fib_trie.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <asm/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <net/net_namespace.h>
  74. #include <net/ip.h>
  75. #include <net/protocol.h>
  76. #include <net/route.h>
  77. #include <net/tcp.h>
  78. #include <net/sock.h>
  79. #include <net/ip_fib.h>
  80. #include <net/switchdev.h>
  81. #include "fib_lookup.h"
  82. #define MAX_STAT_DEPTH 32
  83. #define KEYLENGTH (8*sizeof(t_key))
  84. #define KEY_MAX ((t_key)~0)
  85. typedef unsigned int t_key;
  86. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  87. #define IS_TNODE(n) ((n)->bits)
  88. #define IS_LEAF(n) (!(n)->bits)
  89. struct key_vector {
  90. t_key key;
  91. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  92. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  93. unsigned char slen;
  94. union {
  95. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  96. struct hlist_head leaf;
  97. /* This array is valid if (pos | bits) > 0 (TNODE) */
  98. struct key_vector __rcu *tnode[0];
  99. };
  100. };
  101. struct tnode {
  102. struct rcu_head rcu;
  103. t_key empty_children; /* KEYLENGTH bits needed */
  104. t_key full_children; /* KEYLENGTH bits needed */
  105. struct key_vector __rcu *parent;
  106. struct key_vector kv[1];
  107. #define tn_bits kv[0].bits
  108. };
  109. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  110. #define LEAF_SIZE TNODE_SIZE(1)
  111. #ifdef CONFIG_IP_FIB_TRIE_STATS
  112. struct trie_use_stats {
  113. unsigned int gets;
  114. unsigned int backtrack;
  115. unsigned int semantic_match_passed;
  116. unsigned int semantic_match_miss;
  117. unsigned int null_node_hit;
  118. unsigned int resize_node_skipped;
  119. };
  120. #endif
  121. struct trie_stat {
  122. unsigned int totdepth;
  123. unsigned int maxdepth;
  124. unsigned int tnodes;
  125. unsigned int leaves;
  126. unsigned int nullpointers;
  127. unsigned int prefixes;
  128. unsigned int nodesizes[MAX_STAT_DEPTH];
  129. };
  130. struct trie {
  131. struct key_vector kv[1];
  132. #ifdef CONFIG_IP_FIB_TRIE_STATS
  133. struct trie_use_stats __percpu *stats;
  134. #endif
  135. };
  136. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  137. static size_t tnode_free_size;
  138. /*
  139. * synchronize_rcu after call_rcu for that many pages; it should be especially
  140. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  141. * obtained experimentally, aiming to avoid visible slowdown.
  142. */
  143. static const int sync_pages = 128;
  144. static struct kmem_cache *fn_alias_kmem __read_mostly;
  145. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  146. static inline struct tnode *tn_info(struct key_vector *kv)
  147. {
  148. return container_of(kv, struct tnode, kv[0]);
  149. }
  150. /* caller must hold RTNL */
  151. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  152. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  153. /* caller must hold RCU read lock or RTNL */
  154. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  155. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  156. /* wrapper for rcu_assign_pointer */
  157. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  158. {
  159. if (n)
  160. rcu_assign_pointer(tn_info(n)->parent, tp);
  161. }
  162. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  163. /* This provides us with the number of children in this node, in the case of a
  164. * leaf this will return 0 meaning none of the children are accessible.
  165. */
  166. static inline unsigned long child_length(const struct key_vector *tn)
  167. {
  168. return (1ul << tn->bits) & ~(1ul);
  169. }
  170. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  171. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  172. {
  173. unsigned long index = key ^ kv->key;
  174. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  175. return 0;
  176. return index >> kv->pos;
  177. }
  178. /* To understand this stuff, an understanding of keys and all their bits is
  179. * necessary. Every node in the trie has a key associated with it, but not
  180. * all of the bits in that key are significant.
  181. *
  182. * Consider a node 'n' and its parent 'tp'.
  183. *
  184. * If n is a leaf, every bit in its key is significant. Its presence is
  185. * necessitated by path compression, since during a tree traversal (when
  186. * searching for a leaf - unless we are doing an insertion) we will completely
  187. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  188. * a potentially successful search, that we have indeed been walking the
  189. * correct key path.
  190. *
  191. * Note that we can never "miss" the correct key in the tree if present by
  192. * following the wrong path. Path compression ensures that segments of the key
  193. * that are the same for all keys with a given prefix are skipped, but the
  194. * skipped part *is* identical for each node in the subtrie below the skipped
  195. * bit! trie_insert() in this implementation takes care of that.
  196. *
  197. * if n is an internal node - a 'tnode' here, the various parts of its key
  198. * have many different meanings.
  199. *
  200. * Example:
  201. * _________________________________________________________________
  202. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  203. * -----------------------------------------------------------------
  204. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  205. *
  206. * _________________________________________________________________
  207. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  208. * -----------------------------------------------------------------
  209. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  210. *
  211. * tp->pos = 22
  212. * tp->bits = 3
  213. * n->pos = 13
  214. * n->bits = 4
  215. *
  216. * First, let's just ignore the bits that come before the parent tp, that is
  217. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  218. * point we do not use them for anything.
  219. *
  220. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  221. * index into the parent's child array. That is, they will be used to find
  222. * 'n' among tp's children.
  223. *
  224. * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
  225. * for the node n.
  226. *
  227. * All the bits we have seen so far are significant to the node n. The rest
  228. * of the bits are really not needed or indeed known in n->key.
  229. *
  230. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  231. * n's child array, and will of course be different for each child.
  232. *
  233. * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
  234. * at this point.
  235. */
  236. static const int halve_threshold = 25;
  237. static const int inflate_threshold = 50;
  238. static const int halve_threshold_root = 15;
  239. static const int inflate_threshold_root = 30;
  240. static void __alias_free_mem(struct rcu_head *head)
  241. {
  242. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  243. kmem_cache_free(fn_alias_kmem, fa);
  244. }
  245. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  246. {
  247. call_rcu(&fa->rcu, __alias_free_mem);
  248. }
  249. #define TNODE_KMALLOC_MAX \
  250. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  251. #define TNODE_VMALLOC_MAX \
  252. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  253. static void __node_free_rcu(struct rcu_head *head)
  254. {
  255. struct tnode *n = container_of(head, struct tnode, rcu);
  256. if (!n->tn_bits)
  257. kmem_cache_free(trie_leaf_kmem, n);
  258. else if (n->tn_bits <= TNODE_KMALLOC_MAX)
  259. kfree(n);
  260. else
  261. vfree(n);
  262. }
  263. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  264. static struct tnode *tnode_alloc(int bits)
  265. {
  266. size_t size;
  267. /* verify bits is within bounds */
  268. if (bits > TNODE_VMALLOC_MAX)
  269. return NULL;
  270. /* determine size and verify it is non-zero and didn't overflow */
  271. size = TNODE_SIZE(1ul << bits);
  272. if (size <= PAGE_SIZE)
  273. return kzalloc(size, GFP_KERNEL);
  274. else
  275. return vzalloc(size);
  276. }
  277. static inline void empty_child_inc(struct key_vector *n)
  278. {
  279. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  280. }
  281. static inline void empty_child_dec(struct key_vector *n)
  282. {
  283. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  284. }
  285. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  286. {
  287. struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  288. struct key_vector *l = kv->kv;
  289. if (!kv)
  290. return NULL;
  291. /* initialize key vector */
  292. l->key = key;
  293. l->pos = 0;
  294. l->bits = 0;
  295. l->slen = fa->fa_slen;
  296. /* link leaf to fib alias */
  297. INIT_HLIST_HEAD(&l->leaf);
  298. hlist_add_head(&fa->fa_list, &l->leaf);
  299. return l;
  300. }
  301. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  302. {
  303. struct tnode *tnode = tnode_alloc(bits);
  304. unsigned int shift = pos + bits;
  305. struct key_vector *tn = tnode->kv;
  306. /* verify bits and pos their msb bits clear and values are valid */
  307. BUG_ON(!bits || (shift > KEYLENGTH));
  308. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  309. sizeof(struct key_vector *) << bits);
  310. if (!tnode)
  311. return NULL;
  312. if (bits == KEYLENGTH)
  313. tnode->full_children = 1;
  314. else
  315. tnode->empty_children = 1ul << bits;
  316. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  317. tn->pos = pos;
  318. tn->bits = bits;
  319. tn->slen = pos;
  320. return tn;
  321. }
  322. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  323. * and no bits are skipped. See discussion in dyntree paper p. 6
  324. */
  325. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  326. {
  327. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  328. }
  329. /* Add a child at position i overwriting the old value.
  330. * Update the value of full_children and empty_children.
  331. */
  332. static void put_child(struct key_vector *tn, unsigned long i,
  333. struct key_vector *n)
  334. {
  335. struct key_vector *chi = get_child(tn, i);
  336. int isfull, wasfull;
  337. BUG_ON(i >= child_length(tn));
  338. /* update emptyChildren, overflow into fullChildren */
  339. if (!n && chi)
  340. empty_child_inc(tn);
  341. if (n && !chi)
  342. empty_child_dec(tn);
  343. /* update fullChildren */
  344. wasfull = tnode_full(tn, chi);
  345. isfull = tnode_full(tn, n);
  346. if (wasfull && !isfull)
  347. tn_info(tn)->full_children--;
  348. else if (!wasfull && isfull)
  349. tn_info(tn)->full_children++;
  350. if (n && (tn->slen < n->slen))
  351. tn->slen = n->slen;
  352. rcu_assign_pointer(tn->tnode[i], n);
  353. }
  354. static void update_children(struct key_vector *tn)
  355. {
  356. unsigned long i;
  357. /* update all of the child parent pointers */
  358. for (i = child_length(tn); i;) {
  359. struct key_vector *inode = get_child(tn, --i);
  360. if (!inode)
  361. continue;
  362. /* Either update the children of a tnode that
  363. * already belongs to us or update the child
  364. * to point to ourselves.
  365. */
  366. if (node_parent(inode) == tn)
  367. update_children(inode);
  368. else
  369. node_set_parent(inode, tn);
  370. }
  371. }
  372. static inline void put_child_root(struct key_vector *tp, t_key key,
  373. struct key_vector *n)
  374. {
  375. if (IS_TRIE(tp))
  376. rcu_assign_pointer(tp->tnode[0], n);
  377. else
  378. put_child(tp, get_index(key, tp), n);
  379. }
  380. static inline void tnode_free_init(struct key_vector *tn)
  381. {
  382. tn_info(tn)->rcu.next = NULL;
  383. }
  384. static inline void tnode_free_append(struct key_vector *tn,
  385. struct key_vector *n)
  386. {
  387. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  388. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  389. }
  390. static void tnode_free(struct key_vector *tn)
  391. {
  392. struct callback_head *head = &tn_info(tn)->rcu;
  393. while (head) {
  394. head = head->next;
  395. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  396. node_free(tn);
  397. tn = container_of(head, struct tnode, rcu)->kv;
  398. }
  399. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  400. tnode_free_size = 0;
  401. synchronize_rcu();
  402. }
  403. }
  404. static struct key_vector *replace(struct trie *t,
  405. struct key_vector *oldtnode,
  406. struct key_vector *tn)
  407. {
  408. struct key_vector *tp = node_parent(oldtnode);
  409. unsigned long i;
  410. /* setup the parent pointer out of and back into this node */
  411. NODE_INIT_PARENT(tn, tp);
  412. put_child_root(tp, tn->key, tn);
  413. /* update all of the child parent pointers */
  414. update_children(tn);
  415. /* all pointers should be clean so we are done */
  416. tnode_free(oldtnode);
  417. /* resize children now that oldtnode is freed */
  418. for (i = child_length(tn); i;) {
  419. struct key_vector *inode = get_child(tn, --i);
  420. /* resize child node */
  421. if (tnode_full(tn, inode))
  422. tn = resize(t, inode);
  423. }
  424. return tp;
  425. }
  426. static struct key_vector *inflate(struct trie *t,
  427. struct key_vector *oldtnode)
  428. {
  429. struct key_vector *tn;
  430. unsigned long i;
  431. t_key m;
  432. pr_debug("In inflate\n");
  433. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  434. if (!tn)
  435. goto notnode;
  436. /* prepare oldtnode to be freed */
  437. tnode_free_init(oldtnode);
  438. /* Assemble all of the pointers in our cluster, in this case that
  439. * represents all of the pointers out of our allocated nodes that
  440. * point to existing tnodes and the links between our allocated
  441. * nodes.
  442. */
  443. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  444. struct key_vector *inode = get_child(oldtnode, --i);
  445. struct key_vector *node0, *node1;
  446. unsigned long j, k;
  447. /* An empty child */
  448. if (!inode)
  449. continue;
  450. /* A leaf or an internal node with skipped bits */
  451. if (!tnode_full(oldtnode, inode)) {
  452. put_child(tn, get_index(inode->key, tn), inode);
  453. continue;
  454. }
  455. /* drop the node in the old tnode free list */
  456. tnode_free_append(oldtnode, inode);
  457. /* An internal node with two children */
  458. if (inode->bits == 1) {
  459. put_child(tn, 2 * i + 1, get_child(inode, 1));
  460. put_child(tn, 2 * i, get_child(inode, 0));
  461. continue;
  462. }
  463. /* We will replace this node 'inode' with two new
  464. * ones, 'node0' and 'node1', each with half of the
  465. * original children. The two new nodes will have
  466. * a position one bit further down the key and this
  467. * means that the "significant" part of their keys
  468. * (see the discussion near the top of this file)
  469. * will differ by one bit, which will be "0" in
  470. * node0's key and "1" in node1's key. Since we are
  471. * moving the key position by one step, the bit that
  472. * we are moving away from - the bit at position
  473. * (tn->pos) - is the one that will differ between
  474. * node0 and node1. So... we synthesize that bit in the
  475. * two new keys.
  476. */
  477. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  478. if (!node1)
  479. goto nomem;
  480. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  481. tnode_free_append(tn, node1);
  482. if (!node0)
  483. goto nomem;
  484. tnode_free_append(tn, node0);
  485. /* populate child pointers in new nodes */
  486. for (k = child_length(inode), j = k / 2; j;) {
  487. put_child(node1, --j, get_child(inode, --k));
  488. put_child(node0, j, get_child(inode, j));
  489. put_child(node1, --j, get_child(inode, --k));
  490. put_child(node0, j, get_child(inode, j));
  491. }
  492. /* link new nodes to parent */
  493. NODE_INIT_PARENT(node1, tn);
  494. NODE_INIT_PARENT(node0, tn);
  495. /* link parent to nodes */
  496. put_child(tn, 2 * i + 1, node1);
  497. put_child(tn, 2 * i, node0);
  498. }
  499. /* setup the parent pointers into and out of this node */
  500. return replace(t, oldtnode, tn);
  501. nomem:
  502. /* all pointers should be clean so we are done */
  503. tnode_free(tn);
  504. notnode:
  505. return NULL;
  506. }
  507. static struct key_vector *halve(struct trie *t,
  508. struct key_vector *oldtnode)
  509. {
  510. struct key_vector *tn;
  511. unsigned long i;
  512. pr_debug("In halve\n");
  513. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  514. if (!tn)
  515. goto notnode;
  516. /* prepare oldtnode to be freed */
  517. tnode_free_init(oldtnode);
  518. /* Assemble all of the pointers in our cluster, in this case that
  519. * represents all of the pointers out of our allocated nodes that
  520. * point to existing tnodes and the links between our allocated
  521. * nodes.
  522. */
  523. for (i = child_length(oldtnode); i;) {
  524. struct key_vector *node1 = get_child(oldtnode, --i);
  525. struct key_vector *node0 = get_child(oldtnode, --i);
  526. struct key_vector *inode;
  527. /* At least one of the children is empty */
  528. if (!node1 || !node0) {
  529. put_child(tn, i / 2, node1 ? : node0);
  530. continue;
  531. }
  532. /* Two nonempty children */
  533. inode = tnode_new(node0->key, oldtnode->pos, 1);
  534. if (!inode)
  535. goto nomem;
  536. tnode_free_append(tn, inode);
  537. /* initialize pointers out of node */
  538. put_child(inode, 1, node1);
  539. put_child(inode, 0, node0);
  540. NODE_INIT_PARENT(inode, tn);
  541. /* link parent to node */
  542. put_child(tn, i / 2, inode);
  543. }
  544. /* setup the parent pointers into and out of this node */
  545. return replace(t, oldtnode, tn);
  546. nomem:
  547. /* all pointers should be clean so we are done */
  548. tnode_free(tn);
  549. notnode:
  550. return NULL;
  551. }
  552. static struct key_vector *collapse(struct trie *t,
  553. struct key_vector *oldtnode)
  554. {
  555. struct key_vector *n, *tp;
  556. unsigned long i;
  557. /* scan the tnode looking for that one child that might still exist */
  558. for (n = NULL, i = child_length(oldtnode); !n && i;)
  559. n = get_child(oldtnode, --i);
  560. /* compress one level */
  561. tp = node_parent(oldtnode);
  562. put_child_root(tp, oldtnode->key, n);
  563. node_set_parent(n, tp);
  564. /* drop dead node */
  565. node_free(oldtnode);
  566. return tp;
  567. }
  568. static unsigned char update_suffix(struct key_vector *tn)
  569. {
  570. unsigned char slen = tn->pos;
  571. unsigned long stride, i;
  572. /* search though the list of children looking for nodes that might
  573. * have a suffix greater than the one we currently have. This is
  574. * why we start with a stride of 2 since a stride of 1 would
  575. * represent the nodes with suffix length equal to tn->pos
  576. */
  577. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  578. struct key_vector *n = get_child(tn, i);
  579. if (!n || (n->slen <= slen))
  580. continue;
  581. /* update stride and slen based on new value */
  582. stride <<= (n->slen - slen);
  583. slen = n->slen;
  584. i &= ~(stride - 1);
  585. /* if slen covers all but the last bit we can stop here
  586. * there will be nothing longer than that since only node
  587. * 0 and 1 << (bits - 1) could have that as their suffix
  588. * length.
  589. */
  590. if ((slen + 1) >= (tn->pos + tn->bits))
  591. break;
  592. }
  593. tn->slen = slen;
  594. return slen;
  595. }
  596. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  597. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  598. * Telecommunications, page 6:
  599. * "A node is doubled if the ratio of non-empty children to all
  600. * children in the *doubled* node is at least 'high'."
  601. *
  602. * 'high' in this instance is the variable 'inflate_threshold'. It
  603. * is expressed as a percentage, so we multiply it with
  604. * child_length() and instead of multiplying by 2 (since the
  605. * child array will be doubled by inflate()) and multiplying
  606. * the left-hand side by 100 (to handle the percentage thing) we
  607. * multiply the left-hand side by 50.
  608. *
  609. * The left-hand side may look a bit weird: child_length(tn)
  610. * - tn->empty_children is of course the number of non-null children
  611. * in the current node. tn->full_children is the number of "full"
  612. * children, that is non-null tnodes with a skip value of 0.
  613. * All of those will be doubled in the resulting inflated tnode, so
  614. * we just count them one extra time here.
  615. *
  616. * A clearer way to write this would be:
  617. *
  618. * to_be_doubled = tn->full_children;
  619. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  620. * tn->full_children;
  621. *
  622. * new_child_length = child_length(tn) * 2;
  623. *
  624. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  625. * new_child_length;
  626. * if (new_fill_factor >= inflate_threshold)
  627. *
  628. * ...and so on, tho it would mess up the while () loop.
  629. *
  630. * anyway,
  631. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  632. * inflate_threshold
  633. *
  634. * avoid a division:
  635. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  636. * inflate_threshold * new_child_length
  637. *
  638. * expand not_to_be_doubled and to_be_doubled, and shorten:
  639. * 100 * (child_length(tn) - tn->empty_children +
  640. * tn->full_children) >= inflate_threshold * new_child_length
  641. *
  642. * expand new_child_length:
  643. * 100 * (child_length(tn) - tn->empty_children +
  644. * tn->full_children) >=
  645. * inflate_threshold * child_length(tn) * 2
  646. *
  647. * shorten again:
  648. * 50 * (tn->full_children + child_length(tn) -
  649. * tn->empty_children) >= inflate_threshold *
  650. * child_length(tn)
  651. *
  652. */
  653. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  654. {
  655. unsigned long used = child_length(tn);
  656. unsigned long threshold = used;
  657. /* Keep root node larger */
  658. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  659. used -= tn_info(tn)->empty_children;
  660. used += tn_info(tn)->full_children;
  661. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  662. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  663. }
  664. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  665. {
  666. unsigned long used = child_length(tn);
  667. unsigned long threshold = used;
  668. /* Keep root node larger */
  669. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  670. used -= tn_info(tn)->empty_children;
  671. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  672. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  673. }
  674. static inline bool should_collapse(struct key_vector *tn)
  675. {
  676. unsigned long used = child_length(tn);
  677. used -= tn_info(tn)->empty_children;
  678. /* account for bits == KEYLENGTH case */
  679. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  680. used -= KEY_MAX;
  681. /* One child or none, time to drop us from the trie */
  682. return used < 2;
  683. }
  684. #define MAX_WORK 10
  685. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  686. {
  687. #ifdef CONFIG_IP_FIB_TRIE_STATS
  688. struct trie_use_stats __percpu *stats = t->stats;
  689. #endif
  690. struct key_vector *tp = node_parent(tn);
  691. unsigned long cindex = get_index(tn->key, tp);
  692. int max_work = MAX_WORK;
  693. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  694. tn, inflate_threshold, halve_threshold);
  695. /* track the tnode via the pointer from the parent instead of
  696. * doing it ourselves. This way we can let RCU fully do its
  697. * thing without us interfering
  698. */
  699. BUG_ON(tn != get_child(tp, cindex));
  700. /* Double as long as the resulting node has a number of
  701. * nonempty nodes that are above the threshold.
  702. */
  703. while (should_inflate(tp, tn) && max_work) {
  704. tp = inflate(t, tn);
  705. if (!tp) {
  706. #ifdef CONFIG_IP_FIB_TRIE_STATS
  707. this_cpu_inc(stats->resize_node_skipped);
  708. #endif
  709. break;
  710. }
  711. max_work--;
  712. tn = get_child(tp, cindex);
  713. }
  714. /* update parent in case inflate failed */
  715. tp = node_parent(tn);
  716. /* Return if at least one inflate is run */
  717. if (max_work != MAX_WORK)
  718. return tp;
  719. /* Halve as long as the number of empty children in this
  720. * node is above threshold.
  721. */
  722. while (should_halve(tp, tn) && max_work) {
  723. tp = halve(t, tn);
  724. if (!tp) {
  725. #ifdef CONFIG_IP_FIB_TRIE_STATS
  726. this_cpu_inc(stats->resize_node_skipped);
  727. #endif
  728. break;
  729. }
  730. max_work--;
  731. tn = get_child(tp, cindex);
  732. }
  733. /* Only one child remains */
  734. if (should_collapse(tn))
  735. return collapse(t, tn);
  736. /* update parent in case halve failed */
  737. tp = node_parent(tn);
  738. /* Return if at least one deflate was run */
  739. if (max_work != MAX_WORK)
  740. return tp;
  741. /* push the suffix length to the parent node */
  742. if (tn->slen > tn->pos) {
  743. unsigned char slen = update_suffix(tn);
  744. if (slen > tp->slen)
  745. tp->slen = slen;
  746. }
  747. return tp;
  748. }
  749. static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
  750. {
  751. while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
  752. if (update_suffix(tp) > l->slen)
  753. break;
  754. tp = node_parent(tp);
  755. }
  756. }
  757. static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
  758. {
  759. /* if this is a new leaf then tn will be NULL and we can sort
  760. * out parent suffix lengths as a part of trie_rebalance
  761. */
  762. while (tn->slen < l->slen) {
  763. tn->slen = l->slen;
  764. tn = node_parent(tn);
  765. }
  766. }
  767. /* rcu_read_lock needs to be hold by caller from readside */
  768. static struct key_vector *fib_find_node(struct trie *t,
  769. struct key_vector **tp, u32 key)
  770. {
  771. struct key_vector *pn, *n = t->kv;
  772. unsigned long index = 0;
  773. do {
  774. pn = n;
  775. n = get_child_rcu(n, index);
  776. if (!n)
  777. break;
  778. index = get_cindex(key, n);
  779. /* This bit of code is a bit tricky but it combines multiple
  780. * checks into a single check. The prefix consists of the
  781. * prefix plus zeros for the bits in the cindex. The index
  782. * is the difference between the key and this value. From
  783. * this we can actually derive several pieces of data.
  784. * if (index >= (1ul << bits))
  785. * we have a mismatch in skip bits and failed
  786. * else
  787. * we know the value is cindex
  788. *
  789. * This check is safe even if bits == KEYLENGTH due to the
  790. * fact that we can only allocate a node with 32 bits if a
  791. * long is greater than 32 bits.
  792. */
  793. if (index >= (1ul << n->bits)) {
  794. n = NULL;
  795. break;
  796. }
  797. /* keep searching until we find a perfect match leaf or NULL */
  798. } while (IS_TNODE(n));
  799. *tp = pn;
  800. return n;
  801. }
  802. /* Return the first fib alias matching TOS with
  803. * priority less than or equal to PRIO.
  804. */
  805. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  806. u8 tos, u32 prio, u32 tb_id)
  807. {
  808. struct fib_alias *fa;
  809. if (!fah)
  810. return NULL;
  811. hlist_for_each_entry(fa, fah, fa_list) {
  812. if (fa->fa_slen < slen)
  813. continue;
  814. if (fa->fa_slen != slen)
  815. break;
  816. if (fa->tb_id > tb_id)
  817. continue;
  818. if (fa->tb_id != tb_id)
  819. break;
  820. if (fa->fa_tos > tos)
  821. continue;
  822. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  823. return fa;
  824. }
  825. return NULL;
  826. }
  827. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  828. {
  829. while (!IS_TRIE(tn))
  830. tn = resize(t, tn);
  831. }
  832. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  833. struct fib_alias *new, t_key key)
  834. {
  835. struct key_vector *n, *l;
  836. l = leaf_new(key, new);
  837. if (!l)
  838. goto noleaf;
  839. /* retrieve child from parent node */
  840. n = get_child(tp, get_index(key, tp));
  841. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  842. *
  843. * Add a new tnode here
  844. * first tnode need some special handling
  845. * leaves us in position for handling as case 3
  846. */
  847. if (n) {
  848. struct key_vector *tn;
  849. tn = tnode_new(key, __fls(key ^ n->key), 1);
  850. if (!tn)
  851. goto notnode;
  852. /* initialize routes out of node */
  853. NODE_INIT_PARENT(tn, tp);
  854. put_child(tn, get_index(key, tn) ^ 1, n);
  855. /* start adding routes into the node */
  856. put_child_root(tp, key, tn);
  857. node_set_parent(n, tn);
  858. /* parent now has a NULL spot where the leaf can go */
  859. tp = tn;
  860. }
  861. /* Case 3: n is NULL, and will just insert a new leaf */
  862. NODE_INIT_PARENT(l, tp);
  863. put_child_root(tp, key, l);
  864. trie_rebalance(t, tp);
  865. return 0;
  866. notnode:
  867. node_free(l);
  868. noleaf:
  869. return -ENOMEM;
  870. }
  871. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  872. struct key_vector *l, struct fib_alias *new,
  873. struct fib_alias *fa, t_key key)
  874. {
  875. if (!l)
  876. return fib_insert_node(t, tp, new, key);
  877. if (fa) {
  878. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  879. } else {
  880. struct fib_alias *last;
  881. hlist_for_each_entry(last, &l->leaf, fa_list) {
  882. if (new->fa_slen < last->fa_slen)
  883. break;
  884. if ((new->fa_slen == last->fa_slen) &&
  885. (new->tb_id > last->tb_id))
  886. break;
  887. fa = last;
  888. }
  889. if (fa)
  890. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  891. else
  892. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  893. }
  894. /* if we added to the tail node then we need to update slen */
  895. if (l->slen < new->fa_slen) {
  896. l->slen = new->fa_slen;
  897. leaf_push_suffix(tp, l);
  898. }
  899. return 0;
  900. }
  901. /* Caller must hold RTNL. */
  902. int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
  903. {
  904. struct trie *t = (struct trie *)tb->tb_data;
  905. struct fib_alias *fa, *new_fa;
  906. struct key_vector *l, *tp;
  907. struct fib_info *fi;
  908. u8 plen = cfg->fc_dst_len;
  909. u8 slen = KEYLENGTH - plen;
  910. u8 tos = cfg->fc_tos;
  911. u32 key;
  912. int err;
  913. if (plen > KEYLENGTH)
  914. return -EINVAL;
  915. key = ntohl(cfg->fc_dst);
  916. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  917. if ((plen < KEYLENGTH) && (key << plen))
  918. return -EINVAL;
  919. fi = fib_create_info(cfg);
  920. if (IS_ERR(fi)) {
  921. err = PTR_ERR(fi);
  922. goto err;
  923. }
  924. l = fib_find_node(t, &tp, key);
  925. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  926. tb->tb_id) : NULL;
  927. /* Now fa, if non-NULL, points to the first fib alias
  928. * with the same keys [prefix,tos,priority], if such key already
  929. * exists or to the node before which we will insert new one.
  930. *
  931. * If fa is NULL, we will need to allocate a new one and
  932. * insert to the tail of the section matching the suffix length
  933. * of the new alias.
  934. */
  935. if (fa && fa->fa_tos == tos &&
  936. fa->fa_info->fib_priority == fi->fib_priority) {
  937. struct fib_alias *fa_first, *fa_match;
  938. err = -EEXIST;
  939. if (cfg->fc_nlflags & NLM_F_EXCL)
  940. goto out;
  941. /* We have 2 goals:
  942. * 1. Find exact match for type, scope, fib_info to avoid
  943. * duplicate routes
  944. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  945. */
  946. fa_match = NULL;
  947. fa_first = fa;
  948. hlist_for_each_entry_from(fa, fa_list) {
  949. if ((fa->fa_slen != slen) ||
  950. (fa->tb_id != tb->tb_id) ||
  951. (fa->fa_tos != tos))
  952. break;
  953. if (fa->fa_info->fib_priority != fi->fib_priority)
  954. break;
  955. if (fa->fa_type == cfg->fc_type &&
  956. fa->fa_info == fi) {
  957. fa_match = fa;
  958. break;
  959. }
  960. }
  961. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  962. struct fib_info *fi_drop;
  963. u8 state;
  964. fa = fa_first;
  965. if (fa_match) {
  966. if (fa == fa_match)
  967. err = 0;
  968. goto out;
  969. }
  970. err = -ENOBUFS;
  971. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  972. if (!new_fa)
  973. goto out;
  974. fi_drop = fa->fa_info;
  975. new_fa->fa_tos = fa->fa_tos;
  976. new_fa->fa_info = fi;
  977. new_fa->fa_type = cfg->fc_type;
  978. state = fa->fa_state;
  979. new_fa->fa_state = state & ~FA_S_ACCESSED;
  980. new_fa->fa_slen = fa->fa_slen;
  981. new_fa->tb_id = tb->tb_id;
  982. err = netdev_switch_fib_ipv4_add(key, plen, fi,
  983. new_fa->fa_tos,
  984. cfg->fc_type,
  985. cfg->fc_nlflags,
  986. tb->tb_id);
  987. if (err) {
  988. netdev_switch_fib_ipv4_abort(fi);
  989. kmem_cache_free(fn_alias_kmem, new_fa);
  990. goto out;
  991. }
  992. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  993. alias_free_mem_rcu(fa);
  994. fib_release_info(fi_drop);
  995. if (state & FA_S_ACCESSED)
  996. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  997. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  998. tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
  999. goto succeeded;
  1000. }
  1001. /* Error if we find a perfect match which
  1002. * uses the same scope, type, and nexthop
  1003. * information.
  1004. */
  1005. if (fa_match)
  1006. goto out;
  1007. if (!(cfg->fc_nlflags & NLM_F_APPEND))
  1008. fa = fa_first;
  1009. }
  1010. err = -ENOENT;
  1011. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1012. goto out;
  1013. err = -ENOBUFS;
  1014. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1015. if (!new_fa)
  1016. goto out;
  1017. new_fa->fa_info = fi;
  1018. new_fa->fa_tos = tos;
  1019. new_fa->fa_type = cfg->fc_type;
  1020. new_fa->fa_state = 0;
  1021. new_fa->fa_slen = slen;
  1022. new_fa->tb_id = tb->tb_id;
  1023. /* (Optionally) offload fib entry to switch hardware. */
  1024. err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
  1025. cfg->fc_type,
  1026. cfg->fc_nlflags,
  1027. tb->tb_id);
  1028. if (err) {
  1029. netdev_switch_fib_ipv4_abort(fi);
  1030. goto out_free_new_fa;
  1031. }
  1032. /* Insert new entry to the list. */
  1033. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1034. if (err)
  1035. goto out_sw_fib_del;
  1036. if (!plen)
  1037. tb->tb_num_default++;
  1038. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1039. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1040. &cfg->fc_nlinfo, 0);
  1041. succeeded:
  1042. return 0;
  1043. out_sw_fib_del:
  1044. netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
  1045. out_free_new_fa:
  1046. kmem_cache_free(fn_alias_kmem, new_fa);
  1047. out:
  1048. fib_release_info(fi);
  1049. err:
  1050. return err;
  1051. }
  1052. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1053. {
  1054. t_key prefix = n->key;
  1055. return (key ^ prefix) & (prefix | -prefix);
  1056. }
  1057. /* should be called with rcu_read_lock */
  1058. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1059. struct fib_result *res, int fib_flags)
  1060. {
  1061. struct trie *t = (struct trie *) tb->tb_data;
  1062. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1063. struct trie_use_stats __percpu *stats = t->stats;
  1064. #endif
  1065. const t_key key = ntohl(flp->daddr);
  1066. struct key_vector *n, *pn;
  1067. struct fib_alias *fa;
  1068. unsigned long index;
  1069. t_key cindex;
  1070. pn = t->kv;
  1071. cindex = 0;
  1072. n = get_child_rcu(pn, cindex);
  1073. if (!n)
  1074. return -EAGAIN;
  1075. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1076. this_cpu_inc(stats->gets);
  1077. #endif
  1078. /* Step 1: Travel to the longest prefix match in the trie */
  1079. for (;;) {
  1080. index = get_cindex(key, n);
  1081. /* This bit of code is a bit tricky but it combines multiple
  1082. * checks into a single check. The prefix consists of the
  1083. * prefix plus zeros for the "bits" in the prefix. The index
  1084. * is the difference between the key and this value. From
  1085. * this we can actually derive several pieces of data.
  1086. * if (index >= (1ul << bits))
  1087. * we have a mismatch in skip bits and failed
  1088. * else
  1089. * we know the value is cindex
  1090. *
  1091. * This check is safe even if bits == KEYLENGTH due to the
  1092. * fact that we can only allocate a node with 32 bits if a
  1093. * long is greater than 32 bits.
  1094. */
  1095. if (index >= (1ul << n->bits))
  1096. break;
  1097. /* we have found a leaf. Prefixes have already been compared */
  1098. if (IS_LEAF(n))
  1099. goto found;
  1100. /* only record pn and cindex if we are going to be chopping
  1101. * bits later. Otherwise we are just wasting cycles.
  1102. */
  1103. if (n->slen > n->pos) {
  1104. pn = n;
  1105. cindex = index;
  1106. }
  1107. n = get_child_rcu(n, index);
  1108. if (unlikely(!n))
  1109. goto backtrace;
  1110. }
  1111. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1112. for (;;) {
  1113. /* record the pointer where our next node pointer is stored */
  1114. struct key_vector __rcu **cptr = n->tnode;
  1115. /* This test verifies that none of the bits that differ
  1116. * between the key and the prefix exist in the region of
  1117. * the lsb and higher in the prefix.
  1118. */
  1119. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1120. goto backtrace;
  1121. /* exit out and process leaf */
  1122. if (unlikely(IS_LEAF(n)))
  1123. break;
  1124. /* Don't bother recording parent info. Since we are in
  1125. * prefix match mode we will have to come back to wherever
  1126. * we started this traversal anyway
  1127. */
  1128. while ((n = rcu_dereference(*cptr)) == NULL) {
  1129. backtrace:
  1130. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1131. if (!n)
  1132. this_cpu_inc(stats->null_node_hit);
  1133. #endif
  1134. /* If we are at cindex 0 there are no more bits for
  1135. * us to strip at this level so we must ascend back
  1136. * up one level to see if there are any more bits to
  1137. * be stripped there.
  1138. */
  1139. while (!cindex) {
  1140. t_key pkey = pn->key;
  1141. /* If we don't have a parent then there is
  1142. * nothing for us to do as we do not have any
  1143. * further nodes to parse.
  1144. */
  1145. if (IS_TRIE(pn))
  1146. return -EAGAIN;
  1147. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1148. this_cpu_inc(stats->backtrack);
  1149. #endif
  1150. /* Get Child's index */
  1151. pn = node_parent_rcu(pn);
  1152. cindex = get_index(pkey, pn);
  1153. }
  1154. /* strip the least significant bit from the cindex */
  1155. cindex &= cindex - 1;
  1156. /* grab pointer for next child node */
  1157. cptr = &pn->tnode[cindex];
  1158. }
  1159. }
  1160. found:
  1161. /* this line carries forward the xor from earlier in the function */
  1162. index = key ^ n->key;
  1163. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1164. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1165. struct fib_info *fi = fa->fa_info;
  1166. int nhsel, err;
  1167. if ((index >= (1ul << fa->fa_slen)) &&
  1168. ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
  1169. continue;
  1170. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1171. continue;
  1172. if (fi->fib_dead)
  1173. continue;
  1174. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1175. continue;
  1176. fib_alias_accessed(fa);
  1177. err = fib_props[fa->fa_type].error;
  1178. if (unlikely(err < 0)) {
  1179. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1180. this_cpu_inc(stats->semantic_match_passed);
  1181. #endif
  1182. return err;
  1183. }
  1184. if (fi->fib_flags & RTNH_F_DEAD)
  1185. continue;
  1186. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1187. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1188. if (nh->nh_flags & RTNH_F_DEAD)
  1189. continue;
  1190. if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
  1191. continue;
  1192. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1193. atomic_inc(&fi->fib_clntref);
  1194. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1195. res->nh_sel = nhsel;
  1196. res->type = fa->fa_type;
  1197. res->scope = fi->fib_scope;
  1198. res->fi = fi;
  1199. res->table = tb;
  1200. res->fa_head = &n->leaf;
  1201. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1202. this_cpu_inc(stats->semantic_match_passed);
  1203. #endif
  1204. return err;
  1205. }
  1206. }
  1207. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1208. this_cpu_inc(stats->semantic_match_miss);
  1209. #endif
  1210. goto backtrace;
  1211. }
  1212. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1213. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1214. struct key_vector *l, struct fib_alias *old)
  1215. {
  1216. /* record the location of the previous list_info entry */
  1217. struct hlist_node **pprev = old->fa_list.pprev;
  1218. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1219. /* remove the fib_alias from the list */
  1220. hlist_del_rcu(&old->fa_list);
  1221. /* if we emptied the list this leaf will be freed and we can sort
  1222. * out parent suffix lengths as a part of trie_rebalance
  1223. */
  1224. if (hlist_empty(&l->leaf)) {
  1225. put_child_root(tp, l->key, NULL);
  1226. node_free(l);
  1227. trie_rebalance(t, tp);
  1228. return;
  1229. }
  1230. /* only access fa if it is pointing at the last valid hlist_node */
  1231. if (*pprev)
  1232. return;
  1233. /* update the trie with the latest suffix length */
  1234. l->slen = fa->fa_slen;
  1235. leaf_pull_suffix(tp, l);
  1236. }
  1237. /* Caller must hold RTNL. */
  1238. int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
  1239. {
  1240. struct trie *t = (struct trie *) tb->tb_data;
  1241. struct fib_alias *fa, *fa_to_delete;
  1242. struct key_vector *l, *tp;
  1243. u8 plen = cfg->fc_dst_len;
  1244. u8 slen = KEYLENGTH - plen;
  1245. u8 tos = cfg->fc_tos;
  1246. u32 key;
  1247. if (plen > KEYLENGTH)
  1248. return -EINVAL;
  1249. key = ntohl(cfg->fc_dst);
  1250. if ((plen < KEYLENGTH) && (key << plen))
  1251. return -EINVAL;
  1252. l = fib_find_node(t, &tp, key);
  1253. if (!l)
  1254. return -ESRCH;
  1255. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1256. if (!fa)
  1257. return -ESRCH;
  1258. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1259. fa_to_delete = NULL;
  1260. hlist_for_each_entry_from(fa, fa_list) {
  1261. struct fib_info *fi = fa->fa_info;
  1262. if ((fa->fa_slen != slen) ||
  1263. (fa->tb_id != tb->tb_id) ||
  1264. (fa->fa_tos != tos))
  1265. break;
  1266. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1267. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1268. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1269. (!cfg->fc_prefsrc ||
  1270. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1271. (!cfg->fc_protocol ||
  1272. fi->fib_protocol == cfg->fc_protocol) &&
  1273. fib_nh_match(cfg, fi) == 0) {
  1274. fa_to_delete = fa;
  1275. break;
  1276. }
  1277. }
  1278. if (!fa_to_delete)
  1279. return -ESRCH;
  1280. netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
  1281. cfg->fc_type, tb->tb_id);
  1282. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1283. &cfg->fc_nlinfo, 0);
  1284. if (!plen)
  1285. tb->tb_num_default--;
  1286. fib_remove_alias(t, tp, l, fa_to_delete);
  1287. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1288. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1289. fib_release_info(fa_to_delete->fa_info);
  1290. alias_free_mem_rcu(fa_to_delete);
  1291. return 0;
  1292. }
  1293. /* Scan for the next leaf starting at the provided key value */
  1294. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1295. {
  1296. struct key_vector *pn, *n = *tn;
  1297. unsigned long cindex;
  1298. /* this loop is meant to try and find the key in the trie */
  1299. do {
  1300. /* record parent and next child index */
  1301. pn = n;
  1302. cindex = key ? get_index(key, pn) : 0;
  1303. if (cindex >> pn->bits)
  1304. break;
  1305. /* descend into the next child */
  1306. n = get_child_rcu(pn, cindex++);
  1307. if (!n)
  1308. break;
  1309. /* guarantee forward progress on the keys */
  1310. if (IS_LEAF(n) && (n->key >= key))
  1311. goto found;
  1312. } while (IS_TNODE(n));
  1313. /* this loop will search for the next leaf with a greater key */
  1314. while (!IS_TRIE(pn)) {
  1315. /* if we exhausted the parent node we will need to climb */
  1316. if (cindex >= (1ul << pn->bits)) {
  1317. t_key pkey = pn->key;
  1318. pn = node_parent_rcu(pn);
  1319. cindex = get_index(pkey, pn) + 1;
  1320. continue;
  1321. }
  1322. /* grab the next available node */
  1323. n = get_child_rcu(pn, cindex++);
  1324. if (!n)
  1325. continue;
  1326. /* no need to compare keys since we bumped the index */
  1327. if (IS_LEAF(n))
  1328. goto found;
  1329. /* Rescan start scanning in new node */
  1330. pn = n;
  1331. cindex = 0;
  1332. }
  1333. *tn = pn;
  1334. return NULL; /* Root of trie */
  1335. found:
  1336. /* if we are at the limit for keys just return NULL for the tnode */
  1337. *tn = pn;
  1338. return n;
  1339. }
  1340. static void fib_trie_free(struct fib_table *tb)
  1341. {
  1342. struct trie *t = (struct trie *)tb->tb_data;
  1343. struct key_vector *pn = t->kv;
  1344. unsigned long cindex = 1;
  1345. struct hlist_node *tmp;
  1346. struct fib_alias *fa;
  1347. /* walk trie in reverse order and free everything */
  1348. for (;;) {
  1349. struct key_vector *n;
  1350. if (!(cindex--)) {
  1351. t_key pkey = pn->key;
  1352. if (IS_TRIE(pn))
  1353. break;
  1354. n = pn;
  1355. pn = node_parent(pn);
  1356. /* drop emptied tnode */
  1357. put_child_root(pn, n->key, NULL);
  1358. node_free(n);
  1359. cindex = get_index(pkey, pn);
  1360. continue;
  1361. }
  1362. /* grab the next available node */
  1363. n = get_child(pn, cindex);
  1364. if (!n)
  1365. continue;
  1366. if (IS_TNODE(n)) {
  1367. /* record pn and cindex for leaf walking */
  1368. pn = n;
  1369. cindex = 1ul << n->bits;
  1370. continue;
  1371. }
  1372. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1373. hlist_del_rcu(&fa->fa_list);
  1374. alias_free_mem_rcu(fa);
  1375. }
  1376. put_child_root(pn, n->key, NULL);
  1377. node_free(n);
  1378. }
  1379. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1380. free_percpu(t->stats);
  1381. #endif
  1382. kfree(tb);
  1383. }
  1384. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1385. {
  1386. struct trie *ot = (struct trie *)oldtb->tb_data;
  1387. struct key_vector *l, *tp = ot->kv;
  1388. struct fib_table *local_tb;
  1389. struct fib_alias *fa;
  1390. struct trie *lt;
  1391. t_key key = 0;
  1392. if (oldtb->tb_data == oldtb->__data)
  1393. return oldtb;
  1394. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1395. if (!local_tb)
  1396. return NULL;
  1397. lt = (struct trie *)local_tb->tb_data;
  1398. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1399. struct key_vector *local_l = NULL, *local_tp;
  1400. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1401. struct fib_alias *new_fa;
  1402. if (local_tb->tb_id != fa->tb_id)
  1403. continue;
  1404. /* clone fa for new local table */
  1405. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1406. if (!new_fa)
  1407. goto out;
  1408. memcpy(new_fa, fa, sizeof(*fa));
  1409. /* insert clone into table */
  1410. if (!local_l)
  1411. local_l = fib_find_node(lt, &local_tp, l->key);
  1412. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1413. NULL, l->key))
  1414. goto out;
  1415. }
  1416. /* stop loop if key wrapped back to 0 */
  1417. key = l->key + 1;
  1418. if (key < l->key)
  1419. break;
  1420. }
  1421. return local_tb;
  1422. out:
  1423. fib_trie_free(local_tb);
  1424. return NULL;
  1425. }
  1426. /* Caller must hold RTNL */
  1427. void fib_table_flush_external(struct fib_table *tb)
  1428. {
  1429. struct trie *t = (struct trie *)tb->tb_data;
  1430. struct key_vector *pn = t->kv;
  1431. unsigned long cindex = 1;
  1432. struct hlist_node *tmp;
  1433. struct fib_alias *fa;
  1434. /* walk trie in reverse order */
  1435. for (;;) {
  1436. unsigned char slen = 0;
  1437. struct key_vector *n;
  1438. if (!(cindex--)) {
  1439. t_key pkey = pn->key;
  1440. /* cannot resize the trie vector */
  1441. if (IS_TRIE(pn))
  1442. break;
  1443. /* resize completed node */
  1444. pn = resize(t, pn);
  1445. cindex = get_index(pkey, pn);
  1446. continue;
  1447. }
  1448. /* grab the next available node */
  1449. n = get_child(pn, cindex);
  1450. if (!n)
  1451. continue;
  1452. if (IS_TNODE(n)) {
  1453. /* record pn and cindex for leaf walking */
  1454. pn = n;
  1455. cindex = 1ul << n->bits;
  1456. continue;
  1457. }
  1458. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1459. struct fib_info *fi = fa->fa_info;
  1460. /* if alias was cloned to local then we just
  1461. * need to remove the local copy from main
  1462. */
  1463. if (tb->tb_id != fa->tb_id) {
  1464. hlist_del_rcu(&fa->fa_list);
  1465. alias_free_mem_rcu(fa);
  1466. continue;
  1467. }
  1468. /* record local slen */
  1469. slen = fa->fa_slen;
  1470. if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
  1471. continue;
  1472. netdev_switch_fib_ipv4_del(n->key,
  1473. KEYLENGTH - fa->fa_slen,
  1474. fi, fa->fa_tos,
  1475. fa->fa_type, tb->tb_id);
  1476. }
  1477. /* update leaf slen */
  1478. n->slen = slen;
  1479. if (hlist_empty(&n->leaf)) {
  1480. put_child_root(pn, n->key, NULL);
  1481. node_free(n);
  1482. } else {
  1483. leaf_pull_suffix(pn, n);
  1484. }
  1485. }
  1486. }
  1487. /* Caller must hold RTNL. */
  1488. int fib_table_flush(struct fib_table *tb)
  1489. {
  1490. struct trie *t = (struct trie *)tb->tb_data;
  1491. struct key_vector *pn = t->kv;
  1492. unsigned long cindex = 1;
  1493. struct hlist_node *tmp;
  1494. struct fib_alias *fa;
  1495. int found = 0;
  1496. /* walk trie in reverse order */
  1497. for (;;) {
  1498. unsigned char slen = 0;
  1499. struct key_vector *n;
  1500. if (!(cindex--)) {
  1501. t_key pkey = pn->key;
  1502. /* cannot resize the trie vector */
  1503. if (IS_TRIE(pn))
  1504. break;
  1505. /* resize completed node */
  1506. pn = resize(t, pn);
  1507. cindex = get_index(pkey, pn);
  1508. continue;
  1509. }
  1510. /* grab the next available node */
  1511. n = get_child(pn, cindex);
  1512. if (!n)
  1513. continue;
  1514. if (IS_TNODE(n)) {
  1515. /* record pn and cindex for leaf walking */
  1516. pn = n;
  1517. cindex = 1ul << n->bits;
  1518. continue;
  1519. }
  1520. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1521. struct fib_info *fi = fa->fa_info;
  1522. if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
  1523. slen = fa->fa_slen;
  1524. continue;
  1525. }
  1526. netdev_switch_fib_ipv4_del(n->key,
  1527. KEYLENGTH - fa->fa_slen,
  1528. fi, fa->fa_tos,
  1529. fa->fa_type, tb->tb_id);
  1530. hlist_del_rcu(&fa->fa_list);
  1531. fib_release_info(fa->fa_info);
  1532. alias_free_mem_rcu(fa);
  1533. found++;
  1534. }
  1535. /* update leaf slen */
  1536. n->slen = slen;
  1537. if (hlist_empty(&n->leaf)) {
  1538. put_child_root(pn, n->key, NULL);
  1539. node_free(n);
  1540. } else {
  1541. leaf_pull_suffix(pn, n);
  1542. }
  1543. }
  1544. pr_debug("trie_flush found=%d\n", found);
  1545. return found;
  1546. }
  1547. static void __trie_free_rcu(struct rcu_head *head)
  1548. {
  1549. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1550. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1551. struct trie *t = (struct trie *)tb->tb_data;
  1552. if (tb->tb_data == tb->__data)
  1553. free_percpu(t->stats);
  1554. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1555. kfree(tb);
  1556. }
  1557. void fib_free_table(struct fib_table *tb)
  1558. {
  1559. call_rcu(&tb->rcu, __trie_free_rcu);
  1560. }
  1561. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1562. struct sk_buff *skb, struct netlink_callback *cb)
  1563. {
  1564. __be32 xkey = htonl(l->key);
  1565. struct fib_alias *fa;
  1566. int i, s_i;
  1567. s_i = cb->args[4];
  1568. i = 0;
  1569. /* rcu_read_lock is hold by caller */
  1570. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1571. if (i < s_i) {
  1572. i++;
  1573. continue;
  1574. }
  1575. if (tb->tb_id != fa->tb_id) {
  1576. i++;
  1577. continue;
  1578. }
  1579. if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1580. cb->nlh->nlmsg_seq,
  1581. RTM_NEWROUTE,
  1582. tb->tb_id,
  1583. fa->fa_type,
  1584. xkey,
  1585. KEYLENGTH - fa->fa_slen,
  1586. fa->fa_tos,
  1587. fa->fa_info, NLM_F_MULTI) < 0) {
  1588. cb->args[4] = i;
  1589. return -1;
  1590. }
  1591. i++;
  1592. }
  1593. cb->args[4] = i;
  1594. return skb->len;
  1595. }
  1596. /* rcu_read_lock needs to be hold by caller from readside */
  1597. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1598. struct netlink_callback *cb)
  1599. {
  1600. struct trie *t = (struct trie *)tb->tb_data;
  1601. struct key_vector *l, *tp = t->kv;
  1602. /* Dump starting at last key.
  1603. * Note: 0.0.0.0/0 (ie default) is first key.
  1604. */
  1605. int count = cb->args[2];
  1606. t_key key = cb->args[3];
  1607. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1608. if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
  1609. cb->args[3] = key;
  1610. cb->args[2] = count;
  1611. return -1;
  1612. }
  1613. ++count;
  1614. key = l->key + 1;
  1615. memset(&cb->args[4], 0,
  1616. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1617. /* stop loop if key wrapped back to 0 */
  1618. if (key < l->key)
  1619. break;
  1620. }
  1621. cb->args[3] = key;
  1622. cb->args[2] = count;
  1623. return skb->len;
  1624. }
  1625. void __init fib_trie_init(void)
  1626. {
  1627. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1628. sizeof(struct fib_alias),
  1629. 0, SLAB_PANIC, NULL);
  1630. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1631. LEAF_SIZE,
  1632. 0, SLAB_PANIC, NULL);
  1633. }
  1634. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1635. {
  1636. struct fib_table *tb;
  1637. struct trie *t;
  1638. size_t sz = sizeof(*tb);
  1639. if (!alias)
  1640. sz += sizeof(struct trie);
  1641. tb = kzalloc(sz, GFP_KERNEL);
  1642. if (!tb)
  1643. return NULL;
  1644. tb->tb_id = id;
  1645. tb->tb_default = -1;
  1646. tb->tb_num_default = 0;
  1647. tb->tb_data = (alias ? alias->__data : tb->__data);
  1648. if (alias)
  1649. return tb;
  1650. t = (struct trie *) tb->tb_data;
  1651. t->kv[0].pos = KEYLENGTH;
  1652. t->kv[0].slen = KEYLENGTH;
  1653. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1654. t->stats = alloc_percpu(struct trie_use_stats);
  1655. if (!t->stats) {
  1656. kfree(tb);
  1657. tb = NULL;
  1658. }
  1659. #endif
  1660. return tb;
  1661. }
  1662. #ifdef CONFIG_PROC_FS
  1663. /* Depth first Trie walk iterator */
  1664. struct fib_trie_iter {
  1665. struct seq_net_private p;
  1666. struct fib_table *tb;
  1667. struct key_vector *tnode;
  1668. unsigned int index;
  1669. unsigned int depth;
  1670. };
  1671. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1672. {
  1673. unsigned long cindex = iter->index;
  1674. struct key_vector *pn = iter->tnode;
  1675. t_key pkey;
  1676. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1677. iter->tnode, iter->index, iter->depth);
  1678. while (!IS_TRIE(pn)) {
  1679. while (cindex < child_length(pn)) {
  1680. struct key_vector *n = get_child_rcu(pn, cindex++);
  1681. if (!n)
  1682. continue;
  1683. if (IS_LEAF(n)) {
  1684. iter->tnode = pn;
  1685. iter->index = cindex;
  1686. } else {
  1687. /* push down one level */
  1688. iter->tnode = n;
  1689. iter->index = 0;
  1690. ++iter->depth;
  1691. }
  1692. return n;
  1693. }
  1694. /* Current node exhausted, pop back up */
  1695. pkey = pn->key;
  1696. pn = node_parent_rcu(pn);
  1697. cindex = get_index(pkey, pn) + 1;
  1698. --iter->depth;
  1699. }
  1700. /* record root node so further searches know we are done */
  1701. iter->tnode = pn;
  1702. iter->index = 0;
  1703. return NULL;
  1704. }
  1705. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1706. struct trie *t)
  1707. {
  1708. struct key_vector *n, *pn = t->kv;
  1709. if (!t)
  1710. return NULL;
  1711. n = rcu_dereference(pn->tnode[0]);
  1712. if (!n)
  1713. return NULL;
  1714. if (IS_TNODE(n)) {
  1715. iter->tnode = n;
  1716. iter->index = 0;
  1717. iter->depth = 1;
  1718. } else {
  1719. iter->tnode = pn;
  1720. iter->index = 0;
  1721. iter->depth = 0;
  1722. }
  1723. return n;
  1724. }
  1725. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1726. {
  1727. struct key_vector *n;
  1728. struct fib_trie_iter iter;
  1729. memset(s, 0, sizeof(*s));
  1730. rcu_read_lock();
  1731. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1732. if (IS_LEAF(n)) {
  1733. struct fib_alias *fa;
  1734. s->leaves++;
  1735. s->totdepth += iter.depth;
  1736. if (iter.depth > s->maxdepth)
  1737. s->maxdepth = iter.depth;
  1738. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1739. ++s->prefixes;
  1740. } else {
  1741. s->tnodes++;
  1742. if (n->bits < MAX_STAT_DEPTH)
  1743. s->nodesizes[n->bits]++;
  1744. s->nullpointers += tn_info(n)->empty_children;
  1745. }
  1746. }
  1747. rcu_read_unlock();
  1748. }
  1749. /*
  1750. * This outputs /proc/net/fib_triestats
  1751. */
  1752. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1753. {
  1754. unsigned int i, max, pointers, bytes, avdepth;
  1755. if (stat->leaves)
  1756. avdepth = stat->totdepth*100 / stat->leaves;
  1757. else
  1758. avdepth = 0;
  1759. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1760. avdepth / 100, avdepth % 100);
  1761. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1762. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1763. bytes = LEAF_SIZE * stat->leaves;
  1764. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1765. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1766. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1767. bytes += TNODE_SIZE(0) * stat->tnodes;
  1768. max = MAX_STAT_DEPTH;
  1769. while (max > 0 && stat->nodesizes[max-1] == 0)
  1770. max--;
  1771. pointers = 0;
  1772. for (i = 1; i < max; i++)
  1773. if (stat->nodesizes[i] != 0) {
  1774. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1775. pointers += (1<<i) * stat->nodesizes[i];
  1776. }
  1777. seq_putc(seq, '\n');
  1778. seq_printf(seq, "\tPointers: %u\n", pointers);
  1779. bytes += sizeof(struct key_vector *) * pointers;
  1780. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1781. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1782. }
  1783. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1784. static void trie_show_usage(struct seq_file *seq,
  1785. const struct trie_use_stats __percpu *stats)
  1786. {
  1787. struct trie_use_stats s = { 0 };
  1788. int cpu;
  1789. /* loop through all of the CPUs and gather up the stats */
  1790. for_each_possible_cpu(cpu) {
  1791. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1792. s.gets += pcpu->gets;
  1793. s.backtrack += pcpu->backtrack;
  1794. s.semantic_match_passed += pcpu->semantic_match_passed;
  1795. s.semantic_match_miss += pcpu->semantic_match_miss;
  1796. s.null_node_hit += pcpu->null_node_hit;
  1797. s.resize_node_skipped += pcpu->resize_node_skipped;
  1798. }
  1799. seq_printf(seq, "\nCounters:\n---------\n");
  1800. seq_printf(seq, "gets = %u\n", s.gets);
  1801. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1802. seq_printf(seq, "semantic match passed = %u\n",
  1803. s.semantic_match_passed);
  1804. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1805. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1806. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1807. }
  1808. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1809. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1810. {
  1811. if (tb->tb_id == RT_TABLE_LOCAL)
  1812. seq_puts(seq, "Local:\n");
  1813. else if (tb->tb_id == RT_TABLE_MAIN)
  1814. seq_puts(seq, "Main:\n");
  1815. else
  1816. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1817. }
  1818. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1819. {
  1820. struct net *net = (struct net *)seq->private;
  1821. unsigned int h;
  1822. seq_printf(seq,
  1823. "Basic info: size of leaf:"
  1824. " %Zd bytes, size of tnode: %Zd bytes.\n",
  1825. LEAF_SIZE, TNODE_SIZE(0));
  1826. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1827. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1828. struct fib_table *tb;
  1829. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1830. struct trie *t = (struct trie *) tb->tb_data;
  1831. struct trie_stat stat;
  1832. if (!t)
  1833. continue;
  1834. fib_table_print(seq, tb);
  1835. trie_collect_stats(t, &stat);
  1836. trie_show_stats(seq, &stat);
  1837. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1838. trie_show_usage(seq, t->stats);
  1839. #endif
  1840. }
  1841. }
  1842. return 0;
  1843. }
  1844. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  1845. {
  1846. return single_open_net(inode, file, fib_triestat_seq_show);
  1847. }
  1848. static const struct file_operations fib_triestat_fops = {
  1849. .owner = THIS_MODULE,
  1850. .open = fib_triestat_seq_open,
  1851. .read = seq_read,
  1852. .llseek = seq_lseek,
  1853. .release = single_release_net,
  1854. };
  1855. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  1856. {
  1857. struct fib_trie_iter *iter = seq->private;
  1858. struct net *net = seq_file_net(seq);
  1859. loff_t idx = 0;
  1860. unsigned int h;
  1861. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1862. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1863. struct fib_table *tb;
  1864. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1865. struct key_vector *n;
  1866. for (n = fib_trie_get_first(iter,
  1867. (struct trie *) tb->tb_data);
  1868. n; n = fib_trie_get_next(iter))
  1869. if (pos == idx++) {
  1870. iter->tb = tb;
  1871. return n;
  1872. }
  1873. }
  1874. }
  1875. return NULL;
  1876. }
  1877. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  1878. __acquires(RCU)
  1879. {
  1880. rcu_read_lock();
  1881. return fib_trie_get_idx(seq, *pos);
  1882. }
  1883. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1884. {
  1885. struct fib_trie_iter *iter = seq->private;
  1886. struct net *net = seq_file_net(seq);
  1887. struct fib_table *tb = iter->tb;
  1888. struct hlist_node *tb_node;
  1889. unsigned int h;
  1890. struct key_vector *n;
  1891. ++*pos;
  1892. /* next node in same table */
  1893. n = fib_trie_get_next(iter);
  1894. if (n)
  1895. return n;
  1896. /* walk rest of this hash chain */
  1897. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  1898. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  1899. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  1900. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1901. if (n)
  1902. goto found;
  1903. }
  1904. /* new hash chain */
  1905. while (++h < FIB_TABLE_HASHSZ) {
  1906. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1907. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1908. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1909. if (n)
  1910. goto found;
  1911. }
  1912. }
  1913. return NULL;
  1914. found:
  1915. iter->tb = tb;
  1916. return n;
  1917. }
  1918. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  1919. __releases(RCU)
  1920. {
  1921. rcu_read_unlock();
  1922. }
  1923. static void seq_indent(struct seq_file *seq, int n)
  1924. {
  1925. while (n-- > 0)
  1926. seq_puts(seq, " ");
  1927. }
  1928. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  1929. {
  1930. switch (s) {
  1931. case RT_SCOPE_UNIVERSE: return "universe";
  1932. case RT_SCOPE_SITE: return "site";
  1933. case RT_SCOPE_LINK: return "link";
  1934. case RT_SCOPE_HOST: return "host";
  1935. case RT_SCOPE_NOWHERE: return "nowhere";
  1936. default:
  1937. snprintf(buf, len, "scope=%d", s);
  1938. return buf;
  1939. }
  1940. }
  1941. static const char *const rtn_type_names[__RTN_MAX] = {
  1942. [RTN_UNSPEC] = "UNSPEC",
  1943. [RTN_UNICAST] = "UNICAST",
  1944. [RTN_LOCAL] = "LOCAL",
  1945. [RTN_BROADCAST] = "BROADCAST",
  1946. [RTN_ANYCAST] = "ANYCAST",
  1947. [RTN_MULTICAST] = "MULTICAST",
  1948. [RTN_BLACKHOLE] = "BLACKHOLE",
  1949. [RTN_UNREACHABLE] = "UNREACHABLE",
  1950. [RTN_PROHIBIT] = "PROHIBIT",
  1951. [RTN_THROW] = "THROW",
  1952. [RTN_NAT] = "NAT",
  1953. [RTN_XRESOLVE] = "XRESOLVE",
  1954. };
  1955. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  1956. {
  1957. if (t < __RTN_MAX && rtn_type_names[t])
  1958. return rtn_type_names[t];
  1959. snprintf(buf, len, "type %u", t);
  1960. return buf;
  1961. }
  1962. /* Pretty print the trie */
  1963. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  1964. {
  1965. const struct fib_trie_iter *iter = seq->private;
  1966. struct key_vector *n = v;
  1967. if (IS_TRIE(node_parent_rcu(n)))
  1968. fib_table_print(seq, iter->tb);
  1969. if (IS_TNODE(n)) {
  1970. __be32 prf = htonl(n->key);
  1971. seq_indent(seq, iter->depth-1);
  1972. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  1973. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  1974. tn_info(n)->full_children,
  1975. tn_info(n)->empty_children);
  1976. } else {
  1977. __be32 val = htonl(n->key);
  1978. struct fib_alias *fa;
  1979. seq_indent(seq, iter->depth);
  1980. seq_printf(seq, " |-- %pI4\n", &val);
  1981. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1982. char buf1[32], buf2[32];
  1983. seq_indent(seq, iter->depth + 1);
  1984. seq_printf(seq, " /%zu %s %s",
  1985. KEYLENGTH - fa->fa_slen,
  1986. rtn_scope(buf1, sizeof(buf1),
  1987. fa->fa_info->fib_scope),
  1988. rtn_type(buf2, sizeof(buf2),
  1989. fa->fa_type));
  1990. if (fa->fa_tos)
  1991. seq_printf(seq, " tos=%d", fa->fa_tos);
  1992. seq_putc(seq, '\n');
  1993. }
  1994. }
  1995. return 0;
  1996. }
  1997. static const struct seq_operations fib_trie_seq_ops = {
  1998. .start = fib_trie_seq_start,
  1999. .next = fib_trie_seq_next,
  2000. .stop = fib_trie_seq_stop,
  2001. .show = fib_trie_seq_show,
  2002. };
  2003. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  2004. {
  2005. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2006. sizeof(struct fib_trie_iter));
  2007. }
  2008. static const struct file_operations fib_trie_fops = {
  2009. .owner = THIS_MODULE,
  2010. .open = fib_trie_seq_open,
  2011. .read = seq_read,
  2012. .llseek = seq_lseek,
  2013. .release = seq_release_net,
  2014. };
  2015. struct fib_route_iter {
  2016. struct seq_net_private p;
  2017. struct fib_table *main_tb;
  2018. struct key_vector *tnode;
  2019. loff_t pos;
  2020. t_key key;
  2021. };
  2022. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2023. loff_t pos)
  2024. {
  2025. struct fib_table *tb = iter->main_tb;
  2026. struct key_vector *l, **tp = &iter->tnode;
  2027. struct trie *t;
  2028. t_key key;
  2029. /* use cache location of next-to-find key */
  2030. if (iter->pos > 0 && pos >= iter->pos) {
  2031. pos -= iter->pos;
  2032. key = iter->key;
  2033. } else {
  2034. t = (struct trie *)tb->tb_data;
  2035. iter->tnode = t->kv;
  2036. iter->pos = 0;
  2037. key = 0;
  2038. }
  2039. while ((l = leaf_walk_rcu(tp, key)) != NULL) {
  2040. key = l->key + 1;
  2041. iter->pos++;
  2042. if (pos-- <= 0)
  2043. break;
  2044. l = NULL;
  2045. /* handle unlikely case of a key wrap */
  2046. if (!key)
  2047. break;
  2048. }
  2049. if (l)
  2050. iter->key = key; /* remember it */
  2051. else
  2052. iter->pos = 0; /* forget it */
  2053. return l;
  2054. }
  2055. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2056. __acquires(RCU)
  2057. {
  2058. struct fib_route_iter *iter = seq->private;
  2059. struct fib_table *tb;
  2060. struct trie *t;
  2061. rcu_read_lock();
  2062. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2063. if (!tb)
  2064. return NULL;
  2065. iter->main_tb = tb;
  2066. if (*pos != 0)
  2067. return fib_route_get_idx(iter, *pos);
  2068. t = (struct trie *)tb->tb_data;
  2069. iter->tnode = t->kv;
  2070. iter->pos = 0;
  2071. iter->key = 0;
  2072. return SEQ_START_TOKEN;
  2073. }
  2074. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2075. {
  2076. struct fib_route_iter *iter = seq->private;
  2077. struct key_vector *l = NULL;
  2078. t_key key = iter->key;
  2079. ++*pos;
  2080. /* only allow key of 0 for start of sequence */
  2081. if ((v == SEQ_START_TOKEN) || key)
  2082. l = leaf_walk_rcu(&iter->tnode, key);
  2083. if (l) {
  2084. iter->key = l->key + 1;
  2085. iter->pos++;
  2086. } else {
  2087. iter->pos = 0;
  2088. }
  2089. return l;
  2090. }
  2091. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2092. __releases(RCU)
  2093. {
  2094. rcu_read_unlock();
  2095. }
  2096. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2097. {
  2098. unsigned int flags = 0;
  2099. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2100. flags = RTF_REJECT;
  2101. if (fi && fi->fib_nh->nh_gw)
  2102. flags |= RTF_GATEWAY;
  2103. if (mask == htonl(0xFFFFFFFF))
  2104. flags |= RTF_HOST;
  2105. flags |= RTF_UP;
  2106. return flags;
  2107. }
  2108. /*
  2109. * This outputs /proc/net/route.
  2110. * The format of the file is not supposed to be changed
  2111. * and needs to be same as fib_hash output to avoid breaking
  2112. * legacy utilities
  2113. */
  2114. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2115. {
  2116. struct fib_route_iter *iter = seq->private;
  2117. struct fib_table *tb = iter->main_tb;
  2118. struct fib_alias *fa;
  2119. struct key_vector *l = v;
  2120. __be32 prefix;
  2121. if (v == SEQ_START_TOKEN) {
  2122. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2123. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2124. "\tWindow\tIRTT");
  2125. return 0;
  2126. }
  2127. prefix = htonl(l->key);
  2128. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2129. const struct fib_info *fi = fa->fa_info;
  2130. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2131. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2132. if ((fa->fa_type == RTN_BROADCAST) ||
  2133. (fa->fa_type == RTN_MULTICAST))
  2134. continue;
  2135. if (fa->tb_id != tb->tb_id)
  2136. continue;
  2137. seq_setwidth(seq, 127);
  2138. if (fi)
  2139. seq_printf(seq,
  2140. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2141. "%d\t%08X\t%d\t%u\t%u",
  2142. fi->fib_dev ? fi->fib_dev->name : "*",
  2143. prefix,
  2144. fi->fib_nh->nh_gw, flags, 0, 0,
  2145. fi->fib_priority,
  2146. mask,
  2147. (fi->fib_advmss ?
  2148. fi->fib_advmss + 40 : 0),
  2149. fi->fib_window,
  2150. fi->fib_rtt >> 3);
  2151. else
  2152. seq_printf(seq,
  2153. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2154. "%d\t%08X\t%d\t%u\t%u",
  2155. prefix, 0, flags, 0, 0, 0,
  2156. mask, 0, 0, 0);
  2157. seq_pad(seq, '\n');
  2158. }
  2159. return 0;
  2160. }
  2161. static const struct seq_operations fib_route_seq_ops = {
  2162. .start = fib_route_seq_start,
  2163. .next = fib_route_seq_next,
  2164. .stop = fib_route_seq_stop,
  2165. .show = fib_route_seq_show,
  2166. };
  2167. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2168. {
  2169. return seq_open_net(inode, file, &fib_route_seq_ops,
  2170. sizeof(struct fib_route_iter));
  2171. }
  2172. static const struct file_operations fib_route_fops = {
  2173. .owner = THIS_MODULE,
  2174. .open = fib_route_seq_open,
  2175. .read = seq_read,
  2176. .llseek = seq_lseek,
  2177. .release = seq_release_net,
  2178. };
  2179. int __net_init fib_proc_init(struct net *net)
  2180. {
  2181. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2182. goto out1;
  2183. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2184. &fib_triestat_fops))
  2185. goto out2;
  2186. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2187. goto out3;
  2188. return 0;
  2189. out3:
  2190. remove_proc_entry("fib_triestat", net->proc_net);
  2191. out2:
  2192. remove_proc_entry("fib_trie", net->proc_net);
  2193. out1:
  2194. return -ENOMEM;
  2195. }
  2196. void __net_exit fib_proc_exit(struct net *net)
  2197. {
  2198. remove_proc_entry("fib_trie", net->proc_net);
  2199. remove_proc_entry("fib_triestat", net->proc_net);
  2200. remove_proc_entry("route", net->proc_net);
  2201. }
  2202. #endif /* CONFIG_PROC_FS */