fs-writeback.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491
  1. /*
  2. * fs/fs-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * Contains all the functions related to writing back and waiting
  7. * upon dirty inodes against superblocks, and writing back dirty
  8. * pages against inodes. ie: data writeback. Writeout of the
  9. * inode itself is not handled here.
  10. *
  11. * 10Apr2002 Andrew Morton
  12. * Split out of fs/inode.c
  13. * Additions for address_space-based writeback
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/export.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/slab.h>
  19. #include <linux/sched.h>
  20. #include <linux/fs.h>
  21. #include <linux/mm.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/kthread.h>
  24. #include <linux/writeback.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/tracepoint.h>
  28. #include <linux/device.h>
  29. #include <linux/memcontrol.h>
  30. #include "internal.h"
  31. /*
  32. * 4MB minimal write chunk size
  33. */
  34. #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
  35. struct wb_completion {
  36. atomic_t cnt;
  37. };
  38. /*
  39. * Passed into wb_writeback(), essentially a subset of writeback_control
  40. */
  41. struct wb_writeback_work {
  42. long nr_pages;
  43. struct super_block *sb;
  44. unsigned long *older_than_this;
  45. enum writeback_sync_modes sync_mode;
  46. unsigned int tagged_writepages:1;
  47. unsigned int for_kupdate:1;
  48. unsigned int range_cyclic:1;
  49. unsigned int for_background:1;
  50. unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
  51. unsigned int auto_free:1; /* free on completion */
  52. enum wb_reason reason; /* why was writeback initiated? */
  53. struct list_head list; /* pending work list */
  54. struct wb_completion *done; /* set if the caller waits */
  55. };
  56. /*
  57. * If one wants to wait for one or more wb_writeback_works, each work's
  58. * ->done should be set to a wb_completion defined using the following
  59. * macro. Once all work items are issued with wb_queue_work(), the caller
  60. * can wait for the completion of all using wb_wait_for_completion(). Work
  61. * items which are waited upon aren't freed automatically on completion.
  62. */
  63. #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
  64. struct wb_completion cmpl = { \
  65. .cnt = ATOMIC_INIT(1), \
  66. }
  67. /*
  68. * If an inode is constantly having its pages dirtied, but then the
  69. * updates stop dirtytime_expire_interval seconds in the past, it's
  70. * possible for the worst case time between when an inode has its
  71. * timestamps updated and when they finally get written out to be two
  72. * dirtytime_expire_intervals. We set the default to 12 hours (in
  73. * seconds), which means most of the time inodes will have their
  74. * timestamps written to disk after 12 hours, but in the worst case a
  75. * few inodes might not their timestamps updated for 24 hours.
  76. */
  77. unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  78. static inline struct inode *wb_inode(struct list_head *head)
  79. {
  80. return list_entry(head, struct inode, i_io_list);
  81. }
  82. /*
  83. * Include the creation of the trace points after defining the
  84. * wb_writeback_work structure and inline functions so that the definition
  85. * remains local to this file.
  86. */
  87. #define CREATE_TRACE_POINTS
  88. #include <trace/events/writeback.h>
  89. EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
  90. static bool wb_io_lists_populated(struct bdi_writeback *wb)
  91. {
  92. if (wb_has_dirty_io(wb)) {
  93. return false;
  94. } else {
  95. set_bit(WB_has_dirty_io, &wb->state);
  96. WARN_ON_ONCE(!wb->avg_write_bandwidth);
  97. atomic_long_add(wb->avg_write_bandwidth,
  98. &wb->bdi->tot_write_bandwidth);
  99. return true;
  100. }
  101. }
  102. static void wb_io_lists_depopulated(struct bdi_writeback *wb)
  103. {
  104. if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
  105. list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
  106. clear_bit(WB_has_dirty_io, &wb->state);
  107. WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
  108. &wb->bdi->tot_write_bandwidth) < 0);
  109. }
  110. }
  111. /**
  112. * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
  113. * @inode: inode to be moved
  114. * @wb: target bdi_writeback
  115. * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
  116. *
  117. * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
  118. * Returns %true if @inode is the first occupant of the !dirty_time IO
  119. * lists; otherwise, %false.
  120. */
  121. static bool inode_io_list_move_locked(struct inode *inode,
  122. struct bdi_writeback *wb,
  123. struct list_head *head)
  124. {
  125. assert_spin_locked(&wb->list_lock);
  126. list_move(&inode->i_io_list, head);
  127. /* dirty_time doesn't count as dirty_io until expiration */
  128. if (head != &wb->b_dirty_time)
  129. return wb_io_lists_populated(wb);
  130. wb_io_lists_depopulated(wb);
  131. return false;
  132. }
  133. /**
  134. * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
  135. * @inode: inode to be removed
  136. * @wb: bdi_writeback @inode is being removed from
  137. *
  138. * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
  139. * clear %WB_has_dirty_io if all are empty afterwards.
  140. */
  141. static void inode_io_list_del_locked(struct inode *inode,
  142. struct bdi_writeback *wb)
  143. {
  144. assert_spin_locked(&wb->list_lock);
  145. list_del_init(&inode->i_io_list);
  146. wb_io_lists_depopulated(wb);
  147. }
  148. static void wb_wakeup(struct bdi_writeback *wb)
  149. {
  150. spin_lock_bh(&wb->work_lock);
  151. if (test_bit(WB_registered, &wb->state))
  152. mod_delayed_work(bdi_wq, &wb->dwork, 0);
  153. spin_unlock_bh(&wb->work_lock);
  154. }
  155. static void finish_writeback_work(struct bdi_writeback *wb,
  156. struct wb_writeback_work *work)
  157. {
  158. struct wb_completion *done = work->done;
  159. if (work->auto_free)
  160. kfree(work);
  161. if (done && atomic_dec_and_test(&done->cnt))
  162. wake_up_all(&wb->bdi->wb_waitq);
  163. }
  164. static void wb_queue_work(struct bdi_writeback *wb,
  165. struct wb_writeback_work *work)
  166. {
  167. trace_writeback_queue(wb, work);
  168. if (work->done)
  169. atomic_inc(&work->done->cnt);
  170. spin_lock_bh(&wb->work_lock);
  171. if (test_bit(WB_registered, &wb->state)) {
  172. list_add_tail(&work->list, &wb->work_list);
  173. mod_delayed_work(bdi_wq, &wb->dwork, 0);
  174. } else
  175. finish_writeback_work(wb, work);
  176. spin_unlock_bh(&wb->work_lock);
  177. }
  178. /**
  179. * wb_wait_for_completion - wait for completion of bdi_writeback_works
  180. * @bdi: bdi work items were issued to
  181. * @done: target wb_completion
  182. *
  183. * Wait for one or more work items issued to @bdi with their ->done field
  184. * set to @done, which should have been defined with
  185. * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
  186. * work items are completed. Work items which are waited upon aren't freed
  187. * automatically on completion.
  188. */
  189. static void wb_wait_for_completion(struct backing_dev_info *bdi,
  190. struct wb_completion *done)
  191. {
  192. atomic_dec(&done->cnt); /* put down the initial count */
  193. wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
  194. }
  195. #ifdef CONFIG_CGROUP_WRITEBACK
  196. /* parameters for foreign inode detection, see wb_detach_inode() */
  197. #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
  198. #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
  199. #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
  200. #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
  201. #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
  202. #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
  203. /* each slot's duration is 2s / 16 */
  204. #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
  205. /* if foreign slots >= 8, switch */
  206. #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
  207. /* one round can affect upto 5 slots */
  208. static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
  209. static struct workqueue_struct *isw_wq;
  210. void __inode_attach_wb(struct inode *inode, struct page *page)
  211. {
  212. struct backing_dev_info *bdi = inode_to_bdi(inode);
  213. struct bdi_writeback *wb = NULL;
  214. if (inode_cgwb_enabled(inode)) {
  215. struct cgroup_subsys_state *memcg_css;
  216. if (page) {
  217. memcg_css = mem_cgroup_css_from_page(page);
  218. wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
  219. } else {
  220. /* must pin memcg_css, see wb_get_create() */
  221. memcg_css = task_get_css(current, memory_cgrp_id);
  222. wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
  223. css_put(memcg_css);
  224. }
  225. }
  226. if (!wb)
  227. wb = &bdi->wb;
  228. /*
  229. * There may be multiple instances of this function racing to
  230. * update the same inode. Use cmpxchg() to tell the winner.
  231. */
  232. if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
  233. wb_put(wb);
  234. }
  235. /**
  236. * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
  237. * @inode: inode of interest with i_lock held
  238. *
  239. * Returns @inode's wb with its list_lock held. @inode->i_lock must be
  240. * held on entry and is released on return. The returned wb is guaranteed
  241. * to stay @inode's associated wb until its list_lock is released.
  242. */
  243. static struct bdi_writeback *
  244. locked_inode_to_wb_and_lock_list(struct inode *inode)
  245. __releases(&inode->i_lock)
  246. __acquires(&wb->list_lock)
  247. {
  248. while (true) {
  249. struct bdi_writeback *wb = inode_to_wb(inode);
  250. /*
  251. * inode_to_wb() association is protected by both
  252. * @inode->i_lock and @wb->list_lock but list_lock nests
  253. * outside i_lock. Drop i_lock and verify that the
  254. * association hasn't changed after acquiring list_lock.
  255. */
  256. wb_get(wb);
  257. spin_unlock(&inode->i_lock);
  258. spin_lock(&wb->list_lock);
  259. /* i_wb may have changed inbetween, can't use inode_to_wb() */
  260. if (likely(wb == inode->i_wb)) {
  261. wb_put(wb); /* @inode already has ref */
  262. return wb;
  263. }
  264. spin_unlock(&wb->list_lock);
  265. wb_put(wb);
  266. cpu_relax();
  267. spin_lock(&inode->i_lock);
  268. }
  269. }
  270. /**
  271. * inode_to_wb_and_lock_list - determine an inode's wb and lock it
  272. * @inode: inode of interest
  273. *
  274. * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
  275. * on entry.
  276. */
  277. static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
  278. __acquires(&wb->list_lock)
  279. {
  280. spin_lock(&inode->i_lock);
  281. return locked_inode_to_wb_and_lock_list(inode);
  282. }
  283. struct inode_switch_wbs_context {
  284. struct inode *inode;
  285. struct bdi_writeback *new_wb;
  286. struct rcu_head rcu_head;
  287. struct work_struct work;
  288. };
  289. static void inode_switch_wbs_work_fn(struct work_struct *work)
  290. {
  291. struct inode_switch_wbs_context *isw =
  292. container_of(work, struct inode_switch_wbs_context, work);
  293. struct inode *inode = isw->inode;
  294. struct address_space *mapping = inode->i_mapping;
  295. struct bdi_writeback *old_wb = inode->i_wb;
  296. struct bdi_writeback *new_wb = isw->new_wb;
  297. struct radix_tree_iter iter;
  298. bool switched = false;
  299. void **slot;
  300. /*
  301. * By the time control reaches here, RCU grace period has passed
  302. * since I_WB_SWITCH assertion and all wb stat update transactions
  303. * between unlocked_inode_to_wb_begin/end() are guaranteed to be
  304. * synchronizing against the i_pages lock.
  305. *
  306. * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
  307. * gives us exclusion against all wb related operations on @inode
  308. * including IO list manipulations and stat updates.
  309. */
  310. if (old_wb < new_wb) {
  311. spin_lock(&old_wb->list_lock);
  312. spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
  313. } else {
  314. spin_lock(&new_wb->list_lock);
  315. spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
  316. }
  317. spin_lock(&inode->i_lock);
  318. xa_lock_irq(&mapping->i_pages);
  319. /*
  320. * Once I_FREEING is visible under i_lock, the eviction path owns
  321. * the inode and we shouldn't modify ->i_io_list.
  322. */
  323. if (unlikely(inode->i_state & I_FREEING))
  324. goto skip_switch;
  325. /*
  326. * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
  327. * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
  328. * pages actually under writeback.
  329. */
  330. radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
  331. PAGECACHE_TAG_DIRTY) {
  332. struct page *page = radix_tree_deref_slot_protected(slot,
  333. &mapping->i_pages.xa_lock);
  334. if (likely(page) && PageDirty(page)) {
  335. dec_wb_stat(old_wb, WB_RECLAIMABLE);
  336. inc_wb_stat(new_wb, WB_RECLAIMABLE);
  337. }
  338. }
  339. radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
  340. PAGECACHE_TAG_WRITEBACK) {
  341. struct page *page = radix_tree_deref_slot_protected(slot,
  342. &mapping->i_pages.xa_lock);
  343. if (likely(page)) {
  344. WARN_ON_ONCE(!PageWriteback(page));
  345. dec_wb_stat(old_wb, WB_WRITEBACK);
  346. inc_wb_stat(new_wb, WB_WRITEBACK);
  347. }
  348. }
  349. wb_get(new_wb);
  350. /*
  351. * Transfer to @new_wb's IO list if necessary. The specific list
  352. * @inode was on is ignored and the inode is put on ->b_dirty which
  353. * is always correct including from ->b_dirty_time. The transfer
  354. * preserves @inode->dirtied_when ordering.
  355. */
  356. if (!list_empty(&inode->i_io_list)) {
  357. struct inode *pos;
  358. inode_io_list_del_locked(inode, old_wb);
  359. inode->i_wb = new_wb;
  360. list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
  361. if (time_after_eq(inode->dirtied_when,
  362. pos->dirtied_when))
  363. break;
  364. inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
  365. } else {
  366. inode->i_wb = new_wb;
  367. }
  368. /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
  369. inode->i_wb_frn_winner = 0;
  370. inode->i_wb_frn_avg_time = 0;
  371. inode->i_wb_frn_history = 0;
  372. switched = true;
  373. skip_switch:
  374. /*
  375. * Paired with load_acquire in unlocked_inode_to_wb_begin() and
  376. * ensures that the new wb is visible if they see !I_WB_SWITCH.
  377. */
  378. smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
  379. xa_unlock_irq(&mapping->i_pages);
  380. spin_unlock(&inode->i_lock);
  381. spin_unlock(&new_wb->list_lock);
  382. spin_unlock(&old_wb->list_lock);
  383. if (switched) {
  384. wb_wakeup(new_wb);
  385. wb_put(old_wb);
  386. }
  387. wb_put(new_wb);
  388. iput(inode);
  389. kfree(isw);
  390. atomic_dec(&isw_nr_in_flight);
  391. }
  392. static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
  393. {
  394. struct inode_switch_wbs_context *isw = container_of(rcu_head,
  395. struct inode_switch_wbs_context, rcu_head);
  396. /* needs to grab bh-unsafe locks, bounce to work item */
  397. INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
  398. queue_work(isw_wq, &isw->work);
  399. }
  400. /**
  401. * inode_switch_wbs - change the wb association of an inode
  402. * @inode: target inode
  403. * @new_wb_id: ID of the new wb
  404. *
  405. * Switch @inode's wb association to the wb identified by @new_wb_id. The
  406. * switching is performed asynchronously and may fail silently.
  407. */
  408. static void inode_switch_wbs(struct inode *inode, int new_wb_id)
  409. {
  410. struct backing_dev_info *bdi = inode_to_bdi(inode);
  411. struct cgroup_subsys_state *memcg_css;
  412. struct inode_switch_wbs_context *isw;
  413. /* noop if seems to be already in progress */
  414. if (inode->i_state & I_WB_SWITCH)
  415. return;
  416. isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
  417. if (!isw)
  418. return;
  419. /* find and pin the new wb */
  420. rcu_read_lock();
  421. memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
  422. if (memcg_css)
  423. isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
  424. rcu_read_unlock();
  425. if (!isw->new_wb)
  426. goto out_free;
  427. /* while holding I_WB_SWITCH, no one else can update the association */
  428. spin_lock(&inode->i_lock);
  429. if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
  430. inode->i_state & (I_WB_SWITCH | I_FREEING) ||
  431. inode_to_wb(inode) == isw->new_wb) {
  432. spin_unlock(&inode->i_lock);
  433. goto out_free;
  434. }
  435. inode->i_state |= I_WB_SWITCH;
  436. __iget(inode);
  437. spin_unlock(&inode->i_lock);
  438. isw->inode = inode;
  439. atomic_inc(&isw_nr_in_flight);
  440. /*
  441. * In addition to synchronizing among switchers, I_WB_SWITCH tells
  442. * the RCU protected stat update paths to grab the i_page
  443. * lock so that stat transfer can synchronize against them.
  444. * Let's continue after I_WB_SWITCH is guaranteed to be visible.
  445. */
  446. call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
  447. return;
  448. out_free:
  449. if (isw->new_wb)
  450. wb_put(isw->new_wb);
  451. kfree(isw);
  452. }
  453. /**
  454. * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
  455. * @wbc: writeback_control of interest
  456. * @inode: target inode
  457. *
  458. * @inode is locked and about to be written back under the control of @wbc.
  459. * Record @inode's writeback context into @wbc and unlock the i_lock. On
  460. * writeback completion, wbc_detach_inode() should be called. This is used
  461. * to track the cgroup writeback context.
  462. */
  463. void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
  464. struct inode *inode)
  465. {
  466. if (!inode_cgwb_enabled(inode)) {
  467. spin_unlock(&inode->i_lock);
  468. return;
  469. }
  470. wbc->wb = inode_to_wb(inode);
  471. wbc->inode = inode;
  472. wbc->wb_id = wbc->wb->memcg_css->id;
  473. wbc->wb_lcand_id = inode->i_wb_frn_winner;
  474. wbc->wb_tcand_id = 0;
  475. wbc->wb_bytes = 0;
  476. wbc->wb_lcand_bytes = 0;
  477. wbc->wb_tcand_bytes = 0;
  478. wb_get(wbc->wb);
  479. spin_unlock(&inode->i_lock);
  480. /*
  481. * A dying wb indicates that the memcg-blkcg mapping has changed
  482. * and a new wb is already serving the memcg. Switch immediately.
  483. */
  484. if (unlikely(wb_dying(wbc->wb)))
  485. inode_switch_wbs(inode, wbc->wb_id);
  486. }
  487. /**
  488. * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
  489. * @wbc: writeback_control of the just finished writeback
  490. *
  491. * To be called after a writeback attempt of an inode finishes and undoes
  492. * wbc_attach_and_unlock_inode(). Can be called under any context.
  493. *
  494. * As concurrent write sharing of an inode is expected to be very rare and
  495. * memcg only tracks page ownership on first-use basis severely confining
  496. * the usefulness of such sharing, cgroup writeback tracks ownership
  497. * per-inode. While the support for concurrent write sharing of an inode
  498. * is deemed unnecessary, an inode being written to by different cgroups at
  499. * different points in time is a lot more common, and, more importantly,
  500. * charging only by first-use can too readily lead to grossly incorrect
  501. * behaviors (single foreign page can lead to gigabytes of writeback to be
  502. * incorrectly attributed).
  503. *
  504. * To resolve this issue, cgroup writeback detects the majority dirtier of
  505. * an inode and transfers the ownership to it. To avoid unnnecessary
  506. * oscillation, the detection mechanism keeps track of history and gives
  507. * out the switch verdict only if the foreign usage pattern is stable over
  508. * a certain amount of time and/or writeback attempts.
  509. *
  510. * On each writeback attempt, @wbc tries to detect the majority writer
  511. * using Boyer-Moore majority vote algorithm. In addition to the byte
  512. * count from the majority voting, it also counts the bytes written for the
  513. * current wb and the last round's winner wb (max of last round's current
  514. * wb, the winner from two rounds ago, and the last round's majority
  515. * candidate). Keeping track of the historical winner helps the algorithm
  516. * to semi-reliably detect the most active writer even when it's not the
  517. * absolute majority.
  518. *
  519. * Once the winner of the round is determined, whether the winner is
  520. * foreign or not and how much IO time the round consumed is recorded in
  521. * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
  522. * over a certain threshold, the switch verdict is given.
  523. */
  524. void wbc_detach_inode(struct writeback_control *wbc)
  525. {
  526. struct bdi_writeback *wb = wbc->wb;
  527. struct inode *inode = wbc->inode;
  528. unsigned long avg_time, max_bytes, max_time;
  529. u16 history;
  530. int max_id;
  531. if (!wb)
  532. return;
  533. history = inode->i_wb_frn_history;
  534. avg_time = inode->i_wb_frn_avg_time;
  535. /* pick the winner of this round */
  536. if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
  537. wbc->wb_bytes >= wbc->wb_tcand_bytes) {
  538. max_id = wbc->wb_id;
  539. max_bytes = wbc->wb_bytes;
  540. } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
  541. max_id = wbc->wb_lcand_id;
  542. max_bytes = wbc->wb_lcand_bytes;
  543. } else {
  544. max_id = wbc->wb_tcand_id;
  545. max_bytes = wbc->wb_tcand_bytes;
  546. }
  547. /*
  548. * Calculate the amount of IO time the winner consumed and fold it
  549. * into the running average kept per inode. If the consumed IO
  550. * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
  551. * deciding whether to switch or not. This is to prevent one-off
  552. * small dirtiers from skewing the verdict.
  553. */
  554. max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
  555. wb->avg_write_bandwidth);
  556. if (avg_time)
  557. avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
  558. (avg_time >> WB_FRN_TIME_AVG_SHIFT);
  559. else
  560. avg_time = max_time; /* immediate catch up on first run */
  561. if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
  562. int slots;
  563. /*
  564. * The switch verdict is reached if foreign wb's consume
  565. * more than a certain proportion of IO time in a
  566. * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
  567. * history mask where each bit represents one sixteenth of
  568. * the period. Determine the number of slots to shift into
  569. * history from @max_time.
  570. */
  571. slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
  572. (unsigned long)WB_FRN_HIST_MAX_SLOTS);
  573. history <<= slots;
  574. if (wbc->wb_id != max_id)
  575. history |= (1U << slots) - 1;
  576. /*
  577. * Switch if the current wb isn't the consistent winner.
  578. * If there are multiple closely competing dirtiers, the
  579. * inode may switch across them repeatedly over time, which
  580. * is okay. The main goal is avoiding keeping an inode on
  581. * the wrong wb for an extended period of time.
  582. */
  583. if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
  584. inode_switch_wbs(inode, max_id);
  585. }
  586. /*
  587. * Multiple instances of this function may race to update the
  588. * following fields but we don't mind occassional inaccuracies.
  589. */
  590. inode->i_wb_frn_winner = max_id;
  591. inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
  592. inode->i_wb_frn_history = history;
  593. wb_put(wbc->wb);
  594. wbc->wb = NULL;
  595. }
  596. /**
  597. * wbc_account_io - account IO issued during writeback
  598. * @wbc: writeback_control of the writeback in progress
  599. * @page: page being written out
  600. * @bytes: number of bytes being written out
  601. *
  602. * @bytes from @page are about to written out during the writeback
  603. * controlled by @wbc. Keep the book for foreign inode detection. See
  604. * wbc_detach_inode().
  605. */
  606. void wbc_account_io(struct writeback_control *wbc, struct page *page,
  607. size_t bytes)
  608. {
  609. int id;
  610. /*
  611. * pageout() path doesn't attach @wbc to the inode being written
  612. * out. This is intentional as we don't want the function to block
  613. * behind a slow cgroup. Ultimately, we want pageout() to kick off
  614. * regular writeback instead of writing things out itself.
  615. */
  616. if (!wbc->wb)
  617. return;
  618. id = mem_cgroup_css_from_page(page)->id;
  619. if (id == wbc->wb_id) {
  620. wbc->wb_bytes += bytes;
  621. return;
  622. }
  623. if (id == wbc->wb_lcand_id)
  624. wbc->wb_lcand_bytes += bytes;
  625. /* Boyer-Moore majority vote algorithm */
  626. if (!wbc->wb_tcand_bytes)
  627. wbc->wb_tcand_id = id;
  628. if (id == wbc->wb_tcand_id)
  629. wbc->wb_tcand_bytes += bytes;
  630. else
  631. wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
  632. }
  633. EXPORT_SYMBOL_GPL(wbc_account_io);
  634. /**
  635. * inode_congested - test whether an inode is congested
  636. * @inode: inode to test for congestion (may be NULL)
  637. * @cong_bits: mask of WB_[a]sync_congested bits to test
  638. *
  639. * Tests whether @inode is congested. @cong_bits is the mask of congestion
  640. * bits to test and the return value is the mask of set bits.
  641. *
  642. * If cgroup writeback is enabled for @inode, the congestion state is
  643. * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
  644. * associated with @inode is congested; otherwise, the root wb's congestion
  645. * state is used.
  646. *
  647. * @inode is allowed to be NULL as this function is often called on
  648. * mapping->host which is NULL for the swapper space.
  649. */
  650. int inode_congested(struct inode *inode, int cong_bits)
  651. {
  652. /*
  653. * Once set, ->i_wb never becomes NULL while the inode is alive.
  654. * Start transaction iff ->i_wb is visible.
  655. */
  656. if (inode && inode_to_wb_is_valid(inode)) {
  657. struct bdi_writeback *wb;
  658. bool locked, congested;
  659. wb = unlocked_inode_to_wb_begin(inode, &locked);
  660. congested = wb_congested(wb, cong_bits);
  661. unlocked_inode_to_wb_end(inode, locked);
  662. return congested;
  663. }
  664. return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
  665. }
  666. EXPORT_SYMBOL_GPL(inode_congested);
  667. /**
  668. * wb_split_bdi_pages - split nr_pages to write according to bandwidth
  669. * @wb: target bdi_writeback to split @nr_pages to
  670. * @nr_pages: number of pages to write for the whole bdi
  671. *
  672. * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
  673. * relation to the total write bandwidth of all wb's w/ dirty inodes on
  674. * @wb->bdi.
  675. */
  676. static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
  677. {
  678. unsigned long this_bw = wb->avg_write_bandwidth;
  679. unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
  680. if (nr_pages == LONG_MAX)
  681. return LONG_MAX;
  682. /*
  683. * This may be called on clean wb's and proportional distribution
  684. * may not make sense, just use the original @nr_pages in those
  685. * cases. In general, we wanna err on the side of writing more.
  686. */
  687. if (!tot_bw || this_bw >= tot_bw)
  688. return nr_pages;
  689. else
  690. return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
  691. }
  692. /**
  693. * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
  694. * @bdi: target backing_dev_info
  695. * @base_work: wb_writeback_work to issue
  696. * @skip_if_busy: skip wb's which already have writeback in progress
  697. *
  698. * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
  699. * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
  700. * distributed to the busy wbs according to each wb's proportion in the
  701. * total active write bandwidth of @bdi.
  702. */
  703. static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
  704. struct wb_writeback_work *base_work,
  705. bool skip_if_busy)
  706. {
  707. struct bdi_writeback *last_wb = NULL;
  708. struct bdi_writeback *wb = list_entry(&bdi->wb_list,
  709. struct bdi_writeback, bdi_node);
  710. might_sleep();
  711. restart:
  712. rcu_read_lock();
  713. list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
  714. DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
  715. struct wb_writeback_work fallback_work;
  716. struct wb_writeback_work *work;
  717. long nr_pages;
  718. if (last_wb) {
  719. wb_put(last_wb);
  720. last_wb = NULL;
  721. }
  722. /* SYNC_ALL writes out I_DIRTY_TIME too */
  723. if (!wb_has_dirty_io(wb) &&
  724. (base_work->sync_mode == WB_SYNC_NONE ||
  725. list_empty(&wb->b_dirty_time)))
  726. continue;
  727. if (skip_if_busy && writeback_in_progress(wb))
  728. continue;
  729. nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
  730. work = kmalloc(sizeof(*work), GFP_ATOMIC);
  731. if (work) {
  732. *work = *base_work;
  733. work->nr_pages = nr_pages;
  734. work->auto_free = 1;
  735. wb_queue_work(wb, work);
  736. continue;
  737. }
  738. /* alloc failed, execute synchronously using on-stack fallback */
  739. work = &fallback_work;
  740. *work = *base_work;
  741. work->nr_pages = nr_pages;
  742. work->auto_free = 0;
  743. work->done = &fallback_work_done;
  744. wb_queue_work(wb, work);
  745. /*
  746. * Pin @wb so that it stays on @bdi->wb_list. This allows
  747. * continuing iteration from @wb after dropping and
  748. * regrabbing rcu read lock.
  749. */
  750. wb_get(wb);
  751. last_wb = wb;
  752. rcu_read_unlock();
  753. wb_wait_for_completion(bdi, &fallback_work_done);
  754. goto restart;
  755. }
  756. rcu_read_unlock();
  757. if (last_wb)
  758. wb_put(last_wb);
  759. }
  760. /**
  761. * cgroup_writeback_umount - flush inode wb switches for umount
  762. *
  763. * This function is called when a super_block is about to be destroyed and
  764. * flushes in-flight inode wb switches. An inode wb switch goes through
  765. * RCU and then workqueue, so the two need to be flushed in order to ensure
  766. * that all previously scheduled switches are finished. As wb switches are
  767. * rare occurrences and synchronize_rcu() can take a while, perform
  768. * flushing iff wb switches are in flight.
  769. */
  770. void cgroup_writeback_umount(void)
  771. {
  772. if (atomic_read(&isw_nr_in_flight)) {
  773. synchronize_rcu();
  774. flush_workqueue(isw_wq);
  775. }
  776. }
  777. static int __init cgroup_writeback_init(void)
  778. {
  779. isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
  780. if (!isw_wq)
  781. return -ENOMEM;
  782. return 0;
  783. }
  784. fs_initcall(cgroup_writeback_init);
  785. #else /* CONFIG_CGROUP_WRITEBACK */
  786. static struct bdi_writeback *
  787. locked_inode_to_wb_and_lock_list(struct inode *inode)
  788. __releases(&inode->i_lock)
  789. __acquires(&wb->list_lock)
  790. {
  791. struct bdi_writeback *wb = inode_to_wb(inode);
  792. spin_unlock(&inode->i_lock);
  793. spin_lock(&wb->list_lock);
  794. return wb;
  795. }
  796. static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
  797. __acquires(&wb->list_lock)
  798. {
  799. struct bdi_writeback *wb = inode_to_wb(inode);
  800. spin_lock(&wb->list_lock);
  801. return wb;
  802. }
  803. static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
  804. {
  805. return nr_pages;
  806. }
  807. static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
  808. struct wb_writeback_work *base_work,
  809. bool skip_if_busy)
  810. {
  811. might_sleep();
  812. if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
  813. base_work->auto_free = 0;
  814. wb_queue_work(&bdi->wb, base_work);
  815. }
  816. }
  817. #endif /* CONFIG_CGROUP_WRITEBACK */
  818. /*
  819. * Add in the number of potentially dirty inodes, because each inode
  820. * write can dirty pagecache in the underlying blockdev.
  821. */
  822. static unsigned long get_nr_dirty_pages(void)
  823. {
  824. return global_node_page_state(NR_FILE_DIRTY) +
  825. global_node_page_state(NR_UNSTABLE_NFS) +
  826. get_nr_dirty_inodes();
  827. }
  828. static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
  829. {
  830. if (!wb_has_dirty_io(wb))
  831. return;
  832. /*
  833. * All callers of this function want to start writeback of all
  834. * dirty pages. Places like vmscan can call this at a very
  835. * high frequency, causing pointless allocations of tons of
  836. * work items and keeping the flusher threads busy retrieving
  837. * that work. Ensure that we only allow one of them pending and
  838. * inflight at the time.
  839. */
  840. if (test_bit(WB_start_all, &wb->state) ||
  841. test_and_set_bit(WB_start_all, &wb->state))
  842. return;
  843. wb->start_all_reason = reason;
  844. wb_wakeup(wb);
  845. }
  846. /**
  847. * wb_start_background_writeback - start background writeback
  848. * @wb: bdi_writback to write from
  849. *
  850. * Description:
  851. * This makes sure WB_SYNC_NONE background writeback happens. When
  852. * this function returns, it is only guaranteed that for given wb
  853. * some IO is happening if we are over background dirty threshold.
  854. * Caller need not hold sb s_umount semaphore.
  855. */
  856. void wb_start_background_writeback(struct bdi_writeback *wb)
  857. {
  858. /*
  859. * We just wake up the flusher thread. It will perform background
  860. * writeback as soon as there is no other work to do.
  861. */
  862. trace_writeback_wake_background(wb);
  863. wb_wakeup(wb);
  864. }
  865. /*
  866. * Remove the inode from the writeback list it is on.
  867. */
  868. void inode_io_list_del(struct inode *inode)
  869. {
  870. struct bdi_writeback *wb;
  871. wb = inode_to_wb_and_lock_list(inode);
  872. inode_io_list_del_locked(inode, wb);
  873. spin_unlock(&wb->list_lock);
  874. }
  875. /*
  876. * mark an inode as under writeback on the sb
  877. */
  878. void sb_mark_inode_writeback(struct inode *inode)
  879. {
  880. struct super_block *sb = inode->i_sb;
  881. unsigned long flags;
  882. if (list_empty(&inode->i_wb_list)) {
  883. spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
  884. if (list_empty(&inode->i_wb_list)) {
  885. list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
  886. trace_sb_mark_inode_writeback(inode);
  887. }
  888. spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
  889. }
  890. }
  891. /*
  892. * clear an inode as under writeback on the sb
  893. */
  894. void sb_clear_inode_writeback(struct inode *inode)
  895. {
  896. struct super_block *sb = inode->i_sb;
  897. unsigned long flags;
  898. if (!list_empty(&inode->i_wb_list)) {
  899. spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
  900. if (!list_empty(&inode->i_wb_list)) {
  901. list_del_init(&inode->i_wb_list);
  902. trace_sb_clear_inode_writeback(inode);
  903. }
  904. spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
  905. }
  906. }
  907. /*
  908. * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
  909. * furthest end of its superblock's dirty-inode list.
  910. *
  911. * Before stamping the inode's ->dirtied_when, we check to see whether it is
  912. * already the most-recently-dirtied inode on the b_dirty list. If that is
  913. * the case then the inode must have been redirtied while it was being written
  914. * out and we don't reset its dirtied_when.
  915. */
  916. static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
  917. {
  918. if (!list_empty(&wb->b_dirty)) {
  919. struct inode *tail;
  920. tail = wb_inode(wb->b_dirty.next);
  921. if (time_before(inode->dirtied_when, tail->dirtied_when))
  922. inode->dirtied_when = jiffies;
  923. }
  924. inode_io_list_move_locked(inode, wb, &wb->b_dirty);
  925. }
  926. /*
  927. * requeue inode for re-scanning after bdi->b_io list is exhausted.
  928. */
  929. static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
  930. {
  931. inode_io_list_move_locked(inode, wb, &wb->b_more_io);
  932. }
  933. static void inode_sync_complete(struct inode *inode)
  934. {
  935. inode->i_state &= ~I_SYNC;
  936. /* If inode is clean an unused, put it into LRU now... */
  937. inode_add_lru(inode);
  938. /* Waiters must see I_SYNC cleared before being woken up */
  939. smp_mb();
  940. wake_up_bit(&inode->i_state, __I_SYNC);
  941. }
  942. static bool inode_dirtied_after(struct inode *inode, unsigned long t)
  943. {
  944. bool ret = time_after(inode->dirtied_when, t);
  945. #ifndef CONFIG_64BIT
  946. /*
  947. * For inodes being constantly redirtied, dirtied_when can get stuck.
  948. * It _appears_ to be in the future, but is actually in distant past.
  949. * This test is necessary to prevent such wrapped-around relative times
  950. * from permanently stopping the whole bdi writeback.
  951. */
  952. ret = ret && time_before_eq(inode->dirtied_when, jiffies);
  953. #endif
  954. return ret;
  955. }
  956. #define EXPIRE_DIRTY_ATIME 0x0001
  957. /*
  958. * Move expired (dirtied before work->older_than_this) dirty inodes from
  959. * @delaying_queue to @dispatch_queue.
  960. */
  961. static int move_expired_inodes(struct list_head *delaying_queue,
  962. struct list_head *dispatch_queue,
  963. int flags,
  964. struct wb_writeback_work *work)
  965. {
  966. unsigned long *older_than_this = NULL;
  967. unsigned long expire_time;
  968. LIST_HEAD(tmp);
  969. struct list_head *pos, *node;
  970. struct super_block *sb = NULL;
  971. struct inode *inode;
  972. int do_sb_sort = 0;
  973. int moved = 0;
  974. if ((flags & EXPIRE_DIRTY_ATIME) == 0)
  975. older_than_this = work->older_than_this;
  976. else if (!work->for_sync) {
  977. expire_time = jiffies - (dirtytime_expire_interval * HZ);
  978. older_than_this = &expire_time;
  979. }
  980. while (!list_empty(delaying_queue)) {
  981. inode = wb_inode(delaying_queue->prev);
  982. if (older_than_this &&
  983. inode_dirtied_after(inode, *older_than_this))
  984. break;
  985. list_move(&inode->i_io_list, &tmp);
  986. moved++;
  987. if (flags & EXPIRE_DIRTY_ATIME)
  988. set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
  989. if (sb_is_blkdev_sb(inode->i_sb))
  990. continue;
  991. if (sb && sb != inode->i_sb)
  992. do_sb_sort = 1;
  993. sb = inode->i_sb;
  994. }
  995. /* just one sb in list, splice to dispatch_queue and we're done */
  996. if (!do_sb_sort) {
  997. list_splice(&tmp, dispatch_queue);
  998. goto out;
  999. }
  1000. /* Move inodes from one superblock together */
  1001. while (!list_empty(&tmp)) {
  1002. sb = wb_inode(tmp.prev)->i_sb;
  1003. list_for_each_prev_safe(pos, node, &tmp) {
  1004. inode = wb_inode(pos);
  1005. if (inode->i_sb == sb)
  1006. list_move(&inode->i_io_list, dispatch_queue);
  1007. }
  1008. }
  1009. out:
  1010. return moved;
  1011. }
  1012. /*
  1013. * Queue all expired dirty inodes for io, eldest first.
  1014. * Before
  1015. * newly dirtied b_dirty b_io b_more_io
  1016. * =============> gf edc BA
  1017. * After
  1018. * newly dirtied b_dirty b_io b_more_io
  1019. * =============> g fBAedc
  1020. * |
  1021. * +--> dequeue for IO
  1022. */
  1023. static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
  1024. {
  1025. int moved;
  1026. assert_spin_locked(&wb->list_lock);
  1027. list_splice_init(&wb->b_more_io, &wb->b_io);
  1028. moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
  1029. moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
  1030. EXPIRE_DIRTY_ATIME, work);
  1031. if (moved)
  1032. wb_io_lists_populated(wb);
  1033. trace_writeback_queue_io(wb, work, moved);
  1034. }
  1035. static int write_inode(struct inode *inode, struct writeback_control *wbc)
  1036. {
  1037. int ret;
  1038. if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
  1039. trace_writeback_write_inode_start(inode, wbc);
  1040. ret = inode->i_sb->s_op->write_inode(inode, wbc);
  1041. trace_writeback_write_inode(inode, wbc);
  1042. return ret;
  1043. }
  1044. return 0;
  1045. }
  1046. /*
  1047. * Wait for writeback on an inode to complete. Called with i_lock held.
  1048. * Caller must make sure inode cannot go away when we drop i_lock.
  1049. */
  1050. static void __inode_wait_for_writeback(struct inode *inode)
  1051. __releases(inode->i_lock)
  1052. __acquires(inode->i_lock)
  1053. {
  1054. DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
  1055. wait_queue_head_t *wqh;
  1056. wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
  1057. while (inode->i_state & I_SYNC) {
  1058. spin_unlock(&inode->i_lock);
  1059. __wait_on_bit(wqh, &wq, bit_wait,
  1060. TASK_UNINTERRUPTIBLE);
  1061. spin_lock(&inode->i_lock);
  1062. }
  1063. }
  1064. /*
  1065. * Wait for writeback on an inode to complete. Caller must have inode pinned.
  1066. */
  1067. void inode_wait_for_writeback(struct inode *inode)
  1068. {
  1069. spin_lock(&inode->i_lock);
  1070. __inode_wait_for_writeback(inode);
  1071. spin_unlock(&inode->i_lock);
  1072. }
  1073. /*
  1074. * Sleep until I_SYNC is cleared. This function must be called with i_lock
  1075. * held and drops it. It is aimed for callers not holding any inode reference
  1076. * so once i_lock is dropped, inode can go away.
  1077. */
  1078. static void inode_sleep_on_writeback(struct inode *inode)
  1079. __releases(inode->i_lock)
  1080. {
  1081. DEFINE_WAIT(wait);
  1082. wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
  1083. int sleep;
  1084. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  1085. sleep = inode->i_state & I_SYNC;
  1086. spin_unlock(&inode->i_lock);
  1087. if (sleep)
  1088. schedule();
  1089. finish_wait(wqh, &wait);
  1090. }
  1091. /*
  1092. * Find proper writeback list for the inode depending on its current state and
  1093. * possibly also change of its state while we were doing writeback. Here we
  1094. * handle things such as livelock prevention or fairness of writeback among
  1095. * inodes. This function can be called only by flusher thread - noone else
  1096. * processes all inodes in writeback lists and requeueing inodes behind flusher
  1097. * thread's back can have unexpected consequences.
  1098. */
  1099. static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
  1100. struct writeback_control *wbc)
  1101. {
  1102. if (inode->i_state & I_FREEING)
  1103. return;
  1104. /*
  1105. * Sync livelock prevention. Each inode is tagged and synced in one
  1106. * shot. If still dirty, it will be redirty_tail()'ed below. Update
  1107. * the dirty time to prevent enqueue and sync it again.
  1108. */
  1109. if ((inode->i_state & I_DIRTY) &&
  1110. (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
  1111. inode->dirtied_when = jiffies;
  1112. if (wbc->pages_skipped) {
  1113. /*
  1114. * writeback is not making progress due to locked
  1115. * buffers. Skip this inode for now.
  1116. */
  1117. redirty_tail(inode, wb);
  1118. return;
  1119. }
  1120. if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
  1121. /*
  1122. * We didn't write back all the pages. nfs_writepages()
  1123. * sometimes bales out without doing anything.
  1124. */
  1125. if (wbc->nr_to_write <= 0) {
  1126. /* Slice used up. Queue for next turn. */
  1127. requeue_io(inode, wb);
  1128. } else {
  1129. /*
  1130. * Writeback blocked by something other than
  1131. * congestion. Delay the inode for some time to
  1132. * avoid spinning on the CPU (100% iowait)
  1133. * retrying writeback of the dirty page/inode
  1134. * that cannot be performed immediately.
  1135. */
  1136. redirty_tail(inode, wb);
  1137. }
  1138. } else if (inode->i_state & I_DIRTY) {
  1139. /*
  1140. * Filesystems can dirty the inode during writeback operations,
  1141. * such as delayed allocation during submission or metadata
  1142. * updates after data IO completion.
  1143. */
  1144. redirty_tail(inode, wb);
  1145. } else if (inode->i_state & I_DIRTY_TIME) {
  1146. inode->dirtied_when = jiffies;
  1147. inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
  1148. } else {
  1149. /* The inode is clean. Remove from writeback lists. */
  1150. inode_io_list_del_locked(inode, wb);
  1151. }
  1152. }
  1153. /*
  1154. * Write out an inode and its dirty pages. Do not update the writeback list
  1155. * linkage. That is left to the caller. The caller is also responsible for
  1156. * setting I_SYNC flag and calling inode_sync_complete() to clear it.
  1157. */
  1158. static int
  1159. __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
  1160. {
  1161. struct address_space *mapping = inode->i_mapping;
  1162. long nr_to_write = wbc->nr_to_write;
  1163. unsigned dirty;
  1164. int ret;
  1165. WARN_ON(!(inode->i_state & I_SYNC));
  1166. trace_writeback_single_inode_start(inode, wbc, nr_to_write);
  1167. ret = do_writepages(mapping, wbc);
  1168. /*
  1169. * Make sure to wait on the data before writing out the metadata.
  1170. * This is important for filesystems that modify metadata on data
  1171. * I/O completion. We don't do it for sync(2) writeback because it has a
  1172. * separate, external IO completion path and ->sync_fs for guaranteeing
  1173. * inode metadata is written back correctly.
  1174. */
  1175. if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
  1176. int err = filemap_fdatawait(mapping);
  1177. if (ret == 0)
  1178. ret = err;
  1179. }
  1180. /*
  1181. * Some filesystems may redirty the inode during the writeback
  1182. * due to delalloc, clear dirty metadata flags right before
  1183. * write_inode()
  1184. */
  1185. spin_lock(&inode->i_lock);
  1186. dirty = inode->i_state & I_DIRTY;
  1187. if (inode->i_state & I_DIRTY_TIME) {
  1188. if ((dirty & I_DIRTY_INODE) ||
  1189. wbc->sync_mode == WB_SYNC_ALL ||
  1190. unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
  1191. unlikely(time_after(jiffies,
  1192. (inode->dirtied_time_when +
  1193. dirtytime_expire_interval * HZ)))) {
  1194. dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
  1195. trace_writeback_lazytime(inode);
  1196. }
  1197. } else
  1198. inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
  1199. inode->i_state &= ~dirty;
  1200. /*
  1201. * Paired with smp_mb() in __mark_inode_dirty(). This allows
  1202. * __mark_inode_dirty() to test i_state without grabbing i_lock -
  1203. * either they see the I_DIRTY bits cleared or we see the dirtied
  1204. * inode.
  1205. *
  1206. * I_DIRTY_PAGES is always cleared together above even if @mapping
  1207. * still has dirty pages. The flag is reinstated after smp_mb() if
  1208. * necessary. This guarantees that either __mark_inode_dirty()
  1209. * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
  1210. */
  1211. smp_mb();
  1212. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  1213. inode->i_state |= I_DIRTY_PAGES;
  1214. spin_unlock(&inode->i_lock);
  1215. if (dirty & I_DIRTY_TIME)
  1216. mark_inode_dirty_sync(inode);
  1217. /* Don't write the inode if only I_DIRTY_PAGES was set */
  1218. if (dirty & ~I_DIRTY_PAGES) {
  1219. int err = write_inode(inode, wbc);
  1220. if (ret == 0)
  1221. ret = err;
  1222. }
  1223. trace_writeback_single_inode(inode, wbc, nr_to_write);
  1224. return ret;
  1225. }
  1226. /*
  1227. * Write out an inode's dirty pages. Either the caller has an active reference
  1228. * on the inode or the inode has I_WILL_FREE set.
  1229. *
  1230. * This function is designed to be called for writing back one inode which
  1231. * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
  1232. * and does more profound writeback list handling in writeback_sb_inodes().
  1233. */
  1234. static int writeback_single_inode(struct inode *inode,
  1235. struct writeback_control *wbc)
  1236. {
  1237. struct bdi_writeback *wb;
  1238. int ret = 0;
  1239. spin_lock(&inode->i_lock);
  1240. if (!atomic_read(&inode->i_count))
  1241. WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
  1242. else
  1243. WARN_ON(inode->i_state & I_WILL_FREE);
  1244. if (inode->i_state & I_SYNC) {
  1245. if (wbc->sync_mode != WB_SYNC_ALL)
  1246. goto out;
  1247. /*
  1248. * It's a data-integrity sync. We must wait. Since callers hold
  1249. * inode reference or inode has I_WILL_FREE set, it cannot go
  1250. * away under us.
  1251. */
  1252. __inode_wait_for_writeback(inode);
  1253. }
  1254. WARN_ON(inode->i_state & I_SYNC);
  1255. /*
  1256. * Skip inode if it is clean and we have no outstanding writeback in
  1257. * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
  1258. * function since flusher thread may be doing for example sync in
  1259. * parallel and if we move the inode, it could get skipped. So here we
  1260. * make sure inode is on some writeback list and leave it there unless
  1261. * we have completely cleaned the inode.
  1262. */
  1263. if (!(inode->i_state & I_DIRTY_ALL) &&
  1264. (wbc->sync_mode != WB_SYNC_ALL ||
  1265. !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
  1266. goto out;
  1267. inode->i_state |= I_SYNC;
  1268. wbc_attach_and_unlock_inode(wbc, inode);
  1269. ret = __writeback_single_inode(inode, wbc);
  1270. wbc_detach_inode(wbc);
  1271. wb = inode_to_wb_and_lock_list(inode);
  1272. spin_lock(&inode->i_lock);
  1273. /*
  1274. * If inode is clean, remove it from writeback lists. Otherwise don't
  1275. * touch it. See comment above for explanation.
  1276. */
  1277. if (!(inode->i_state & I_DIRTY_ALL))
  1278. inode_io_list_del_locked(inode, wb);
  1279. spin_unlock(&wb->list_lock);
  1280. inode_sync_complete(inode);
  1281. out:
  1282. spin_unlock(&inode->i_lock);
  1283. return ret;
  1284. }
  1285. static long writeback_chunk_size(struct bdi_writeback *wb,
  1286. struct wb_writeback_work *work)
  1287. {
  1288. long pages;
  1289. /*
  1290. * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
  1291. * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
  1292. * here avoids calling into writeback_inodes_wb() more than once.
  1293. *
  1294. * The intended call sequence for WB_SYNC_ALL writeback is:
  1295. *
  1296. * wb_writeback()
  1297. * writeback_sb_inodes() <== called only once
  1298. * write_cache_pages() <== called once for each inode
  1299. * (quickly) tag currently dirty pages
  1300. * (maybe slowly) sync all tagged pages
  1301. */
  1302. if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
  1303. pages = LONG_MAX;
  1304. else {
  1305. pages = min(wb->avg_write_bandwidth / 2,
  1306. global_wb_domain.dirty_limit / DIRTY_SCOPE);
  1307. pages = min(pages, work->nr_pages);
  1308. pages = round_down(pages + MIN_WRITEBACK_PAGES,
  1309. MIN_WRITEBACK_PAGES);
  1310. }
  1311. return pages;
  1312. }
  1313. /*
  1314. * Write a portion of b_io inodes which belong to @sb.
  1315. *
  1316. * Return the number of pages and/or inodes written.
  1317. *
  1318. * NOTE! This is called with wb->list_lock held, and will
  1319. * unlock and relock that for each inode it ends up doing
  1320. * IO for.
  1321. */
  1322. static long writeback_sb_inodes(struct super_block *sb,
  1323. struct bdi_writeback *wb,
  1324. struct wb_writeback_work *work)
  1325. {
  1326. struct writeback_control wbc = {
  1327. .sync_mode = work->sync_mode,
  1328. .tagged_writepages = work->tagged_writepages,
  1329. .for_kupdate = work->for_kupdate,
  1330. .for_background = work->for_background,
  1331. .for_sync = work->for_sync,
  1332. .range_cyclic = work->range_cyclic,
  1333. .range_start = 0,
  1334. .range_end = LLONG_MAX,
  1335. };
  1336. unsigned long start_time = jiffies;
  1337. long write_chunk;
  1338. long wrote = 0; /* count both pages and inodes */
  1339. while (!list_empty(&wb->b_io)) {
  1340. struct inode *inode = wb_inode(wb->b_io.prev);
  1341. struct bdi_writeback *tmp_wb;
  1342. if (inode->i_sb != sb) {
  1343. if (work->sb) {
  1344. /*
  1345. * We only want to write back data for this
  1346. * superblock, move all inodes not belonging
  1347. * to it back onto the dirty list.
  1348. */
  1349. redirty_tail(inode, wb);
  1350. continue;
  1351. }
  1352. /*
  1353. * The inode belongs to a different superblock.
  1354. * Bounce back to the caller to unpin this and
  1355. * pin the next superblock.
  1356. */
  1357. break;
  1358. }
  1359. /*
  1360. * Don't bother with new inodes or inodes being freed, first
  1361. * kind does not need periodic writeout yet, and for the latter
  1362. * kind writeout is handled by the freer.
  1363. */
  1364. spin_lock(&inode->i_lock);
  1365. if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
  1366. spin_unlock(&inode->i_lock);
  1367. redirty_tail(inode, wb);
  1368. continue;
  1369. }
  1370. if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
  1371. /*
  1372. * If this inode is locked for writeback and we are not
  1373. * doing writeback-for-data-integrity, move it to
  1374. * b_more_io so that writeback can proceed with the
  1375. * other inodes on s_io.
  1376. *
  1377. * We'll have another go at writing back this inode
  1378. * when we completed a full scan of b_io.
  1379. */
  1380. spin_unlock(&inode->i_lock);
  1381. requeue_io(inode, wb);
  1382. trace_writeback_sb_inodes_requeue(inode);
  1383. continue;
  1384. }
  1385. spin_unlock(&wb->list_lock);
  1386. /*
  1387. * We already requeued the inode if it had I_SYNC set and we
  1388. * are doing WB_SYNC_NONE writeback. So this catches only the
  1389. * WB_SYNC_ALL case.
  1390. */
  1391. if (inode->i_state & I_SYNC) {
  1392. /* Wait for I_SYNC. This function drops i_lock... */
  1393. inode_sleep_on_writeback(inode);
  1394. /* Inode may be gone, start again */
  1395. spin_lock(&wb->list_lock);
  1396. continue;
  1397. }
  1398. inode->i_state |= I_SYNC;
  1399. wbc_attach_and_unlock_inode(&wbc, inode);
  1400. write_chunk = writeback_chunk_size(wb, work);
  1401. wbc.nr_to_write = write_chunk;
  1402. wbc.pages_skipped = 0;
  1403. /*
  1404. * We use I_SYNC to pin the inode in memory. While it is set
  1405. * evict_inode() will wait so the inode cannot be freed.
  1406. */
  1407. __writeback_single_inode(inode, &wbc);
  1408. wbc_detach_inode(&wbc);
  1409. work->nr_pages -= write_chunk - wbc.nr_to_write;
  1410. wrote += write_chunk - wbc.nr_to_write;
  1411. if (need_resched()) {
  1412. /*
  1413. * We're trying to balance between building up a nice
  1414. * long list of IOs to improve our merge rate, and
  1415. * getting those IOs out quickly for anyone throttling
  1416. * in balance_dirty_pages(). cond_resched() doesn't
  1417. * unplug, so get our IOs out the door before we
  1418. * give up the CPU.
  1419. */
  1420. blk_flush_plug(current);
  1421. cond_resched();
  1422. }
  1423. /*
  1424. * Requeue @inode if still dirty. Be careful as @inode may
  1425. * have been switched to another wb in the meantime.
  1426. */
  1427. tmp_wb = inode_to_wb_and_lock_list(inode);
  1428. spin_lock(&inode->i_lock);
  1429. if (!(inode->i_state & I_DIRTY_ALL))
  1430. wrote++;
  1431. requeue_inode(inode, tmp_wb, &wbc);
  1432. inode_sync_complete(inode);
  1433. spin_unlock(&inode->i_lock);
  1434. if (unlikely(tmp_wb != wb)) {
  1435. spin_unlock(&tmp_wb->list_lock);
  1436. spin_lock(&wb->list_lock);
  1437. }
  1438. /*
  1439. * bail out to wb_writeback() often enough to check
  1440. * background threshold and other termination conditions.
  1441. */
  1442. if (wrote) {
  1443. if (time_is_before_jiffies(start_time + HZ / 10UL))
  1444. break;
  1445. if (work->nr_pages <= 0)
  1446. break;
  1447. }
  1448. }
  1449. return wrote;
  1450. }
  1451. static long __writeback_inodes_wb(struct bdi_writeback *wb,
  1452. struct wb_writeback_work *work)
  1453. {
  1454. unsigned long start_time = jiffies;
  1455. long wrote = 0;
  1456. while (!list_empty(&wb->b_io)) {
  1457. struct inode *inode = wb_inode(wb->b_io.prev);
  1458. struct super_block *sb = inode->i_sb;
  1459. if (!trylock_super(sb)) {
  1460. /*
  1461. * trylock_super() may fail consistently due to
  1462. * s_umount being grabbed by someone else. Don't use
  1463. * requeue_io() to avoid busy retrying the inode/sb.
  1464. */
  1465. redirty_tail(inode, wb);
  1466. continue;
  1467. }
  1468. wrote += writeback_sb_inodes(sb, wb, work);
  1469. up_read(&sb->s_umount);
  1470. /* refer to the same tests at the end of writeback_sb_inodes */
  1471. if (wrote) {
  1472. if (time_is_before_jiffies(start_time + HZ / 10UL))
  1473. break;
  1474. if (work->nr_pages <= 0)
  1475. break;
  1476. }
  1477. }
  1478. /* Leave any unwritten inodes on b_io */
  1479. return wrote;
  1480. }
  1481. static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
  1482. enum wb_reason reason)
  1483. {
  1484. struct wb_writeback_work work = {
  1485. .nr_pages = nr_pages,
  1486. .sync_mode = WB_SYNC_NONE,
  1487. .range_cyclic = 1,
  1488. .reason = reason,
  1489. };
  1490. struct blk_plug plug;
  1491. blk_start_plug(&plug);
  1492. spin_lock(&wb->list_lock);
  1493. if (list_empty(&wb->b_io))
  1494. queue_io(wb, &work);
  1495. __writeback_inodes_wb(wb, &work);
  1496. spin_unlock(&wb->list_lock);
  1497. blk_finish_plug(&plug);
  1498. return nr_pages - work.nr_pages;
  1499. }
  1500. /*
  1501. * Explicit flushing or periodic writeback of "old" data.
  1502. *
  1503. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  1504. * dirtying-time in the inode's address_space. So this periodic writeback code
  1505. * just walks the superblock inode list, writing back any inodes which are
  1506. * older than a specific point in time.
  1507. *
  1508. * Try to run once per dirty_writeback_interval. But if a writeback event
  1509. * takes longer than a dirty_writeback_interval interval, then leave a
  1510. * one-second gap.
  1511. *
  1512. * older_than_this takes precedence over nr_to_write. So we'll only write back
  1513. * all dirty pages if they are all attached to "old" mappings.
  1514. */
  1515. static long wb_writeback(struct bdi_writeback *wb,
  1516. struct wb_writeback_work *work)
  1517. {
  1518. unsigned long wb_start = jiffies;
  1519. long nr_pages = work->nr_pages;
  1520. unsigned long oldest_jif;
  1521. struct inode *inode;
  1522. long progress;
  1523. struct blk_plug plug;
  1524. oldest_jif = jiffies;
  1525. work->older_than_this = &oldest_jif;
  1526. blk_start_plug(&plug);
  1527. spin_lock(&wb->list_lock);
  1528. for (;;) {
  1529. /*
  1530. * Stop writeback when nr_pages has been consumed
  1531. */
  1532. if (work->nr_pages <= 0)
  1533. break;
  1534. /*
  1535. * Background writeout and kupdate-style writeback may
  1536. * run forever. Stop them if there is other work to do
  1537. * so that e.g. sync can proceed. They'll be restarted
  1538. * after the other works are all done.
  1539. */
  1540. if ((work->for_background || work->for_kupdate) &&
  1541. !list_empty(&wb->work_list))
  1542. break;
  1543. /*
  1544. * For background writeout, stop when we are below the
  1545. * background dirty threshold
  1546. */
  1547. if (work->for_background && !wb_over_bg_thresh(wb))
  1548. break;
  1549. /*
  1550. * Kupdate and background works are special and we want to
  1551. * include all inodes that need writing. Livelock avoidance is
  1552. * handled by these works yielding to any other work so we are
  1553. * safe.
  1554. */
  1555. if (work->for_kupdate) {
  1556. oldest_jif = jiffies -
  1557. msecs_to_jiffies(dirty_expire_interval * 10);
  1558. } else if (work->for_background)
  1559. oldest_jif = jiffies;
  1560. trace_writeback_start(wb, work);
  1561. if (list_empty(&wb->b_io))
  1562. queue_io(wb, work);
  1563. if (work->sb)
  1564. progress = writeback_sb_inodes(work->sb, wb, work);
  1565. else
  1566. progress = __writeback_inodes_wb(wb, work);
  1567. trace_writeback_written(wb, work);
  1568. wb_update_bandwidth(wb, wb_start);
  1569. /*
  1570. * Did we write something? Try for more
  1571. *
  1572. * Dirty inodes are moved to b_io for writeback in batches.
  1573. * The completion of the current batch does not necessarily
  1574. * mean the overall work is done. So we keep looping as long
  1575. * as made some progress on cleaning pages or inodes.
  1576. */
  1577. if (progress)
  1578. continue;
  1579. /*
  1580. * No more inodes for IO, bail
  1581. */
  1582. if (list_empty(&wb->b_more_io))
  1583. break;
  1584. /*
  1585. * Nothing written. Wait for some inode to
  1586. * become available for writeback. Otherwise
  1587. * we'll just busyloop.
  1588. */
  1589. trace_writeback_wait(wb, work);
  1590. inode = wb_inode(wb->b_more_io.prev);
  1591. spin_lock(&inode->i_lock);
  1592. spin_unlock(&wb->list_lock);
  1593. /* This function drops i_lock... */
  1594. inode_sleep_on_writeback(inode);
  1595. spin_lock(&wb->list_lock);
  1596. }
  1597. spin_unlock(&wb->list_lock);
  1598. blk_finish_plug(&plug);
  1599. return nr_pages - work->nr_pages;
  1600. }
  1601. /*
  1602. * Return the next wb_writeback_work struct that hasn't been processed yet.
  1603. */
  1604. static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
  1605. {
  1606. struct wb_writeback_work *work = NULL;
  1607. spin_lock_bh(&wb->work_lock);
  1608. if (!list_empty(&wb->work_list)) {
  1609. work = list_entry(wb->work_list.next,
  1610. struct wb_writeback_work, list);
  1611. list_del_init(&work->list);
  1612. }
  1613. spin_unlock_bh(&wb->work_lock);
  1614. return work;
  1615. }
  1616. static long wb_check_background_flush(struct bdi_writeback *wb)
  1617. {
  1618. if (wb_over_bg_thresh(wb)) {
  1619. struct wb_writeback_work work = {
  1620. .nr_pages = LONG_MAX,
  1621. .sync_mode = WB_SYNC_NONE,
  1622. .for_background = 1,
  1623. .range_cyclic = 1,
  1624. .reason = WB_REASON_BACKGROUND,
  1625. };
  1626. return wb_writeback(wb, &work);
  1627. }
  1628. return 0;
  1629. }
  1630. static long wb_check_old_data_flush(struct bdi_writeback *wb)
  1631. {
  1632. unsigned long expired;
  1633. long nr_pages;
  1634. /*
  1635. * When set to zero, disable periodic writeback
  1636. */
  1637. if (!dirty_writeback_interval)
  1638. return 0;
  1639. expired = wb->last_old_flush +
  1640. msecs_to_jiffies(dirty_writeback_interval * 10);
  1641. if (time_before(jiffies, expired))
  1642. return 0;
  1643. wb->last_old_flush = jiffies;
  1644. nr_pages = get_nr_dirty_pages();
  1645. if (nr_pages) {
  1646. struct wb_writeback_work work = {
  1647. .nr_pages = nr_pages,
  1648. .sync_mode = WB_SYNC_NONE,
  1649. .for_kupdate = 1,
  1650. .range_cyclic = 1,
  1651. .reason = WB_REASON_PERIODIC,
  1652. };
  1653. return wb_writeback(wb, &work);
  1654. }
  1655. return 0;
  1656. }
  1657. static long wb_check_start_all(struct bdi_writeback *wb)
  1658. {
  1659. long nr_pages;
  1660. if (!test_bit(WB_start_all, &wb->state))
  1661. return 0;
  1662. nr_pages = get_nr_dirty_pages();
  1663. if (nr_pages) {
  1664. struct wb_writeback_work work = {
  1665. .nr_pages = wb_split_bdi_pages(wb, nr_pages),
  1666. .sync_mode = WB_SYNC_NONE,
  1667. .range_cyclic = 1,
  1668. .reason = wb->start_all_reason,
  1669. };
  1670. nr_pages = wb_writeback(wb, &work);
  1671. }
  1672. clear_bit(WB_start_all, &wb->state);
  1673. return nr_pages;
  1674. }
  1675. /*
  1676. * Retrieve work items and do the writeback they describe
  1677. */
  1678. static long wb_do_writeback(struct bdi_writeback *wb)
  1679. {
  1680. struct wb_writeback_work *work;
  1681. long wrote = 0;
  1682. set_bit(WB_writeback_running, &wb->state);
  1683. while ((work = get_next_work_item(wb)) != NULL) {
  1684. trace_writeback_exec(wb, work);
  1685. wrote += wb_writeback(wb, work);
  1686. finish_writeback_work(wb, work);
  1687. }
  1688. /*
  1689. * Check for a flush-everything request
  1690. */
  1691. wrote += wb_check_start_all(wb);
  1692. /*
  1693. * Check for periodic writeback, kupdated() style
  1694. */
  1695. wrote += wb_check_old_data_flush(wb);
  1696. wrote += wb_check_background_flush(wb);
  1697. clear_bit(WB_writeback_running, &wb->state);
  1698. return wrote;
  1699. }
  1700. /*
  1701. * Handle writeback of dirty data for the device backed by this bdi. Also
  1702. * reschedules periodically and does kupdated style flushing.
  1703. */
  1704. void wb_workfn(struct work_struct *work)
  1705. {
  1706. struct bdi_writeback *wb = container_of(to_delayed_work(work),
  1707. struct bdi_writeback, dwork);
  1708. long pages_written;
  1709. set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
  1710. current->flags |= PF_SWAPWRITE;
  1711. if (likely(!current_is_workqueue_rescuer() ||
  1712. !test_bit(WB_registered, &wb->state))) {
  1713. /*
  1714. * The normal path. Keep writing back @wb until its
  1715. * work_list is empty. Note that this path is also taken
  1716. * if @wb is shutting down even when we're running off the
  1717. * rescuer as work_list needs to be drained.
  1718. */
  1719. do {
  1720. pages_written = wb_do_writeback(wb);
  1721. trace_writeback_pages_written(pages_written);
  1722. } while (!list_empty(&wb->work_list));
  1723. } else {
  1724. /*
  1725. * bdi_wq can't get enough workers and we're running off
  1726. * the emergency worker. Don't hog it. Hopefully, 1024 is
  1727. * enough for efficient IO.
  1728. */
  1729. pages_written = writeback_inodes_wb(wb, 1024,
  1730. WB_REASON_FORKER_THREAD);
  1731. trace_writeback_pages_written(pages_written);
  1732. }
  1733. if (!list_empty(&wb->work_list))
  1734. mod_delayed_work(bdi_wq, &wb->dwork, 0);
  1735. else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
  1736. wb_wakeup_delayed(wb);
  1737. current->flags &= ~PF_SWAPWRITE;
  1738. }
  1739. /*
  1740. * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
  1741. * write back the whole world.
  1742. */
  1743. static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
  1744. enum wb_reason reason)
  1745. {
  1746. struct bdi_writeback *wb;
  1747. if (!bdi_has_dirty_io(bdi))
  1748. return;
  1749. list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
  1750. wb_start_writeback(wb, reason);
  1751. }
  1752. void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
  1753. enum wb_reason reason)
  1754. {
  1755. rcu_read_lock();
  1756. __wakeup_flusher_threads_bdi(bdi, reason);
  1757. rcu_read_unlock();
  1758. }
  1759. /*
  1760. * Wakeup the flusher threads to start writeback of all currently dirty pages
  1761. */
  1762. void wakeup_flusher_threads(enum wb_reason reason)
  1763. {
  1764. struct backing_dev_info *bdi;
  1765. /*
  1766. * If we are expecting writeback progress we must submit plugged IO.
  1767. */
  1768. if (blk_needs_flush_plug(current))
  1769. blk_schedule_flush_plug(current);
  1770. rcu_read_lock();
  1771. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1772. __wakeup_flusher_threads_bdi(bdi, reason);
  1773. rcu_read_unlock();
  1774. }
  1775. /*
  1776. * Wake up bdi's periodically to make sure dirtytime inodes gets
  1777. * written back periodically. We deliberately do *not* check the
  1778. * b_dirtytime list in wb_has_dirty_io(), since this would cause the
  1779. * kernel to be constantly waking up once there are any dirtytime
  1780. * inodes on the system. So instead we define a separate delayed work
  1781. * function which gets called much more rarely. (By default, only
  1782. * once every 12 hours.)
  1783. *
  1784. * If there is any other write activity going on in the file system,
  1785. * this function won't be necessary. But if the only thing that has
  1786. * happened on the file system is a dirtytime inode caused by an atime
  1787. * update, we need this infrastructure below to make sure that inode
  1788. * eventually gets pushed out to disk.
  1789. */
  1790. static void wakeup_dirtytime_writeback(struct work_struct *w);
  1791. static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
  1792. static void wakeup_dirtytime_writeback(struct work_struct *w)
  1793. {
  1794. struct backing_dev_info *bdi;
  1795. rcu_read_lock();
  1796. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
  1797. struct bdi_writeback *wb;
  1798. list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
  1799. if (!list_empty(&wb->b_dirty_time))
  1800. wb_wakeup(wb);
  1801. }
  1802. rcu_read_unlock();
  1803. schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
  1804. }
  1805. static int __init start_dirtytime_writeback(void)
  1806. {
  1807. schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
  1808. return 0;
  1809. }
  1810. __initcall(start_dirtytime_writeback);
  1811. int dirtytime_interval_handler(struct ctl_table *table, int write,
  1812. void __user *buffer, size_t *lenp, loff_t *ppos)
  1813. {
  1814. int ret;
  1815. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  1816. if (ret == 0 && write)
  1817. mod_delayed_work(system_wq, &dirtytime_work, 0);
  1818. return ret;
  1819. }
  1820. static noinline void block_dump___mark_inode_dirty(struct inode *inode)
  1821. {
  1822. if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
  1823. struct dentry *dentry;
  1824. const char *name = "?";
  1825. dentry = d_find_alias(inode);
  1826. if (dentry) {
  1827. spin_lock(&dentry->d_lock);
  1828. name = (const char *) dentry->d_name.name;
  1829. }
  1830. printk(KERN_DEBUG
  1831. "%s(%d): dirtied inode %lu (%s) on %s\n",
  1832. current->comm, task_pid_nr(current), inode->i_ino,
  1833. name, inode->i_sb->s_id);
  1834. if (dentry) {
  1835. spin_unlock(&dentry->d_lock);
  1836. dput(dentry);
  1837. }
  1838. }
  1839. }
  1840. /**
  1841. * __mark_inode_dirty - internal function
  1842. *
  1843. * @inode: inode to mark
  1844. * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
  1845. *
  1846. * Mark an inode as dirty. Callers should use mark_inode_dirty or
  1847. * mark_inode_dirty_sync.
  1848. *
  1849. * Put the inode on the super block's dirty list.
  1850. *
  1851. * CAREFUL! We mark it dirty unconditionally, but move it onto the
  1852. * dirty list only if it is hashed or if it refers to a blockdev.
  1853. * If it was not hashed, it will never be added to the dirty list
  1854. * even if it is later hashed, as it will have been marked dirty already.
  1855. *
  1856. * In short, make sure you hash any inodes _before_ you start marking
  1857. * them dirty.
  1858. *
  1859. * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
  1860. * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
  1861. * the kernel-internal blockdev inode represents the dirtying time of the
  1862. * blockdev's pages. This is why for I_DIRTY_PAGES we always use
  1863. * page->mapping->host, so the page-dirtying time is recorded in the internal
  1864. * blockdev inode.
  1865. */
  1866. void __mark_inode_dirty(struct inode *inode, int flags)
  1867. {
  1868. struct super_block *sb = inode->i_sb;
  1869. int dirtytime;
  1870. trace_writeback_mark_inode_dirty(inode, flags);
  1871. /*
  1872. * Don't do this for I_DIRTY_PAGES - that doesn't actually
  1873. * dirty the inode itself
  1874. */
  1875. if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
  1876. trace_writeback_dirty_inode_start(inode, flags);
  1877. if (sb->s_op->dirty_inode)
  1878. sb->s_op->dirty_inode(inode, flags);
  1879. trace_writeback_dirty_inode(inode, flags);
  1880. }
  1881. if (flags & I_DIRTY_INODE)
  1882. flags &= ~I_DIRTY_TIME;
  1883. dirtytime = flags & I_DIRTY_TIME;
  1884. /*
  1885. * Paired with smp_mb() in __writeback_single_inode() for the
  1886. * following lockless i_state test. See there for details.
  1887. */
  1888. smp_mb();
  1889. if (((inode->i_state & flags) == flags) ||
  1890. (dirtytime && (inode->i_state & I_DIRTY_INODE)))
  1891. return;
  1892. if (unlikely(block_dump))
  1893. block_dump___mark_inode_dirty(inode);
  1894. spin_lock(&inode->i_lock);
  1895. if (dirtytime && (inode->i_state & I_DIRTY_INODE))
  1896. goto out_unlock_inode;
  1897. if ((inode->i_state & flags) != flags) {
  1898. const int was_dirty = inode->i_state & I_DIRTY;
  1899. inode_attach_wb(inode, NULL);
  1900. if (flags & I_DIRTY_INODE)
  1901. inode->i_state &= ~I_DIRTY_TIME;
  1902. inode->i_state |= flags;
  1903. /*
  1904. * If the inode is being synced, just update its dirty state.
  1905. * The unlocker will place the inode on the appropriate
  1906. * superblock list, based upon its state.
  1907. */
  1908. if (inode->i_state & I_SYNC)
  1909. goto out_unlock_inode;
  1910. /*
  1911. * Only add valid (hashed) inodes to the superblock's
  1912. * dirty list. Add blockdev inodes as well.
  1913. */
  1914. if (!S_ISBLK(inode->i_mode)) {
  1915. if (inode_unhashed(inode))
  1916. goto out_unlock_inode;
  1917. }
  1918. if (inode->i_state & I_FREEING)
  1919. goto out_unlock_inode;
  1920. /*
  1921. * If the inode was already on b_dirty/b_io/b_more_io, don't
  1922. * reposition it (that would break b_dirty time-ordering).
  1923. */
  1924. if (!was_dirty) {
  1925. struct bdi_writeback *wb;
  1926. struct list_head *dirty_list;
  1927. bool wakeup_bdi = false;
  1928. wb = locked_inode_to_wb_and_lock_list(inode);
  1929. WARN(bdi_cap_writeback_dirty(wb->bdi) &&
  1930. !test_bit(WB_registered, &wb->state),
  1931. "bdi-%s not registered\n", wb->bdi->name);
  1932. inode->dirtied_when = jiffies;
  1933. if (dirtytime)
  1934. inode->dirtied_time_when = jiffies;
  1935. if (inode->i_state & I_DIRTY)
  1936. dirty_list = &wb->b_dirty;
  1937. else
  1938. dirty_list = &wb->b_dirty_time;
  1939. wakeup_bdi = inode_io_list_move_locked(inode, wb,
  1940. dirty_list);
  1941. spin_unlock(&wb->list_lock);
  1942. trace_writeback_dirty_inode_enqueue(inode);
  1943. /*
  1944. * If this is the first dirty inode for this bdi,
  1945. * we have to wake-up the corresponding bdi thread
  1946. * to make sure background write-back happens
  1947. * later.
  1948. */
  1949. if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
  1950. wb_wakeup_delayed(wb);
  1951. return;
  1952. }
  1953. }
  1954. out_unlock_inode:
  1955. spin_unlock(&inode->i_lock);
  1956. }
  1957. EXPORT_SYMBOL(__mark_inode_dirty);
  1958. /*
  1959. * The @s_sync_lock is used to serialise concurrent sync operations
  1960. * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
  1961. * Concurrent callers will block on the s_sync_lock rather than doing contending
  1962. * walks. The queueing maintains sync(2) required behaviour as all the IO that
  1963. * has been issued up to the time this function is enter is guaranteed to be
  1964. * completed by the time we have gained the lock and waited for all IO that is
  1965. * in progress regardless of the order callers are granted the lock.
  1966. */
  1967. static void wait_sb_inodes(struct super_block *sb)
  1968. {
  1969. LIST_HEAD(sync_list);
  1970. /*
  1971. * We need to be protected against the filesystem going from
  1972. * r/o to r/w or vice versa.
  1973. */
  1974. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  1975. mutex_lock(&sb->s_sync_lock);
  1976. /*
  1977. * Splice the writeback list onto a temporary list to avoid waiting on
  1978. * inodes that have started writeback after this point.
  1979. *
  1980. * Use rcu_read_lock() to keep the inodes around until we have a
  1981. * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
  1982. * the local list because inodes can be dropped from either by writeback
  1983. * completion.
  1984. */
  1985. rcu_read_lock();
  1986. spin_lock_irq(&sb->s_inode_wblist_lock);
  1987. list_splice_init(&sb->s_inodes_wb, &sync_list);
  1988. /*
  1989. * Data integrity sync. Must wait for all pages under writeback, because
  1990. * there may have been pages dirtied before our sync call, but which had
  1991. * writeout started before we write it out. In which case, the inode
  1992. * may not be on the dirty list, but we still have to wait for that
  1993. * writeout.
  1994. */
  1995. while (!list_empty(&sync_list)) {
  1996. struct inode *inode = list_first_entry(&sync_list, struct inode,
  1997. i_wb_list);
  1998. struct address_space *mapping = inode->i_mapping;
  1999. /*
  2000. * Move each inode back to the wb list before we drop the lock
  2001. * to preserve consistency between i_wb_list and the mapping
  2002. * writeback tag. Writeback completion is responsible to remove
  2003. * the inode from either list once the writeback tag is cleared.
  2004. */
  2005. list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
  2006. /*
  2007. * The mapping can appear untagged while still on-list since we
  2008. * do not have the mapping lock. Skip it here, wb completion
  2009. * will remove it.
  2010. */
  2011. if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
  2012. continue;
  2013. spin_unlock_irq(&sb->s_inode_wblist_lock);
  2014. spin_lock(&inode->i_lock);
  2015. if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
  2016. spin_unlock(&inode->i_lock);
  2017. spin_lock_irq(&sb->s_inode_wblist_lock);
  2018. continue;
  2019. }
  2020. __iget(inode);
  2021. spin_unlock(&inode->i_lock);
  2022. rcu_read_unlock();
  2023. /*
  2024. * We keep the error status of individual mapping so that
  2025. * applications can catch the writeback error using fsync(2).
  2026. * See filemap_fdatawait_keep_errors() for details.
  2027. */
  2028. filemap_fdatawait_keep_errors(mapping);
  2029. cond_resched();
  2030. iput(inode);
  2031. rcu_read_lock();
  2032. spin_lock_irq(&sb->s_inode_wblist_lock);
  2033. }
  2034. spin_unlock_irq(&sb->s_inode_wblist_lock);
  2035. rcu_read_unlock();
  2036. mutex_unlock(&sb->s_sync_lock);
  2037. }
  2038. static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
  2039. enum wb_reason reason, bool skip_if_busy)
  2040. {
  2041. DEFINE_WB_COMPLETION_ONSTACK(done);
  2042. struct wb_writeback_work work = {
  2043. .sb = sb,
  2044. .sync_mode = WB_SYNC_NONE,
  2045. .tagged_writepages = 1,
  2046. .done = &done,
  2047. .nr_pages = nr,
  2048. .reason = reason,
  2049. };
  2050. struct backing_dev_info *bdi = sb->s_bdi;
  2051. if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
  2052. return;
  2053. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  2054. bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
  2055. wb_wait_for_completion(bdi, &done);
  2056. }
  2057. /**
  2058. * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
  2059. * @sb: the superblock
  2060. * @nr: the number of pages to write
  2061. * @reason: reason why some writeback work initiated
  2062. *
  2063. * Start writeback on some inodes on this super_block. No guarantees are made
  2064. * on how many (if any) will be written, and this function does not wait
  2065. * for IO completion of submitted IO.
  2066. */
  2067. void writeback_inodes_sb_nr(struct super_block *sb,
  2068. unsigned long nr,
  2069. enum wb_reason reason)
  2070. {
  2071. __writeback_inodes_sb_nr(sb, nr, reason, false);
  2072. }
  2073. EXPORT_SYMBOL(writeback_inodes_sb_nr);
  2074. /**
  2075. * writeback_inodes_sb - writeback dirty inodes from given super_block
  2076. * @sb: the superblock
  2077. * @reason: reason why some writeback work was initiated
  2078. *
  2079. * Start writeback on some inodes on this super_block. No guarantees are made
  2080. * on how many (if any) will be written, and this function does not wait
  2081. * for IO completion of submitted IO.
  2082. */
  2083. void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
  2084. {
  2085. return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
  2086. }
  2087. EXPORT_SYMBOL(writeback_inodes_sb);
  2088. /**
  2089. * try_to_writeback_inodes_sb - try to start writeback if none underway
  2090. * @sb: the superblock
  2091. * @reason: reason why some writeback work was initiated
  2092. *
  2093. * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
  2094. */
  2095. void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
  2096. {
  2097. if (!down_read_trylock(&sb->s_umount))
  2098. return;
  2099. __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
  2100. up_read(&sb->s_umount);
  2101. }
  2102. EXPORT_SYMBOL(try_to_writeback_inodes_sb);
  2103. /**
  2104. * sync_inodes_sb - sync sb inode pages
  2105. * @sb: the superblock
  2106. *
  2107. * This function writes and waits on any dirty inode belonging to this
  2108. * super_block.
  2109. */
  2110. void sync_inodes_sb(struct super_block *sb)
  2111. {
  2112. DEFINE_WB_COMPLETION_ONSTACK(done);
  2113. struct wb_writeback_work work = {
  2114. .sb = sb,
  2115. .sync_mode = WB_SYNC_ALL,
  2116. .nr_pages = LONG_MAX,
  2117. .range_cyclic = 0,
  2118. .done = &done,
  2119. .reason = WB_REASON_SYNC,
  2120. .for_sync = 1,
  2121. };
  2122. struct backing_dev_info *bdi = sb->s_bdi;
  2123. /*
  2124. * Can't skip on !bdi_has_dirty() because we should wait for !dirty
  2125. * inodes under writeback and I_DIRTY_TIME inodes ignored by
  2126. * bdi_has_dirty() need to be written out too.
  2127. */
  2128. if (bdi == &noop_backing_dev_info)
  2129. return;
  2130. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  2131. bdi_split_work_to_wbs(bdi, &work, false);
  2132. wb_wait_for_completion(bdi, &done);
  2133. wait_sb_inodes(sb);
  2134. }
  2135. EXPORT_SYMBOL(sync_inodes_sb);
  2136. /**
  2137. * write_inode_now - write an inode to disk
  2138. * @inode: inode to write to disk
  2139. * @sync: whether the write should be synchronous or not
  2140. *
  2141. * This function commits an inode to disk immediately if it is dirty. This is
  2142. * primarily needed by knfsd.
  2143. *
  2144. * The caller must either have a ref on the inode or must have set I_WILL_FREE.
  2145. */
  2146. int write_inode_now(struct inode *inode, int sync)
  2147. {
  2148. struct writeback_control wbc = {
  2149. .nr_to_write = LONG_MAX,
  2150. .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
  2151. .range_start = 0,
  2152. .range_end = LLONG_MAX,
  2153. };
  2154. if (!mapping_cap_writeback_dirty(inode->i_mapping))
  2155. wbc.nr_to_write = 0;
  2156. might_sleep();
  2157. return writeback_single_inode(inode, &wbc);
  2158. }
  2159. EXPORT_SYMBOL(write_inode_now);
  2160. /**
  2161. * sync_inode - write an inode and its pages to disk.
  2162. * @inode: the inode to sync
  2163. * @wbc: controls the writeback mode
  2164. *
  2165. * sync_inode() will write an inode and its pages to disk. It will also
  2166. * correctly update the inode on its superblock's dirty inode lists and will
  2167. * update inode->i_state.
  2168. *
  2169. * The caller must have a ref on the inode.
  2170. */
  2171. int sync_inode(struct inode *inode, struct writeback_control *wbc)
  2172. {
  2173. return writeback_single_inode(inode, wbc);
  2174. }
  2175. EXPORT_SYMBOL(sync_inode);
  2176. /**
  2177. * sync_inode_metadata - write an inode to disk
  2178. * @inode: the inode to sync
  2179. * @wait: wait for I/O to complete.
  2180. *
  2181. * Write an inode to disk and adjust its dirty state after completion.
  2182. *
  2183. * Note: only writes the actual inode, no associated data or other metadata.
  2184. */
  2185. int sync_inode_metadata(struct inode *inode, int wait)
  2186. {
  2187. struct writeback_control wbc = {
  2188. .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
  2189. .nr_to_write = 0, /* metadata-only */
  2190. };
  2191. return sync_inode(inode, &wbc);
  2192. }
  2193. EXPORT_SYMBOL(sync_inode_metadata);