sch_sfb.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728
  1. /*
  2. * net/sched/sch_sfb.c Stochastic Fair Blue
  3. *
  4. * Copyright (c) 2008-2011 Juliusz Chroboczek <jch@pps.jussieu.fr>
  5. * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * version 2 as published by the Free Software Foundation.
  10. *
  11. * W. Feng, D. Kandlur, D. Saha, K. Shin. Blue:
  12. * A New Class of Active Queue Management Algorithms.
  13. * U. Michigan CSE-TR-387-99, April 1999.
  14. *
  15. * http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf
  16. *
  17. */
  18. #include <linux/module.h>
  19. #include <linux/types.h>
  20. #include <linux/kernel.h>
  21. #include <linux/errno.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/random.h>
  24. #include <linux/jhash.h>
  25. #include <net/ip.h>
  26. #include <net/pkt_sched.h>
  27. #include <net/inet_ecn.h>
  28. #include <net/flow_keys.h>
  29. /*
  30. * SFB uses two B[l][n] : L x N arrays of bins (L levels, N bins per level)
  31. * This implementation uses L = 8 and N = 16
  32. * This permits us to split one 32bit hash (provided per packet by rxhash or
  33. * external classifier) into 8 subhashes of 4 bits.
  34. */
  35. #define SFB_BUCKET_SHIFT 4
  36. #define SFB_NUMBUCKETS (1 << SFB_BUCKET_SHIFT) /* N bins per Level */
  37. #define SFB_BUCKET_MASK (SFB_NUMBUCKETS - 1)
  38. #define SFB_LEVELS (32 / SFB_BUCKET_SHIFT) /* L */
  39. /* SFB algo uses a virtual queue, named "bin" */
  40. struct sfb_bucket {
  41. u16 qlen; /* length of virtual queue */
  42. u16 p_mark; /* marking probability */
  43. };
  44. /* We use a double buffering right before hash change
  45. * (Section 4.4 of SFB reference : moving hash functions)
  46. */
  47. struct sfb_bins {
  48. u32 perturbation; /* jhash perturbation */
  49. struct sfb_bucket bins[SFB_LEVELS][SFB_NUMBUCKETS];
  50. };
  51. struct sfb_sched_data {
  52. struct Qdisc *qdisc;
  53. struct tcf_proto __rcu *filter_list;
  54. unsigned long rehash_interval;
  55. unsigned long warmup_time; /* double buffering warmup time in jiffies */
  56. u32 max;
  57. u32 bin_size; /* maximum queue length per bin */
  58. u32 increment; /* d1 */
  59. u32 decrement; /* d2 */
  60. u32 limit; /* HARD maximal queue length */
  61. u32 penalty_rate;
  62. u32 penalty_burst;
  63. u32 tokens_avail;
  64. unsigned long rehash_time;
  65. unsigned long token_time;
  66. u8 slot; /* current active bins (0 or 1) */
  67. bool double_buffering;
  68. struct sfb_bins bins[2];
  69. struct {
  70. u32 earlydrop;
  71. u32 penaltydrop;
  72. u32 bucketdrop;
  73. u32 queuedrop;
  74. u32 childdrop; /* drops in child qdisc */
  75. u32 marked; /* ECN mark */
  76. } stats;
  77. };
  78. /*
  79. * Each queued skb might be hashed on one or two bins
  80. * We store in skb_cb the two hash values.
  81. * (A zero value means double buffering was not used)
  82. */
  83. struct sfb_skb_cb {
  84. u32 hashes[2];
  85. };
  86. static inline struct sfb_skb_cb *sfb_skb_cb(const struct sk_buff *skb)
  87. {
  88. qdisc_cb_private_validate(skb, sizeof(struct sfb_skb_cb));
  89. return (struct sfb_skb_cb *)qdisc_skb_cb(skb)->data;
  90. }
  91. /*
  92. * If using 'internal' SFB flow classifier, hash comes from skb rxhash
  93. * If using external classifier, hash comes from the classid.
  94. */
  95. static u32 sfb_hash(const struct sk_buff *skb, u32 slot)
  96. {
  97. return sfb_skb_cb(skb)->hashes[slot];
  98. }
  99. /* Probabilities are coded as Q0.16 fixed-point values,
  100. * with 0xFFFF representing 65535/65536 (almost 1.0)
  101. * Addition and subtraction are saturating in [0, 65535]
  102. */
  103. static u32 prob_plus(u32 p1, u32 p2)
  104. {
  105. u32 res = p1 + p2;
  106. return min_t(u32, res, SFB_MAX_PROB);
  107. }
  108. static u32 prob_minus(u32 p1, u32 p2)
  109. {
  110. return p1 > p2 ? p1 - p2 : 0;
  111. }
  112. static void increment_one_qlen(u32 sfbhash, u32 slot, struct sfb_sched_data *q)
  113. {
  114. int i;
  115. struct sfb_bucket *b = &q->bins[slot].bins[0][0];
  116. for (i = 0; i < SFB_LEVELS; i++) {
  117. u32 hash = sfbhash & SFB_BUCKET_MASK;
  118. sfbhash >>= SFB_BUCKET_SHIFT;
  119. if (b[hash].qlen < 0xFFFF)
  120. b[hash].qlen++;
  121. b += SFB_NUMBUCKETS; /* next level */
  122. }
  123. }
  124. static void increment_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
  125. {
  126. u32 sfbhash;
  127. sfbhash = sfb_hash(skb, 0);
  128. if (sfbhash)
  129. increment_one_qlen(sfbhash, 0, q);
  130. sfbhash = sfb_hash(skb, 1);
  131. if (sfbhash)
  132. increment_one_qlen(sfbhash, 1, q);
  133. }
  134. static void decrement_one_qlen(u32 sfbhash, u32 slot,
  135. struct sfb_sched_data *q)
  136. {
  137. int i;
  138. struct sfb_bucket *b = &q->bins[slot].bins[0][0];
  139. for (i = 0; i < SFB_LEVELS; i++) {
  140. u32 hash = sfbhash & SFB_BUCKET_MASK;
  141. sfbhash >>= SFB_BUCKET_SHIFT;
  142. if (b[hash].qlen > 0)
  143. b[hash].qlen--;
  144. b += SFB_NUMBUCKETS; /* next level */
  145. }
  146. }
  147. static void decrement_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
  148. {
  149. u32 sfbhash;
  150. sfbhash = sfb_hash(skb, 0);
  151. if (sfbhash)
  152. decrement_one_qlen(sfbhash, 0, q);
  153. sfbhash = sfb_hash(skb, 1);
  154. if (sfbhash)
  155. decrement_one_qlen(sfbhash, 1, q);
  156. }
  157. static void decrement_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
  158. {
  159. b->p_mark = prob_minus(b->p_mark, q->decrement);
  160. }
  161. static void increment_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
  162. {
  163. b->p_mark = prob_plus(b->p_mark, q->increment);
  164. }
  165. static void sfb_zero_all_buckets(struct sfb_sched_data *q)
  166. {
  167. memset(&q->bins, 0, sizeof(q->bins));
  168. }
  169. /*
  170. * compute max qlen, max p_mark, and avg p_mark
  171. */
  172. static u32 sfb_compute_qlen(u32 *prob_r, u32 *avgpm_r, const struct sfb_sched_data *q)
  173. {
  174. int i;
  175. u32 qlen = 0, prob = 0, totalpm = 0;
  176. const struct sfb_bucket *b = &q->bins[q->slot].bins[0][0];
  177. for (i = 0; i < SFB_LEVELS * SFB_NUMBUCKETS; i++) {
  178. if (qlen < b->qlen)
  179. qlen = b->qlen;
  180. totalpm += b->p_mark;
  181. if (prob < b->p_mark)
  182. prob = b->p_mark;
  183. b++;
  184. }
  185. *prob_r = prob;
  186. *avgpm_r = totalpm / (SFB_LEVELS * SFB_NUMBUCKETS);
  187. return qlen;
  188. }
  189. static void sfb_init_perturbation(u32 slot, struct sfb_sched_data *q)
  190. {
  191. q->bins[slot].perturbation = prandom_u32();
  192. }
  193. static void sfb_swap_slot(struct sfb_sched_data *q)
  194. {
  195. sfb_init_perturbation(q->slot, q);
  196. q->slot ^= 1;
  197. q->double_buffering = false;
  198. }
  199. /* Non elastic flows are allowed to use part of the bandwidth, expressed
  200. * in "penalty_rate" packets per second, with "penalty_burst" burst
  201. */
  202. static bool sfb_rate_limit(struct sk_buff *skb, struct sfb_sched_data *q)
  203. {
  204. if (q->penalty_rate == 0 || q->penalty_burst == 0)
  205. return true;
  206. if (q->tokens_avail < 1) {
  207. unsigned long age = min(10UL * HZ, jiffies - q->token_time);
  208. q->tokens_avail = (age * q->penalty_rate) / HZ;
  209. if (q->tokens_avail > q->penalty_burst)
  210. q->tokens_avail = q->penalty_burst;
  211. q->token_time = jiffies;
  212. if (q->tokens_avail < 1)
  213. return true;
  214. }
  215. q->tokens_avail--;
  216. return false;
  217. }
  218. static bool sfb_classify(struct sk_buff *skb, struct tcf_proto *fl,
  219. int *qerr, u32 *salt)
  220. {
  221. struct tcf_result res;
  222. int result;
  223. result = tc_classify(skb, fl, &res);
  224. if (result >= 0) {
  225. #ifdef CONFIG_NET_CLS_ACT
  226. switch (result) {
  227. case TC_ACT_STOLEN:
  228. case TC_ACT_QUEUED:
  229. *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
  230. case TC_ACT_SHOT:
  231. return false;
  232. }
  233. #endif
  234. *salt = TC_H_MIN(res.classid);
  235. return true;
  236. }
  237. return false;
  238. }
  239. static int sfb_enqueue(struct sk_buff *skb, struct Qdisc *sch)
  240. {
  241. struct sfb_sched_data *q = qdisc_priv(sch);
  242. struct Qdisc *child = q->qdisc;
  243. struct tcf_proto *fl;
  244. int i;
  245. u32 p_min = ~0;
  246. u32 minqlen = ~0;
  247. u32 r, slot, salt, sfbhash;
  248. int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
  249. struct flow_keys keys;
  250. if (unlikely(sch->q.qlen >= q->limit)) {
  251. qdisc_qstats_overlimit(sch);
  252. q->stats.queuedrop++;
  253. goto drop;
  254. }
  255. if (q->rehash_interval > 0) {
  256. unsigned long limit = q->rehash_time + q->rehash_interval;
  257. if (unlikely(time_after(jiffies, limit))) {
  258. sfb_swap_slot(q);
  259. q->rehash_time = jiffies;
  260. } else if (unlikely(!q->double_buffering && q->warmup_time > 0 &&
  261. time_after(jiffies, limit - q->warmup_time))) {
  262. q->double_buffering = true;
  263. }
  264. }
  265. fl = rcu_dereference_bh(q->filter_list);
  266. if (fl) {
  267. /* If using external classifiers, get result and record it. */
  268. if (!sfb_classify(skb, fl, &ret, &salt))
  269. goto other_drop;
  270. keys.src = salt;
  271. keys.dst = 0;
  272. keys.ports = 0;
  273. } else {
  274. skb_flow_dissect(skb, &keys);
  275. }
  276. slot = q->slot;
  277. sfbhash = jhash_3words((__force u32)keys.dst,
  278. (__force u32)keys.src,
  279. (__force u32)keys.ports,
  280. q->bins[slot].perturbation);
  281. if (!sfbhash)
  282. sfbhash = 1;
  283. sfb_skb_cb(skb)->hashes[slot] = sfbhash;
  284. for (i = 0; i < SFB_LEVELS; i++) {
  285. u32 hash = sfbhash & SFB_BUCKET_MASK;
  286. struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
  287. sfbhash >>= SFB_BUCKET_SHIFT;
  288. if (b->qlen == 0)
  289. decrement_prob(b, q);
  290. else if (b->qlen >= q->bin_size)
  291. increment_prob(b, q);
  292. if (minqlen > b->qlen)
  293. minqlen = b->qlen;
  294. if (p_min > b->p_mark)
  295. p_min = b->p_mark;
  296. }
  297. slot ^= 1;
  298. sfb_skb_cb(skb)->hashes[slot] = 0;
  299. if (unlikely(minqlen >= q->max)) {
  300. qdisc_qstats_overlimit(sch);
  301. q->stats.bucketdrop++;
  302. goto drop;
  303. }
  304. if (unlikely(p_min >= SFB_MAX_PROB)) {
  305. /* Inelastic flow */
  306. if (q->double_buffering) {
  307. sfbhash = jhash_3words((__force u32)keys.dst,
  308. (__force u32)keys.src,
  309. (__force u32)keys.ports,
  310. q->bins[slot].perturbation);
  311. if (!sfbhash)
  312. sfbhash = 1;
  313. sfb_skb_cb(skb)->hashes[slot] = sfbhash;
  314. for (i = 0; i < SFB_LEVELS; i++) {
  315. u32 hash = sfbhash & SFB_BUCKET_MASK;
  316. struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
  317. sfbhash >>= SFB_BUCKET_SHIFT;
  318. if (b->qlen == 0)
  319. decrement_prob(b, q);
  320. else if (b->qlen >= q->bin_size)
  321. increment_prob(b, q);
  322. }
  323. }
  324. if (sfb_rate_limit(skb, q)) {
  325. qdisc_qstats_overlimit(sch);
  326. q->stats.penaltydrop++;
  327. goto drop;
  328. }
  329. goto enqueue;
  330. }
  331. r = prandom_u32() & SFB_MAX_PROB;
  332. if (unlikely(r < p_min)) {
  333. if (unlikely(p_min > SFB_MAX_PROB / 2)) {
  334. /* If we're marking that many packets, then either
  335. * this flow is unresponsive, or we're badly congested.
  336. * In either case, we want to start dropping packets.
  337. */
  338. if (r < (p_min - SFB_MAX_PROB / 2) * 2) {
  339. q->stats.earlydrop++;
  340. goto drop;
  341. }
  342. }
  343. if (INET_ECN_set_ce(skb)) {
  344. q->stats.marked++;
  345. } else {
  346. q->stats.earlydrop++;
  347. goto drop;
  348. }
  349. }
  350. enqueue:
  351. ret = qdisc_enqueue(skb, child);
  352. if (likely(ret == NET_XMIT_SUCCESS)) {
  353. sch->q.qlen++;
  354. increment_qlen(skb, q);
  355. } else if (net_xmit_drop_count(ret)) {
  356. q->stats.childdrop++;
  357. qdisc_qstats_drop(sch);
  358. }
  359. return ret;
  360. drop:
  361. qdisc_drop(skb, sch);
  362. return NET_XMIT_CN;
  363. other_drop:
  364. if (ret & __NET_XMIT_BYPASS)
  365. qdisc_qstats_drop(sch);
  366. kfree_skb(skb);
  367. return ret;
  368. }
  369. static struct sk_buff *sfb_dequeue(struct Qdisc *sch)
  370. {
  371. struct sfb_sched_data *q = qdisc_priv(sch);
  372. struct Qdisc *child = q->qdisc;
  373. struct sk_buff *skb;
  374. skb = child->dequeue(q->qdisc);
  375. if (skb) {
  376. qdisc_bstats_update(sch, skb);
  377. sch->q.qlen--;
  378. decrement_qlen(skb, q);
  379. }
  380. return skb;
  381. }
  382. static struct sk_buff *sfb_peek(struct Qdisc *sch)
  383. {
  384. struct sfb_sched_data *q = qdisc_priv(sch);
  385. struct Qdisc *child = q->qdisc;
  386. return child->ops->peek(child);
  387. }
  388. /* No sfb_drop -- impossible since the child doesn't return the dropped skb. */
  389. static void sfb_reset(struct Qdisc *sch)
  390. {
  391. struct sfb_sched_data *q = qdisc_priv(sch);
  392. qdisc_reset(q->qdisc);
  393. sch->q.qlen = 0;
  394. q->slot = 0;
  395. q->double_buffering = false;
  396. sfb_zero_all_buckets(q);
  397. sfb_init_perturbation(0, q);
  398. }
  399. static void sfb_destroy(struct Qdisc *sch)
  400. {
  401. struct sfb_sched_data *q = qdisc_priv(sch);
  402. tcf_destroy_chain(&q->filter_list);
  403. qdisc_destroy(q->qdisc);
  404. }
  405. static const struct nla_policy sfb_policy[TCA_SFB_MAX + 1] = {
  406. [TCA_SFB_PARMS] = { .len = sizeof(struct tc_sfb_qopt) },
  407. };
  408. static const struct tc_sfb_qopt sfb_default_ops = {
  409. .rehash_interval = 600 * MSEC_PER_SEC,
  410. .warmup_time = 60 * MSEC_PER_SEC,
  411. .limit = 0,
  412. .max = 25,
  413. .bin_size = 20,
  414. .increment = (SFB_MAX_PROB + 500) / 1000, /* 0.1 % */
  415. .decrement = (SFB_MAX_PROB + 3000) / 6000,
  416. .penalty_rate = 10,
  417. .penalty_burst = 20,
  418. };
  419. static int sfb_change(struct Qdisc *sch, struct nlattr *opt)
  420. {
  421. struct sfb_sched_data *q = qdisc_priv(sch);
  422. struct Qdisc *child;
  423. struct nlattr *tb[TCA_SFB_MAX + 1];
  424. const struct tc_sfb_qopt *ctl = &sfb_default_ops;
  425. u32 limit;
  426. int err;
  427. if (opt) {
  428. err = nla_parse_nested(tb, TCA_SFB_MAX, opt, sfb_policy);
  429. if (err < 0)
  430. return -EINVAL;
  431. if (tb[TCA_SFB_PARMS] == NULL)
  432. return -EINVAL;
  433. ctl = nla_data(tb[TCA_SFB_PARMS]);
  434. }
  435. limit = ctl->limit;
  436. if (limit == 0)
  437. limit = max_t(u32, qdisc_dev(sch)->tx_queue_len, 1);
  438. child = fifo_create_dflt(sch, &pfifo_qdisc_ops, limit);
  439. if (IS_ERR(child))
  440. return PTR_ERR(child);
  441. sch_tree_lock(sch);
  442. qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
  443. qdisc_destroy(q->qdisc);
  444. q->qdisc = child;
  445. q->rehash_interval = msecs_to_jiffies(ctl->rehash_interval);
  446. q->warmup_time = msecs_to_jiffies(ctl->warmup_time);
  447. q->rehash_time = jiffies;
  448. q->limit = limit;
  449. q->increment = ctl->increment;
  450. q->decrement = ctl->decrement;
  451. q->max = ctl->max;
  452. q->bin_size = ctl->bin_size;
  453. q->penalty_rate = ctl->penalty_rate;
  454. q->penalty_burst = ctl->penalty_burst;
  455. q->tokens_avail = ctl->penalty_burst;
  456. q->token_time = jiffies;
  457. q->slot = 0;
  458. q->double_buffering = false;
  459. sfb_zero_all_buckets(q);
  460. sfb_init_perturbation(0, q);
  461. sfb_init_perturbation(1, q);
  462. sch_tree_unlock(sch);
  463. return 0;
  464. }
  465. static int sfb_init(struct Qdisc *sch, struct nlattr *opt)
  466. {
  467. struct sfb_sched_data *q = qdisc_priv(sch);
  468. q->qdisc = &noop_qdisc;
  469. return sfb_change(sch, opt);
  470. }
  471. static int sfb_dump(struct Qdisc *sch, struct sk_buff *skb)
  472. {
  473. struct sfb_sched_data *q = qdisc_priv(sch);
  474. struct nlattr *opts;
  475. struct tc_sfb_qopt opt = {
  476. .rehash_interval = jiffies_to_msecs(q->rehash_interval),
  477. .warmup_time = jiffies_to_msecs(q->warmup_time),
  478. .limit = q->limit,
  479. .max = q->max,
  480. .bin_size = q->bin_size,
  481. .increment = q->increment,
  482. .decrement = q->decrement,
  483. .penalty_rate = q->penalty_rate,
  484. .penalty_burst = q->penalty_burst,
  485. };
  486. sch->qstats.backlog = q->qdisc->qstats.backlog;
  487. opts = nla_nest_start(skb, TCA_OPTIONS);
  488. if (opts == NULL)
  489. goto nla_put_failure;
  490. if (nla_put(skb, TCA_SFB_PARMS, sizeof(opt), &opt))
  491. goto nla_put_failure;
  492. return nla_nest_end(skb, opts);
  493. nla_put_failure:
  494. nla_nest_cancel(skb, opts);
  495. return -EMSGSIZE;
  496. }
  497. static int sfb_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
  498. {
  499. struct sfb_sched_data *q = qdisc_priv(sch);
  500. struct tc_sfb_xstats st = {
  501. .earlydrop = q->stats.earlydrop,
  502. .penaltydrop = q->stats.penaltydrop,
  503. .bucketdrop = q->stats.bucketdrop,
  504. .queuedrop = q->stats.queuedrop,
  505. .childdrop = q->stats.childdrop,
  506. .marked = q->stats.marked,
  507. };
  508. st.maxqlen = sfb_compute_qlen(&st.maxprob, &st.avgprob, q);
  509. return gnet_stats_copy_app(d, &st, sizeof(st));
  510. }
  511. static int sfb_dump_class(struct Qdisc *sch, unsigned long cl,
  512. struct sk_buff *skb, struct tcmsg *tcm)
  513. {
  514. return -ENOSYS;
  515. }
  516. static int sfb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
  517. struct Qdisc **old)
  518. {
  519. struct sfb_sched_data *q = qdisc_priv(sch);
  520. if (new == NULL)
  521. new = &noop_qdisc;
  522. sch_tree_lock(sch);
  523. *old = q->qdisc;
  524. q->qdisc = new;
  525. qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
  526. qdisc_reset(*old);
  527. sch_tree_unlock(sch);
  528. return 0;
  529. }
  530. static struct Qdisc *sfb_leaf(struct Qdisc *sch, unsigned long arg)
  531. {
  532. struct sfb_sched_data *q = qdisc_priv(sch);
  533. return q->qdisc;
  534. }
  535. static unsigned long sfb_get(struct Qdisc *sch, u32 classid)
  536. {
  537. return 1;
  538. }
  539. static void sfb_put(struct Qdisc *sch, unsigned long arg)
  540. {
  541. }
  542. static int sfb_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
  543. struct nlattr **tca, unsigned long *arg)
  544. {
  545. return -ENOSYS;
  546. }
  547. static int sfb_delete(struct Qdisc *sch, unsigned long cl)
  548. {
  549. return -ENOSYS;
  550. }
  551. static void sfb_walk(struct Qdisc *sch, struct qdisc_walker *walker)
  552. {
  553. if (!walker->stop) {
  554. if (walker->count >= walker->skip)
  555. if (walker->fn(sch, 1, walker) < 0) {
  556. walker->stop = 1;
  557. return;
  558. }
  559. walker->count++;
  560. }
  561. }
  562. static struct tcf_proto __rcu **sfb_find_tcf(struct Qdisc *sch,
  563. unsigned long cl)
  564. {
  565. struct sfb_sched_data *q = qdisc_priv(sch);
  566. if (cl)
  567. return NULL;
  568. return &q->filter_list;
  569. }
  570. static unsigned long sfb_bind(struct Qdisc *sch, unsigned long parent,
  571. u32 classid)
  572. {
  573. return 0;
  574. }
  575. static const struct Qdisc_class_ops sfb_class_ops = {
  576. .graft = sfb_graft,
  577. .leaf = sfb_leaf,
  578. .get = sfb_get,
  579. .put = sfb_put,
  580. .change = sfb_change_class,
  581. .delete = sfb_delete,
  582. .walk = sfb_walk,
  583. .tcf_chain = sfb_find_tcf,
  584. .bind_tcf = sfb_bind,
  585. .unbind_tcf = sfb_put,
  586. .dump = sfb_dump_class,
  587. };
  588. static struct Qdisc_ops sfb_qdisc_ops __read_mostly = {
  589. .id = "sfb",
  590. .priv_size = sizeof(struct sfb_sched_data),
  591. .cl_ops = &sfb_class_ops,
  592. .enqueue = sfb_enqueue,
  593. .dequeue = sfb_dequeue,
  594. .peek = sfb_peek,
  595. .init = sfb_init,
  596. .reset = sfb_reset,
  597. .destroy = sfb_destroy,
  598. .change = sfb_change,
  599. .dump = sfb_dump,
  600. .dump_stats = sfb_dump_stats,
  601. .owner = THIS_MODULE,
  602. };
  603. static int __init sfb_module_init(void)
  604. {
  605. return register_qdisc(&sfb_qdisc_ops);
  606. }
  607. static void __exit sfb_module_exit(void)
  608. {
  609. unregister_qdisc(&sfb_qdisc_ops);
  610. }
  611. module_init(sfb_module_init)
  612. module_exit(sfb_module_exit)
  613. MODULE_DESCRIPTION("Stochastic Fair Blue queue discipline");
  614. MODULE_AUTHOR("Juliusz Chroboczek");
  615. MODULE_AUTHOR("Eric Dumazet");
  616. MODULE_LICENSE("GPL");