. */
  79. #ifndef mm_forbids_zeropage
  80. #define mm_forbids_zeropage(X) (0)
  81. #endif
  82. /*
  83. * On some architectures it is expensive to call memset() for small sizes.
  84. * Those architectures should provide their own implementation of "struct page"
  85. * zeroing by defining this macro in <asm/pgtable.h>.
  86. */
  87. #ifndef mm_zero_struct_page
  88. #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
  89. #endif
  90. /*
  91. * Default maximum number of active map areas, this limits the number of vmas
  92. * per mm struct. Users can overwrite this number by sysctl but there is a
  93. * problem.
  94. *
  95. * When a program's coredump is generated as ELF format, a section is created
  96. * per a vma. In ELF, the number of sections is represented in unsigned short.
  97. * This means the number of sections should be smaller than 65535 at coredump.
  98. * Because the kernel adds some informative sections to a image of program at
  99. * generating coredump, we need some margin. The number of extra sections is
  100. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  101. *
  102. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  103. * not a hard limit any more. Although some userspace tools can be surprised by
  104. * that.
  105. */
  106. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  107. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  108. extern int sysctl_max_map_count;
  109. extern unsigned long sysctl_user_reserve_kbytes;
  110. extern unsigned long sysctl_admin_reserve_kbytes;
  111. extern int sysctl_overcommit_memory;
  112. extern int sysctl_overcommit_ratio;
  113. extern unsigned long sysctl_overcommit_kbytes;
  114. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  115. size_t *, loff_t *);
  116. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  117. size_t *, loff_t *);
  118. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  119. /* to align the pointer to the (next) page boundary */
  120. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  121. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  122. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  123. /*
  124. * Linux kernel virtual memory manager primitives.
  125. * The idea being to have a "virtual" mm in the same way
  126. * we have a virtual fs - giving a cleaner interface to the
  127. * mm details, and allowing different kinds of memory mappings
  128. * (from shared memory to executable loading to arbitrary
  129. * mmap() functions).
  130. */
  131. extern struct kmem_cache *vm_area_cachep;
  132. #ifndef CONFIG_MMU
  133. extern struct rb_root nommu_region_tree;
  134. extern struct rw_semaphore nommu_region_sem;
  135. extern unsigned int kobjsize(const void *objp);
  136. #endif
  137. /*
  138. * vm_flags in vm_area_struct, see mm_types.h.
  139. * When changing, update also include/trace/events/mmflags.h
  140. */
  141. #define VM_NONE 0x00000000
  142. #define VM_READ 0x00000001 /* currently active flags */
  143. #define VM_WRITE 0x00000002
  144. #define VM_EXEC 0x00000004
  145. #define VM_SHARED 0x00000008
  146. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  147. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  148. #define VM_MAYWRITE 0x00000020
  149. #define VM_MAYEXEC 0x00000040
  150. #define VM_MAYSHARE 0x00000080
  151. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  152. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  153. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  154. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  155. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  156. #define VM_LOCKED 0x00002000
  157. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  158. /* Used by sys_madvise() */
  159. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  160. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  161. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  162. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  163. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  164. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  165. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  166. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  167. #define VM_SYNC 0x00800000 /* Synchronous page faults */
  168. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  169. #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
  170. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  171. #ifdef CONFIG_MEM_SOFT_DIRTY
  172. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  173. #else
  174. # define VM_SOFTDIRTY 0
  175. #endif
  176. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  177. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  178. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  179. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  180. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  181. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  182. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  183. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  184. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  185. #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
  186. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  187. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  188. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  189. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  190. #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
  191. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  192. #if defined(CONFIG_X86)
  193. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  194. #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
  195. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  196. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  197. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
  198. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  199. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  200. #endif
  201. #elif defined(CONFIG_PPC)
  202. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  203. #elif defined(CONFIG_PARISC)
  204. # define VM_GROWSUP VM_ARCH_1
  205. #elif defined(CONFIG_IA64)
  206. # define VM_GROWSUP VM_ARCH_1
  207. #elif defined(CONFIG_SPARC64)
  208. # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
  209. # define VM_ARCH_CLEAR VM_SPARC_ADI
  210. #elif !defined(CONFIG_MMU)
  211. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  212. #endif
  213. #if defined(CONFIG_X86_INTEL_MPX)
  214. /* MPX specific bounds table or bounds directory */
  215. # define VM_MPX VM_HIGH_ARCH_4
  216. #else
  217. # define VM_MPX VM_NONE
  218. #endif
  219. #ifndef VM_GROWSUP
  220. # define VM_GROWSUP VM_NONE
  221. #endif
  222. /* Bits set in the VMA until the stack is in its final location */
  223. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  224. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  225. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  226. #endif
  227. #ifdef CONFIG_STACK_GROWSUP
  228. #define VM_STACK VM_GROWSUP
  229. #else
  230. #define VM_STACK VM_GROWSDOWN
  231. #endif
  232. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  233. /*
  234. * Special vmas that are non-mergable, non-mlock()able.
  235. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  236. */
  237. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  238. /* This mask defines which mm->def_flags a process can inherit its parent */
  239. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  240. /* This mask is used to clear all the VMA flags used by mlock */
  241. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  242. /* Arch-specific flags to clear when updating VM flags on protection change */
  243. #ifndef VM_ARCH_CLEAR
  244. # define VM_ARCH_CLEAR VM_NONE
  245. #endif
  246. #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
  247. /*
  248. * mapping from the currently active vm_flags protection bits (the
  249. * low four bits) to a page protection mask..
  250. */
  251. extern pgprot_t protection_map[16];
  252. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  253. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  254. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  255. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  256. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  257. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  258. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  259. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  260. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  261. #define FAULT_FLAG_TRACE \
  262. { FAULT_FLAG_WRITE, "WRITE" }, \
  263. { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
  264. { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
  265. { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
  266. { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
  267. { FAULT_FLAG_TRIED, "TRIED" }, \
  268. { FAULT_FLAG_USER, "USER" }, \
  269. { FAULT_FLAG_REMOTE, "REMOTE" }, \
  270. { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
  271. /*
  272. * vm_fault is filled by the the pagefault handler and passed to the vma's
  273. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  274. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  275. *
  276. * MM layer fills up gfp_mask for page allocations but fault handler might
  277. * alter it if its implementation requires a different allocation context.
  278. *
  279. * pgoff should be used in favour of virtual_address, if possible.
  280. */
  281. struct vm_fault {
  282. struct vm_area_struct *vma; /* Target VMA */
  283. unsigned int flags; /* FAULT_FLAG_xxx flags */
  284. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  285. pgoff_t pgoff; /* Logical page offset based on vma */
  286. unsigned long address; /* Faulting virtual address */
  287. pmd_t *pmd; /* Pointer to pmd entry matching
  288. * the 'address' */
  289. pud_t *pud; /* Pointer to pud entry matching
  290. * the 'address'
  291. */
  292. pte_t orig_pte; /* Value of PTE at the time of fault */
  293. struct page *cow_page; /* Page handler may use for COW fault */
  294. struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
  295. struct page *page; /* ->fault handlers should return a
  296. * page here, unless VM_FAULT_NOPAGE
  297. * is set (which is also implied by
  298. * VM_FAULT_ERROR).
  299. */
  300. /* These three entries are valid only while holding ptl lock */
  301. pte_t *pte; /* Pointer to pte entry matching
  302. * the 'address'. NULL if the page
  303. * table hasn't been allocated.
  304. */
  305. spinlock_t *ptl; /* Page table lock.
  306. * Protects pte page table if 'pte'
  307. * is not NULL, otherwise pmd.
  308. */
  309. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  310. * vm_ops->map_pages() calls
  311. * alloc_set_pte() from atomic context.
  312. * do_fault_around() pre-allocates
  313. * page table to avoid allocation from
  314. * atomic context.
  315. */
  316. };
  317. /* page entry size for vm->huge_fault() */
  318. enum page_entry_size {
  319. PE_SIZE_PTE = 0,
  320. PE_SIZE_PMD,
  321. PE_SIZE_PUD,
  322. };
  323. /*
  324. * These are the virtual MM functions - opening of an area, closing and
  325. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  326. * to the functions called when a no-page or a wp-page exception occurs.
  327. */
  328. struct vm_operations_struct {
  329. void (*open)(struct vm_area_struct * area);
  330. void (*close)(struct vm_area_struct * area);
  331. int (*split)(struct vm_area_struct * area, unsigned long addr);
  332. int (*mremap)(struct vm_area_struct * area);
  333. vm_fault_t (*fault)(struct vm_fault *vmf);
  334. vm_fault_t (*huge_fault)(struct vm_fault *vmf,
  335. enum page_entry_size pe_size);
  336. void (*map_pages)(struct vm_fault *vmf,
  337. pgoff_t start_pgoff, pgoff_t end_pgoff);
  338. unsigned long (*pagesize)(struct vm_area_struct * area);
  339. /* notification that a previously read-only page is about to become
  340. * writable, if an error is returned it will cause a SIGBUS */
  341. vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
  342. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  343. vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
  344. /* called by access_process_vm when get_user_pages() fails, typically
  345. * for use by special VMAs that can switch between memory and hardware
  346. */
  347. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  348. void *buf, int len, int write);
  349. /* Called by the /proc/PID/maps code to ask the vma whether it
  350. * has a special name. Returning non-NULL will also cause this
  351. * vma to be dumped unconditionally. */
  352. const char *(*name)(struct vm_area_struct *vma);
  353. #ifdef CONFIG_NUMA
  354. /*
  355. * set_policy() op must add a reference to any non-NULL @new mempolicy
  356. * to hold the policy upon return. Caller should pass NULL @new to
  357. * remove a policy and fall back to surrounding context--i.e. do not
  358. * install a MPOL_DEFAULT policy, nor the task or system default
  359. * mempolicy.
  360. */
  361. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  362. /*
  363. * get_policy() op must add reference [mpol_get()] to any policy at
  364. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  365. * in mm/mempolicy.c will do this automatically.
  366. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  367. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  368. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  369. * must return NULL--i.e., do not "fallback" to task or system default
  370. * policy.
  371. */
  372. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  373. unsigned long addr);
  374. #endif
  375. /*
  376. * Called by vm_normal_page() for special PTEs to find the
  377. * page for @addr. This is useful if the default behavior
  378. * (using pte_page()) would not find the correct page.
  379. */
  380. struct page *(*find_special_page)(struct vm_area_struct *vma,
  381. unsigned long addr);
  382. };
  383. struct mmu_gather;
  384. struct inode;
  385. #define page_private(page) ((page)->private)
  386. #define set_page_private(page, v) ((page)->private = (v))
  387. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  388. static inline int pmd_devmap(pmd_t pmd)
  389. {
  390. return 0;
  391. }
  392. static inline int pud_devmap(pud_t pud)
  393. {
  394. return 0;
  395. }
  396. static inline int pgd_devmap(pgd_t pgd)
  397. {
  398. return 0;
  399. }
  400. #endif
  401. /*
  402. * FIXME: take this include out, include page-flags.h in
  403. * files which need it (119 of them)
  404. */
  405. #include <linux/page-flags.h>
  406. #include <linux/huge_mm.h>
  407. /*
  408. * Methods to modify the page usage count.
  409. *
  410. * What counts for a page usage:
  411. * - cache mapping (page->mapping)
  412. * - private data (page->private)
  413. * - page mapped in a task's page tables, each mapping
  414. * is counted separately
  415. *
  416. * Also, many kernel routines increase the page count before a critical
  417. * routine so they can be sure the page doesn't go away from under them.
  418. */
  419. /*
  420. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  421. */
  422. static inline int put_page_testzero(struct page *page)
  423. {
  424. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  425. return page_ref_dec_and_test(page);
  426. }
  427. /*
  428. * Try to grab a ref unless the page has a refcount of zero, return false if
  429. * that is the case.
  430. * This can be called when MMU is off so it must not access
  431. * any of the virtual mappings.
  432. */
  433. static inline int get_page_unless_zero(struct page *page)
  434. {
  435. return page_ref_add_unless(page, 1, 0);
  436. }
  437. extern int page_is_ram(unsigned long pfn);
  438. enum {
  439. REGION_INTERSECTS,
  440. REGION_DISJOINT,
  441. REGION_MIXED,
  442. };
  443. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  444. unsigned long desc);
  445. /* Support for virtually mapped pages */
  446. struct page *vmalloc_to_page(const void *addr);
  447. unsigned long vmalloc_to_pfn(const void *addr);
  448. /*
  449. * Determine if an address is within the vmalloc range
  450. *
  451. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  452. * is no special casing required.
  453. */
  454. static inline bool is_vmalloc_addr(const void *x)
  455. {
  456. #ifdef CONFIG_MMU
  457. unsigned long addr = (unsigned long)x;
  458. return addr >= VMALLOC_START && addr < VMALLOC_END;
  459. #else
  460. return false;
  461. #endif
  462. }
  463. #ifdef CONFIG_MMU
  464. extern int is_vmalloc_or_module_addr(const void *x);
  465. #else
  466. static inline int is_vmalloc_or_module_addr(const void *x)
  467. {
  468. return 0;
  469. }
  470. #endif
  471. extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
  472. static inline void *kvmalloc(size_t size, gfp_t flags)
  473. {
  474. return kvmalloc_node(size, flags, NUMA_NO_NODE);
  475. }
  476. static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
  477. {
  478. return kvmalloc_node(size, flags | __GFP_ZERO, node);
  479. }
  480. static inline void *kvzalloc(size_t size, gfp_t flags)
  481. {
  482. return kvmalloc(size, flags | __GFP_ZERO);
  483. }
  484. static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
  485. {
  486. if (size != 0 && n > SIZE_MAX / size)
  487. return NULL;
  488. return kvmalloc(n * size, flags);
  489. }
  490. extern void kvfree(const void *addr);
  491. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  492. {
  493. return &page[1].compound_mapcount;
  494. }
  495. static inline int compound_mapcount(struct page *page)
  496. {
  497. VM_BUG_ON_PAGE(!PageCompound(page), page);
  498. page = compound_head(page);
  499. return atomic_read(compound_mapcount_ptr(page)) + 1;
  500. }
  501. /*
  502. * The atomic page->_mapcount, starts from -1: so that transitions
  503. * both from it and to it can be tracked, using atomic_inc_and_test
  504. * and atomic_add_negative(-1).
  505. */
  506. static inline void page_mapcount_reset(struct page *page)
  507. {
  508. atomic_set(&(page)->_mapcount, -1);
  509. }
  510. int __page_mapcount(struct page *page);
  511. static inline int page_mapcount(struct page *page)
  512. {
  513. VM_BUG_ON_PAGE(PageSlab(page), page);
  514. if (unlikely(PageCompound(page)))
  515. return __page_mapcount(page);
  516. return atomic_read(&page->_mapcount) + 1;
  517. }
  518. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  519. int total_mapcount(struct page *page);
  520. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  521. #else
  522. static inline int total_mapcount(struct page *page)
  523. {
  524. return page_mapcount(page);
  525. }
  526. static inline int page_trans_huge_mapcount(struct page *page,
  527. int *total_mapcount)
  528. {
  529. int mapcount = page_mapcount(page);
  530. if (total_mapcount)
  531. *total_mapcount = mapcount;
  532. return mapcount;
  533. }
  534. #endif
  535. static inline struct page *virt_to_head_page(const void *x)
  536. {
  537. struct page *page = virt_to_page(x);
  538. return compound_head(page);
  539. }
  540. void __put_page(struct page *page);
  541. void put_pages_list(struct list_head *pages);
  542. void split_page(struct page *page, unsigned int order);
  543. /*
  544. * Compound pages have a destructor function. Provide a
  545. * prototype for that function and accessor functions.
  546. * These are _only_ valid on the head of a compound page.
  547. */
  548. typedef void compound_page_dtor(struct page *);
  549. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  550. enum compound_dtor_id {
  551. NULL_COMPOUND_DTOR,
  552. COMPOUND_PAGE_DTOR,
  553. #ifdef CONFIG_HUGETLB_PAGE
  554. HUGETLB_PAGE_DTOR,
  555. #endif
  556. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  557. TRANSHUGE_PAGE_DTOR,
  558. #endif
  559. NR_COMPOUND_DTORS,
  560. };
  561. extern compound_page_dtor * const compound_page_dtors[];
  562. static inline void set_compound_page_dtor(struct page *page,
  563. enum compound_dtor_id compound_dtor)
  564. {
  565. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  566. page[1].compound_dtor = compound_dtor;
  567. }
  568. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  569. {
  570. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  571. return compound_page_dtors[page[1].compound_dtor];
  572. }
  573. static inline unsigned int compound_order(struct page *page)
  574. {
  575. if (!PageHead(page))
  576. return 0;
  577. return page[1].compound_order;
  578. }
  579. static inline void set_compound_order(struct page *page, unsigned int order)
  580. {
  581. page[1].compound_order = order;
  582. }
  583. void free_compound_page(struct page *page);
  584. #ifdef CONFIG_MMU
  585. /*
  586. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  587. * servicing faults for write access. In the normal case, do always want
  588. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  589. * that do not have writing enabled, when used by access_process_vm.
  590. */
  591. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  592. {
  593. if (likely(vma->vm_flags & VM_WRITE))
  594. pte = pte_mkwrite(pte);
  595. return pte;
  596. }
  597. int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  598. struct page *page);
  599. int finish_fault(struct vm_fault *vmf);
  600. int finish_mkwrite_fault(struct vm_fault *vmf);
  601. #endif
  602. /*
  603. * Multiple processes may "see" the same page. E.g. for untouched
  604. * mappings of /dev/null, all processes see the same page full of
  605. * zeroes, and text pages of executables and shared libraries have
  606. * only one copy in memory, at most, normally.
  607. *
  608. * For the non-reserved pages, page_count(page) denotes a reference count.
  609. * page_count() == 0 means the page is free. page->lru is then used for
  610. * freelist management in the buddy allocator.
  611. * page_count() > 0 means the page has been allocated.
  612. *
  613. * Pages are allocated by the slab allocator in order to provide memory
  614. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  615. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  616. * unless a particular usage is carefully commented. (the responsibility of
  617. * freeing the kmalloc memory is the caller's, of course).
  618. *
  619. * A page may be used by anyone else who does a __get_free_page().
  620. * In this case, page_count still tracks the references, and should only
  621. * be used through the normal accessor functions. The top bits of page->flags
  622. * and page->virtual store page management information, but all other fields
  623. * are unused and could be used privately, carefully. The management of this
  624. * page is the responsibility of the one who allocated it, and those who have
  625. * subsequently been given references to it.
  626. *
  627. * The other pages (we may call them "pagecache pages") are completely
  628. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  629. * The following discussion applies only to them.
  630. *
  631. * A pagecache page contains an opaque `private' member, which belongs to the
  632. * page's address_space. Usually, this is the address of a circular list of
  633. * the page's disk buffers. PG_private must be set to tell the VM to call
  634. * into the filesystem to release these pages.
  635. *
  636. * A page may belong to an inode's memory mapping. In this case, page->mapping
  637. * is the pointer to the inode, and page->index is the file offset of the page,
  638. * in units of PAGE_SIZE.
  639. *
  640. * If pagecache pages are not associated with an inode, they are said to be
  641. * anonymous pages. These may become associated with the swapcache, and in that
  642. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  643. *
  644. * In either case (swapcache or inode backed), the pagecache itself holds one
  645. * reference to the page. Setting PG_private should also increment the
  646. * refcount. The each user mapping also has a reference to the page.
  647. *
  648. * The pagecache pages are stored in a per-mapping radix tree, which is
  649. * rooted at mapping->i_pages, and indexed by offset.
  650. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  651. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  652. *
  653. * All pagecache pages may be subject to I/O:
  654. * - inode pages may need to be read from disk,
  655. * - inode pages which have been modified and are MAP_SHARED may need
  656. * to be written back to the inode on disk,
  657. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  658. * modified may need to be swapped out to swap space and (later) to be read
  659. * back into memory.
  660. */
  661. /*
  662. * The zone field is never updated after free_area_init_core()
  663. * sets it, so none of the operations on it need to be atomic.
  664. */
  665. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  666. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  667. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  668. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  669. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  670. /*
  671. * Define the bit shifts to access each section. For non-existent
  672. * sections we define the shift as 0; that plus a 0 mask ensures
  673. * the compiler will optimise away reference to them.
  674. */
  675. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  676. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  677. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  678. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  679. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  680. #ifdef NODE_NOT_IN_PAGE_FLAGS
  681. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  682. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  683. SECTIONS_PGOFF : ZONES_PGOFF)
  684. #else
  685. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  686. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  687. NODES_PGOFF : ZONES_PGOFF)
  688. #endif
  689. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  690. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  691. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  692. #endif
  693. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  694. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  695. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  696. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  697. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  698. static inline enum zone_type page_zonenum(const struct page *page)
  699. {
  700. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  701. }
  702. #ifdef CONFIG_ZONE_DEVICE
  703. static inline bool is_zone_device_page(const struct page *page)
  704. {
  705. return page_zonenum(page) == ZONE_DEVICE;
  706. }
  707. #else
  708. static inline bool is_zone_device_page(const struct page *page)
  709. {
  710. return false;
  711. }
  712. #endif
  713. #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
  714. void put_zone_device_private_or_public_page(struct page *page);
  715. DECLARE_STATIC_KEY_FALSE(device_private_key);
  716. #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
  717. static inline bool is_device_private_page(const struct page *page);
  718. static inline bool is_device_public_page(const struct page *page);
  719. #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
  720. static inline void put_zone_device_private_or_public_page(struct page *page)
  721. {
  722. }
  723. #define IS_HMM_ENABLED 0
  724. static inline bool is_device_private_page(const struct page *page)
  725. {
  726. return false;
  727. }
  728. static inline bool is_device_public_page(const struct page *page)
  729. {
  730. return false;
  731. }
  732. #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
  733. static inline void get_page(struct page *page)
  734. {
  735. page = compound_head(page);
  736. /*
  737. * Getting a normal page or the head of a compound page
  738. * requires to already have an elevated page->_refcount.
  739. */
  740. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  741. page_ref_inc(page);
  742. }
  743. static inline void put_page(struct page *page)
  744. {
  745. page = compound_head(page);
  746. /*
  747. * For private device pages we need to catch refcount transition from
  748. * 2 to 1, when refcount reach one it means the private device page is
  749. * free and we need to inform the device driver through callback. See
  750. * include/linux/memremap.h and HMM for details.
  751. */
  752. if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
  753. unlikely(is_device_public_page(page)))) {
  754. put_zone_device_private_or_public_page(page);
  755. return;
  756. }
  757. if (put_page_testzero(page))
  758. __put_page(page);
  759. }
  760. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  761. #define SECTION_IN_PAGE_FLAGS
  762. #endif
  763. /*
  764. * The identification function is mainly used by the buddy allocator for
  765. * determining if two pages could be buddies. We are not really identifying
  766. * the zone since we could be using the section number id if we do not have
  767. * node id available in page flags.
  768. * We only guarantee that it will return the same value for two combinable
  769. * pages in a zone.
  770. */
  771. static inline int page_zone_id(struct page *page)
  772. {
  773. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  774. }
  775. static inline int zone_to_nid(struct zone *zone)
  776. {
  777. #ifdef CONFIG_NUMA
  778. return zone->node;
  779. #else
  780. return 0;
  781. #endif
  782. }
  783. #ifdef NODE_NOT_IN_PAGE_FLAGS
  784. extern int page_to_nid(const struct page *page);
  785. #else
  786. static inline int page_to_nid(const struct page *page)
  787. {
  788. struct page *p = (struct page *)page;
  789. return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
  790. }
  791. #endif
  792. #ifdef CONFIG_NUMA_BALANCING
  793. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  794. {
  795. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  796. }
  797. static inline int cpupid_to_pid(int cpupid)
  798. {
  799. return cpupid & LAST__PID_MASK;
  800. }
  801. static inline int cpupid_to_cpu(int cpupid)
  802. {
  803. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  804. }
  805. static inline int cpupid_to_nid(int cpupid)
  806. {
  807. return cpu_to_node(cpupid_to_cpu(cpupid));
  808. }
  809. static inline bool cpupid_pid_unset(int cpupid)
  810. {
  811. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  812. }
  813. static inline bool cpupid_cpu_unset(int cpupid)
  814. {
  815. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  816. }
  817. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  818. {
  819. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  820. }
  821. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  822. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  823. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  824. {
  825. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  826. }
  827. static inline int page_cpupid_last(struct page *page)
  828. {
  829. return page->_last_cpupid;
  830. }
  831. static inline void page_cpupid_reset_last(struct page *page)
  832. {
  833. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  834. }
  835. #else
  836. static inline int page_cpupid_last(struct page *page)
  837. {
  838. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  839. }
  840. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  841. static inline void page_cpupid_reset_last(struct page *page)
  842. {
  843. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  844. }
  845. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  846. #else /* !CONFIG_NUMA_BALANCING */
  847. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  848. {
  849. return page_to_nid(page); /* XXX */
  850. }
  851. static inline int page_cpupid_last(struct page *page)
  852. {
  853. return page_to_nid(page); /* XXX */
  854. }
  855. static inline int cpupid_to_nid(int cpupid)
  856. {
  857. return -1;
  858. }
  859. static inline int cpupid_to_pid(int cpupid)
  860. {
  861. return -1;
  862. }
  863. static inline int cpupid_to_cpu(int cpupid)
  864. {
  865. return -1;
  866. }
  867. static inline int cpu_pid_to_cpupid(int nid, int pid)
  868. {
  869. return -1;
  870. }
  871. static inline bool cpupid_pid_unset(int cpupid)
  872. {
  873. return 1;
  874. }
  875. static inline void page_cpupid_reset_last(struct page *page)
  876. {
  877. }
  878. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  879. {
  880. return false;
  881. }
  882. #endif /* CONFIG_NUMA_BALANCING */
  883. static inline struct zone *page_zone(const struct page *page)
  884. {
  885. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  886. }
  887. static inline pg_data_t *page_pgdat(const struct page *page)
  888. {
  889. return NODE_DATA(page_to_nid(page));
  890. }
  891. #ifdef SECTION_IN_PAGE_FLAGS
  892. static inline void set_page_section(struct page *page, unsigned long section)
  893. {
  894. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  895. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  896. }
  897. static inline unsigned long page_to_section(const struct page *page)
  898. {
  899. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  900. }
  901. #endif
  902. static inline void set_page_zone(struct page *page, enum zone_type zone)
  903. {
  904. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  905. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  906. }
  907. static inline void set_page_node(struct page *page, unsigned long node)
  908. {
  909. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  910. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  911. }
  912. static inline void set_page_links(struct page *page, enum zone_type zone,
  913. unsigned long node, unsigned long pfn)
  914. {
  915. set_page_zone(page, zone);
  916. set_page_node(page, node);
  917. #ifdef SECTION_IN_PAGE_FLAGS
  918. set_page_section(page, pfn_to_section_nr(pfn));
  919. #endif
  920. }
  921. #ifdef CONFIG_MEMCG
  922. static inline struct mem_cgroup *page_memcg(struct page *page)
  923. {
  924. return page->mem_cgroup;
  925. }
  926. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  927. {
  928. WARN_ON_ONCE(!rcu_read_lock_held());
  929. return READ_ONCE(page->mem_cgroup);
  930. }
  931. #else
  932. static inline struct mem_cgroup *page_memcg(struct page *page)
  933. {
  934. return NULL;
  935. }
  936. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  937. {
  938. WARN_ON_ONCE(!rcu_read_lock_held());
  939. return NULL;
  940. }
  941. #endif
  942. /*
  943. * Some inline functions in vmstat.h depend on page_zone()
  944. */
  945. #include <linux/vmstat.h>
  946. static __always_inline void *lowmem_page_address(const struct page *page)
  947. {
  948. return page_to_virt(page);
  949. }
  950. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  951. #define HASHED_PAGE_VIRTUAL
  952. #endif
  953. #if defined(WANT_PAGE_VIRTUAL)
  954. static inline void *page_address(const struct page *page)
  955. {
  956. return page->virtual;
  957. }
  958. static inline void set_page_address(struct page *page, void *address)
  959. {
  960. page->virtual = address;
  961. }
  962. #define page_address_init() do { } while(0)
  963. #endif
  964. #if defined(HASHED_PAGE_VIRTUAL)
  965. void *page_address(const struct page *page);
  966. void set_page_address(struct page *page, void *virtual);
  967. void page_address_init(void);
  968. #endif
  969. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  970. #define page_address(page) lowmem_page_address(page)
  971. #define set_page_address(page, address) do { } while(0)
  972. #define page_address_init() do { } while(0)
  973. #endif
  974. extern void *page_rmapping(struct page *page);
  975. extern struct anon_vma *page_anon_vma(struct page *page);
  976. extern struct address_space *page_mapping(struct page *page);
  977. extern struct address_space *__page_file_mapping(struct page *);
  978. static inline
  979. struct address_space *page_file_mapping(struct page *page)
  980. {
  981. if (unlikely(PageSwapCache(page)))
  982. return __page_file_mapping(page);
  983. return page->mapping;
  984. }
  985. extern pgoff_t __page_file_index(struct page *page);
  986. /*
  987. * Return the pagecache index of the passed page. Regular pagecache pages
  988. * use ->index whereas swapcache pages use swp_offset(->private)
  989. */
  990. static inline pgoff_t page_index(struct page *page)
  991. {
  992. if (unlikely(PageSwapCache(page)))
  993. return __page_file_index(page);
  994. return page->index;
  995. }
  996. bool page_mapped(struct page *page);
  997. struct address_space *page_mapping(struct page *page);
  998. struct address_space *page_mapping_file(struct page *page);
  999. /*
  1000. * Return true only if the page has been allocated with
  1001. * ALLOC_NO_WATERMARKS and the low watermark was not
  1002. * met implying that the system is under some pressure.
  1003. */
  1004. static inline bool page_is_pfmemalloc(struct page *page)
  1005. {
  1006. /*
  1007. * Page index cannot be this large so this must be
  1008. * a pfmemalloc page.
  1009. */
  1010. return page->index == -1UL;
  1011. }
  1012. /*
  1013. * Only to be called by the page allocator on a freshly allocated
  1014. * page.
  1015. */
  1016. static inline void set_page_pfmemalloc(struct page *page)
  1017. {
  1018. page->index = -1UL;
  1019. }
  1020. static inline void clear_page_pfmemalloc(struct page *page)
  1021. {
  1022. page->index = 0;
  1023. }
  1024. /*
  1025. * Different kinds of faults, as returned by handle_mm_fault().
  1026. * Used to decide whether a process gets delivered SIGBUS or
  1027. * just gets major/minor fault counters bumped up.
  1028. */
  1029. #define VM_FAULT_OOM 0x0001
  1030. #define VM_FAULT_SIGBUS 0x0002
  1031. #define VM_FAULT_MAJOR 0x0004
  1032. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  1033. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  1034. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  1035. #define VM_FAULT_SIGSEGV 0x0040
  1036. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  1037. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  1038. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  1039. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  1040. #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
  1041. #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
  1042. * and needs fsync() to complete (for
  1043. * synchronous page faults in DAX) */
  1044. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  1045. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  1046. VM_FAULT_FALLBACK)
  1047. #define VM_FAULT_RESULT_TRACE \
  1048. { VM_FAULT_OOM, "OOM" }, \
  1049. { VM_FAULT_SIGBUS, "SIGBUS" }, \
  1050. { VM_FAULT_MAJOR, "MAJOR" }, \
  1051. { VM_FAULT_WRITE, "WRITE" }, \
  1052. { VM_FAULT_HWPOISON, "HWPOISON" }, \
  1053. { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
  1054. { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
  1055. { VM_FAULT_NOPAGE, "NOPAGE" }, \
  1056. { VM_FAULT_LOCKED, "LOCKED" }, \
  1057. { VM_FAULT_RETRY, "RETRY" }, \
  1058. { VM_FAULT_FALLBACK, "FALLBACK" }, \
  1059. { VM_FAULT_DONE_COW, "DONE_COW" }, \
  1060. { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
  1061. /* Encode hstate index for a hwpoisoned large page */
  1062. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  1063. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  1064. /*
  1065. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  1066. */
  1067. extern void pagefault_out_of_memory(void);
  1068. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  1069. /*
  1070. * Flags passed to show_mem() and show_free_areas() to suppress output in
  1071. * various contexts.
  1072. */
  1073. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  1074. extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
  1075. extern bool can_do_mlock(void);
  1076. extern int user_shm_lock(size_t, struct user_struct *);
  1077. extern void user_shm_unlock(size_t, struct user_struct *);
  1078. /*
  1079. * Parameter block passed down to zap_pte_range in exceptional cases.
  1080. */
  1081. struct zap_details {
  1082. struct address_space *check_mapping; /* Check page->mapping if set */
  1083. pgoff_t first_index; /* Lowest page->index to unmap */
  1084. pgoff_t last_index; /* Highest page->index to unmap */
  1085. };
  1086. struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  1087. pte_t pte, bool with_public_device);
  1088. #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
  1089. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  1090. pmd_t pmd);
  1091. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1092. unsigned long size);
  1093. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1094. unsigned long size);
  1095. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  1096. unsigned long start, unsigned long end);
  1097. /**
  1098. * mm_walk - callbacks for walk_page_range
  1099. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  1100. * this handler should only handle pud_trans_huge() puds.
  1101. * the pmd_entry or pte_entry callbacks will be used for
  1102. * regular PUDs.
  1103. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1104. * this handler is required to be able to handle
  1105. * pmd_trans_huge() pmds. They may simply choose to
  1106. * split_huge_page() instead of handling it explicitly.
  1107. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1108. * @pte_hole: if set, called for each hole at all levels
  1109. * @hugetlb_entry: if set, called for each hugetlb entry
  1110. * @test_walk: caller specific callback function to determine whether
  1111. * we walk over the current vma or not. Returning 0
  1112. * value means "do page table walk over the current vma,"
  1113. * and a negative one means "abort current page table walk
  1114. * right now." 1 means "skip the current vma."
  1115. * @mm: mm_struct representing the target process of page table walk
  1116. * @vma: vma currently walked (NULL if walking outside vmas)
  1117. * @private: private data for callbacks' usage
  1118. *
  1119. * (see the comment on walk_page_range() for more details)
  1120. */
  1121. struct mm_walk {
  1122. int (*pud_entry)(pud_t *pud, unsigned long addr,
  1123. unsigned long next, struct mm_walk *walk);
  1124. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1125. unsigned long next, struct mm_walk *walk);
  1126. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1127. unsigned long next, struct mm_walk *walk);
  1128. int (*pte_hole)(unsigned long addr, unsigned long next,
  1129. struct mm_walk *walk);
  1130. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1131. unsigned long addr, unsigned long next,
  1132. struct mm_walk *walk);
  1133. int (*test_walk)(unsigned long addr, unsigned long next,
  1134. struct mm_walk *walk);
  1135. struct mm_struct *mm;
  1136. struct vm_area_struct *vma;
  1137. void *private;
  1138. };
  1139. int walk_page_range(unsigned long addr, unsigned long end,
  1140. struct mm_walk *walk);
  1141. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1142. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1143. unsigned long end, unsigned long floor, unsigned long ceiling);
  1144. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1145. struct vm_area_struct *vma);
  1146. int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
  1147. unsigned long *start, unsigned long *end,
  1148. pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
  1149. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1150. unsigned long *pfn);
  1151. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1152. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1153. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1154. void *buf, int len, int write);
  1155. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1156. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1157. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1158. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1159. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1160. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1161. int invalidate_inode_page(struct page *page);
  1162. #ifdef CONFIG_MMU
  1163. extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  1164. unsigned int flags);
  1165. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1166. unsigned long address, unsigned int fault_flags,
  1167. bool *unlocked);
  1168. void unmap_mapping_pages(struct address_space *mapping,
  1169. pgoff_t start, pgoff_t nr, bool even_cows);
  1170. void unmap_mapping_range(struct address_space *mapping,
  1171. loff_t const holebegin, loff_t const holelen, int even_cows);
  1172. #else
  1173. static inline int handle_mm_fault(struct vm_area_struct *vma,
  1174. unsigned long address, unsigned int flags)
  1175. {
  1176. /* should never happen if there's no MMU */
  1177. BUG();
  1178. return VM_FAULT_SIGBUS;
  1179. }
  1180. static inline int fixup_user_fault(struct task_struct *tsk,
  1181. struct mm_struct *mm, unsigned long address,
  1182. unsigned int fault_flags, bool *unlocked)
  1183. {
  1184. /* should never happen if there's no MMU */
  1185. BUG();
  1186. return -EFAULT;
  1187. }
  1188. static inline void unmap_mapping_pages(struct address_space *mapping,
  1189. pgoff_t start, pgoff_t nr, bool even_cows) { }
  1190. static inline void unmap_mapping_range(struct address_space *mapping,
  1191. loff_t const holebegin, loff_t const holelen, int even_cows) { }
  1192. #endif
  1193. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1194. loff_t const holebegin, loff_t const holelen)
  1195. {
  1196. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1197. }
  1198. extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
  1199. void *buf, int len, unsigned int gup_flags);
  1200. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1201. void *buf, int len, unsigned int gup_flags);
  1202. extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  1203. unsigned long addr, void *buf, int len, unsigned int gup_flags);
  1204. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1205. unsigned long start, unsigned long nr_pages,
  1206. unsigned int gup_flags, struct page **pages,
  1207. struct vm_area_struct **vmas, int *locked);
  1208. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1209. unsigned int gup_flags, struct page **pages,
  1210. struct vm_area_struct **vmas);
  1211. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1212. unsigned int gup_flags, struct page **pages, int *locked);
  1213. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1214. struct page **pages, unsigned int gup_flags);
  1215. #ifdef CONFIG_FS_DAX
  1216. long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
  1217. unsigned int gup_flags, struct page **pages,
  1218. struct vm_area_struct **vmas);
  1219. #else
  1220. static inline long get_user_pages_longterm(unsigned long start,
  1221. unsigned long nr_pages, unsigned int gup_flags,
  1222. struct page **pages, struct vm_area_struct **vmas)
  1223. {
  1224. return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
  1225. }
  1226. #endif /* CONFIG_FS_DAX */
  1227. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1228. struct page **pages);
  1229. /* Container for pinned pfns / pages */
  1230. struct frame_vector {
  1231. unsigned int nr_allocated; /* Number of frames we have space for */
  1232. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1233. bool got_ref; /* Did we pin pages by getting page ref? */
  1234. bool is_pfns; /* Does array contain pages or pfns? */
  1235. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1236. * pfns_vector_pages() or pfns_vector_pfns()
  1237. * for access */
  1238. };
  1239. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1240. void frame_vector_destroy(struct frame_vector *vec);
  1241. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1242. unsigned int gup_flags, struct frame_vector *vec);
  1243. void put_vaddr_frames(struct frame_vector *vec);
  1244. int frame_vector_to_pages(struct frame_vector *vec);
  1245. void frame_vector_to_pfns(struct frame_vector *vec);
  1246. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1247. {
  1248. return vec->nr_frames;
  1249. }
  1250. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1251. {
  1252. if (vec->is_pfns) {
  1253. int err = frame_vector_to_pages(vec);
  1254. if (err)
  1255. return ERR_PTR(err);
  1256. }
  1257. return (struct page **)(vec->ptrs);
  1258. }
  1259. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1260. {
  1261. if (!vec->is_pfns)
  1262. frame_vector_to_pfns(vec);
  1263. return (unsigned long *)(vec->ptrs);
  1264. }
  1265. struct kvec;
  1266. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1267. struct page **pages);
  1268. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1269. struct page *get_dump_page(unsigned long addr);
  1270. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1271. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1272. unsigned int length);
  1273. void __set_page_dirty(struct page *, struct address_space *, int warn);
  1274. int __set_page_dirty_nobuffers(struct page *page);
  1275. int __set_page_dirty_no_writeback(struct page *page);
  1276. int redirty_page_for_writepage(struct writeback_control *wbc,
  1277. struct page *page);
  1278. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1279. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1280. struct bdi_writeback *wb);
  1281. int set_page_dirty(struct page *page);
  1282. int set_page_dirty_lock(struct page *page);
  1283. void __cancel_dirty_page(struct page *page);
  1284. static inline void cancel_dirty_page(struct page *page)
  1285. {
  1286. /* Avoid atomic ops, locking, etc. when not actually needed. */
  1287. if (PageDirty(page))
  1288. __cancel_dirty_page(page);
  1289. }
  1290. int clear_page_dirty_for_io(struct page *page);
  1291. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1292. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1293. {
  1294. return !vma->vm_ops;
  1295. }
  1296. #ifdef CONFIG_SHMEM
  1297. /*
  1298. * The vma_is_shmem is not inline because it is used only by slow
  1299. * paths in userfault.
  1300. */
  1301. bool vma_is_shmem(struct vm_area_struct *vma);
  1302. #else
  1303. static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
  1304. #endif
  1305. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1306. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1307. unsigned long old_addr, struct vm_area_struct *new_vma,
  1308. unsigned long new_addr, unsigned long len,
  1309. bool need_rmap_locks);
  1310. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1311. unsigned long end, pgprot_t newprot,
  1312. int dirty_accountable, int prot_numa);
  1313. extern int mprotect_fixup(struct vm_area_struct *vma,
  1314. struct vm_area_struct **pprev, unsigned long start,
  1315. unsigned long end, unsigned long newflags);
  1316. /*
  1317. * doesn't attempt to fault and will return short.
  1318. */
  1319. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1320. struct page **pages);
  1321. /*
  1322. * per-process(per-mm_struct) statistics.
  1323. */
  1324. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1325. {
  1326. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1327. #ifdef SPLIT_RSS_COUNTING
  1328. /*
  1329. * counter is updated in asynchronous manner and may go to minus.
  1330. * But it's never be expected number for users.
  1331. */
  1332. if (val < 0)
  1333. val = 0;
  1334. #endif
  1335. return (unsigned long)val;
  1336. }
  1337. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1338. {
  1339. atomic_long_add(value, &mm->rss_stat.count[member]);
  1340. }
  1341. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1342. {
  1343. atomic_long_inc(&mm->rss_stat.count[member]);
  1344. }
  1345. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1346. {
  1347. atomic_long_dec(&mm->rss_stat.count[member]);
  1348. }
  1349. /* Optimized variant when page is already known not to be PageAnon */
  1350. static inline int mm_counter_file(struct page *page)
  1351. {
  1352. if (PageSwapBacked(page))
  1353. return MM_SHMEMPAGES;
  1354. return MM_FILEPAGES;
  1355. }
  1356. static inline int mm_counter(struct page *page)
  1357. {
  1358. if (PageAnon(page))
  1359. return MM_ANONPAGES;
  1360. return mm_counter_file(page);
  1361. }
  1362. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1363. {
  1364. return get_mm_counter(mm, MM_FILEPAGES) +
  1365. get_mm_counter(mm, MM_ANONPAGES) +
  1366. get_mm_counter(mm, MM_SHMEMPAGES);
  1367. }
  1368. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1369. {
  1370. return max(mm->hiwater_rss, get_mm_rss(mm));
  1371. }
  1372. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1373. {
  1374. return max(mm->hiwater_vm, mm->total_vm);
  1375. }
  1376. static inline void update_hiwater_rss(struct mm_struct *mm)
  1377. {
  1378. unsigned long _rss = get_mm_rss(mm);
  1379. if ((mm)->hiwater_rss < _rss)
  1380. (mm)->hiwater_rss = _rss;
  1381. }
  1382. static inline void update_hiwater_vm(struct mm_struct *mm)
  1383. {
  1384. if (mm->hiwater_vm < mm->total_vm)
  1385. mm->hiwater_vm = mm->total_vm;
  1386. }
  1387. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1388. {
  1389. mm->hiwater_rss = get_mm_rss(mm);
  1390. }
  1391. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1392. struct mm_struct *mm)
  1393. {
  1394. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1395. if (*maxrss < hiwater_rss)
  1396. *maxrss = hiwater_rss;
  1397. }
  1398. #if defined(SPLIT_RSS_COUNTING)
  1399. void sync_mm_rss(struct mm_struct *mm);
  1400. #else
  1401. static inline void sync_mm_rss(struct mm_struct *mm)
  1402. {
  1403. }
  1404. #endif
  1405. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1406. static inline int pte_devmap(pte_t pte)
  1407. {
  1408. return 0;
  1409. }
  1410. #endif
  1411. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1412. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1413. spinlock_t **ptl);
  1414. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1415. spinlock_t **ptl)
  1416. {
  1417. pte_t *ptep;
  1418. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1419. return ptep;
  1420. }
  1421. #ifdef __PAGETABLE_P4D_FOLDED
  1422. static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1423. unsigned long address)
  1424. {
  1425. return 0;
  1426. }
  1427. #else
  1428. int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1429. #endif
  1430. #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
  1431. static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1432. unsigned long address)
  1433. {
  1434. return 0;
  1435. }
  1436. static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
  1437. static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
  1438. #else
  1439. int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
  1440. static inline void mm_inc_nr_puds(struct mm_struct *mm)
  1441. {
  1442. atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1443. }
  1444. static inline void mm_dec_nr_puds(struct mm_struct *mm)
  1445. {
  1446. atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1447. }
  1448. #endif
  1449. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1450. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1451. unsigned long address)
  1452. {
  1453. return 0;
  1454. }
  1455. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1456. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1457. #else
  1458. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1459. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1460. {
  1461. atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1462. }
  1463. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1464. {
  1465. atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1466. }
  1467. #endif
  1468. #ifdef CONFIG_MMU
  1469. static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
  1470. {
  1471. atomic_long_set(&mm->pgtables_bytes, 0);
  1472. }
  1473. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1474. {
  1475. return atomic_long_read(&mm->pgtables_bytes);
  1476. }
  1477. static inline void mm_inc_nr_ptes(struct mm_struct *mm)
  1478. {
  1479. atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1480. }
  1481. static inline void mm_dec_nr_ptes(struct mm_struct *mm)
  1482. {
  1483. atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1484. }
  1485. #else
  1486. static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
  1487. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1488. {
  1489. return 0;
  1490. }
  1491. static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
  1492. static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
  1493. #endif
  1494. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1495. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1496. /*
  1497. * The following ifdef needed to get the 4level-fixup.h header to work.
  1498. * Remove it when 4level-fixup.h has been removed.
  1499. */
  1500. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1501. #ifndef __ARCH_HAS_5LEVEL_HACK
  1502. static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1503. unsigned long address)
  1504. {
  1505. return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
  1506. NULL : p4d_offset(pgd, address);
  1507. }
  1508. static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1509. unsigned long address)
  1510. {
  1511. return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
  1512. NULL : pud_offset(p4d, address);
  1513. }
  1514. #endif /* !__ARCH_HAS_5LEVEL_HACK */
  1515. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1516. {
  1517. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1518. NULL: pmd_offset(pud, address);
  1519. }
  1520. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1521. #if USE_SPLIT_PTE_PTLOCKS
  1522. #if ALLOC_SPLIT_PTLOCKS
  1523. void __init ptlock_cache_init(void);
  1524. extern bool ptlock_alloc(struct page *page);
  1525. extern void ptlock_free(struct page *page);
  1526. static inline spinlock_t *ptlock_ptr(struct page *page)
  1527. {
  1528. return page->ptl;
  1529. }
  1530. #else /* ALLOC_SPLIT_PTLOCKS */
  1531. static inline void ptlock_cache_init(void)
  1532. {
  1533. }
  1534. static inline bool ptlock_alloc(struct page *page)
  1535. {
  1536. return true;
  1537. }
  1538. static inline void ptlock_free(struct page *page)
  1539. {
  1540. }
  1541. static inline spinlock_t *ptlock_ptr(struct page *page)
  1542. {
  1543. return &page->ptl;
  1544. }
  1545. #endif /* ALLOC_SPLIT_PTLOCKS */
  1546. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1547. {
  1548. return ptlock_ptr(pmd_page(*pmd));
  1549. }
  1550. static inline bool ptlock_init(struct page *page)
  1551. {
  1552. /*
  1553. * prep_new_page() initialize page->private (and therefore page->ptl)
  1554. * with 0. Make sure nobody took it in use in between.
  1555. *
  1556. * It can happen if arch try to use slab for page table allocation:
  1557. * slab code uses page->slab_cache, which share storage with page->ptl.
  1558. */
  1559. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1560. if (!ptlock_alloc(page))
  1561. return false;
  1562. spin_lock_init(ptlock_ptr(page));
  1563. return true;
  1564. }
  1565. /* Reset page->mapping so free_pages_check won't complain. */
  1566. static inline void pte_lock_deinit(struct page *page)
  1567. {
  1568. page->mapping = NULL;
  1569. ptlock_free(page);
  1570. }
  1571. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1572. /*
  1573. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1574. */
  1575. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1576. {
  1577. return &mm->page_table_lock;
  1578. }
  1579. static inline void ptlock_cache_init(void) {}
  1580. static inline bool ptlock_init(struct page *page) { return true; }
  1581. static inline void pte_lock_deinit(struct page *page) {}
  1582. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1583. static inline void pgtable_init(void)
  1584. {
  1585. ptlock_cache_init();
  1586. pgtable_cache_init();
  1587. }
  1588. static inline bool pgtable_page_ctor(struct page *page)
  1589. {
  1590. if (!ptlock_init(page))
  1591. return false;
  1592. inc_zone_page_state(page, NR_PAGETABLE);
  1593. return true;
  1594. }
  1595. static inline void pgtable_page_dtor(struct page *page)
  1596. {
  1597. pte_lock_deinit(page);
  1598. dec_zone_page_state(page, NR_PAGETABLE);
  1599. }
  1600. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1601. ({ \
  1602. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1603. pte_t *__pte = pte_offset_map(pmd, address); \
  1604. *(ptlp) = __ptl; \
  1605. spin_lock(__ptl); \
  1606. __pte; \
  1607. })
  1608. #define pte_unmap_unlock(pte, ptl) do { \
  1609. spin_unlock(ptl); \
  1610. pte_unmap(pte); \
  1611. } while (0)
  1612. #define pte_alloc(mm, pmd, address) \
  1613. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1614. #define pte_alloc_map(mm, pmd, address) \
  1615. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1616. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1617. (pte_alloc(mm, pmd, address) ? \
  1618. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1619. #define pte_alloc_kernel(pmd, address) \
  1620. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1621. NULL: pte_offset_kernel(pmd, address))
  1622. #if USE_SPLIT_PMD_PTLOCKS
  1623. static struct page *pmd_to_page(pmd_t *pmd)
  1624. {
  1625. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1626. return virt_to_page((void *)((unsigned long) pmd & mask));
  1627. }
  1628. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1629. {
  1630. return ptlock_ptr(pmd_to_page(pmd));
  1631. }
  1632. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1633. {
  1634. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1635. page->pmd_huge_pte = NULL;
  1636. #endif
  1637. return ptlock_init(page);
  1638. }
  1639. static inline void pgtable_pmd_page_dtor(struct page *page)
  1640. {
  1641. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1642. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1643. #endif
  1644. ptlock_free(page);
  1645. }
  1646. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1647. #else
  1648. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1649. {
  1650. return &mm->page_table_lock;
  1651. }
  1652. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1653. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1654. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1655. #endif
  1656. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1657. {
  1658. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1659. spin_lock(ptl);
  1660. return ptl;
  1661. }
  1662. /*
  1663. * No scalability reason to split PUD locks yet, but follow the same pattern
  1664. * as the PMD locks to make it easier if we decide to. The VM should not be
  1665. * considered ready to switch to split PUD locks yet; there may be places
  1666. * which need to be converted from page_table_lock.
  1667. */
  1668. static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
  1669. {
  1670. return &mm->page_table_lock;
  1671. }
  1672. static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
  1673. {
  1674. spinlock_t *ptl = pud_lockptr(mm, pud);
  1675. spin_lock(ptl);
  1676. return ptl;
  1677. }
  1678. extern void __init pagecache_init(void);
  1679. extern void free_area_init(unsigned long * zones_size);
  1680. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1681. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1682. extern void free_initmem(void);
  1683. /*
  1684. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1685. * into the buddy system. The freed pages will be poisoned with pattern
  1686. * "poison" if it's within range [0, UCHAR_MAX].
  1687. * Return pages freed into the buddy system.
  1688. */
  1689. extern unsigned long free_reserved_area(void *start, void *end,
  1690. int poison, char *s);
  1691. #ifdef CONFIG_HIGHMEM
  1692. /*
  1693. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1694. * and totalram_pages.
  1695. */
  1696. extern void free_highmem_page(struct page *page);
  1697. #endif
  1698. extern void adjust_managed_page_count(struct page *page, long count);
  1699. extern void mem_init_print_info(const char *str);
  1700. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1701. /* Free the reserved page into the buddy system, so it gets managed. */
  1702. static inline void __free_reserved_page(struct page *page)
  1703. {
  1704. ClearPageReserved(page);
  1705. init_page_count(page);
  1706. __free_page(page);
  1707. }
  1708. static inline void free_reserved_page(struct page *page)
  1709. {
  1710. __free_reserved_page(page);
  1711. adjust_managed_page_count(page, 1);
  1712. }
  1713. static inline void mark_page_reserved(struct page *page)
  1714. {
  1715. SetPageReserved(page);
  1716. adjust_managed_page_count(page, -1);
  1717. }
  1718. /*
  1719. * Default method to free all the __init memory into the buddy system.
  1720. * The freed pages will be poisoned with pattern "poison" if it's within
  1721. * range [0, UCHAR_MAX].
  1722. * Return pages freed into the buddy system.
  1723. */
  1724. static inline unsigned long free_initmem_default(int poison)
  1725. {
  1726. extern char __init_begin[], __init_end[];
  1727. return free_reserved_area(&__init_begin, &__init_end,
  1728. poison, "unused kernel");
  1729. }
  1730. static inline unsigned long get_num_physpages(void)
  1731. {
  1732. int nid;
  1733. unsigned long phys_pages = 0;
  1734. for_each_online_node(nid)
  1735. phys_pages += node_present_pages(nid);
  1736. return phys_pages;
  1737. }
  1738. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1739. /*
  1740. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1741. * zones, allocate the backing mem_map and account for memory holes in a more
  1742. * architecture independent manner. This is a substitute for creating the
  1743. * zone_sizes[] and zholes_size[] arrays and passing them to
  1744. * free_area_init_node()
  1745. *
  1746. * An architecture is expected to register range of page frames backed by
  1747. * physical memory with memblock_add[_node]() before calling
  1748. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1749. * usage, an architecture is expected to do something like
  1750. *
  1751. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1752. * max_highmem_pfn};
  1753. * for_each_valid_physical_page_range()
  1754. * memblock_add_node(base, size, nid)
  1755. * free_area_init_nodes(max_zone_pfns);
  1756. *
  1757. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1758. * registered physical page range. Similarly
  1759. * sparse_memory_present_with_active_regions() calls memory_present() for
  1760. * each range when SPARSEMEM is enabled.
  1761. *
  1762. * See mm/page_alloc.c for more information on each function exposed by
  1763. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1764. */
  1765. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1766. unsigned long node_map_pfn_alignment(void);
  1767. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1768. unsigned long end_pfn);
  1769. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1770. unsigned long end_pfn);
  1771. extern void get_pfn_range_for_nid(unsigned int nid,
  1772. unsigned long *start_pfn, unsigned long *end_pfn);
  1773. extern unsigned long find_min_pfn_with_active_regions(void);
  1774. extern void free_bootmem_with_active_regions(int nid,
  1775. unsigned long max_low_pfn);
  1776. extern void sparse_memory_present_with_active_regions(int nid);
  1777. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1778. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1779. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1780. static inline int __early_pfn_to_nid(unsigned long pfn,
  1781. struct mminit_pfnnid_cache *state)
  1782. {
  1783. return 0;
  1784. }
  1785. #else
  1786. /* please see mm/page_alloc.c */
  1787. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1788. /* there is a per-arch backend function. */
  1789. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1790. struct mminit_pfnnid_cache *state);
  1791. #endif
  1792. #ifdef CONFIG_HAVE_MEMBLOCK
  1793. void zero_resv_unavail(void);
  1794. #else
  1795. static inline void zero_resv_unavail(void) {}
  1796. #endif
  1797. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1798. extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
  1799. enum memmap_context, struct vmem_altmap *);
  1800. extern void setup_per_zone_wmarks(void);
  1801. extern int __meminit init_per_zone_wmark_min(void);
  1802. extern void mem_init(void);
  1803. extern void __init mmap_init(void);
  1804. extern void show_mem(unsigned int flags, nodemask_t *nodemask);
  1805. extern long si_mem_available(void);
  1806. extern void si_meminfo(struct sysinfo * val);
  1807. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1808. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1809. extern unsigned long arch_reserved_kernel_pages(void);
  1810. #endif
  1811. extern __printf(3, 4)
  1812. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
  1813. extern void setup_per_cpu_pageset(void);
  1814. extern void zone_pcp_update(struct zone *zone);
  1815. extern void zone_pcp_reset(struct zone *zone);
  1816. extern void setup_zone_pageset(struct zone *zone);
  1817. /* page_alloc.c */
  1818. extern int min_free_kbytes;
  1819. extern int watermark_scale_factor;
  1820. /* nommu.c */
  1821. extern atomic_long_t mmap_pages_allocated;
  1822. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1823. /* interval_tree.c */
  1824. void vma_interval_tree_insert(struct vm_area_struct *node,
  1825. struct rb_root_cached *root);
  1826. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1827. struct vm_area_struct *prev,
  1828. struct rb_root_cached *root);
  1829. void vma_interval_tree_remove(struct vm_area_struct *node,
  1830. struct rb_root_cached *root);
  1831. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
  1832. unsigned long start, unsigned long last);
  1833. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1834. unsigned long start, unsigned long last);
  1835. #define vma_interval_tree_foreach(vma, root, start, last) \
  1836. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1837. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1838. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1839. struct rb_root_cached *root);
  1840. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1841. struct rb_root_cached *root);
  1842. struct anon_vma_chain *
  1843. anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
  1844. unsigned long start, unsigned long last);
  1845. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1846. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1847. #ifdef CONFIG_DEBUG_VM_RB
  1848. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1849. #endif
  1850. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1851. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1852. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1853. /* mmap.c */
  1854. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1855. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1856. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1857. struct vm_area_struct *expand);
  1858. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1859. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1860. {
  1861. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1862. }
  1863. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1864. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1865. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1866. struct mempolicy *, struct vm_userfaultfd_ctx);
  1867. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1868. extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
  1869. unsigned long addr, int new_below);
  1870. extern int split_vma(struct mm_struct *, struct vm_area_struct *,
  1871. unsigned long addr, int new_below);
  1872. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1873. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1874. struct rb_node **, struct rb_node *);
  1875. extern void unlink_file_vma(struct vm_area_struct *);
  1876. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1877. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1878. bool *need_rmap_locks);
  1879. extern void exit_mmap(struct mm_struct *);
  1880. static inline int check_data_rlimit(unsigned long rlim,
  1881. unsigned long new,
  1882. unsigned long start,
  1883. unsigned long end_data,
  1884. unsigned long start_data)
  1885. {
  1886. if (rlim < RLIM_INFINITY) {
  1887. if (((new - start) + (end_data - start_data)) > rlim)
  1888. return -ENOSPC;
  1889. }
  1890. return 0;
  1891. }
  1892. extern int mm_take_all_locks(struct mm_struct *mm);
  1893. extern void mm_drop_all_locks(struct mm_struct *mm);
  1894. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1895. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1896. extern struct file *get_task_exe_file(struct task_struct *task);
  1897. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1898. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1899. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1900. const struct vm_special_mapping *sm);
  1901. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1902. unsigned long addr, unsigned long len,
  1903. unsigned long flags,
  1904. const struct vm_special_mapping *spec);
  1905. /* This is an obsolete alternative to _install_special_mapping. */
  1906. extern int install_special_mapping(struct mm_struct *mm,
  1907. unsigned long addr, unsigned long len,
  1908. unsigned long flags, struct page **pages);
  1909. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1910. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1911. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
  1912. struct list_head *uf);
  1913. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1914. unsigned long len, unsigned long prot, unsigned long flags,
  1915. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
  1916. struct list_head *uf);
  1917. extern int do_munmap(struct mm_struct *, unsigned long, size_t,
  1918. struct list_head *uf);
  1919. static inline unsigned long
  1920. do_mmap_pgoff(struct file *file, unsigned long addr,
  1921. unsigned long len, unsigned long prot, unsigned long flags,
  1922. unsigned long pgoff, unsigned long *populate,
  1923. struct list_head *uf)
  1924. {
  1925. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
  1926. }
  1927. #ifdef CONFIG_MMU
  1928. extern int __mm_populate(unsigned long addr, unsigned long len,
  1929. int ignore_errors);
  1930. static inline void mm_populate(unsigned long addr, unsigned long len)
  1931. {
  1932. /* Ignore errors */
  1933. (void) __mm_populate(addr, len, 1);
  1934. }
  1935. #else
  1936. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1937. #endif
  1938. /* These take the mm semaphore themselves */
  1939. extern int __must_check vm_brk(unsigned long, unsigned long);
  1940. extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
  1941. extern int vm_munmap(unsigned long, size_t);
  1942. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  1943. unsigned long, unsigned long,
  1944. unsigned long, unsigned long);
  1945. struct vm_unmapped_area_info {
  1946. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1947. unsigned long flags;
  1948. unsigned long length;
  1949. unsigned long low_limit;
  1950. unsigned long high_limit;
  1951. unsigned long align_mask;
  1952. unsigned long align_offset;
  1953. };
  1954. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1955. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1956. /*
  1957. * Search for an unmapped address range.
  1958. *
  1959. * We are looking for a range that:
  1960. * - does not intersect with any VMA;
  1961. * - is contained within the [low_limit, high_limit) interval;
  1962. * - is at least the desired size.
  1963. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1964. */
  1965. static inline unsigned long
  1966. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1967. {
  1968. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1969. return unmapped_area_topdown(info);
  1970. else
  1971. return unmapped_area(info);
  1972. }
  1973. /* truncate.c */
  1974. extern void truncate_inode_pages(struct address_space *, loff_t);
  1975. extern void truncate_inode_pages_range(struct address_space *,
  1976. loff_t lstart, loff_t lend);
  1977. extern void truncate_inode_pages_final(struct address_space *);
  1978. /* generic vm_area_ops exported for stackable file systems */
  1979. extern int filemap_fault(struct vm_fault *vmf);
  1980. extern void filemap_map_pages(struct vm_fault *vmf,
  1981. pgoff_t start_pgoff, pgoff_t end_pgoff);
  1982. extern int filemap_page_mkwrite(struct vm_fault *vmf);
  1983. /* mm/page-writeback.c */
  1984. int __must_check write_one_page(struct page *page);
  1985. void task_dirty_inc(struct task_struct *tsk);
  1986. /* readahead.c */
  1987. #define VM_MAX_READAHEAD 128 /* kbytes */
  1988. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1989. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1990. pgoff_t offset, unsigned long nr_to_read);
  1991. void page_cache_sync_readahead(struct address_space *mapping,
  1992. struct file_ra_state *ra,
  1993. struct file *filp,
  1994. pgoff_t offset,
  1995. unsigned long size);
  1996. void page_cache_async_readahead(struct address_space *mapping,
  1997. struct file_ra_state *ra,
  1998. struct file *filp,
  1999. struct page *pg,
  2000. pgoff_t offset,
  2001. unsigned long size);
  2002. extern unsigned long stack_guard_gap;
  2003. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  2004. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  2005. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  2006. extern int expand_downwards(struct vm_area_struct *vma,
  2007. unsigned long address);
  2008. #if VM_GROWSUP
  2009. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  2010. #else
  2011. #define expand_upwards(vma, address) (0)
  2012. #endif
  2013. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  2014. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  2015. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  2016. struct vm_area_struct **pprev);
  2017. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  2018. NULL if none. Assume start_addr < end_addr. */
  2019. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  2020. {
  2021. struct vm_area_struct * vma = find_vma(mm,start_addr);
  2022. if (vma && end_addr <= vma->vm_start)
  2023. vma = NULL;
  2024. return vma;
  2025. }
  2026. static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
  2027. {
  2028. unsigned long vm_start = vma->vm_start;
  2029. if (vma->vm_flags & VM_GROWSDOWN) {
  2030. vm_start -= stack_guard_gap;
  2031. if (vm_start > vma->vm_start)
  2032. vm_start = 0;
  2033. }
  2034. return vm_start;
  2035. }
  2036. static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
  2037. {
  2038. unsigned long vm_end = vma->vm_end;
  2039. if (vma->vm_flags & VM_GROWSUP) {
  2040. vm_end += stack_guard_gap;
  2041. if (vm_end < vma->vm_end)
  2042. vm_end = -PAGE_SIZE;
  2043. }
  2044. return vm_end;
  2045. }
  2046. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  2047. {
  2048. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  2049. }
  2050. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  2051. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  2052. unsigned long vm_start, unsigned long vm_end)
  2053. {
  2054. struct vm_area_struct *vma = find_vma(mm, vm_start);
  2055. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  2056. vma = NULL;
  2057. return vma;
  2058. }
  2059. #ifdef CONFIG_MMU
  2060. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  2061. void vma_set_page_prot(struct vm_area_struct *vma);
  2062. #else
  2063. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  2064. {
  2065. return __pgprot(0);
  2066. }
  2067. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  2068. {
  2069. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  2070. }
  2071. #endif
  2072. #ifdef CONFIG_NUMA_BALANCING
  2073. unsigned long change_prot_numa(struct vm_area_struct *vma,
  2074. unsigned long start, unsigned long end);
  2075. #endif
  2076. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  2077. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  2078. unsigned long pfn, unsigned long size, pgprot_t);
  2079. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  2080. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  2081. unsigned long pfn);
  2082. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  2083. unsigned long pfn, pgprot_t pgprot);
  2084. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  2085. pfn_t pfn);
  2086. int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
  2087. pfn_t pfn);
  2088. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  2089. static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
  2090. unsigned long addr, struct page *page)
  2091. {
  2092. int err = vm_insert_page(vma, addr, page);
  2093. if (err == -ENOMEM)
  2094. return VM_FAULT_OOM;
  2095. if (err < 0 && err != -EBUSY)
  2096. return VM_FAULT_SIGBUS;
  2097. return VM_FAULT_NOPAGE;
  2098. }
  2099. static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
  2100. unsigned long addr, pfn_t pfn)
  2101. {
  2102. int err = vm_insert_mixed(vma, addr, pfn);
  2103. if (err == -ENOMEM)
  2104. return VM_FAULT_OOM;
  2105. if (err < 0 && err != -EBUSY)
  2106. return VM_FAULT_SIGBUS;
  2107. return VM_FAULT_NOPAGE;
  2108. }
  2109. static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
  2110. unsigned long addr, unsigned long pfn)
  2111. {
  2112. int err = vm_insert_pfn(vma, addr, pfn);
  2113. if (err == -ENOMEM)
  2114. return VM_FAULT_OOM;
  2115. if (err < 0 && err != -EBUSY)
  2116. return VM_FAULT_SIGBUS;
  2117. return VM_FAULT_NOPAGE;
  2118. }
  2119. struct page *follow_page_mask(struct vm_area_struct *vma,
  2120. unsigned long address, unsigned int foll_flags,
  2121. unsigned int *page_mask);
  2122. static inline struct page *follow_page(struct vm_area_struct *vma,
  2123. unsigned long address, unsigned int foll_flags)
  2124. {
  2125. unsigned int unused_page_mask;
  2126. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  2127. }
  2128. #define FOLL_WRITE 0x01 /* check pte is writable */
  2129. #define FOLL_TOUCH 0x02 /* mark page accessed */
  2130. #define FOLL_GET 0x04 /* do get_page on page */
  2131. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  2132. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  2133. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  2134. * and return without waiting upon it */
  2135. #define FOLL_POPULATE 0x40 /* fault in page */
  2136. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  2137. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  2138. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  2139. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  2140. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  2141. #define FOLL_MLOCK 0x1000 /* lock present pages */
  2142. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  2143. #define FOLL_COW 0x4000 /* internal GUP flag */
  2144. static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
  2145. {
  2146. if (vm_fault & VM_FAULT_OOM)
  2147. return -ENOMEM;
  2148. if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  2149. return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
  2150. if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
  2151. return -EFAULT;
  2152. return 0;
  2153. }
  2154. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  2155. void *data);
  2156. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  2157. unsigned long size, pte_fn_t fn, void *data);
  2158. #ifdef CONFIG_PAGE_POISONING
  2159. extern bool page_poisoning_enabled(void);
  2160. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  2161. extern bool page_is_poisoned(struct page *page);
  2162. #else
  2163. static inline bool page_poisoning_enabled(void) { return false; }
  2164. static inline void kernel_poison_pages(struct page *page, int numpages,
  2165. int enable) { }
  2166. static inline bool page_is_poisoned(struct page *page) { return false; }
  2167. #endif
  2168. #ifdef CONFIG_DEBUG_PAGEALLOC
  2169. extern bool _debug_pagealloc_enabled;
  2170. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  2171. static inline bool debug_pagealloc_enabled(void)
  2172. {
  2173. return _debug_pagealloc_enabled;
  2174. }
  2175. static inline void
  2176. kernel_map_pages(struct page *page, int numpages, int enable)
  2177. {
  2178. if (!debug_pagealloc_enabled())
  2179. return;
  2180. __kernel_map_pages(page, numpages, enable);
  2181. }
  2182. #ifdef CONFIG_HIBERNATION
  2183. extern bool kernel_page_present(struct page *page);
  2184. #endif /* CONFIG_HIBERNATION */
  2185. #else /* CONFIG_DEBUG_PAGEALLOC */
  2186. static inline void
  2187. kernel_map_pages(struct page *page, int numpages, int enable) {}
  2188. #ifdef CONFIG_HIBERNATION
  2189. static inline bool kernel_page_present(struct page *page) { return true; }
  2190. #endif /* CONFIG_HIBERNATION */
  2191. static inline bool debug_pagealloc_enabled(void)
  2192. {
  2193. return false;
  2194. }
  2195. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2196. #ifdef __HAVE_ARCH_GATE_AREA
  2197. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  2198. extern int in_gate_area_no_mm(unsigned long addr);
  2199. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  2200. #else
  2201. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  2202. {
  2203. return NULL;
  2204. }
  2205. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  2206. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  2207. {
  2208. return 0;
  2209. }
  2210. #endif /* __HAVE_ARCH_GATE_AREA */
  2211. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  2212. #ifdef CONFIG_SYSCTL
  2213. extern int sysctl_drop_caches;
  2214. int drop_caches_sysctl_handler(struct ctl_table *, int,
  2215. void __user *, size_t *, loff_t *);
  2216. #endif
  2217. void drop_slab(void);
  2218. void drop_slab_node(int nid);
  2219. #ifndef CONFIG_MMU
  2220. #define randomize_va_space 0
  2221. #else
  2222. extern int randomize_va_space;
  2223. #endif
  2224. const char * arch_vma_name(struct vm_area_struct *vma);
  2225. void print_vma_addr(char *prefix, unsigned long rip);
  2226. void sparse_mem_maps_populate_node(struct page **map_map,
  2227. unsigned long pnum_begin,
  2228. unsigned long pnum_end,
  2229. unsigned long map_count,
  2230. int nodeid);
  2231. struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
  2232. struct vmem_altmap *altmap);
  2233. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  2234. p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
  2235. pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
  2236. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  2237. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  2238. void *vmemmap_alloc_block(unsigned long size, int node);
  2239. struct vmem_altmap;
  2240. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  2241. void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
  2242. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  2243. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  2244. int node);
  2245. int vmemmap_populate(unsigned long start, unsigned long end, int node,
  2246. struct vmem_altmap *altmap);
  2247. void vmemmap_populate_print_last(void);
  2248. #ifdef CONFIG_MEMORY_HOTPLUG
  2249. void vmemmap_free(unsigned long start, unsigned long end,
  2250. struct vmem_altmap *altmap);
  2251. #endif
  2252. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2253. unsigned long nr_pages);
  2254. enum mf_flags {
  2255. MF_COUNT_INCREASED = 1 << 0,
  2256. MF_ACTION_REQUIRED = 1 << 1,
  2257. MF_MUST_KILL = 1 << 2,
  2258. MF_SOFT_OFFLINE = 1 << 3,
  2259. };
  2260. extern int memory_failure(unsigned long pfn, int flags);
  2261. extern void memory_failure_queue(unsigned long pfn, int flags);
  2262. extern int unpoison_memory(unsigned long pfn);
  2263. extern int get_hwpoison_page(struct page *page);
  2264. #define put_hwpoison_page(page) put_page(page)
  2265. extern int sysctl_memory_failure_early_kill;
  2266. extern int sysctl_memory_failure_recovery;
  2267. extern void shake_page(struct page *p, int access);
  2268. extern atomic_long_t num_poisoned_pages __read_mostly;
  2269. extern int soft_offline_page(struct page *page, int flags);
  2270. /*
  2271. * Error handlers for various types of pages.
  2272. */
  2273. enum mf_result {
  2274. MF_IGNORED, /* Error: cannot be handled */
  2275. MF_FAILED, /* Error: handling failed */
  2276. MF_DELAYED, /* Will be handled later */
  2277. MF_RECOVERED, /* Successfully recovered */
  2278. };
  2279. enum mf_action_page_type {
  2280. MF_MSG_KERNEL,
  2281. MF_MSG_KERNEL_HIGH_ORDER,
  2282. MF_MSG_SLAB,
  2283. MF_MSG_DIFFERENT_COMPOUND,
  2284. MF_MSG_POISONED_HUGE,
  2285. MF_MSG_HUGE,
  2286. MF_MSG_FREE_HUGE,
  2287. MF_MSG_NON_PMD_HUGE,
  2288. MF_MSG_UNMAP_FAILED,
  2289. MF_MSG_DIRTY_SWAPCACHE,
  2290. MF_MSG_CLEAN_SWAPCACHE,
  2291. MF_MSG_DIRTY_MLOCKED_LRU,
  2292. MF_MSG_CLEAN_MLOCKED_LRU,
  2293. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2294. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2295. MF_MSG_DIRTY_LRU,
  2296. MF_MSG_CLEAN_LRU,
  2297. MF_MSG_TRUNCATED_LRU,
  2298. MF_MSG_BUDDY,
  2299. MF_MSG_BUDDY_2ND,
  2300. MF_MSG_UNKNOWN,
  2301. };
  2302. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2303. extern void clear_huge_page(struct page *page,
  2304. unsigned long addr_hint,
  2305. unsigned int pages_per_huge_page);
  2306. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2307. unsigned long addr, struct vm_area_struct *vma,
  2308. unsigned int pages_per_huge_page);
  2309. extern long copy_huge_page_from_user(struct page *dst_page,
  2310. const void __user *usr_src,
  2311. unsigned int pages_per_huge_page,
  2312. bool allow_pagefault);
  2313. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2314. extern struct page_ext_operations debug_guardpage_ops;
  2315. #ifdef CONFIG_DEBUG_PAGEALLOC
  2316. extern unsigned int _debug_guardpage_minorder;
  2317. extern bool _debug_guardpage_enabled;
  2318. static inline unsigned int debug_guardpage_minorder(void)
  2319. {
  2320. return _debug_guardpage_minorder;
  2321. }
  2322. static inline bool debug_guardpage_enabled(void)
  2323. {
  2324. return _debug_guardpage_enabled;
  2325. }
  2326. static inline bool page_is_guard(struct page *page)
  2327. {
  2328. struct page_ext *page_ext;
  2329. if (!debug_guardpage_enabled())
  2330. return false;
  2331. page_ext = lookup_page_ext(page);
  2332. if (unlikely(!page_ext))
  2333. return false;
  2334. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2335. }
  2336. #else
  2337. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2338. static inline bool debug_guardpage_enabled(void) { return false; }
  2339. static inline bool page_is_guard(struct page *page) { return false; }
  2340. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2341. #if MAX_NUMNODES > 1
  2342. void __init setup_nr_node_ids(void);
  2343. #else
  2344. static inline void setup_nr_node_ids(void) {}
  2345. #endif
  2346. #endif /* __KERNEL__ */
  2347. #endif /* _LINUX_MM_H */