inline.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. #include "node.h"
  14. bool f2fs_may_inline_data(struct inode *inode)
  15. {
  16. if (f2fs_is_atomic_file(inode))
  17. return false;
  18. if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
  19. return false;
  20. if (i_size_read(inode) > MAX_INLINE_DATA(inode))
  21. return false;
  22. if (f2fs_encrypted_file(inode))
  23. return false;
  24. return true;
  25. }
  26. bool f2fs_may_inline_dentry(struct inode *inode)
  27. {
  28. if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
  29. return false;
  30. if (!S_ISDIR(inode->i_mode))
  31. return false;
  32. return true;
  33. }
  34. void read_inline_data(struct page *page, struct page *ipage)
  35. {
  36. struct inode *inode = page->mapping->host;
  37. void *src_addr, *dst_addr;
  38. if (PageUptodate(page))
  39. return;
  40. f2fs_bug_on(F2FS_P_SB(page), page->index);
  41. zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE);
  42. /* Copy the whole inline data block */
  43. src_addr = inline_data_addr(inode, ipage);
  44. dst_addr = kmap_atomic(page);
  45. memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
  46. flush_dcache_page(page);
  47. kunmap_atomic(dst_addr);
  48. if (!PageUptodate(page))
  49. SetPageUptodate(page);
  50. }
  51. void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from)
  52. {
  53. void *addr;
  54. if (from >= MAX_INLINE_DATA(inode))
  55. return;
  56. addr = inline_data_addr(inode, ipage);
  57. f2fs_wait_on_page_writeback(ipage, NODE, true);
  58. memset(addr + from, 0, MAX_INLINE_DATA(inode) - from);
  59. set_page_dirty(ipage);
  60. if (from == 0)
  61. clear_inode_flag(inode, FI_DATA_EXIST);
  62. }
  63. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  64. {
  65. struct page *ipage;
  66. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  67. if (IS_ERR(ipage)) {
  68. unlock_page(page);
  69. return PTR_ERR(ipage);
  70. }
  71. if (!f2fs_has_inline_data(inode)) {
  72. f2fs_put_page(ipage, 1);
  73. return -EAGAIN;
  74. }
  75. if (page->index)
  76. zero_user_segment(page, 0, PAGE_SIZE);
  77. else
  78. read_inline_data(page, ipage);
  79. if (!PageUptodate(page))
  80. SetPageUptodate(page);
  81. f2fs_put_page(ipage, 1);
  82. unlock_page(page);
  83. return 0;
  84. }
  85. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  86. {
  87. struct f2fs_io_info fio = {
  88. .sbi = F2FS_I_SB(dn->inode),
  89. .ino = dn->inode->i_ino,
  90. .type = DATA,
  91. .op = REQ_OP_WRITE,
  92. .op_flags = REQ_SYNC | REQ_PRIO,
  93. .page = page,
  94. .encrypted_page = NULL,
  95. .io_type = FS_DATA_IO,
  96. };
  97. int dirty, err;
  98. if (!f2fs_exist_data(dn->inode))
  99. goto clear_out;
  100. err = f2fs_reserve_block(dn, 0);
  101. if (err)
  102. return err;
  103. f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
  104. read_inline_data(page, dn->inode_page);
  105. set_page_dirty(page);
  106. /* clear dirty state */
  107. dirty = clear_page_dirty_for_io(page);
  108. /* write data page to try to make data consistent */
  109. set_page_writeback(page);
  110. fio.old_blkaddr = dn->data_blkaddr;
  111. set_inode_flag(dn->inode, FI_HOT_DATA);
  112. write_data_page(dn, &fio);
  113. f2fs_wait_on_page_writeback(page, DATA, true);
  114. if (dirty) {
  115. inode_dec_dirty_pages(dn->inode);
  116. remove_dirty_inode(dn->inode);
  117. }
  118. /* this converted inline_data should be recovered. */
  119. set_inode_flag(dn->inode, FI_APPEND_WRITE);
  120. /* clear inline data and flag after data writeback */
  121. truncate_inline_inode(dn->inode, dn->inode_page, 0);
  122. clear_inline_node(dn->inode_page);
  123. clear_out:
  124. stat_dec_inline_inode(dn->inode);
  125. clear_inode_flag(dn->inode, FI_INLINE_DATA);
  126. f2fs_put_dnode(dn);
  127. return 0;
  128. }
  129. int f2fs_convert_inline_inode(struct inode *inode)
  130. {
  131. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  132. struct dnode_of_data dn;
  133. struct page *ipage, *page;
  134. int err = 0;
  135. if (!f2fs_has_inline_data(inode))
  136. return 0;
  137. page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
  138. if (!page)
  139. return -ENOMEM;
  140. f2fs_lock_op(sbi);
  141. ipage = get_node_page(sbi, inode->i_ino);
  142. if (IS_ERR(ipage)) {
  143. err = PTR_ERR(ipage);
  144. goto out;
  145. }
  146. set_new_dnode(&dn, inode, ipage, ipage, 0);
  147. if (f2fs_has_inline_data(inode))
  148. err = f2fs_convert_inline_page(&dn, page);
  149. f2fs_put_dnode(&dn);
  150. out:
  151. f2fs_unlock_op(sbi);
  152. f2fs_put_page(page, 1);
  153. f2fs_balance_fs(sbi, dn.node_changed);
  154. return err;
  155. }
  156. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  157. {
  158. void *src_addr, *dst_addr;
  159. struct dnode_of_data dn;
  160. struct address_space *mapping = page_mapping(page);
  161. unsigned long flags;
  162. int err;
  163. set_new_dnode(&dn, inode, NULL, NULL, 0);
  164. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  165. if (err)
  166. return err;
  167. if (!f2fs_has_inline_data(inode)) {
  168. f2fs_put_dnode(&dn);
  169. return -EAGAIN;
  170. }
  171. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  172. f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
  173. src_addr = kmap_atomic(page);
  174. dst_addr = inline_data_addr(inode, dn.inode_page);
  175. memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
  176. kunmap_atomic(src_addr);
  177. set_page_dirty(dn.inode_page);
  178. xa_lock_irqsave(&mapping->i_pages, flags);
  179. radix_tree_tag_clear(&mapping->i_pages, page_index(page),
  180. PAGECACHE_TAG_DIRTY);
  181. xa_unlock_irqrestore(&mapping->i_pages, flags);
  182. set_inode_flag(inode, FI_APPEND_WRITE);
  183. set_inode_flag(inode, FI_DATA_EXIST);
  184. clear_inline_node(dn.inode_page);
  185. f2fs_put_dnode(&dn);
  186. return 0;
  187. }
  188. bool recover_inline_data(struct inode *inode, struct page *npage)
  189. {
  190. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  191. struct f2fs_inode *ri = NULL;
  192. void *src_addr, *dst_addr;
  193. struct page *ipage;
  194. /*
  195. * The inline_data recovery policy is as follows.
  196. * [prev.] [next] of inline_data flag
  197. * o o -> recover inline_data
  198. * o x -> remove inline_data, and then recover data blocks
  199. * x o -> remove inline_data, and then recover inline_data
  200. * x x -> recover data blocks
  201. */
  202. if (IS_INODE(npage))
  203. ri = F2FS_INODE(npage);
  204. if (f2fs_has_inline_data(inode) &&
  205. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  206. process_inline:
  207. ipage = get_node_page(sbi, inode->i_ino);
  208. f2fs_bug_on(sbi, IS_ERR(ipage));
  209. f2fs_wait_on_page_writeback(ipage, NODE, true);
  210. src_addr = inline_data_addr(inode, npage);
  211. dst_addr = inline_data_addr(inode, ipage);
  212. memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
  213. set_inode_flag(inode, FI_INLINE_DATA);
  214. set_inode_flag(inode, FI_DATA_EXIST);
  215. set_page_dirty(ipage);
  216. f2fs_put_page(ipage, 1);
  217. return true;
  218. }
  219. if (f2fs_has_inline_data(inode)) {
  220. ipage = get_node_page(sbi, inode->i_ino);
  221. f2fs_bug_on(sbi, IS_ERR(ipage));
  222. truncate_inline_inode(inode, ipage, 0);
  223. clear_inode_flag(inode, FI_INLINE_DATA);
  224. f2fs_put_page(ipage, 1);
  225. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  226. if (truncate_blocks(inode, 0, false))
  227. return false;
  228. goto process_inline;
  229. }
  230. return false;
  231. }
  232. struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
  233. struct fscrypt_name *fname, struct page **res_page)
  234. {
  235. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  236. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  237. struct f2fs_dir_entry *de;
  238. struct f2fs_dentry_ptr d;
  239. struct page *ipage;
  240. void *inline_dentry;
  241. f2fs_hash_t namehash;
  242. ipage = get_node_page(sbi, dir->i_ino);
  243. if (IS_ERR(ipage)) {
  244. *res_page = ipage;
  245. return NULL;
  246. }
  247. namehash = f2fs_dentry_hash(&name, fname);
  248. inline_dentry = inline_data_addr(dir, ipage);
  249. make_dentry_ptr_inline(dir, &d, inline_dentry);
  250. de = find_target_dentry(fname, namehash, NULL, &d);
  251. unlock_page(ipage);
  252. if (de)
  253. *res_page = ipage;
  254. else
  255. f2fs_put_page(ipage, 0);
  256. return de;
  257. }
  258. int make_empty_inline_dir(struct inode *inode, struct inode *parent,
  259. struct page *ipage)
  260. {
  261. struct f2fs_dentry_ptr d;
  262. void *inline_dentry;
  263. inline_dentry = inline_data_addr(inode, ipage);
  264. make_dentry_ptr_inline(inode, &d, inline_dentry);
  265. do_make_empty_dir(inode, parent, &d);
  266. set_page_dirty(ipage);
  267. /* update i_size to MAX_INLINE_DATA */
  268. if (i_size_read(inode) < MAX_INLINE_DATA(inode))
  269. f2fs_i_size_write(inode, MAX_INLINE_DATA(inode));
  270. return 0;
  271. }
  272. /*
  273. * NOTE: ipage is grabbed by caller, but if any error occurs, we should
  274. * release ipage in this function.
  275. */
  276. static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
  277. void *inline_dentry)
  278. {
  279. struct page *page;
  280. struct dnode_of_data dn;
  281. struct f2fs_dentry_block *dentry_blk;
  282. struct f2fs_dentry_ptr src, dst;
  283. int err;
  284. page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
  285. if (!page) {
  286. f2fs_put_page(ipage, 1);
  287. return -ENOMEM;
  288. }
  289. set_new_dnode(&dn, dir, ipage, NULL, 0);
  290. err = f2fs_reserve_block(&dn, 0);
  291. if (err)
  292. goto out;
  293. f2fs_wait_on_page_writeback(page, DATA, true);
  294. zero_user_segment(page, MAX_INLINE_DATA(dir), PAGE_SIZE);
  295. dentry_blk = page_address(page);
  296. make_dentry_ptr_inline(dir, &src, inline_dentry);
  297. make_dentry_ptr_block(dir, &dst, dentry_blk);
  298. /* copy data from inline dentry block to new dentry block */
  299. memcpy(dst.bitmap, src.bitmap, src.nr_bitmap);
  300. memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap);
  301. /*
  302. * we do not need to zero out remainder part of dentry and filename
  303. * field, since we have used bitmap for marking the usage status of
  304. * them, besides, we can also ignore copying/zeroing reserved space
  305. * of dentry block, because them haven't been used so far.
  306. */
  307. memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max);
  308. memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN);
  309. if (!PageUptodate(page))
  310. SetPageUptodate(page);
  311. set_page_dirty(page);
  312. /* clear inline dir and flag after data writeback */
  313. truncate_inline_inode(dir, ipage, 0);
  314. stat_dec_inline_dir(dir);
  315. clear_inode_flag(dir, FI_INLINE_DENTRY);
  316. f2fs_i_depth_write(dir, 1);
  317. if (i_size_read(dir) < PAGE_SIZE)
  318. f2fs_i_size_write(dir, PAGE_SIZE);
  319. out:
  320. f2fs_put_page(page, 1);
  321. return err;
  322. }
  323. static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry)
  324. {
  325. struct f2fs_dentry_ptr d;
  326. unsigned long bit_pos = 0;
  327. int err = 0;
  328. make_dentry_ptr_inline(dir, &d, inline_dentry);
  329. while (bit_pos < d.max) {
  330. struct f2fs_dir_entry *de;
  331. struct qstr new_name;
  332. nid_t ino;
  333. umode_t fake_mode;
  334. if (!test_bit_le(bit_pos, d.bitmap)) {
  335. bit_pos++;
  336. continue;
  337. }
  338. de = &d.dentry[bit_pos];
  339. if (unlikely(!de->name_len)) {
  340. bit_pos++;
  341. continue;
  342. }
  343. new_name.name = d.filename[bit_pos];
  344. new_name.len = le16_to_cpu(de->name_len);
  345. ino = le32_to_cpu(de->ino);
  346. fake_mode = get_de_type(de) << S_SHIFT;
  347. err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL,
  348. ino, fake_mode);
  349. if (err)
  350. goto punch_dentry_pages;
  351. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  352. }
  353. return 0;
  354. punch_dentry_pages:
  355. truncate_inode_pages(&dir->i_data, 0);
  356. truncate_blocks(dir, 0, false);
  357. remove_dirty_inode(dir);
  358. return err;
  359. }
  360. static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
  361. void *inline_dentry)
  362. {
  363. void *backup_dentry;
  364. int err;
  365. backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
  366. MAX_INLINE_DATA(dir), GFP_F2FS_ZERO);
  367. if (!backup_dentry) {
  368. f2fs_put_page(ipage, 1);
  369. return -ENOMEM;
  370. }
  371. memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir));
  372. truncate_inline_inode(dir, ipage, 0);
  373. unlock_page(ipage);
  374. err = f2fs_add_inline_entries(dir, backup_dentry);
  375. if (err)
  376. goto recover;
  377. lock_page(ipage);
  378. stat_dec_inline_dir(dir);
  379. clear_inode_flag(dir, FI_INLINE_DENTRY);
  380. kfree(backup_dentry);
  381. return 0;
  382. recover:
  383. lock_page(ipage);
  384. memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir));
  385. f2fs_i_depth_write(dir, 0);
  386. f2fs_i_size_write(dir, MAX_INLINE_DATA(dir));
  387. set_page_dirty(ipage);
  388. f2fs_put_page(ipage, 1);
  389. kfree(backup_dentry);
  390. return err;
  391. }
  392. static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
  393. void *inline_dentry)
  394. {
  395. if (!F2FS_I(dir)->i_dir_level)
  396. return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
  397. else
  398. return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
  399. }
  400. int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
  401. const struct qstr *orig_name,
  402. struct inode *inode, nid_t ino, umode_t mode)
  403. {
  404. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  405. struct page *ipage;
  406. unsigned int bit_pos;
  407. f2fs_hash_t name_hash;
  408. void *inline_dentry = NULL;
  409. struct f2fs_dentry_ptr d;
  410. int slots = GET_DENTRY_SLOTS(new_name->len);
  411. struct page *page = NULL;
  412. int err = 0;
  413. ipage = get_node_page(sbi, dir->i_ino);
  414. if (IS_ERR(ipage))
  415. return PTR_ERR(ipage);
  416. inline_dentry = inline_data_addr(dir, ipage);
  417. make_dentry_ptr_inline(dir, &d, inline_dentry);
  418. bit_pos = room_for_filename(d.bitmap, slots, d.max);
  419. if (bit_pos >= d.max) {
  420. err = f2fs_convert_inline_dir(dir, ipage, inline_dentry);
  421. if (err)
  422. return err;
  423. err = -EAGAIN;
  424. goto out;
  425. }
  426. if (inode) {
  427. down_write(&F2FS_I(inode)->i_sem);
  428. page = init_inode_metadata(inode, dir, new_name,
  429. orig_name, ipage);
  430. if (IS_ERR(page)) {
  431. err = PTR_ERR(page);
  432. goto fail;
  433. }
  434. }
  435. f2fs_wait_on_page_writeback(ipage, NODE, true);
  436. name_hash = f2fs_dentry_hash(new_name, NULL);
  437. f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos);
  438. set_page_dirty(ipage);
  439. /* we don't need to mark_inode_dirty now */
  440. if (inode) {
  441. f2fs_i_pino_write(inode, dir->i_ino);
  442. f2fs_put_page(page, 1);
  443. }
  444. update_parent_metadata(dir, inode, 0);
  445. fail:
  446. if (inode)
  447. up_write(&F2FS_I(inode)->i_sem);
  448. out:
  449. f2fs_put_page(ipage, 1);
  450. return err;
  451. }
  452. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  453. struct inode *dir, struct inode *inode)
  454. {
  455. struct f2fs_dentry_ptr d;
  456. void *inline_dentry;
  457. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  458. unsigned int bit_pos;
  459. int i;
  460. lock_page(page);
  461. f2fs_wait_on_page_writeback(page, NODE, true);
  462. inline_dentry = inline_data_addr(dir, page);
  463. make_dentry_ptr_inline(dir, &d, inline_dentry);
  464. bit_pos = dentry - d.dentry;
  465. for (i = 0; i < slots; i++)
  466. __clear_bit_le(bit_pos + i, d.bitmap);
  467. set_page_dirty(page);
  468. f2fs_put_page(page, 1);
  469. dir->i_ctime = dir->i_mtime = current_time(dir);
  470. f2fs_mark_inode_dirty_sync(dir, false);
  471. if (inode)
  472. f2fs_drop_nlink(dir, inode);
  473. }
  474. bool f2fs_empty_inline_dir(struct inode *dir)
  475. {
  476. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  477. struct page *ipage;
  478. unsigned int bit_pos = 2;
  479. void *inline_dentry;
  480. struct f2fs_dentry_ptr d;
  481. ipage = get_node_page(sbi, dir->i_ino);
  482. if (IS_ERR(ipage))
  483. return false;
  484. inline_dentry = inline_data_addr(dir, ipage);
  485. make_dentry_ptr_inline(dir, &d, inline_dentry);
  486. bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos);
  487. f2fs_put_page(ipage, 1);
  488. if (bit_pos < d.max)
  489. return false;
  490. return true;
  491. }
  492. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
  493. struct fscrypt_str *fstr)
  494. {
  495. struct inode *inode = file_inode(file);
  496. struct page *ipage = NULL;
  497. struct f2fs_dentry_ptr d;
  498. void *inline_dentry = NULL;
  499. int err;
  500. make_dentry_ptr_inline(inode, &d, inline_dentry);
  501. if (ctx->pos == d.max)
  502. return 0;
  503. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  504. if (IS_ERR(ipage))
  505. return PTR_ERR(ipage);
  506. inline_dentry = inline_data_addr(inode, ipage);
  507. make_dentry_ptr_inline(inode, &d, inline_dentry);
  508. err = f2fs_fill_dentries(ctx, &d, 0, fstr);
  509. if (!err)
  510. ctx->pos = d.max;
  511. f2fs_put_page(ipage, 1);
  512. return err < 0 ? err : 0;
  513. }
  514. int f2fs_inline_data_fiemap(struct inode *inode,
  515. struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
  516. {
  517. __u64 byteaddr, ilen;
  518. __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
  519. FIEMAP_EXTENT_LAST;
  520. struct node_info ni;
  521. struct page *ipage;
  522. int err = 0;
  523. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  524. if (IS_ERR(ipage))
  525. return PTR_ERR(ipage);
  526. if (!f2fs_has_inline_data(inode)) {
  527. err = -EAGAIN;
  528. goto out;
  529. }
  530. ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode));
  531. if (start >= ilen)
  532. goto out;
  533. if (start + len < ilen)
  534. ilen = start + len;
  535. ilen -= start;
  536. get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
  537. byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
  538. byteaddr += (char *)inline_data_addr(inode, ipage) -
  539. (char *)F2FS_INODE(ipage);
  540. err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
  541. out:
  542. f2fs_put_page(ipage, 1);
  543. return err;
  544. }