page-writeback.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35. #include <linux/pagevec.h>
  36. #include <linux/timer.h>
  37. #include <linux/sched/rt.h>
  38. #include <linux/mm_inline.h>
  39. #include <trace/events/writeback.h>
  40. #include "internal.h"
  41. /*
  42. * Sleep at most 200ms at a time in balance_dirty_pages().
  43. */
  44. #define MAX_PAUSE max(HZ/5, 1)
  45. /*
  46. * Try to keep balance_dirty_pages() call intervals higher than this many pages
  47. * by raising pause time to max_pause when falls below it.
  48. */
  49. #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
  50. /*
  51. * Estimate write bandwidth at 200ms intervals.
  52. */
  53. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  54. #define RATELIMIT_CALC_SHIFT 10
  55. /*
  56. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  57. * will look to see if it needs to force writeback or throttling.
  58. */
  59. static long ratelimit_pages = 32;
  60. /* The following parameters are exported via /proc/sys/vm */
  61. /*
  62. * Start background writeback (via writeback threads) at this percentage
  63. */
  64. int dirty_background_ratio = 10;
  65. /*
  66. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  67. * dirty_background_ratio * the amount of dirtyable memory
  68. */
  69. unsigned long dirty_background_bytes;
  70. /*
  71. * free highmem will not be subtracted from the total free memory
  72. * for calculating free ratios if vm_highmem_is_dirtyable is true
  73. */
  74. int vm_highmem_is_dirtyable;
  75. /*
  76. * The generator of dirty data starts writeback at this percentage
  77. */
  78. int vm_dirty_ratio = 20;
  79. /*
  80. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  81. * vm_dirty_ratio * the amount of dirtyable memory
  82. */
  83. unsigned long vm_dirty_bytes;
  84. /*
  85. * The interval between `kupdate'-style writebacks
  86. */
  87. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  88. EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  89. /*
  90. * The longest time for which data is allowed to remain dirty
  91. */
  92. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  93. /*
  94. * Flag that makes the machine dump writes/reads and block dirtyings.
  95. */
  96. int block_dump;
  97. /*
  98. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  99. * a full sync is triggered after this time elapses without any disk activity.
  100. */
  101. int laptop_mode;
  102. EXPORT_SYMBOL(laptop_mode);
  103. /* End of sysctl-exported parameters */
  104. unsigned long global_dirty_limit;
  105. /*
  106. * Scale the writeback cache size proportional to the relative writeout speeds.
  107. *
  108. * We do this by keeping a floating proportion between BDIs, based on page
  109. * writeback completions [end_page_writeback()]. Those devices that write out
  110. * pages fastest will get the larger share, while the slower will get a smaller
  111. * share.
  112. *
  113. * We use page writeout completions because we are interested in getting rid of
  114. * dirty pages. Having them written out is the primary goal.
  115. *
  116. * We introduce a concept of time, a period over which we measure these events,
  117. * because demand can/will vary over time. The length of this period itself is
  118. * measured in page writeback completions.
  119. *
  120. */
  121. static struct fprop_global writeout_completions;
  122. static void writeout_period(unsigned long t);
  123. /* Timer for aging of writeout_completions */
  124. static struct timer_list writeout_period_timer =
  125. TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
  126. static unsigned long writeout_period_time = 0;
  127. /*
  128. * Length of period for aging writeout fractions of bdis. This is an
  129. * arbitrarily chosen number. The longer the period, the slower fractions will
  130. * reflect changes in current writeout rate.
  131. */
  132. #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
  133. /*
  134. * In a memory zone, there is a certain amount of pages we consider
  135. * available for the page cache, which is essentially the number of
  136. * free and reclaimable pages, minus some zone reserves to protect
  137. * lowmem and the ability to uphold the zone's watermarks without
  138. * requiring writeback.
  139. *
  140. * This number of dirtyable pages is the base value of which the
  141. * user-configurable dirty ratio is the effictive number of pages that
  142. * are allowed to be actually dirtied. Per individual zone, or
  143. * globally by using the sum of dirtyable pages over all zones.
  144. *
  145. * Because the user is allowed to specify the dirty limit globally as
  146. * absolute number of bytes, calculating the per-zone dirty limit can
  147. * require translating the configured limit into a percentage of
  148. * global dirtyable memory first.
  149. */
  150. /**
  151. * zone_dirtyable_memory - number of dirtyable pages in a zone
  152. * @zone: the zone
  153. *
  154. * Returns the zone's number of pages potentially available for dirty
  155. * page cache. This is the base value for the per-zone dirty limits.
  156. */
  157. static unsigned long zone_dirtyable_memory(struct zone *zone)
  158. {
  159. unsigned long nr_pages;
  160. nr_pages = zone_page_state(zone, NR_FREE_PAGES);
  161. nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
  162. nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
  163. nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
  164. return nr_pages;
  165. }
  166. static unsigned long highmem_dirtyable_memory(unsigned long total)
  167. {
  168. #ifdef CONFIG_HIGHMEM
  169. int node;
  170. unsigned long x = 0;
  171. for_each_node_state(node, N_HIGH_MEMORY) {
  172. struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  173. x += zone_dirtyable_memory(z);
  174. }
  175. /*
  176. * Unreclaimable memory (kernel memory or anonymous memory
  177. * without swap) can bring down the dirtyable pages below
  178. * the zone's dirty balance reserve and the above calculation
  179. * will underflow. However we still want to add in nodes
  180. * which are below threshold (negative values) to get a more
  181. * accurate calculation but make sure that the total never
  182. * underflows.
  183. */
  184. if ((long)x < 0)
  185. x = 0;
  186. /*
  187. * Make sure that the number of highmem pages is never larger
  188. * than the number of the total dirtyable memory. This can only
  189. * occur in very strange VM situations but we want to make sure
  190. * that this does not occur.
  191. */
  192. return min(x, total);
  193. #else
  194. return 0;
  195. #endif
  196. }
  197. /**
  198. * global_dirtyable_memory - number of globally dirtyable pages
  199. *
  200. * Returns the global number of pages potentially available for dirty
  201. * page cache. This is the base value for the global dirty limits.
  202. */
  203. static unsigned long global_dirtyable_memory(void)
  204. {
  205. unsigned long x;
  206. x = global_page_state(NR_FREE_PAGES);
  207. x -= min(x, dirty_balance_reserve);
  208. x += global_page_state(NR_INACTIVE_FILE);
  209. x += global_page_state(NR_ACTIVE_FILE);
  210. if (!vm_highmem_is_dirtyable)
  211. x -= highmem_dirtyable_memory(x);
  212. return x + 1; /* Ensure that we never return 0 */
  213. }
  214. /*
  215. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  216. *
  217. * Calculate the dirty thresholds based on sysctl parameters
  218. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  219. * - vm.dirty_ratio or vm.dirty_bytes
  220. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  221. * real-time tasks.
  222. */
  223. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  224. {
  225. const unsigned long available_memory = global_dirtyable_memory();
  226. unsigned long background;
  227. unsigned long dirty;
  228. struct task_struct *tsk;
  229. if (vm_dirty_bytes)
  230. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  231. else
  232. dirty = (vm_dirty_ratio * available_memory) / 100;
  233. if (dirty_background_bytes)
  234. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  235. else
  236. background = (dirty_background_ratio * available_memory) / 100;
  237. if (background >= dirty)
  238. background = dirty / 2;
  239. tsk = current;
  240. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  241. background += background / 4;
  242. dirty += dirty / 4;
  243. }
  244. *pbackground = background;
  245. *pdirty = dirty;
  246. trace_global_dirty_state(background, dirty);
  247. }
  248. /**
  249. * zone_dirty_limit - maximum number of dirty pages allowed in a zone
  250. * @zone: the zone
  251. *
  252. * Returns the maximum number of dirty pages allowed in a zone, based
  253. * on the zone's dirtyable memory.
  254. */
  255. static unsigned long zone_dirty_limit(struct zone *zone)
  256. {
  257. unsigned long zone_memory = zone_dirtyable_memory(zone);
  258. struct task_struct *tsk = current;
  259. unsigned long dirty;
  260. if (vm_dirty_bytes)
  261. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
  262. zone_memory / global_dirtyable_memory();
  263. else
  264. dirty = vm_dirty_ratio * zone_memory / 100;
  265. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
  266. dirty += dirty / 4;
  267. return dirty;
  268. }
  269. /**
  270. * zone_dirty_ok - tells whether a zone is within its dirty limits
  271. * @zone: the zone to check
  272. *
  273. * Returns %true when the dirty pages in @zone are within the zone's
  274. * dirty limit, %false if the limit is exceeded.
  275. */
  276. bool zone_dirty_ok(struct zone *zone)
  277. {
  278. unsigned long limit = zone_dirty_limit(zone);
  279. return zone_page_state(zone, NR_FILE_DIRTY) +
  280. zone_page_state(zone, NR_UNSTABLE_NFS) +
  281. zone_page_state(zone, NR_WRITEBACK) <= limit;
  282. }
  283. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  284. void __user *buffer, size_t *lenp,
  285. loff_t *ppos)
  286. {
  287. int ret;
  288. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  289. if (ret == 0 && write)
  290. dirty_background_bytes = 0;
  291. return ret;
  292. }
  293. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  294. void __user *buffer, size_t *lenp,
  295. loff_t *ppos)
  296. {
  297. int ret;
  298. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  299. if (ret == 0 && write)
  300. dirty_background_ratio = 0;
  301. return ret;
  302. }
  303. int dirty_ratio_handler(struct ctl_table *table, int write,
  304. void __user *buffer, size_t *lenp,
  305. loff_t *ppos)
  306. {
  307. int old_ratio = vm_dirty_ratio;
  308. int ret;
  309. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  310. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  311. writeback_set_ratelimit();
  312. vm_dirty_bytes = 0;
  313. }
  314. return ret;
  315. }
  316. int dirty_bytes_handler(struct ctl_table *table, int write,
  317. void __user *buffer, size_t *lenp,
  318. loff_t *ppos)
  319. {
  320. unsigned long old_bytes = vm_dirty_bytes;
  321. int ret;
  322. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  323. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  324. writeback_set_ratelimit();
  325. vm_dirty_ratio = 0;
  326. }
  327. return ret;
  328. }
  329. static unsigned long wp_next_time(unsigned long cur_time)
  330. {
  331. cur_time += VM_COMPLETIONS_PERIOD_LEN;
  332. /* 0 has a special meaning... */
  333. if (!cur_time)
  334. return 1;
  335. return cur_time;
  336. }
  337. /*
  338. * Increment the BDI's writeout completion count and the global writeout
  339. * completion count. Called from test_clear_page_writeback().
  340. */
  341. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  342. {
  343. __inc_bdi_stat(bdi, BDI_WRITTEN);
  344. __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
  345. bdi->max_prop_frac);
  346. /* First event after period switching was turned off? */
  347. if (!unlikely(writeout_period_time)) {
  348. /*
  349. * We can race with other __bdi_writeout_inc calls here but
  350. * it does not cause any harm since the resulting time when
  351. * timer will fire and what is in writeout_period_time will be
  352. * roughly the same.
  353. */
  354. writeout_period_time = wp_next_time(jiffies);
  355. mod_timer(&writeout_period_timer, writeout_period_time);
  356. }
  357. }
  358. void bdi_writeout_inc(struct backing_dev_info *bdi)
  359. {
  360. unsigned long flags;
  361. local_irq_save(flags);
  362. __bdi_writeout_inc(bdi);
  363. local_irq_restore(flags);
  364. }
  365. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  366. /*
  367. * Obtain an accurate fraction of the BDI's portion.
  368. */
  369. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  370. long *numerator, long *denominator)
  371. {
  372. fprop_fraction_percpu(&writeout_completions, &bdi->completions,
  373. numerator, denominator);
  374. }
  375. /*
  376. * On idle system, we can be called long after we scheduled because we use
  377. * deferred timers so count with missed periods.
  378. */
  379. static void writeout_period(unsigned long t)
  380. {
  381. int miss_periods = (jiffies - writeout_period_time) /
  382. VM_COMPLETIONS_PERIOD_LEN;
  383. if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
  384. writeout_period_time = wp_next_time(writeout_period_time +
  385. miss_periods * VM_COMPLETIONS_PERIOD_LEN);
  386. mod_timer(&writeout_period_timer, writeout_period_time);
  387. } else {
  388. /*
  389. * Aging has zeroed all fractions. Stop wasting CPU on period
  390. * updates.
  391. */
  392. writeout_period_time = 0;
  393. }
  394. }
  395. /*
  396. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  397. * registered backing devices, which, for obvious reasons, can not
  398. * exceed 100%.
  399. */
  400. static unsigned int bdi_min_ratio;
  401. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  402. {
  403. int ret = 0;
  404. spin_lock_bh(&bdi_lock);
  405. if (min_ratio > bdi->max_ratio) {
  406. ret = -EINVAL;
  407. } else {
  408. min_ratio -= bdi->min_ratio;
  409. if (bdi_min_ratio + min_ratio < 100) {
  410. bdi_min_ratio += min_ratio;
  411. bdi->min_ratio += min_ratio;
  412. } else {
  413. ret = -EINVAL;
  414. }
  415. }
  416. spin_unlock_bh(&bdi_lock);
  417. return ret;
  418. }
  419. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  420. {
  421. int ret = 0;
  422. if (max_ratio > 100)
  423. return -EINVAL;
  424. spin_lock_bh(&bdi_lock);
  425. if (bdi->min_ratio > max_ratio) {
  426. ret = -EINVAL;
  427. } else {
  428. bdi->max_ratio = max_ratio;
  429. bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
  430. }
  431. spin_unlock_bh(&bdi_lock);
  432. return ret;
  433. }
  434. EXPORT_SYMBOL(bdi_set_max_ratio);
  435. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  436. unsigned long bg_thresh)
  437. {
  438. return (thresh + bg_thresh) / 2;
  439. }
  440. static unsigned long hard_dirty_limit(unsigned long thresh)
  441. {
  442. return max(thresh, global_dirty_limit);
  443. }
  444. /**
  445. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  446. * @bdi: the backing_dev_info to query
  447. * @dirty: global dirty limit in pages
  448. *
  449. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  450. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  451. *
  452. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  453. * when sleeping max_pause per page is not enough to keep the dirty pages under
  454. * control. For example, when the device is completely stalled due to some error
  455. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  456. * In the other normal situations, it acts more gently by throttling the tasks
  457. * more (rather than completely block them) when the bdi dirty pages go high.
  458. *
  459. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  460. * - starving fast devices
  461. * - piling up dirty pages (that will take long time to sync) on slow devices
  462. *
  463. * The bdi's share of dirty limit will be adapting to its throughput and
  464. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  465. */
  466. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  467. {
  468. u64 bdi_dirty;
  469. long numerator, denominator;
  470. /*
  471. * Calculate this BDI's share of the dirty ratio.
  472. */
  473. bdi_writeout_fraction(bdi, &numerator, &denominator);
  474. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  475. bdi_dirty *= numerator;
  476. do_div(bdi_dirty, denominator);
  477. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  478. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  479. bdi_dirty = dirty * bdi->max_ratio / 100;
  480. return bdi_dirty;
  481. }
  482. /*
  483. * setpoint - dirty 3
  484. * f(dirty) := 1.0 + (----------------)
  485. * limit - setpoint
  486. *
  487. * it's a 3rd order polynomial that subjects to
  488. *
  489. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  490. * (2) f(setpoint) = 1.0 => the balance point
  491. * (3) f(limit) = 0 => the hard limit
  492. * (4) df/dx <= 0 => negative feedback control
  493. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  494. * => fast response on large errors; small oscillation near setpoint
  495. */
  496. static long long pos_ratio_polynom(unsigned long setpoint,
  497. unsigned long dirty,
  498. unsigned long limit)
  499. {
  500. long long pos_ratio;
  501. long x;
  502. x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
  503. (limit - setpoint) | 1);
  504. pos_ratio = x;
  505. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  506. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  507. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  508. return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
  509. }
  510. /*
  511. * Dirty position control.
  512. *
  513. * (o) global/bdi setpoints
  514. *
  515. * We want the dirty pages be balanced around the global/bdi setpoints.
  516. * When the number of dirty pages is higher/lower than the setpoint, the
  517. * dirty position control ratio (and hence task dirty ratelimit) will be
  518. * decreased/increased to bring the dirty pages back to the setpoint.
  519. *
  520. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  521. *
  522. * if (dirty < setpoint) scale up pos_ratio
  523. * if (dirty > setpoint) scale down pos_ratio
  524. *
  525. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  526. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  527. *
  528. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  529. *
  530. * (o) global control line
  531. *
  532. * ^ pos_ratio
  533. * |
  534. * | |<===== global dirty control scope ======>|
  535. * 2.0 .............*
  536. * | .*
  537. * | . *
  538. * | . *
  539. * | . *
  540. * | . *
  541. * | . *
  542. * 1.0 ................................*
  543. * | . . *
  544. * | . . *
  545. * | . . *
  546. * | . . *
  547. * | . . *
  548. * 0 +------------.------------------.----------------------*------------->
  549. * freerun^ setpoint^ limit^ dirty pages
  550. *
  551. * (o) bdi control line
  552. *
  553. * ^ pos_ratio
  554. * |
  555. * | *
  556. * | *
  557. * | *
  558. * | *
  559. * | * |<=========== span ============>|
  560. * 1.0 .......................*
  561. * | . *
  562. * | . *
  563. * | . *
  564. * | . *
  565. * | . *
  566. * | . *
  567. * | . *
  568. * | . *
  569. * | . *
  570. * | . *
  571. * | . *
  572. * 1/4 ...............................................* * * * * * * * * * * *
  573. * | . .
  574. * | . .
  575. * | . .
  576. * 0 +----------------------.-------------------------------.------------->
  577. * bdi_setpoint^ x_intercept^
  578. *
  579. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  580. * be smoothly throttled down to normal if it starts high in situations like
  581. * - start writing to a slow SD card and a fast disk at the same time. The SD
  582. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  583. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  584. */
  585. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  586. unsigned long thresh,
  587. unsigned long bg_thresh,
  588. unsigned long dirty,
  589. unsigned long bdi_thresh,
  590. unsigned long bdi_dirty)
  591. {
  592. unsigned long write_bw = bdi->avg_write_bandwidth;
  593. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  594. unsigned long limit = hard_dirty_limit(thresh);
  595. unsigned long x_intercept;
  596. unsigned long setpoint; /* dirty pages' target balance point */
  597. unsigned long bdi_setpoint;
  598. unsigned long span;
  599. long long pos_ratio; /* for scaling up/down the rate limit */
  600. long x;
  601. if (unlikely(dirty >= limit))
  602. return 0;
  603. /*
  604. * global setpoint
  605. *
  606. * See comment for pos_ratio_polynom().
  607. */
  608. setpoint = (freerun + limit) / 2;
  609. pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
  610. /*
  611. * The strictlimit feature is a tool preventing mistrusted filesystems
  612. * from growing a large number of dirty pages before throttling. For
  613. * such filesystems balance_dirty_pages always checks bdi counters
  614. * against bdi limits. Even if global "nr_dirty" is under "freerun".
  615. * This is especially important for fuse which sets bdi->max_ratio to
  616. * 1% by default. Without strictlimit feature, fuse writeback may
  617. * consume arbitrary amount of RAM because it is accounted in
  618. * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
  619. *
  620. * Here, in bdi_position_ratio(), we calculate pos_ratio based on
  621. * two values: bdi_dirty and bdi_thresh. Let's consider an example:
  622. * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
  623. * limits are set by default to 10% and 20% (background and throttle).
  624. * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
  625. * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
  626. * about ~6K pages (as the average of background and throttle bdi
  627. * limits). The 3rd order polynomial will provide positive feedback if
  628. * bdi_dirty is under bdi_setpoint and vice versa.
  629. *
  630. * Note, that we cannot use global counters in these calculations
  631. * because we want to throttle process writing to a strictlimit BDI
  632. * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
  633. * in the example above).
  634. */
  635. if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
  636. long long bdi_pos_ratio;
  637. unsigned long bdi_bg_thresh;
  638. if (bdi_dirty < 8)
  639. return min_t(long long, pos_ratio * 2,
  640. 2 << RATELIMIT_CALC_SHIFT);
  641. if (bdi_dirty >= bdi_thresh)
  642. return 0;
  643. bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
  644. bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
  645. bdi_bg_thresh);
  646. if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
  647. return 0;
  648. bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
  649. bdi_thresh);
  650. /*
  651. * Typically, for strictlimit case, bdi_setpoint << setpoint
  652. * and pos_ratio >> bdi_pos_ratio. In the other words global
  653. * state ("dirty") is not limiting factor and we have to
  654. * make decision based on bdi counters. But there is an
  655. * important case when global pos_ratio should get precedence:
  656. * global limits are exceeded (e.g. due to activities on other
  657. * BDIs) while given strictlimit BDI is below limit.
  658. *
  659. * "pos_ratio * bdi_pos_ratio" would work for the case above,
  660. * but it would look too non-natural for the case of all
  661. * activity in the system coming from a single strictlimit BDI
  662. * with bdi->max_ratio == 100%.
  663. *
  664. * Note that min() below somewhat changes the dynamics of the
  665. * control system. Normally, pos_ratio value can be well over 3
  666. * (when globally we are at freerun and bdi is well below bdi
  667. * setpoint). Now the maximum pos_ratio in the same situation
  668. * is 2. We might want to tweak this if we observe the control
  669. * system is too slow to adapt.
  670. */
  671. return min(pos_ratio, bdi_pos_ratio);
  672. }
  673. /*
  674. * We have computed basic pos_ratio above based on global situation. If
  675. * the bdi is over/under its share of dirty pages, we want to scale
  676. * pos_ratio further down/up. That is done by the following mechanism.
  677. */
  678. /*
  679. * bdi setpoint
  680. *
  681. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  682. *
  683. * x_intercept - bdi_dirty
  684. * := --------------------------
  685. * x_intercept - bdi_setpoint
  686. *
  687. * The main bdi control line is a linear function that subjects to
  688. *
  689. * (1) f(bdi_setpoint) = 1.0
  690. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  691. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  692. *
  693. * For single bdi case, the dirty pages are observed to fluctuate
  694. * regularly within range
  695. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  696. * for various filesystems, where (2) can yield in a reasonable 12.5%
  697. * fluctuation range for pos_ratio.
  698. *
  699. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  700. * own size, so move the slope over accordingly and choose a slope that
  701. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  702. */
  703. if (unlikely(bdi_thresh > thresh))
  704. bdi_thresh = thresh;
  705. /*
  706. * It's very possible that bdi_thresh is close to 0 not because the
  707. * device is slow, but that it has remained inactive for long time.
  708. * Honour such devices a reasonable good (hopefully IO efficient)
  709. * threshold, so that the occasional writes won't be blocked and active
  710. * writes can rampup the threshold quickly.
  711. */
  712. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  713. /*
  714. * scale global setpoint to bdi's:
  715. * bdi_setpoint = setpoint * bdi_thresh / thresh
  716. */
  717. x = div_u64((u64)bdi_thresh << 16, thresh | 1);
  718. bdi_setpoint = setpoint * (u64)x >> 16;
  719. /*
  720. * Use span=(8*write_bw) in single bdi case as indicated by
  721. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  722. *
  723. * bdi_thresh thresh - bdi_thresh
  724. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  725. * thresh thresh
  726. */
  727. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  728. x_intercept = bdi_setpoint + span;
  729. if (bdi_dirty < x_intercept - span / 4) {
  730. pos_ratio = div64_u64(pos_ratio * (x_intercept - bdi_dirty),
  731. (x_intercept - bdi_setpoint) | 1);
  732. } else
  733. pos_ratio /= 4;
  734. /*
  735. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  736. * It may push the desired control point of global dirty pages higher
  737. * than setpoint.
  738. */
  739. x_intercept = bdi_thresh / 2;
  740. if (bdi_dirty < x_intercept) {
  741. if (bdi_dirty > x_intercept / 8)
  742. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  743. else
  744. pos_ratio *= 8;
  745. }
  746. return pos_ratio;
  747. }
  748. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  749. unsigned long elapsed,
  750. unsigned long written)
  751. {
  752. const unsigned long period = roundup_pow_of_two(3 * HZ);
  753. unsigned long avg = bdi->avg_write_bandwidth;
  754. unsigned long old = bdi->write_bandwidth;
  755. u64 bw;
  756. /*
  757. * bw = written * HZ / elapsed
  758. *
  759. * bw * elapsed + write_bandwidth * (period - elapsed)
  760. * write_bandwidth = ---------------------------------------------------
  761. * period
  762. *
  763. * @written may have decreased due to account_page_redirty().
  764. * Avoid underflowing @bw calculation.
  765. */
  766. bw = written - min(written, bdi->written_stamp);
  767. bw *= HZ;
  768. if (unlikely(elapsed > period)) {
  769. do_div(bw, elapsed);
  770. avg = bw;
  771. goto out;
  772. }
  773. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  774. bw >>= ilog2(period);
  775. /*
  776. * one more level of smoothing, for filtering out sudden spikes
  777. */
  778. if (avg > old && old >= (unsigned long)bw)
  779. avg -= (avg - old) >> 3;
  780. if (avg < old && old <= (unsigned long)bw)
  781. avg += (old - avg) >> 3;
  782. out:
  783. bdi->write_bandwidth = bw;
  784. bdi->avg_write_bandwidth = avg;
  785. }
  786. /*
  787. * The global dirtyable memory and dirty threshold could be suddenly knocked
  788. * down by a large amount (eg. on the startup of KVM in a swapless system).
  789. * This may throw the system into deep dirty exceeded state and throttle
  790. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  791. * global_dirty_limit for tracking slowly down to the knocked down dirty
  792. * threshold.
  793. */
  794. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  795. {
  796. unsigned long limit = global_dirty_limit;
  797. /*
  798. * Follow up in one step.
  799. */
  800. if (limit < thresh) {
  801. limit = thresh;
  802. goto update;
  803. }
  804. /*
  805. * Follow down slowly. Use the higher one as the target, because thresh
  806. * may drop below dirty. This is exactly the reason to introduce
  807. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  808. */
  809. thresh = max(thresh, dirty);
  810. if (limit > thresh) {
  811. limit -= (limit - thresh) >> 5;
  812. goto update;
  813. }
  814. return;
  815. update:
  816. global_dirty_limit = limit;
  817. }
  818. static void global_update_bandwidth(unsigned long thresh,
  819. unsigned long dirty,
  820. unsigned long now)
  821. {
  822. static DEFINE_SPINLOCK(dirty_lock);
  823. static unsigned long update_time = INITIAL_JIFFIES;
  824. /*
  825. * check locklessly first to optimize away locking for the most time
  826. */
  827. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  828. return;
  829. spin_lock(&dirty_lock);
  830. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  831. update_dirty_limit(thresh, dirty);
  832. update_time = now;
  833. }
  834. spin_unlock(&dirty_lock);
  835. }
  836. /*
  837. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  838. *
  839. * Normal bdi tasks will be curbed at or below it in long term.
  840. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  841. */
  842. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  843. unsigned long thresh,
  844. unsigned long bg_thresh,
  845. unsigned long dirty,
  846. unsigned long bdi_thresh,
  847. unsigned long bdi_dirty,
  848. unsigned long dirtied,
  849. unsigned long elapsed)
  850. {
  851. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  852. unsigned long limit = hard_dirty_limit(thresh);
  853. unsigned long setpoint = (freerun + limit) / 2;
  854. unsigned long write_bw = bdi->avg_write_bandwidth;
  855. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  856. unsigned long dirty_rate;
  857. unsigned long task_ratelimit;
  858. unsigned long balanced_dirty_ratelimit;
  859. unsigned long pos_ratio;
  860. unsigned long step;
  861. unsigned long x;
  862. /*
  863. * The dirty rate will match the writeout rate in long term, except
  864. * when dirty pages are truncated by userspace or re-dirtied by FS.
  865. */
  866. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  867. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  868. bdi_thresh, bdi_dirty);
  869. /*
  870. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  871. */
  872. task_ratelimit = (u64)dirty_ratelimit *
  873. pos_ratio >> RATELIMIT_CALC_SHIFT;
  874. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  875. /*
  876. * A linear estimation of the "balanced" throttle rate. The theory is,
  877. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  878. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  879. * formula will yield the balanced rate limit (write_bw / N).
  880. *
  881. * Note that the expanded form is not a pure rate feedback:
  882. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  883. * but also takes pos_ratio into account:
  884. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  885. *
  886. * (1) is not realistic because pos_ratio also takes part in balancing
  887. * the dirty rate. Consider the state
  888. * pos_ratio = 0.5 (3)
  889. * rate = 2 * (write_bw / N) (4)
  890. * If (1) is used, it will stuck in that state! Because each dd will
  891. * be throttled at
  892. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  893. * yielding
  894. * dirty_rate = N * task_ratelimit = write_bw (6)
  895. * put (6) into (1) we get
  896. * rate_(i+1) = rate_(i) (7)
  897. *
  898. * So we end up using (2) to always keep
  899. * rate_(i+1) ~= (write_bw / N) (8)
  900. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  901. * pos_ratio is able to drive itself to 1.0, which is not only where
  902. * the dirty count meet the setpoint, but also where the slope of
  903. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  904. */
  905. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  906. dirty_rate | 1);
  907. /*
  908. * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
  909. */
  910. if (unlikely(balanced_dirty_ratelimit > write_bw))
  911. balanced_dirty_ratelimit = write_bw;
  912. /*
  913. * We could safely do this and return immediately:
  914. *
  915. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  916. *
  917. * However to get a more stable dirty_ratelimit, the below elaborated
  918. * code makes use of task_ratelimit to filter out singular points and
  919. * limit the step size.
  920. *
  921. * The below code essentially only uses the relative value of
  922. *
  923. * task_ratelimit - dirty_ratelimit
  924. * = (pos_ratio - 1) * dirty_ratelimit
  925. *
  926. * which reflects the direction and size of dirty position error.
  927. */
  928. /*
  929. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  930. * task_ratelimit is on the same side of dirty_ratelimit, too.
  931. * For example, when
  932. * - dirty_ratelimit > balanced_dirty_ratelimit
  933. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  934. * lowering dirty_ratelimit will help meet both the position and rate
  935. * control targets. Otherwise, don't update dirty_ratelimit if it will
  936. * only help meet the rate target. After all, what the users ultimately
  937. * feel and care are stable dirty rate and small position error.
  938. *
  939. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  940. * and filter out the singular points of balanced_dirty_ratelimit. Which
  941. * keeps jumping around randomly and can even leap far away at times
  942. * due to the small 200ms estimation period of dirty_rate (we want to
  943. * keep that period small to reduce time lags).
  944. */
  945. step = 0;
  946. /*
  947. * For strictlimit case, calculations above were based on bdi counters
  948. * and limits (starting from pos_ratio = bdi_position_ratio() and up to
  949. * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
  950. * Hence, to calculate "step" properly, we have to use bdi_dirty as
  951. * "dirty" and bdi_setpoint as "setpoint".
  952. *
  953. * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
  954. * it's possible that bdi_thresh is close to zero due to inactivity
  955. * of backing device (see the implementation of bdi_dirty_limit()).
  956. */
  957. if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
  958. dirty = bdi_dirty;
  959. if (bdi_dirty < 8)
  960. setpoint = bdi_dirty + 1;
  961. else
  962. setpoint = (bdi_thresh +
  963. bdi_dirty_limit(bdi, bg_thresh)) / 2;
  964. }
  965. if (dirty < setpoint) {
  966. x = min3(bdi->balanced_dirty_ratelimit,
  967. balanced_dirty_ratelimit, task_ratelimit);
  968. if (dirty_ratelimit < x)
  969. step = x - dirty_ratelimit;
  970. } else {
  971. x = max3(bdi->balanced_dirty_ratelimit,
  972. balanced_dirty_ratelimit, task_ratelimit);
  973. if (dirty_ratelimit > x)
  974. step = dirty_ratelimit - x;
  975. }
  976. /*
  977. * Don't pursue 100% rate matching. It's impossible since the balanced
  978. * rate itself is constantly fluctuating. So decrease the track speed
  979. * when it gets close to the target. Helps eliminate pointless tremors.
  980. */
  981. step >>= dirty_ratelimit / (2 * step + 1);
  982. /*
  983. * Limit the tracking speed to avoid overshooting.
  984. */
  985. step = (step + 7) / 8;
  986. if (dirty_ratelimit < balanced_dirty_ratelimit)
  987. dirty_ratelimit += step;
  988. else
  989. dirty_ratelimit -= step;
  990. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  991. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  992. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  993. }
  994. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  995. unsigned long thresh,
  996. unsigned long bg_thresh,
  997. unsigned long dirty,
  998. unsigned long bdi_thresh,
  999. unsigned long bdi_dirty,
  1000. unsigned long start_time)
  1001. {
  1002. unsigned long now = jiffies;
  1003. unsigned long elapsed = now - bdi->bw_time_stamp;
  1004. unsigned long dirtied;
  1005. unsigned long written;
  1006. /*
  1007. * rate-limit, only update once every 200ms.
  1008. */
  1009. if (elapsed < BANDWIDTH_INTERVAL)
  1010. return;
  1011. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  1012. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  1013. /*
  1014. * Skip quiet periods when disk bandwidth is under-utilized.
  1015. * (at least 1s idle time between two flusher runs)
  1016. */
  1017. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  1018. goto snapshot;
  1019. if (thresh) {
  1020. global_update_bandwidth(thresh, dirty, now);
  1021. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  1022. bdi_thresh, bdi_dirty,
  1023. dirtied, elapsed);
  1024. }
  1025. bdi_update_write_bandwidth(bdi, elapsed, written);
  1026. snapshot:
  1027. bdi->dirtied_stamp = dirtied;
  1028. bdi->written_stamp = written;
  1029. bdi->bw_time_stamp = now;
  1030. }
  1031. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  1032. unsigned long thresh,
  1033. unsigned long bg_thresh,
  1034. unsigned long dirty,
  1035. unsigned long bdi_thresh,
  1036. unsigned long bdi_dirty,
  1037. unsigned long start_time)
  1038. {
  1039. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  1040. return;
  1041. spin_lock(&bdi->wb.list_lock);
  1042. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  1043. bdi_thresh, bdi_dirty, start_time);
  1044. spin_unlock(&bdi->wb.list_lock);
  1045. }
  1046. /*
  1047. * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
  1048. * will look to see if it needs to start dirty throttling.
  1049. *
  1050. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  1051. * global_page_state() too often. So scale it near-sqrt to the safety margin
  1052. * (the number of pages we may dirty without exceeding the dirty limits).
  1053. */
  1054. static unsigned long dirty_poll_interval(unsigned long dirty,
  1055. unsigned long thresh)
  1056. {
  1057. if (thresh > dirty)
  1058. return 1UL << (ilog2(thresh - dirty) >> 1);
  1059. return 1;
  1060. }
  1061. static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
  1062. unsigned long bdi_dirty)
  1063. {
  1064. unsigned long bw = bdi->avg_write_bandwidth;
  1065. unsigned long t;
  1066. /*
  1067. * Limit pause time for small memory systems. If sleeping for too long
  1068. * time, a small pool of dirty/writeback pages may go empty and disk go
  1069. * idle.
  1070. *
  1071. * 8 serves as the safety ratio.
  1072. */
  1073. t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
  1074. t++;
  1075. return min_t(unsigned long, t, MAX_PAUSE);
  1076. }
  1077. static long bdi_min_pause(struct backing_dev_info *bdi,
  1078. long max_pause,
  1079. unsigned long task_ratelimit,
  1080. unsigned long dirty_ratelimit,
  1081. int *nr_dirtied_pause)
  1082. {
  1083. long hi = ilog2(bdi->avg_write_bandwidth);
  1084. long lo = ilog2(bdi->dirty_ratelimit);
  1085. long t; /* target pause */
  1086. long pause; /* estimated next pause */
  1087. int pages; /* target nr_dirtied_pause */
  1088. /* target for 10ms pause on 1-dd case */
  1089. t = max(1, HZ / 100);
  1090. /*
  1091. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  1092. * overheads.
  1093. *
  1094. * (N * 10ms) on 2^N concurrent tasks.
  1095. */
  1096. if (hi > lo)
  1097. t += (hi - lo) * (10 * HZ) / 1024;
  1098. /*
  1099. * This is a bit convoluted. We try to base the next nr_dirtied_pause
  1100. * on the much more stable dirty_ratelimit. However the next pause time
  1101. * will be computed based on task_ratelimit and the two rate limits may
  1102. * depart considerably at some time. Especially if task_ratelimit goes
  1103. * below dirty_ratelimit/2 and the target pause is max_pause, the next
  1104. * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
  1105. * result task_ratelimit won't be executed faithfully, which could
  1106. * eventually bring down dirty_ratelimit.
  1107. *
  1108. * We apply two rules to fix it up:
  1109. * 1) try to estimate the next pause time and if necessary, use a lower
  1110. * nr_dirtied_pause so as not to exceed max_pause. When this happens,
  1111. * nr_dirtied_pause will be "dancing" with task_ratelimit.
  1112. * 2) limit the target pause time to max_pause/2, so that the normal
  1113. * small fluctuations of task_ratelimit won't trigger rule (1) and
  1114. * nr_dirtied_pause will remain as stable as dirty_ratelimit.
  1115. */
  1116. t = min(t, 1 + max_pause / 2);
  1117. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1118. /*
  1119. * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
  1120. * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
  1121. * When the 16 consecutive reads are often interrupted by some dirty
  1122. * throttling pause during the async writes, cfq will go into idles
  1123. * (deadline is fine). So push nr_dirtied_pause as high as possible
  1124. * until reaches DIRTY_POLL_THRESH=32 pages.
  1125. */
  1126. if (pages < DIRTY_POLL_THRESH) {
  1127. t = max_pause;
  1128. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1129. if (pages > DIRTY_POLL_THRESH) {
  1130. pages = DIRTY_POLL_THRESH;
  1131. t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
  1132. }
  1133. }
  1134. pause = HZ * pages / (task_ratelimit + 1);
  1135. if (pause > max_pause) {
  1136. t = max_pause;
  1137. pages = task_ratelimit * t / roundup_pow_of_two(HZ);
  1138. }
  1139. *nr_dirtied_pause = pages;
  1140. /*
  1141. * The minimal pause time will normally be half the target pause time.
  1142. */
  1143. return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
  1144. }
  1145. static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
  1146. unsigned long dirty_thresh,
  1147. unsigned long background_thresh,
  1148. unsigned long *bdi_dirty,
  1149. unsigned long *bdi_thresh,
  1150. unsigned long *bdi_bg_thresh)
  1151. {
  1152. unsigned long bdi_reclaimable;
  1153. /*
  1154. * bdi_thresh is not treated as some limiting factor as
  1155. * dirty_thresh, due to reasons
  1156. * - in JBOD setup, bdi_thresh can fluctuate a lot
  1157. * - in a system with HDD and USB key, the USB key may somehow
  1158. * go into state (bdi_dirty >> bdi_thresh) either because
  1159. * bdi_dirty starts high, or because bdi_thresh drops low.
  1160. * In this case we don't want to hard throttle the USB key
  1161. * dirtiers for 100 seconds until bdi_dirty drops under
  1162. * bdi_thresh. Instead the auxiliary bdi control line in
  1163. * bdi_position_ratio() will let the dirtier task progress
  1164. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  1165. */
  1166. *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  1167. if (bdi_bg_thresh)
  1168. *bdi_bg_thresh = dirty_thresh ? div_u64((u64)*bdi_thresh *
  1169. background_thresh,
  1170. dirty_thresh) : 0;
  1171. /*
  1172. * In order to avoid the stacked BDI deadlock we need
  1173. * to ensure we accurately count the 'dirty' pages when
  1174. * the threshold is low.
  1175. *
  1176. * Otherwise it would be possible to get thresh+n pages
  1177. * reported dirty, even though there are thresh-m pages
  1178. * actually dirty; with m+n sitting in the percpu
  1179. * deltas.
  1180. */
  1181. if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
  1182. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  1183. *bdi_dirty = bdi_reclaimable +
  1184. bdi_stat_sum(bdi, BDI_WRITEBACK);
  1185. } else {
  1186. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  1187. *bdi_dirty = bdi_reclaimable +
  1188. bdi_stat(bdi, BDI_WRITEBACK);
  1189. }
  1190. }
  1191. /*
  1192. * balance_dirty_pages() must be called by processes which are generating dirty
  1193. * data. It looks at the number of dirty pages in the machine and will force
  1194. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  1195. * If we're over `background_thresh' then the writeback threads are woken to
  1196. * perform some writeout.
  1197. */
  1198. static void balance_dirty_pages(struct address_space *mapping,
  1199. unsigned long pages_dirtied)
  1200. {
  1201. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  1202. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  1203. unsigned long background_thresh;
  1204. unsigned long dirty_thresh;
  1205. long period;
  1206. long pause;
  1207. long max_pause;
  1208. long min_pause;
  1209. int nr_dirtied_pause;
  1210. bool dirty_exceeded = false;
  1211. unsigned long task_ratelimit;
  1212. unsigned long dirty_ratelimit;
  1213. unsigned long pos_ratio;
  1214. struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
  1215. bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
  1216. unsigned long start_time = jiffies;
  1217. for (;;) {
  1218. unsigned long now = jiffies;
  1219. unsigned long uninitialized_var(bdi_thresh);
  1220. unsigned long thresh;
  1221. unsigned long uninitialized_var(bdi_dirty);
  1222. unsigned long dirty;
  1223. unsigned long bg_thresh;
  1224. /*
  1225. * Unstable writes are a feature of certain networked
  1226. * filesystems (i.e. NFS) in which data may have been
  1227. * written to the server's write cache, but has not yet
  1228. * been flushed to permanent storage.
  1229. */
  1230. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  1231. global_page_state(NR_UNSTABLE_NFS);
  1232. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  1233. global_dirty_limits(&background_thresh, &dirty_thresh);
  1234. if (unlikely(strictlimit)) {
  1235. bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
  1236. &bdi_dirty, &bdi_thresh, &bg_thresh);
  1237. dirty = bdi_dirty;
  1238. thresh = bdi_thresh;
  1239. } else {
  1240. dirty = nr_dirty;
  1241. thresh = dirty_thresh;
  1242. bg_thresh = background_thresh;
  1243. }
  1244. /*
  1245. * Throttle it only when the background writeback cannot
  1246. * catch-up. This avoids (excessively) small writeouts
  1247. * when the bdi limits are ramping up in case of !strictlimit.
  1248. *
  1249. * In strictlimit case make decision based on the bdi counters
  1250. * and limits. Small writeouts when the bdi limits are ramping
  1251. * up are the price we consciously pay for strictlimit-ing.
  1252. */
  1253. if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
  1254. current->dirty_paused_when = now;
  1255. current->nr_dirtied = 0;
  1256. current->nr_dirtied_pause =
  1257. dirty_poll_interval(dirty, thresh);
  1258. break;
  1259. }
  1260. if (unlikely(!writeback_in_progress(bdi)))
  1261. bdi_start_background_writeback(bdi);
  1262. if (!strictlimit)
  1263. bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
  1264. &bdi_dirty, &bdi_thresh, NULL);
  1265. dirty_exceeded = (bdi_dirty > bdi_thresh) &&
  1266. ((nr_dirty > dirty_thresh) || strictlimit);
  1267. if (dirty_exceeded && !bdi->dirty_exceeded)
  1268. bdi->dirty_exceeded = 1;
  1269. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  1270. nr_dirty, bdi_thresh, bdi_dirty,
  1271. start_time);
  1272. dirty_ratelimit = bdi->dirty_ratelimit;
  1273. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  1274. background_thresh, nr_dirty,
  1275. bdi_thresh, bdi_dirty);
  1276. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  1277. RATELIMIT_CALC_SHIFT;
  1278. max_pause = bdi_max_pause(bdi, bdi_dirty);
  1279. min_pause = bdi_min_pause(bdi, max_pause,
  1280. task_ratelimit, dirty_ratelimit,
  1281. &nr_dirtied_pause);
  1282. if (unlikely(task_ratelimit == 0)) {
  1283. period = max_pause;
  1284. pause = max_pause;
  1285. goto pause;
  1286. }
  1287. period = HZ * pages_dirtied / task_ratelimit;
  1288. pause = period;
  1289. if (current->dirty_paused_when)
  1290. pause -= now - current->dirty_paused_when;
  1291. /*
  1292. * For less than 1s think time (ext3/4 may block the dirtier
  1293. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1294. * however at much less frequency), try to compensate it in
  1295. * future periods by updating the virtual time; otherwise just
  1296. * do a reset, as it may be a light dirtier.
  1297. */
  1298. if (pause < min_pause) {
  1299. trace_balance_dirty_pages(bdi,
  1300. dirty_thresh,
  1301. background_thresh,
  1302. nr_dirty,
  1303. bdi_thresh,
  1304. bdi_dirty,
  1305. dirty_ratelimit,
  1306. task_ratelimit,
  1307. pages_dirtied,
  1308. period,
  1309. min(pause, 0L),
  1310. start_time);
  1311. if (pause < -HZ) {
  1312. current->dirty_paused_when = now;
  1313. current->nr_dirtied = 0;
  1314. } else if (period) {
  1315. current->dirty_paused_when += period;
  1316. current->nr_dirtied = 0;
  1317. } else if (current->nr_dirtied_pause <= pages_dirtied)
  1318. current->nr_dirtied_pause += pages_dirtied;
  1319. break;
  1320. }
  1321. if (unlikely(pause > max_pause)) {
  1322. /* for occasional dropped task_ratelimit */
  1323. now += min(pause - max_pause, max_pause);
  1324. pause = max_pause;
  1325. }
  1326. pause:
  1327. trace_balance_dirty_pages(bdi,
  1328. dirty_thresh,
  1329. background_thresh,
  1330. nr_dirty,
  1331. bdi_thresh,
  1332. bdi_dirty,
  1333. dirty_ratelimit,
  1334. task_ratelimit,
  1335. pages_dirtied,
  1336. period,
  1337. pause,
  1338. start_time);
  1339. __set_current_state(TASK_KILLABLE);
  1340. io_schedule_timeout(pause);
  1341. current->dirty_paused_when = now + pause;
  1342. current->nr_dirtied = 0;
  1343. current->nr_dirtied_pause = nr_dirtied_pause;
  1344. /*
  1345. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1346. * also keep "1000+ dd on a slow USB stick" under control.
  1347. */
  1348. if (task_ratelimit)
  1349. break;
  1350. /*
  1351. * In the case of an unresponding NFS server and the NFS dirty
  1352. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1353. * to go through, so that tasks on them still remain responsive.
  1354. *
  1355. * In theory 1 page is enough to keep the comsumer-producer
  1356. * pipe going: the flusher cleans 1 page => the task dirties 1
  1357. * more page. However bdi_dirty has accounting errors. So use
  1358. * the larger and more IO friendly bdi_stat_error.
  1359. */
  1360. if (bdi_dirty <= bdi_stat_error(bdi))
  1361. break;
  1362. if (fatal_signal_pending(current))
  1363. break;
  1364. }
  1365. if (!dirty_exceeded && bdi->dirty_exceeded)
  1366. bdi->dirty_exceeded = 0;
  1367. if (writeback_in_progress(bdi))
  1368. return;
  1369. /*
  1370. * In laptop mode, we wait until hitting the higher threshold before
  1371. * starting background writeout, and then write out all the way down
  1372. * to the lower threshold. So slow writers cause minimal disk activity.
  1373. *
  1374. * In normal mode, we start background writeout at the lower
  1375. * background_thresh, to keep the amount of dirty memory low.
  1376. */
  1377. if (laptop_mode)
  1378. return;
  1379. if (nr_reclaimable > background_thresh)
  1380. bdi_start_background_writeback(bdi);
  1381. }
  1382. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1383. /*
  1384. * Normal tasks are throttled by
  1385. * loop {
  1386. * dirty tsk->nr_dirtied_pause pages;
  1387. * take a snap in balance_dirty_pages();
  1388. * }
  1389. * However there is a worst case. If every task exit immediately when dirtied
  1390. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1391. * called to throttle the page dirties. The solution is to save the not yet
  1392. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1393. * randomly into the running tasks. This works well for the above worst case,
  1394. * as the new task will pick up and accumulate the old task's leaked dirty
  1395. * count and eventually get throttled.
  1396. */
  1397. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1398. /**
  1399. * balance_dirty_pages_ratelimited - balance dirty memory state
  1400. * @mapping: address_space which was dirtied
  1401. *
  1402. * Processes which are dirtying memory should call in here once for each page
  1403. * which was newly dirtied. The function will periodically check the system's
  1404. * dirty state and will initiate writeback if needed.
  1405. *
  1406. * On really big machines, get_writeback_state is expensive, so try to avoid
  1407. * calling it too often (ratelimiting). But once we're over the dirty memory
  1408. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1409. * from overshooting the limit by (ratelimit_pages) each.
  1410. */
  1411. void balance_dirty_pages_ratelimited(struct address_space *mapping)
  1412. {
  1413. struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
  1414. int ratelimit;
  1415. int *p;
  1416. if (!bdi_cap_account_dirty(bdi))
  1417. return;
  1418. ratelimit = current->nr_dirtied_pause;
  1419. if (bdi->dirty_exceeded)
  1420. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1421. preempt_disable();
  1422. /*
  1423. * This prevents one CPU to accumulate too many dirtied pages without
  1424. * calling into balance_dirty_pages(), which can happen when there are
  1425. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1426. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1427. */
  1428. p = this_cpu_ptr(&bdp_ratelimits);
  1429. if (unlikely(current->nr_dirtied >= ratelimit))
  1430. *p = 0;
  1431. else if (unlikely(*p >= ratelimit_pages)) {
  1432. *p = 0;
  1433. ratelimit = 0;
  1434. }
  1435. /*
  1436. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1437. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1438. * the dirty throttling and livelock other long-run dirtiers.
  1439. */
  1440. p = this_cpu_ptr(&dirty_throttle_leaks);
  1441. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1442. unsigned long nr_pages_dirtied;
  1443. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1444. *p -= nr_pages_dirtied;
  1445. current->nr_dirtied += nr_pages_dirtied;
  1446. }
  1447. preempt_enable();
  1448. if (unlikely(current->nr_dirtied >= ratelimit))
  1449. balance_dirty_pages(mapping, current->nr_dirtied);
  1450. }
  1451. EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
  1452. void throttle_vm_writeout(gfp_t gfp_mask)
  1453. {
  1454. unsigned long background_thresh;
  1455. unsigned long dirty_thresh;
  1456. for ( ; ; ) {
  1457. global_dirty_limits(&background_thresh, &dirty_thresh);
  1458. dirty_thresh = hard_dirty_limit(dirty_thresh);
  1459. /*
  1460. * Boost the allowable dirty threshold a bit for page
  1461. * allocators so they don't get DoS'ed by heavy writers
  1462. */
  1463. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1464. if (global_page_state(NR_UNSTABLE_NFS) +
  1465. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1466. break;
  1467. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1468. /*
  1469. * The caller might hold locks which can prevent IO completion
  1470. * or progress in the filesystem. So we cannot just sit here
  1471. * waiting for IO to complete.
  1472. */
  1473. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1474. break;
  1475. }
  1476. }
  1477. /*
  1478. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1479. */
  1480. int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
  1481. void __user *buffer, size_t *length, loff_t *ppos)
  1482. {
  1483. proc_dointvec(table, write, buffer, length, ppos);
  1484. return 0;
  1485. }
  1486. #ifdef CONFIG_BLOCK
  1487. void laptop_mode_timer_fn(unsigned long data)
  1488. {
  1489. struct request_queue *q = (struct request_queue *)data;
  1490. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1491. global_page_state(NR_UNSTABLE_NFS);
  1492. /*
  1493. * We want to write everything out, not just down to the dirty
  1494. * threshold
  1495. */
  1496. if (bdi_has_dirty_io(&q->backing_dev_info))
  1497. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1498. WB_REASON_LAPTOP_TIMER);
  1499. }
  1500. /*
  1501. * We've spun up the disk and we're in laptop mode: schedule writeback
  1502. * of all dirty data a few seconds from now. If the flush is already scheduled
  1503. * then push it back - the user is still using the disk.
  1504. */
  1505. void laptop_io_completion(struct backing_dev_info *info)
  1506. {
  1507. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1508. }
  1509. /*
  1510. * We're in laptop mode and we've just synced. The sync's writes will have
  1511. * caused another writeback to be scheduled by laptop_io_completion.
  1512. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1513. */
  1514. void laptop_sync_completion(void)
  1515. {
  1516. struct backing_dev_info *bdi;
  1517. rcu_read_lock();
  1518. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1519. del_timer(&bdi->laptop_mode_wb_timer);
  1520. rcu_read_unlock();
  1521. }
  1522. #endif
  1523. /*
  1524. * If ratelimit_pages is too high then we can get into dirty-data overload
  1525. * if a large number of processes all perform writes at the same time.
  1526. * If it is too low then SMP machines will call the (expensive)
  1527. * get_writeback_state too often.
  1528. *
  1529. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1530. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1531. * thresholds.
  1532. */
  1533. void writeback_set_ratelimit(void)
  1534. {
  1535. unsigned long background_thresh;
  1536. unsigned long dirty_thresh;
  1537. global_dirty_limits(&background_thresh, &dirty_thresh);
  1538. global_dirty_limit = dirty_thresh;
  1539. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1540. if (ratelimit_pages < 16)
  1541. ratelimit_pages = 16;
  1542. }
  1543. static int
  1544. ratelimit_handler(struct notifier_block *self, unsigned long action,
  1545. void *hcpu)
  1546. {
  1547. switch (action & ~CPU_TASKS_FROZEN) {
  1548. case CPU_ONLINE:
  1549. case CPU_DEAD:
  1550. writeback_set_ratelimit();
  1551. return NOTIFY_OK;
  1552. default:
  1553. return NOTIFY_DONE;
  1554. }
  1555. }
  1556. static struct notifier_block ratelimit_nb = {
  1557. .notifier_call = ratelimit_handler,
  1558. .next = NULL,
  1559. };
  1560. /*
  1561. * Called early on to tune the page writeback dirty limits.
  1562. *
  1563. * We used to scale dirty pages according to how total memory
  1564. * related to pages that could be allocated for buffers (by
  1565. * comparing nr_free_buffer_pages() to vm_total_pages.
  1566. *
  1567. * However, that was when we used "dirty_ratio" to scale with
  1568. * all memory, and we don't do that any more. "dirty_ratio"
  1569. * is now applied to total non-HIGHPAGE memory (by subtracting
  1570. * totalhigh_pages from vm_total_pages), and as such we can't
  1571. * get into the old insane situation any more where we had
  1572. * large amounts of dirty pages compared to a small amount of
  1573. * non-HIGHMEM memory.
  1574. *
  1575. * But we might still want to scale the dirty_ratio by how
  1576. * much memory the box has..
  1577. */
  1578. void __init page_writeback_init(void)
  1579. {
  1580. writeback_set_ratelimit();
  1581. register_cpu_notifier(&ratelimit_nb);
  1582. fprop_global_init(&writeout_completions, GFP_KERNEL);
  1583. }
  1584. /**
  1585. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1586. * @mapping: address space structure to write
  1587. * @start: starting page index
  1588. * @end: ending page index (inclusive)
  1589. *
  1590. * This function scans the page range from @start to @end (inclusive) and tags
  1591. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1592. * that write_cache_pages (or whoever calls this function) will then use
  1593. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1594. * used to avoid livelocking of writeback by a process steadily creating new
  1595. * dirty pages in the file (thus it is important for this function to be quick
  1596. * so that it can tag pages faster than a dirtying process can create them).
  1597. */
  1598. /*
  1599. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1600. */
  1601. void tag_pages_for_writeback(struct address_space *mapping,
  1602. pgoff_t start, pgoff_t end)
  1603. {
  1604. #define WRITEBACK_TAG_BATCH 4096
  1605. unsigned long tagged;
  1606. do {
  1607. spin_lock_irq(&mapping->tree_lock);
  1608. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1609. &start, end, WRITEBACK_TAG_BATCH,
  1610. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1611. spin_unlock_irq(&mapping->tree_lock);
  1612. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1613. cond_resched();
  1614. /* We check 'start' to handle wrapping when end == ~0UL */
  1615. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1616. }
  1617. EXPORT_SYMBOL(tag_pages_for_writeback);
  1618. /**
  1619. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1620. * @mapping: address space structure to write
  1621. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1622. * @writepage: function called for each page
  1623. * @data: data passed to writepage function
  1624. *
  1625. * If a page is already under I/O, write_cache_pages() skips it, even
  1626. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1627. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1628. * and msync() need to guarantee that all the data which was dirty at the time
  1629. * the call was made get new I/O started against them. If wbc->sync_mode is
  1630. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1631. * existing IO to complete.
  1632. *
  1633. * To avoid livelocks (when other process dirties new pages), we first tag
  1634. * pages which should be written back with TOWRITE tag and only then start
  1635. * writing them. For data-integrity sync we have to be careful so that we do
  1636. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1637. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1638. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1639. */
  1640. int write_cache_pages(struct address_space *mapping,
  1641. struct writeback_control *wbc, writepage_t writepage,
  1642. void *data)
  1643. {
  1644. int ret = 0;
  1645. int done = 0;
  1646. struct pagevec pvec;
  1647. int nr_pages;
  1648. pgoff_t uninitialized_var(writeback_index);
  1649. pgoff_t index;
  1650. pgoff_t end; /* Inclusive */
  1651. pgoff_t done_index;
  1652. int cycled;
  1653. int range_whole = 0;
  1654. int tag;
  1655. pagevec_init(&pvec, 0);
  1656. if (wbc->range_cyclic) {
  1657. writeback_index = mapping->writeback_index; /* prev offset */
  1658. index = writeback_index;
  1659. if (index == 0)
  1660. cycled = 1;
  1661. else
  1662. cycled = 0;
  1663. end = -1;
  1664. } else {
  1665. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1666. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1667. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1668. range_whole = 1;
  1669. cycled = 1; /* ignore range_cyclic tests */
  1670. }
  1671. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1672. tag = PAGECACHE_TAG_TOWRITE;
  1673. else
  1674. tag = PAGECACHE_TAG_DIRTY;
  1675. retry:
  1676. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1677. tag_pages_for_writeback(mapping, index, end);
  1678. done_index = index;
  1679. while (!done && (index <= end)) {
  1680. int i;
  1681. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1682. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1683. if (nr_pages == 0)
  1684. break;
  1685. for (i = 0; i < nr_pages; i++) {
  1686. struct page *page = pvec.pages[i];
  1687. /*
  1688. * At this point, the page may be truncated or
  1689. * invalidated (changing page->mapping to NULL), or
  1690. * even swizzled back from swapper_space to tmpfs file
  1691. * mapping. However, page->index will not change
  1692. * because we have a reference on the page.
  1693. */
  1694. if (page->index > end) {
  1695. /*
  1696. * can't be range_cyclic (1st pass) because
  1697. * end == -1 in that case.
  1698. */
  1699. done = 1;
  1700. break;
  1701. }
  1702. done_index = page->index;
  1703. lock_page(page);
  1704. /*
  1705. * Page truncated or invalidated. We can freely skip it
  1706. * then, even for data integrity operations: the page
  1707. * has disappeared concurrently, so there could be no
  1708. * real expectation of this data interity operation
  1709. * even if there is now a new, dirty page at the same
  1710. * pagecache address.
  1711. */
  1712. if (unlikely(page->mapping != mapping)) {
  1713. continue_unlock:
  1714. unlock_page(page);
  1715. continue;
  1716. }
  1717. if (!PageDirty(page)) {
  1718. /* someone wrote it for us */
  1719. goto continue_unlock;
  1720. }
  1721. if (PageWriteback(page)) {
  1722. if (wbc->sync_mode != WB_SYNC_NONE)
  1723. wait_on_page_writeback(page);
  1724. else
  1725. goto continue_unlock;
  1726. }
  1727. BUG_ON(PageWriteback(page));
  1728. if (!clear_page_dirty_for_io(page))
  1729. goto continue_unlock;
  1730. trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
  1731. ret = (*writepage)(page, wbc, data);
  1732. if (unlikely(ret)) {
  1733. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1734. unlock_page(page);
  1735. ret = 0;
  1736. } else {
  1737. /*
  1738. * done_index is set past this page,
  1739. * so media errors will not choke
  1740. * background writeout for the entire
  1741. * file. This has consequences for
  1742. * range_cyclic semantics (ie. it may
  1743. * not be suitable for data integrity
  1744. * writeout).
  1745. */
  1746. done_index = page->index + 1;
  1747. done = 1;
  1748. break;
  1749. }
  1750. }
  1751. /*
  1752. * We stop writing back only if we are not doing
  1753. * integrity sync. In case of integrity sync we have to
  1754. * keep going until we have written all the pages
  1755. * we tagged for writeback prior to entering this loop.
  1756. */
  1757. if (--wbc->nr_to_write <= 0 &&
  1758. wbc->sync_mode == WB_SYNC_NONE) {
  1759. done = 1;
  1760. break;
  1761. }
  1762. }
  1763. pagevec_release(&pvec);
  1764. cond_resched();
  1765. }
  1766. if (!cycled && !done) {
  1767. /*
  1768. * range_cyclic:
  1769. * We hit the last page and there is more work to be done: wrap
  1770. * back to the start of the file
  1771. */
  1772. cycled = 1;
  1773. index = 0;
  1774. end = writeback_index - 1;
  1775. goto retry;
  1776. }
  1777. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1778. mapping->writeback_index = done_index;
  1779. return ret;
  1780. }
  1781. EXPORT_SYMBOL(write_cache_pages);
  1782. /*
  1783. * Function used by generic_writepages to call the real writepage
  1784. * function and set the mapping flags on error
  1785. */
  1786. static int __writepage(struct page *page, struct writeback_control *wbc,
  1787. void *data)
  1788. {
  1789. struct address_space *mapping = data;
  1790. int ret = mapping->a_ops->writepage(page, wbc);
  1791. mapping_set_error(mapping, ret);
  1792. return ret;
  1793. }
  1794. /**
  1795. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1796. * @mapping: address space structure to write
  1797. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1798. *
  1799. * This is a library function, which implements the writepages()
  1800. * address_space_operation.
  1801. */
  1802. int generic_writepages(struct address_space *mapping,
  1803. struct writeback_control *wbc)
  1804. {
  1805. struct blk_plug plug;
  1806. int ret;
  1807. /* deal with chardevs and other special file */
  1808. if (!mapping->a_ops->writepage)
  1809. return 0;
  1810. blk_start_plug(&plug);
  1811. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1812. blk_finish_plug(&plug);
  1813. return ret;
  1814. }
  1815. EXPORT_SYMBOL(generic_writepages);
  1816. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1817. {
  1818. int ret;
  1819. if (wbc->nr_to_write <= 0)
  1820. return 0;
  1821. if (mapping->a_ops->writepages)
  1822. ret = mapping->a_ops->writepages(mapping, wbc);
  1823. else
  1824. ret = generic_writepages(mapping, wbc);
  1825. return ret;
  1826. }
  1827. /**
  1828. * write_one_page - write out a single page and optionally wait on I/O
  1829. * @page: the page to write
  1830. * @wait: if true, wait on writeout
  1831. *
  1832. * The page must be locked by the caller and will be unlocked upon return.
  1833. *
  1834. * write_one_page() returns a negative error code if I/O failed.
  1835. */
  1836. int write_one_page(struct page *page, int wait)
  1837. {
  1838. struct address_space *mapping = page->mapping;
  1839. int ret = 0;
  1840. struct writeback_control wbc = {
  1841. .sync_mode = WB_SYNC_ALL,
  1842. .nr_to_write = 1,
  1843. };
  1844. BUG_ON(!PageLocked(page));
  1845. if (wait)
  1846. wait_on_page_writeback(page);
  1847. if (clear_page_dirty_for_io(page)) {
  1848. page_cache_get(page);
  1849. ret = mapping->a_ops->writepage(page, &wbc);
  1850. if (ret == 0 && wait) {
  1851. wait_on_page_writeback(page);
  1852. if (PageError(page))
  1853. ret = -EIO;
  1854. }
  1855. page_cache_release(page);
  1856. } else {
  1857. unlock_page(page);
  1858. }
  1859. return ret;
  1860. }
  1861. EXPORT_SYMBOL(write_one_page);
  1862. /*
  1863. * For address_spaces which do not use buffers nor write back.
  1864. */
  1865. int __set_page_dirty_no_writeback(struct page *page)
  1866. {
  1867. if (!PageDirty(page))
  1868. return !TestSetPageDirty(page);
  1869. return 0;
  1870. }
  1871. /*
  1872. * Helper function for set_page_dirty family.
  1873. * NOTE: This relies on being atomic wrt interrupts.
  1874. */
  1875. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1876. {
  1877. trace_writeback_dirty_page(page, mapping);
  1878. if (mapping_cap_account_dirty(mapping)) {
  1879. struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
  1880. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1881. __inc_zone_page_state(page, NR_DIRTIED);
  1882. __inc_bdi_stat(bdi, BDI_RECLAIMABLE);
  1883. __inc_bdi_stat(bdi, BDI_DIRTIED);
  1884. task_io_account_write(PAGE_CACHE_SIZE);
  1885. current->nr_dirtied++;
  1886. this_cpu_inc(bdp_ratelimits);
  1887. }
  1888. }
  1889. EXPORT_SYMBOL(account_page_dirtied);
  1890. /*
  1891. * Helper function for deaccounting dirty page without writeback.
  1892. *
  1893. * Doing this should *normally* only ever be done when a page
  1894. * is truncated, and is not actually mapped anywhere at all. However,
  1895. * fs/buffer.c does this when it notices that somebody has cleaned
  1896. * out all the buffers on a page without actually doing it through
  1897. * the VM. Can you say "ext3 is horribly ugly"? Thought you could.
  1898. */
  1899. void account_page_cleaned(struct page *page, struct address_space *mapping)
  1900. {
  1901. if (mapping_cap_account_dirty(mapping)) {
  1902. dec_zone_page_state(page, NR_FILE_DIRTY);
  1903. dec_bdi_stat(inode_to_bdi(mapping->host), BDI_RECLAIMABLE);
  1904. task_io_account_cancelled_write(PAGE_CACHE_SIZE);
  1905. }
  1906. }
  1907. EXPORT_SYMBOL(account_page_cleaned);
  1908. /*
  1909. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1910. * its radix tree.
  1911. *
  1912. * This is also used when a single buffer is being dirtied: we want to set the
  1913. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1914. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1915. *
  1916. * The caller must ensure this doesn't race with truncation. Most will simply
  1917. * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
  1918. * the pte lock held, which also locks out truncation.
  1919. */
  1920. int __set_page_dirty_nobuffers(struct page *page)
  1921. {
  1922. if (!TestSetPageDirty(page)) {
  1923. struct address_space *mapping = page_mapping(page);
  1924. unsigned long flags;
  1925. if (!mapping)
  1926. return 1;
  1927. spin_lock_irqsave(&mapping->tree_lock, flags);
  1928. BUG_ON(page_mapping(page) != mapping);
  1929. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1930. account_page_dirtied(page, mapping);
  1931. radix_tree_tag_set(&mapping->page_tree, page_index(page),
  1932. PAGECACHE_TAG_DIRTY);
  1933. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1934. if (mapping->host) {
  1935. /* !PageAnon && !swapper_space */
  1936. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1937. }
  1938. return 1;
  1939. }
  1940. return 0;
  1941. }
  1942. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1943. /*
  1944. * Call this whenever redirtying a page, to de-account the dirty counters
  1945. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  1946. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  1947. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  1948. * control.
  1949. */
  1950. void account_page_redirty(struct page *page)
  1951. {
  1952. struct address_space *mapping = page->mapping;
  1953. if (mapping && mapping_cap_account_dirty(mapping)) {
  1954. current->nr_dirtied--;
  1955. dec_zone_page_state(page, NR_DIRTIED);
  1956. dec_bdi_stat(inode_to_bdi(mapping->host), BDI_DIRTIED);
  1957. }
  1958. }
  1959. EXPORT_SYMBOL(account_page_redirty);
  1960. /*
  1961. * When a writepage implementation decides that it doesn't want to write this
  1962. * page for some reason, it should redirty the locked page via
  1963. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1964. */
  1965. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1966. {
  1967. int ret;
  1968. wbc->pages_skipped++;
  1969. ret = __set_page_dirty_nobuffers(page);
  1970. account_page_redirty(page);
  1971. return ret;
  1972. }
  1973. EXPORT_SYMBOL(redirty_page_for_writepage);
  1974. /*
  1975. * Dirty a page.
  1976. *
  1977. * For pages with a mapping this should be done under the page lock
  1978. * for the benefit of asynchronous memory errors who prefer a consistent
  1979. * dirty state. This rule can be broken in some special cases,
  1980. * but should be better not to.
  1981. *
  1982. * If the mapping doesn't provide a set_page_dirty a_op, then
  1983. * just fall through and assume that it wants buffer_heads.
  1984. */
  1985. int set_page_dirty(struct page *page)
  1986. {
  1987. struct address_space *mapping = page_mapping(page);
  1988. if (likely(mapping)) {
  1989. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1990. /*
  1991. * readahead/lru_deactivate_page could remain
  1992. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1993. * About readahead, if the page is written, the flags would be
  1994. * reset. So no problem.
  1995. * About lru_deactivate_page, if the page is redirty, the flag
  1996. * will be reset. So no problem. but if the page is used by readahead
  1997. * it will confuse readahead and make it restart the size rampup
  1998. * process. But it's a trivial problem.
  1999. */
  2000. if (PageReclaim(page))
  2001. ClearPageReclaim(page);
  2002. #ifdef CONFIG_BLOCK
  2003. if (!spd)
  2004. spd = __set_page_dirty_buffers;
  2005. #endif
  2006. return (*spd)(page);
  2007. }
  2008. if (!PageDirty(page)) {
  2009. if (!TestSetPageDirty(page))
  2010. return 1;
  2011. }
  2012. return 0;
  2013. }
  2014. EXPORT_SYMBOL(set_page_dirty);
  2015. /*
  2016. * set_page_dirty() is racy if the caller has no reference against
  2017. * page->mapping->host, and if the page is unlocked. This is because another
  2018. * CPU could truncate the page off the mapping and then free the mapping.
  2019. *
  2020. * Usually, the page _is_ locked, or the caller is a user-space process which
  2021. * holds a reference on the inode by having an open file.
  2022. *
  2023. * In other cases, the page should be locked before running set_page_dirty().
  2024. */
  2025. int set_page_dirty_lock(struct page *page)
  2026. {
  2027. int ret;
  2028. lock_page(page);
  2029. ret = set_page_dirty(page);
  2030. unlock_page(page);
  2031. return ret;
  2032. }
  2033. EXPORT_SYMBOL(set_page_dirty_lock);
  2034. /*
  2035. * Clear a page's dirty flag, while caring for dirty memory accounting.
  2036. * Returns true if the page was previously dirty.
  2037. *
  2038. * This is for preparing to put the page under writeout. We leave the page
  2039. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  2040. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  2041. * implementation will run either set_page_writeback() or set_page_dirty(),
  2042. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  2043. * back into sync.
  2044. *
  2045. * This incoherency between the page's dirty flag and radix-tree tag is
  2046. * unfortunate, but it only exists while the page is locked.
  2047. */
  2048. int clear_page_dirty_for_io(struct page *page)
  2049. {
  2050. struct address_space *mapping = page_mapping(page);
  2051. BUG_ON(!PageLocked(page));
  2052. if (mapping && mapping_cap_account_dirty(mapping)) {
  2053. /*
  2054. * Yes, Virginia, this is indeed insane.
  2055. *
  2056. * We use this sequence to make sure that
  2057. * (a) we account for dirty stats properly
  2058. * (b) we tell the low-level filesystem to
  2059. * mark the whole page dirty if it was
  2060. * dirty in a pagetable. Only to then
  2061. * (c) clean the page again and return 1 to
  2062. * cause the writeback.
  2063. *
  2064. * This way we avoid all nasty races with the
  2065. * dirty bit in multiple places and clearing
  2066. * them concurrently from different threads.
  2067. *
  2068. * Note! Normally the "set_page_dirty(page)"
  2069. * has no effect on the actual dirty bit - since
  2070. * that will already usually be set. But we
  2071. * need the side effects, and it can help us
  2072. * avoid races.
  2073. *
  2074. * We basically use the page "master dirty bit"
  2075. * as a serialization point for all the different
  2076. * threads doing their things.
  2077. */
  2078. if (page_mkclean(page))
  2079. set_page_dirty(page);
  2080. /*
  2081. * We carefully synchronise fault handlers against
  2082. * installing a dirty pte and marking the page dirty
  2083. * at this point. We do this by having them hold the
  2084. * page lock while dirtying the page, and pages are
  2085. * always locked coming in here, so we get the desired
  2086. * exclusion.
  2087. */
  2088. if (TestClearPageDirty(page)) {
  2089. dec_zone_page_state(page, NR_FILE_DIRTY);
  2090. dec_bdi_stat(inode_to_bdi(mapping->host),
  2091. BDI_RECLAIMABLE);
  2092. return 1;
  2093. }
  2094. return 0;
  2095. }
  2096. return TestClearPageDirty(page);
  2097. }
  2098. EXPORT_SYMBOL(clear_page_dirty_for_io);
  2099. int test_clear_page_writeback(struct page *page)
  2100. {
  2101. struct address_space *mapping = page_mapping(page);
  2102. struct mem_cgroup *memcg;
  2103. int ret;
  2104. memcg = mem_cgroup_begin_page_stat(page);
  2105. if (mapping) {
  2106. struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
  2107. unsigned long flags;
  2108. spin_lock_irqsave(&mapping->tree_lock, flags);
  2109. ret = TestClearPageWriteback(page);
  2110. if (ret) {
  2111. radix_tree_tag_clear(&mapping->page_tree,
  2112. page_index(page),
  2113. PAGECACHE_TAG_WRITEBACK);
  2114. if (bdi_cap_account_writeback(bdi)) {
  2115. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  2116. __bdi_writeout_inc(bdi);
  2117. }
  2118. }
  2119. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2120. } else {
  2121. ret = TestClearPageWriteback(page);
  2122. }
  2123. if (ret) {
  2124. mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
  2125. dec_zone_page_state(page, NR_WRITEBACK);
  2126. inc_zone_page_state(page, NR_WRITTEN);
  2127. }
  2128. mem_cgroup_end_page_stat(memcg);
  2129. return ret;
  2130. }
  2131. int __test_set_page_writeback(struct page *page, bool keep_write)
  2132. {
  2133. struct address_space *mapping = page_mapping(page);
  2134. struct mem_cgroup *memcg;
  2135. int ret;
  2136. memcg = mem_cgroup_begin_page_stat(page);
  2137. if (mapping) {
  2138. struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
  2139. unsigned long flags;
  2140. spin_lock_irqsave(&mapping->tree_lock, flags);
  2141. ret = TestSetPageWriteback(page);
  2142. if (!ret) {
  2143. radix_tree_tag_set(&mapping->page_tree,
  2144. page_index(page),
  2145. PAGECACHE_TAG_WRITEBACK);
  2146. if (bdi_cap_account_writeback(bdi))
  2147. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  2148. }
  2149. if (!PageDirty(page))
  2150. radix_tree_tag_clear(&mapping->page_tree,
  2151. page_index(page),
  2152. PAGECACHE_TAG_DIRTY);
  2153. if (!keep_write)
  2154. radix_tree_tag_clear(&mapping->page_tree,
  2155. page_index(page),
  2156. PAGECACHE_TAG_TOWRITE);
  2157. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2158. } else {
  2159. ret = TestSetPageWriteback(page);
  2160. }
  2161. if (!ret) {
  2162. mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
  2163. inc_zone_page_state(page, NR_WRITEBACK);
  2164. }
  2165. mem_cgroup_end_page_stat(memcg);
  2166. return ret;
  2167. }
  2168. EXPORT_SYMBOL(__test_set_page_writeback);
  2169. /*
  2170. * Return true if any of the pages in the mapping are marked with the
  2171. * passed tag.
  2172. */
  2173. int mapping_tagged(struct address_space *mapping, int tag)
  2174. {
  2175. return radix_tree_tagged(&mapping->page_tree, tag);
  2176. }
  2177. EXPORT_SYMBOL(mapping_tagged);
  2178. /**
  2179. * wait_for_stable_page() - wait for writeback to finish, if necessary.
  2180. * @page: The page to wait on.
  2181. *
  2182. * This function determines if the given page is related to a backing device
  2183. * that requires page contents to be held stable during writeback. If so, then
  2184. * it will wait for any pending writeback to complete.
  2185. */
  2186. void wait_for_stable_page(struct page *page)
  2187. {
  2188. if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
  2189. wait_on_page_writeback(page);
  2190. }
  2191. EXPORT_SYMBOL_GPL(wait_for_stable_page);