kmemleak.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927
  1. /*
  2. * mm/kmemleak.c
  3. *
  4. * Copyright (C) 2008 ARM Limited
  5. * Written by Catalin Marinas <catalin.marinas@arm.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. *
  21. * For more information on the algorithm and kmemleak usage, please see
  22. * Documentation/kmemleak.txt.
  23. *
  24. * Notes on locking
  25. * ----------------
  26. *
  27. * The following locks and mutexes are used by kmemleak:
  28. *
  29. * - kmemleak_lock (rwlock): protects the object_list modifications and
  30. * accesses to the object_tree_root. The object_list is the main list
  31. * holding the metadata (struct kmemleak_object) for the allocated memory
  32. * blocks. The object_tree_root is a red black tree used to look-up
  33. * metadata based on a pointer to the corresponding memory block. The
  34. * kmemleak_object structures are added to the object_list and
  35. * object_tree_root in the create_object() function called from the
  36. * kmemleak_alloc() callback and removed in delete_object() called from the
  37. * kmemleak_free() callback
  38. * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39. * the metadata (e.g. count) are protected by this lock. Note that some
  40. * members of this structure may be protected by other means (atomic or
  41. * kmemleak_lock). This lock is also held when scanning the corresponding
  42. * memory block to avoid the kernel freeing it via the kmemleak_free()
  43. * callback. This is less heavyweight than holding a global lock like
  44. * kmemleak_lock during scanning
  45. * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46. * unreferenced objects at a time. The gray_list contains the objects which
  47. * are already referenced or marked as false positives and need to be
  48. * scanned. This list is only modified during a scanning episode when the
  49. * scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50. * Note that the kmemleak_object.use_count is incremented when an object is
  51. * added to the gray_list and therefore cannot be freed. This mutex also
  52. * prevents multiple users of the "kmemleak" debugfs file together with
  53. * modifications to the memory scanning parameters including the scan_thread
  54. * pointer
  55. *
  56. * The kmemleak_object structures have a use_count incremented or decremented
  57. * using the get_object()/put_object() functions. When the use_count becomes
  58. * 0, this count can no longer be incremented and put_object() schedules the
  59. * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  60. * function must be protected by rcu_read_lock() to avoid accessing a freed
  61. * structure.
  62. */
  63. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  64. #include <linux/init.h>
  65. #include <linux/kernel.h>
  66. #include <linux/list.h>
  67. #include <linux/sched.h>
  68. #include <linux/jiffies.h>
  69. #include <linux/delay.h>
  70. #include <linux/export.h>
  71. #include <linux/kthread.h>
  72. #include <linux/rbtree.h>
  73. #include <linux/fs.h>
  74. #include <linux/debugfs.h>
  75. #include <linux/seq_file.h>
  76. #include <linux/cpumask.h>
  77. #include <linux/spinlock.h>
  78. #include <linux/mutex.h>
  79. #include <linux/rcupdate.h>
  80. #include <linux/stacktrace.h>
  81. #include <linux/cache.h>
  82. #include <linux/percpu.h>
  83. #include <linux/hardirq.h>
  84. #include <linux/mmzone.h>
  85. #include <linux/slab.h>
  86. #include <linux/thread_info.h>
  87. #include <linux/err.h>
  88. #include <linux/uaccess.h>
  89. #include <linux/string.h>
  90. #include <linux/nodemask.h>
  91. #include <linux/mm.h>
  92. #include <linux/workqueue.h>
  93. #include <linux/crc32.h>
  94. #include <asm/sections.h>
  95. #include <asm/processor.h>
  96. #include <linux/atomic.h>
  97. #include <linux/kasan.h>
  98. #include <linux/kmemcheck.h>
  99. #include <linux/kmemleak.h>
  100. #include <linux/memory_hotplug.h>
  101. /*
  102. * Kmemleak configuration and common defines.
  103. */
  104. #define MAX_TRACE 16 /* stack trace length */
  105. #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
  106. #define SECS_FIRST_SCAN 60 /* delay before the first scan */
  107. #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
  108. #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
  109. #define BYTES_PER_POINTER sizeof(void *)
  110. /* GFP bitmask for kmemleak internal allocations */
  111. #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
  112. __GFP_NOACCOUNT)) | \
  113. __GFP_NORETRY | __GFP_NOMEMALLOC | \
  114. __GFP_NOWARN)
  115. /* scanning area inside a memory block */
  116. struct kmemleak_scan_area {
  117. struct hlist_node node;
  118. unsigned long start;
  119. size_t size;
  120. };
  121. #define KMEMLEAK_GREY 0
  122. #define KMEMLEAK_BLACK -1
  123. /*
  124. * Structure holding the metadata for each allocated memory block.
  125. * Modifications to such objects should be made while holding the
  126. * object->lock. Insertions or deletions from object_list, gray_list or
  127. * rb_node are already protected by the corresponding locks or mutex (see
  128. * the notes on locking above). These objects are reference-counted
  129. * (use_count) and freed using the RCU mechanism.
  130. */
  131. struct kmemleak_object {
  132. spinlock_t lock;
  133. unsigned long flags; /* object status flags */
  134. struct list_head object_list;
  135. struct list_head gray_list;
  136. struct rb_node rb_node;
  137. struct rcu_head rcu; /* object_list lockless traversal */
  138. /* object usage count; object freed when use_count == 0 */
  139. atomic_t use_count;
  140. unsigned long pointer;
  141. size_t size;
  142. /* minimum number of a pointers found before it is considered leak */
  143. int min_count;
  144. /* the total number of pointers found pointing to this object */
  145. int count;
  146. /* checksum for detecting modified objects */
  147. u32 checksum;
  148. /* memory ranges to be scanned inside an object (empty for all) */
  149. struct hlist_head area_list;
  150. unsigned long trace[MAX_TRACE];
  151. unsigned int trace_len;
  152. unsigned long jiffies; /* creation timestamp */
  153. pid_t pid; /* pid of the current task */
  154. char comm[TASK_COMM_LEN]; /* executable name */
  155. };
  156. /* flag representing the memory block allocation status */
  157. #define OBJECT_ALLOCATED (1 << 0)
  158. /* flag set after the first reporting of an unreference object */
  159. #define OBJECT_REPORTED (1 << 1)
  160. /* flag set to not scan the object */
  161. #define OBJECT_NO_SCAN (1 << 2)
  162. /* number of bytes to print per line; must be 16 or 32 */
  163. #define HEX_ROW_SIZE 16
  164. /* number of bytes to print at a time (1, 2, 4, 8) */
  165. #define HEX_GROUP_SIZE 1
  166. /* include ASCII after the hex output */
  167. #define HEX_ASCII 1
  168. /* max number of lines to be printed */
  169. #define HEX_MAX_LINES 2
  170. /* the list of all allocated objects */
  171. static LIST_HEAD(object_list);
  172. /* the list of gray-colored objects (see color_gray comment below) */
  173. static LIST_HEAD(gray_list);
  174. /* search tree for object boundaries */
  175. static struct rb_root object_tree_root = RB_ROOT;
  176. /* rw_lock protecting the access to object_list and object_tree_root */
  177. static DEFINE_RWLOCK(kmemleak_lock);
  178. /* allocation caches for kmemleak internal data */
  179. static struct kmem_cache *object_cache;
  180. static struct kmem_cache *scan_area_cache;
  181. /* set if tracing memory operations is enabled */
  182. static int kmemleak_enabled;
  183. /* set in the late_initcall if there were no errors */
  184. static int kmemleak_initialized;
  185. /* enables or disables early logging of the memory operations */
  186. static int kmemleak_early_log = 1;
  187. /* set if a kmemleak warning was issued */
  188. static int kmemleak_warning;
  189. /* set if a fatal kmemleak error has occurred */
  190. static int kmemleak_error;
  191. /* minimum and maximum address that may be valid pointers */
  192. static unsigned long min_addr = ULONG_MAX;
  193. static unsigned long max_addr;
  194. static struct task_struct *scan_thread;
  195. /* used to avoid reporting of recently allocated objects */
  196. static unsigned long jiffies_min_age;
  197. static unsigned long jiffies_last_scan;
  198. /* delay between automatic memory scannings */
  199. static signed long jiffies_scan_wait;
  200. /* enables or disables the task stacks scanning */
  201. static int kmemleak_stack_scan = 1;
  202. /* protects the memory scanning, parameters and debug/kmemleak file access */
  203. static DEFINE_MUTEX(scan_mutex);
  204. /* setting kmemleak=on, will set this var, skipping the disable */
  205. static int kmemleak_skip_disable;
  206. /* If there are leaks that can be reported */
  207. static bool kmemleak_found_leaks;
  208. /*
  209. * Early object allocation/freeing logging. Kmemleak is initialized after the
  210. * kernel allocator. However, both the kernel allocator and kmemleak may
  211. * allocate memory blocks which need to be tracked. Kmemleak defines an
  212. * arbitrary buffer to hold the allocation/freeing information before it is
  213. * fully initialized.
  214. */
  215. /* kmemleak operation type for early logging */
  216. enum {
  217. KMEMLEAK_ALLOC,
  218. KMEMLEAK_ALLOC_PERCPU,
  219. KMEMLEAK_FREE,
  220. KMEMLEAK_FREE_PART,
  221. KMEMLEAK_FREE_PERCPU,
  222. KMEMLEAK_NOT_LEAK,
  223. KMEMLEAK_IGNORE,
  224. KMEMLEAK_SCAN_AREA,
  225. KMEMLEAK_NO_SCAN
  226. };
  227. /*
  228. * Structure holding the information passed to kmemleak callbacks during the
  229. * early logging.
  230. */
  231. struct early_log {
  232. int op_type; /* kmemleak operation type */
  233. const void *ptr; /* allocated/freed memory block */
  234. size_t size; /* memory block size */
  235. int min_count; /* minimum reference count */
  236. unsigned long trace[MAX_TRACE]; /* stack trace */
  237. unsigned int trace_len; /* stack trace length */
  238. };
  239. /* early logging buffer and current position */
  240. static struct early_log
  241. early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
  242. static int crt_early_log __initdata;
  243. static void kmemleak_disable(void);
  244. /*
  245. * Print a warning and dump the stack trace.
  246. */
  247. #define kmemleak_warn(x...) do { \
  248. pr_warning(x); \
  249. dump_stack(); \
  250. kmemleak_warning = 1; \
  251. } while (0)
  252. /*
  253. * Macro invoked when a serious kmemleak condition occurred and cannot be
  254. * recovered from. Kmemleak will be disabled and further allocation/freeing
  255. * tracing no longer available.
  256. */
  257. #define kmemleak_stop(x...) do { \
  258. kmemleak_warn(x); \
  259. kmemleak_disable(); \
  260. } while (0)
  261. /*
  262. * Printing of the objects hex dump to the seq file. The number of lines to be
  263. * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
  264. * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
  265. * with the object->lock held.
  266. */
  267. static void hex_dump_object(struct seq_file *seq,
  268. struct kmemleak_object *object)
  269. {
  270. const u8 *ptr = (const u8 *)object->pointer;
  271. int i, len, remaining;
  272. unsigned char linebuf[HEX_ROW_SIZE * 5];
  273. /* limit the number of lines to HEX_MAX_LINES */
  274. remaining = len =
  275. min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
  276. seq_printf(seq, " hex dump (first %d bytes):\n", len);
  277. for (i = 0; i < len; i += HEX_ROW_SIZE) {
  278. int linelen = min(remaining, HEX_ROW_SIZE);
  279. remaining -= HEX_ROW_SIZE;
  280. hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
  281. HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
  282. HEX_ASCII);
  283. seq_printf(seq, " %s\n", linebuf);
  284. }
  285. }
  286. /*
  287. * Object colors, encoded with count and min_count:
  288. * - white - orphan object, not enough references to it (count < min_count)
  289. * - gray - not orphan, not marked as false positive (min_count == 0) or
  290. * sufficient references to it (count >= min_count)
  291. * - black - ignore, it doesn't contain references (e.g. text section)
  292. * (min_count == -1). No function defined for this color.
  293. * Newly created objects don't have any color assigned (object->count == -1)
  294. * before the next memory scan when they become white.
  295. */
  296. static bool color_white(const struct kmemleak_object *object)
  297. {
  298. return object->count != KMEMLEAK_BLACK &&
  299. object->count < object->min_count;
  300. }
  301. static bool color_gray(const struct kmemleak_object *object)
  302. {
  303. return object->min_count != KMEMLEAK_BLACK &&
  304. object->count >= object->min_count;
  305. }
  306. /*
  307. * Objects are considered unreferenced only if their color is white, they have
  308. * not be deleted and have a minimum age to avoid false positives caused by
  309. * pointers temporarily stored in CPU registers.
  310. */
  311. static bool unreferenced_object(struct kmemleak_object *object)
  312. {
  313. return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
  314. time_before_eq(object->jiffies + jiffies_min_age,
  315. jiffies_last_scan);
  316. }
  317. /*
  318. * Printing of the unreferenced objects information to the seq file. The
  319. * print_unreferenced function must be called with the object->lock held.
  320. */
  321. static void print_unreferenced(struct seq_file *seq,
  322. struct kmemleak_object *object)
  323. {
  324. int i;
  325. unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
  326. seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
  327. object->pointer, object->size);
  328. seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
  329. object->comm, object->pid, object->jiffies,
  330. msecs_age / 1000, msecs_age % 1000);
  331. hex_dump_object(seq, object);
  332. seq_printf(seq, " backtrace:\n");
  333. for (i = 0; i < object->trace_len; i++) {
  334. void *ptr = (void *)object->trace[i];
  335. seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
  336. }
  337. }
  338. /*
  339. * Print the kmemleak_object information. This function is used mainly for
  340. * debugging special cases when kmemleak operations. It must be called with
  341. * the object->lock held.
  342. */
  343. static void dump_object_info(struct kmemleak_object *object)
  344. {
  345. struct stack_trace trace;
  346. trace.nr_entries = object->trace_len;
  347. trace.entries = object->trace;
  348. pr_notice("Object 0x%08lx (size %zu):\n",
  349. object->pointer, object->size);
  350. pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
  351. object->comm, object->pid, object->jiffies);
  352. pr_notice(" min_count = %d\n", object->min_count);
  353. pr_notice(" count = %d\n", object->count);
  354. pr_notice(" flags = 0x%lx\n", object->flags);
  355. pr_notice(" checksum = %u\n", object->checksum);
  356. pr_notice(" backtrace:\n");
  357. print_stack_trace(&trace, 4);
  358. }
  359. /*
  360. * Look-up a memory block metadata (kmemleak_object) in the object search
  361. * tree based on a pointer value. If alias is 0, only values pointing to the
  362. * beginning of the memory block are allowed. The kmemleak_lock must be held
  363. * when calling this function.
  364. */
  365. static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
  366. {
  367. struct rb_node *rb = object_tree_root.rb_node;
  368. while (rb) {
  369. struct kmemleak_object *object =
  370. rb_entry(rb, struct kmemleak_object, rb_node);
  371. if (ptr < object->pointer)
  372. rb = object->rb_node.rb_left;
  373. else if (object->pointer + object->size <= ptr)
  374. rb = object->rb_node.rb_right;
  375. else if (object->pointer == ptr || alias)
  376. return object;
  377. else {
  378. kmemleak_warn("Found object by alias at 0x%08lx\n",
  379. ptr);
  380. dump_object_info(object);
  381. break;
  382. }
  383. }
  384. return NULL;
  385. }
  386. /*
  387. * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
  388. * that once an object's use_count reached 0, the RCU freeing was already
  389. * registered and the object should no longer be used. This function must be
  390. * called under the protection of rcu_read_lock().
  391. */
  392. static int get_object(struct kmemleak_object *object)
  393. {
  394. return atomic_inc_not_zero(&object->use_count);
  395. }
  396. /*
  397. * RCU callback to free a kmemleak_object.
  398. */
  399. static void free_object_rcu(struct rcu_head *rcu)
  400. {
  401. struct hlist_node *tmp;
  402. struct kmemleak_scan_area *area;
  403. struct kmemleak_object *object =
  404. container_of(rcu, struct kmemleak_object, rcu);
  405. /*
  406. * Once use_count is 0 (guaranteed by put_object), there is no other
  407. * code accessing this object, hence no need for locking.
  408. */
  409. hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
  410. hlist_del(&area->node);
  411. kmem_cache_free(scan_area_cache, area);
  412. }
  413. kmem_cache_free(object_cache, object);
  414. }
  415. /*
  416. * Decrement the object use_count. Once the count is 0, free the object using
  417. * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
  418. * delete_object() path, the delayed RCU freeing ensures that there is no
  419. * recursive call to the kernel allocator. Lock-less RCU object_list traversal
  420. * is also possible.
  421. */
  422. static void put_object(struct kmemleak_object *object)
  423. {
  424. if (!atomic_dec_and_test(&object->use_count))
  425. return;
  426. /* should only get here after delete_object was called */
  427. WARN_ON(object->flags & OBJECT_ALLOCATED);
  428. call_rcu(&object->rcu, free_object_rcu);
  429. }
  430. /*
  431. * Look up an object in the object search tree and increase its use_count.
  432. */
  433. static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
  434. {
  435. unsigned long flags;
  436. struct kmemleak_object *object = NULL;
  437. rcu_read_lock();
  438. read_lock_irqsave(&kmemleak_lock, flags);
  439. if (ptr >= min_addr && ptr < max_addr)
  440. object = lookup_object(ptr, alias);
  441. read_unlock_irqrestore(&kmemleak_lock, flags);
  442. /* check whether the object is still available */
  443. if (object && !get_object(object))
  444. object = NULL;
  445. rcu_read_unlock();
  446. return object;
  447. }
  448. /*
  449. * Save stack trace to the given array of MAX_TRACE size.
  450. */
  451. static int __save_stack_trace(unsigned long *trace)
  452. {
  453. struct stack_trace stack_trace;
  454. stack_trace.max_entries = MAX_TRACE;
  455. stack_trace.nr_entries = 0;
  456. stack_trace.entries = trace;
  457. stack_trace.skip = 2;
  458. save_stack_trace(&stack_trace);
  459. return stack_trace.nr_entries;
  460. }
  461. /*
  462. * Create the metadata (struct kmemleak_object) corresponding to an allocated
  463. * memory block and add it to the object_list and object_tree_root.
  464. */
  465. static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
  466. int min_count, gfp_t gfp)
  467. {
  468. unsigned long flags;
  469. struct kmemleak_object *object, *parent;
  470. struct rb_node **link, *rb_parent;
  471. object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
  472. if (!object) {
  473. pr_warning("Cannot allocate a kmemleak_object structure\n");
  474. kmemleak_disable();
  475. return NULL;
  476. }
  477. INIT_LIST_HEAD(&object->object_list);
  478. INIT_LIST_HEAD(&object->gray_list);
  479. INIT_HLIST_HEAD(&object->area_list);
  480. spin_lock_init(&object->lock);
  481. atomic_set(&object->use_count, 1);
  482. object->flags = OBJECT_ALLOCATED;
  483. object->pointer = ptr;
  484. object->size = size;
  485. object->min_count = min_count;
  486. object->count = 0; /* white color initially */
  487. object->jiffies = jiffies;
  488. object->checksum = 0;
  489. /* task information */
  490. if (in_irq()) {
  491. object->pid = 0;
  492. strncpy(object->comm, "hardirq", sizeof(object->comm));
  493. } else if (in_softirq()) {
  494. object->pid = 0;
  495. strncpy(object->comm, "softirq", sizeof(object->comm));
  496. } else {
  497. object->pid = current->pid;
  498. /*
  499. * There is a small chance of a race with set_task_comm(),
  500. * however using get_task_comm() here may cause locking
  501. * dependency issues with current->alloc_lock. In the worst
  502. * case, the command line is not correct.
  503. */
  504. strncpy(object->comm, current->comm, sizeof(object->comm));
  505. }
  506. /* kernel backtrace */
  507. object->trace_len = __save_stack_trace(object->trace);
  508. write_lock_irqsave(&kmemleak_lock, flags);
  509. min_addr = min(min_addr, ptr);
  510. max_addr = max(max_addr, ptr + size);
  511. link = &object_tree_root.rb_node;
  512. rb_parent = NULL;
  513. while (*link) {
  514. rb_parent = *link;
  515. parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
  516. if (ptr + size <= parent->pointer)
  517. link = &parent->rb_node.rb_left;
  518. else if (parent->pointer + parent->size <= ptr)
  519. link = &parent->rb_node.rb_right;
  520. else {
  521. kmemleak_stop("Cannot insert 0x%lx into the object "
  522. "search tree (overlaps existing)\n",
  523. ptr);
  524. kmem_cache_free(object_cache, object);
  525. object = parent;
  526. spin_lock(&object->lock);
  527. dump_object_info(object);
  528. spin_unlock(&object->lock);
  529. goto out;
  530. }
  531. }
  532. rb_link_node(&object->rb_node, rb_parent, link);
  533. rb_insert_color(&object->rb_node, &object_tree_root);
  534. list_add_tail_rcu(&object->object_list, &object_list);
  535. out:
  536. write_unlock_irqrestore(&kmemleak_lock, flags);
  537. return object;
  538. }
  539. /*
  540. * Remove the metadata (struct kmemleak_object) for a memory block from the
  541. * object_list and object_tree_root and decrement its use_count.
  542. */
  543. static void __delete_object(struct kmemleak_object *object)
  544. {
  545. unsigned long flags;
  546. write_lock_irqsave(&kmemleak_lock, flags);
  547. rb_erase(&object->rb_node, &object_tree_root);
  548. list_del_rcu(&object->object_list);
  549. write_unlock_irqrestore(&kmemleak_lock, flags);
  550. WARN_ON(!(object->flags & OBJECT_ALLOCATED));
  551. WARN_ON(atomic_read(&object->use_count) < 2);
  552. /*
  553. * Locking here also ensures that the corresponding memory block
  554. * cannot be freed when it is being scanned.
  555. */
  556. spin_lock_irqsave(&object->lock, flags);
  557. object->flags &= ~OBJECT_ALLOCATED;
  558. spin_unlock_irqrestore(&object->lock, flags);
  559. put_object(object);
  560. }
  561. /*
  562. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  563. * delete it.
  564. */
  565. static void delete_object_full(unsigned long ptr)
  566. {
  567. struct kmemleak_object *object;
  568. object = find_and_get_object(ptr, 0);
  569. if (!object) {
  570. #ifdef DEBUG
  571. kmemleak_warn("Freeing unknown object at 0x%08lx\n",
  572. ptr);
  573. #endif
  574. return;
  575. }
  576. __delete_object(object);
  577. put_object(object);
  578. }
  579. /*
  580. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  581. * delete it. If the memory block is partially freed, the function may create
  582. * additional metadata for the remaining parts of the block.
  583. */
  584. static void delete_object_part(unsigned long ptr, size_t size)
  585. {
  586. struct kmemleak_object *object;
  587. unsigned long start, end;
  588. object = find_and_get_object(ptr, 1);
  589. if (!object) {
  590. #ifdef DEBUG
  591. kmemleak_warn("Partially freeing unknown object at 0x%08lx "
  592. "(size %zu)\n", ptr, size);
  593. #endif
  594. return;
  595. }
  596. __delete_object(object);
  597. /*
  598. * Create one or two objects that may result from the memory block
  599. * split. Note that partial freeing is only done by free_bootmem() and
  600. * this happens before kmemleak_init() is called. The path below is
  601. * only executed during early log recording in kmemleak_init(), so
  602. * GFP_KERNEL is enough.
  603. */
  604. start = object->pointer;
  605. end = object->pointer + object->size;
  606. if (ptr > start)
  607. create_object(start, ptr - start, object->min_count,
  608. GFP_KERNEL);
  609. if (ptr + size < end)
  610. create_object(ptr + size, end - ptr - size, object->min_count,
  611. GFP_KERNEL);
  612. put_object(object);
  613. }
  614. static void __paint_it(struct kmemleak_object *object, int color)
  615. {
  616. object->min_count = color;
  617. if (color == KMEMLEAK_BLACK)
  618. object->flags |= OBJECT_NO_SCAN;
  619. }
  620. static void paint_it(struct kmemleak_object *object, int color)
  621. {
  622. unsigned long flags;
  623. spin_lock_irqsave(&object->lock, flags);
  624. __paint_it(object, color);
  625. spin_unlock_irqrestore(&object->lock, flags);
  626. }
  627. static void paint_ptr(unsigned long ptr, int color)
  628. {
  629. struct kmemleak_object *object;
  630. object = find_and_get_object(ptr, 0);
  631. if (!object) {
  632. kmemleak_warn("Trying to color unknown object "
  633. "at 0x%08lx as %s\n", ptr,
  634. (color == KMEMLEAK_GREY) ? "Grey" :
  635. (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
  636. return;
  637. }
  638. paint_it(object, color);
  639. put_object(object);
  640. }
  641. /*
  642. * Mark an object permanently as gray-colored so that it can no longer be
  643. * reported as a leak. This is used in general to mark a false positive.
  644. */
  645. static void make_gray_object(unsigned long ptr)
  646. {
  647. paint_ptr(ptr, KMEMLEAK_GREY);
  648. }
  649. /*
  650. * Mark the object as black-colored so that it is ignored from scans and
  651. * reporting.
  652. */
  653. static void make_black_object(unsigned long ptr)
  654. {
  655. paint_ptr(ptr, KMEMLEAK_BLACK);
  656. }
  657. /*
  658. * Add a scanning area to the object. If at least one such area is added,
  659. * kmemleak will only scan these ranges rather than the whole memory block.
  660. */
  661. static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
  662. {
  663. unsigned long flags;
  664. struct kmemleak_object *object;
  665. struct kmemleak_scan_area *area;
  666. object = find_and_get_object(ptr, 1);
  667. if (!object) {
  668. kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
  669. ptr);
  670. return;
  671. }
  672. area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
  673. if (!area) {
  674. pr_warning("Cannot allocate a scan area\n");
  675. goto out;
  676. }
  677. spin_lock_irqsave(&object->lock, flags);
  678. if (size == SIZE_MAX) {
  679. size = object->pointer + object->size - ptr;
  680. } else if (ptr + size > object->pointer + object->size) {
  681. kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
  682. dump_object_info(object);
  683. kmem_cache_free(scan_area_cache, area);
  684. goto out_unlock;
  685. }
  686. INIT_HLIST_NODE(&area->node);
  687. area->start = ptr;
  688. area->size = size;
  689. hlist_add_head(&area->node, &object->area_list);
  690. out_unlock:
  691. spin_unlock_irqrestore(&object->lock, flags);
  692. out:
  693. put_object(object);
  694. }
  695. /*
  696. * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
  697. * pointer. Such object will not be scanned by kmemleak but references to it
  698. * are searched.
  699. */
  700. static void object_no_scan(unsigned long ptr)
  701. {
  702. unsigned long flags;
  703. struct kmemleak_object *object;
  704. object = find_and_get_object(ptr, 0);
  705. if (!object) {
  706. kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
  707. return;
  708. }
  709. spin_lock_irqsave(&object->lock, flags);
  710. object->flags |= OBJECT_NO_SCAN;
  711. spin_unlock_irqrestore(&object->lock, flags);
  712. put_object(object);
  713. }
  714. /*
  715. * Log an early kmemleak_* call to the early_log buffer. These calls will be
  716. * processed later once kmemleak is fully initialized.
  717. */
  718. static void __init log_early(int op_type, const void *ptr, size_t size,
  719. int min_count)
  720. {
  721. unsigned long flags;
  722. struct early_log *log;
  723. if (kmemleak_error) {
  724. /* kmemleak stopped recording, just count the requests */
  725. crt_early_log++;
  726. return;
  727. }
  728. if (crt_early_log >= ARRAY_SIZE(early_log)) {
  729. kmemleak_disable();
  730. return;
  731. }
  732. /*
  733. * There is no need for locking since the kernel is still in UP mode
  734. * at this stage. Disabling the IRQs is enough.
  735. */
  736. local_irq_save(flags);
  737. log = &early_log[crt_early_log];
  738. log->op_type = op_type;
  739. log->ptr = ptr;
  740. log->size = size;
  741. log->min_count = min_count;
  742. log->trace_len = __save_stack_trace(log->trace);
  743. crt_early_log++;
  744. local_irq_restore(flags);
  745. }
  746. /*
  747. * Log an early allocated block and populate the stack trace.
  748. */
  749. static void early_alloc(struct early_log *log)
  750. {
  751. struct kmemleak_object *object;
  752. unsigned long flags;
  753. int i;
  754. if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
  755. return;
  756. /*
  757. * RCU locking needed to ensure object is not freed via put_object().
  758. */
  759. rcu_read_lock();
  760. object = create_object((unsigned long)log->ptr, log->size,
  761. log->min_count, GFP_ATOMIC);
  762. if (!object)
  763. goto out;
  764. spin_lock_irqsave(&object->lock, flags);
  765. for (i = 0; i < log->trace_len; i++)
  766. object->trace[i] = log->trace[i];
  767. object->trace_len = log->trace_len;
  768. spin_unlock_irqrestore(&object->lock, flags);
  769. out:
  770. rcu_read_unlock();
  771. }
  772. /*
  773. * Log an early allocated block and populate the stack trace.
  774. */
  775. static void early_alloc_percpu(struct early_log *log)
  776. {
  777. unsigned int cpu;
  778. const void __percpu *ptr = log->ptr;
  779. for_each_possible_cpu(cpu) {
  780. log->ptr = per_cpu_ptr(ptr, cpu);
  781. early_alloc(log);
  782. }
  783. }
  784. /**
  785. * kmemleak_alloc - register a newly allocated object
  786. * @ptr: pointer to beginning of the object
  787. * @size: size of the object
  788. * @min_count: minimum number of references to this object. If during memory
  789. * scanning a number of references less than @min_count is found,
  790. * the object is reported as a memory leak. If @min_count is 0,
  791. * the object is never reported as a leak. If @min_count is -1,
  792. * the object is ignored (not scanned and not reported as a leak)
  793. * @gfp: kmalloc() flags used for kmemleak internal memory allocations
  794. *
  795. * This function is called from the kernel allocators when a new object
  796. * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
  797. */
  798. void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
  799. gfp_t gfp)
  800. {
  801. pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
  802. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  803. create_object((unsigned long)ptr, size, min_count, gfp);
  804. else if (kmemleak_early_log)
  805. log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
  806. }
  807. EXPORT_SYMBOL_GPL(kmemleak_alloc);
  808. /**
  809. * kmemleak_alloc_percpu - register a newly allocated __percpu object
  810. * @ptr: __percpu pointer to beginning of the object
  811. * @size: size of the object
  812. *
  813. * This function is called from the kernel percpu allocator when a new object
  814. * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
  815. * allocation.
  816. */
  817. void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
  818. {
  819. unsigned int cpu;
  820. pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
  821. /*
  822. * Percpu allocations are only scanned and not reported as leaks
  823. * (min_count is set to 0).
  824. */
  825. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  826. for_each_possible_cpu(cpu)
  827. create_object((unsigned long)per_cpu_ptr(ptr, cpu),
  828. size, 0, GFP_KERNEL);
  829. else if (kmemleak_early_log)
  830. log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
  831. }
  832. EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
  833. /**
  834. * kmemleak_free - unregister a previously registered object
  835. * @ptr: pointer to beginning of the object
  836. *
  837. * This function is called from the kernel allocators when an object (memory
  838. * block) is freed (kmem_cache_free, kfree, vfree etc.).
  839. */
  840. void __ref kmemleak_free(const void *ptr)
  841. {
  842. pr_debug("%s(0x%p)\n", __func__, ptr);
  843. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  844. delete_object_full((unsigned long)ptr);
  845. else if (kmemleak_early_log)
  846. log_early(KMEMLEAK_FREE, ptr, 0, 0);
  847. }
  848. EXPORT_SYMBOL_GPL(kmemleak_free);
  849. /**
  850. * kmemleak_free_part - partially unregister a previously registered object
  851. * @ptr: pointer to the beginning or inside the object. This also
  852. * represents the start of the range to be freed
  853. * @size: size to be unregistered
  854. *
  855. * This function is called when only a part of a memory block is freed
  856. * (usually from the bootmem allocator).
  857. */
  858. void __ref kmemleak_free_part(const void *ptr, size_t size)
  859. {
  860. pr_debug("%s(0x%p)\n", __func__, ptr);
  861. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  862. delete_object_part((unsigned long)ptr, size);
  863. else if (kmemleak_early_log)
  864. log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
  865. }
  866. EXPORT_SYMBOL_GPL(kmemleak_free_part);
  867. /**
  868. * kmemleak_free_percpu - unregister a previously registered __percpu object
  869. * @ptr: __percpu pointer to beginning of the object
  870. *
  871. * This function is called from the kernel percpu allocator when an object
  872. * (memory block) is freed (free_percpu).
  873. */
  874. void __ref kmemleak_free_percpu(const void __percpu *ptr)
  875. {
  876. unsigned int cpu;
  877. pr_debug("%s(0x%p)\n", __func__, ptr);
  878. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  879. for_each_possible_cpu(cpu)
  880. delete_object_full((unsigned long)per_cpu_ptr(ptr,
  881. cpu));
  882. else if (kmemleak_early_log)
  883. log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
  884. }
  885. EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
  886. /**
  887. * kmemleak_update_trace - update object allocation stack trace
  888. * @ptr: pointer to beginning of the object
  889. *
  890. * Override the object allocation stack trace for cases where the actual
  891. * allocation place is not always useful.
  892. */
  893. void __ref kmemleak_update_trace(const void *ptr)
  894. {
  895. struct kmemleak_object *object;
  896. unsigned long flags;
  897. pr_debug("%s(0x%p)\n", __func__, ptr);
  898. if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
  899. return;
  900. object = find_and_get_object((unsigned long)ptr, 1);
  901. if (!object) {
  902. #ifdef DEBUG
  903. kmemleak_warn("Updating stack trace for unknown object at %p\n",
  904. ptr);
  905. #endif
  906. return;
  907. }
  908. spin_lock_irqsave(&object->lock, flags);
  909. object->trace_len = __save_stack_trace(object->trace);
  910. spin_unlock_irqrestore(&object->lock, flags);
  911. put_object(object);
  912. }
  913. EXPORT_SYMBOL(kmemleak_update_trace);
  914. /**
  915. * kmemleak_not_leak - mark an allocated object as false positive
  916. * @ptr: pointer to beginning of the object
  917. *
  918. * Calling this function on an object will cause the memory block to no longer
  919. * be reported as leak and always be scanned.
  920. */
  921. void __ref kmemleak_not_leak(const void *ptr)
  922. {
  923. pr_debug("%s(0x%p)\n", __func__, ptr);
  924. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  925. make_gray_object((unsigned long)ptr);
  926. else if (kmemleak_early_log)
  927. log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
  928. }
  929. EXPORT_SYMBOL(kmemleak_not_leak);
  930. /**
  931. * kmemleak_ignore - ignore an allocated object
  932. * @ptr: pointer to beginning of the object
  933. *
  934. * Calling this function on an object will cause the memory block to be
  935. * ignored (not scanned and not reported as a leak). This is usually done when
  936. * it is known that the corresponding block is not a leak and does not contain
  937. * any references to other allocated memory blocks.
  938. */
  939. void __ref kmemleak_ignore(const void *ptr)
  940. {
  941. pr_debug("%s(0x%p)\n", __func__, ptr);
  942. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  943. make_black_object((unsigned long)ptr);
  944. else if (kmemleak_early_log)
  945. log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
  946. }
  947. EXPORT_SYMBOL(kmemleak_ignore);
  948. /**
  949. * kmemleak_scan_area - limit the range to be scanned in an allocated object
  950. * @ptr: pointer to beginning or inside the object. This also
  951. * represents the start of the scan area
  952. * @size: size of the scan area
  953. * @gfp: kmalloc() flags used for kmemleak internal memory allocations
  954. *
  955. * This function is used when it is known that only certain parts of an object
  956. * contain references to other objects. Kmemleak will only scan these areas
  957. * reducing the number false negatives.
  958. */
  959. void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
  960. {
  961. pr_debug("%s(0x%p)\n", __func__, ptr);
  962. if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
  963. add_scan_area((unsigned long)ptr, size, gfp);
  964. else if (kmemleak_early_log)
  965. log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
  966. }
  967. EXPORT_SYMBOL(kmemleak_scan_area);
  968. /**
  969. * kmemleak_no_scan - do not scan an allocated object
  970. * @ptr: pointer to beginning of the object
  971. *
  972. * This function notifies kmemleak not to scan the given memory block. Useful
  973. * in situations where it is known that the given object does not contain any
  974. * references to other objects. Kmemleak will not scan such objects reducing
  975. * the number of false negatives.
  976. */
  977. void __ref kmemleak_no_scan(const void *ptr)
  978. {
  979. pr_debug("%s(0x%p)\n", __func__, ptr);
  980. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  981. object_no_scan((unsigned long)ptr);
  982. else if (kmemleak_early_log)
  983. log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
  984. }
  985. EXPORT_SYMBOL(kmemleak_no_scan);
  986. /*
  987. * Update an object's checksum and return true if it was modified.
  988. */
  989. static bool update_checksum(struct kmemleak_object *object)
  990. {
  991. u32 old_csum = object->checksum;
  992. if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
  993. return false;
  994. kasan_disable_current();
  995. object->checksum = crc32(0, (void *)object->pointer, object->size);
  996. kasan_enable_current();
  997. return object->checksum != old_csum;
  998. }
  999. /*
  1000. * Memory scanning is a long process and it needs to be interruptable. This
  1001. * function checks whether such interrupt condition occurred.
  1002. */
  1003. static int scan_should_stop(void)
  1004. {
  1005. if (!kmemleak_enabled)
  1006. return 1;
  1007. /*
  1008. * This function may be called from either process or kthread context,
  1009. * hence the need to check for both stop conditions.
  1010. */
  1011. if (current->mm)
  1012. return signal_pending(current);
  1013. else
  1014. return kthread_should_stop();
  1015. return 0;
  1016. }
  1017. /*
  1018. * Scan a memory block (exclusive range) for valid pointers and add those
  1019. * found to the gray list.
  1020. */
  1021. static void scan_block(void *_start, void *_end,
  1022. struct kmemleak_object *scanned, int allow_resched)
  1023. {
  1024. unsigned long *ptr;
  1025. unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
  1026. unsigned long *end = _end - (BYTES_PER_POINTER - 1);
  1027. for (ptr = start; ptr < end; ptr++) {
  1028. struct kmemleak_object *object;
  1029. unsigned long flags;
  1030. unsigned long pointer;
  1031. if (allow_resched)
  1032. cond_resched();
  1033. if (scan_should_stop())
  1034. break;
  1035. /* don't scan uninitialized memory */
  1036. if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
  1037. BYTES_PER_POINTER))
  1038. continue;
  1039. kasan_disable_current();
  1040. pointer = *ptr;
  1041. kasan_enable_current();
  1042. object = find_and_get_object(pointer, 1);
  1043. if (!object)
  1044. continue;
  1045. if (object == scanned) {
  1046. /* self referenced, ignore */
  1047. put_object(object);
  1048. continue;
  1049. }
  1050. /*
  1051. * Avoid the lockdep recursive warning on object->lock being
  1052. * previously acquired in scan_object(). These locks are
  1053. * enclosed by scan_mutex.
  1054. */
  1055. spin_lock_irqsave_nested(&object->lock, flags,
  1056. SINGLE_DEPTH_NESTING);
  1057. if (!color_white(object)) {
  1058. /* non-orphan, ignored or new */
  1059. spin_unlock_irqrestore(&object->lock, flags);
  1060. put_object(object);
  1061. continue;
  1062. }
  1063. /*
  1064. * Increase the object's reference count (number of pointers
  1065. * to the memory block). If this count reaches the required
  1066. * minimum, the object's color will become gray and it will be
  1067. * added to the gray_list.
  1068. */
  1069. object->count++;
  1070. if (color_gray(object)) {
  1071. list_add_tail(&object->gray_list, &gray_list);
  1072. spin_unlock_irqrestore(&object->lock, flags);
  1073. continue;
  1074. }
  1075. spin_unlock_irqrestore(&object->lock, flags);
  1076. put_object(object);
  1077. }
  1078. }
  1079. /*
  1080. * Scan a memory block corresponding to a kmemleak_object. A condition is
  1081. * that object->use_count >= 1.
  1082. */
  1083. static void scan_object(struct kmemleak_object *object)
  1084. {
  1085. struct kmemleak_scan_area *area;
  1086. unsigned long flags;
  1087. /*
  1088. * Once the object->lock is acquired, the corresponding memory block
  1089. * cannot be freed (the same lock is acquired in delete_object).
  1090. */
  1091. spin_lock_irqsave(&object->lock, flags);
  1092. if (object->flags & OBJECT_NO_SCAN)
  1093. goto out;
  1094. if (!(object->flags & OBJECT_ALLOCATED))
  1095. /* already freed object */
  1096. goto out;
  1097. if (hlist_empty(&object->area_list)) {
  1098. void *start = (void *)object->pointer;
  1099. void *end = (void *)(object->pointer + object->size);
  1100. while (start < end && (object->flags & OBJECT_ALLOCATED) &&
  1101. !(object->flags & OBJECT_NO_SCAN)) {
  1102. scan_block(start, min(start + MAX_SCAN_SIZE, end),
  1103. object, 0);
  1104. start += MAX_SCAN_SIZE;
  1105. spin_unlock_irqrestore(&object->lock, flags);
  1106. cond_resched();
  1107. spin_lock_irqsave(&object->lock, flags);
  1108. }
  1109. } else
  1110. hlist_for_each_entry(area, &object->area_list, node)
  1111. scan_block((void *)area->start,
  1112. (void *)(area->start + area->size),
  1113. object, 0);
  1114. out:
  1115. spin_unlock_irqrestore(&object->lock, flags);
  1116. }
  1117. /*
  1118. * Scan the objects already referenced (gray objects). More objects will be
  1119. * referenced and, if there are no memory leaks, all the objects are scanned.
  1120. */
  1121. static void scan_gray_list(void)
  1122. {
  1123. struct kmemleak_object *object, *tmp;
  1124. /*
  1125. * The list traversal is safe for both tail additions and removals
  1126. * from inside the loop. The kmemleak objects cannot be freed from
  1127. * outside the loop because their use_count was incremented.
  1128. */
  1129. object = list_entry(gray_list.next, typeof(*object), gray_list);
  1130. while (&object->gray_list != &gray_list) {
  1131. cond_resched();
  1132. /* may add new objects to the list */
  1133. if (!scan_should_stop())
  1134. scan_object(object);
  1135. tmp = list_entry(object->gray_list.next, typeof(*object),
  1136. gray_list);
  1137. /* remove the object from the list and release it */
  1138. list_del(&object->gray_list);
  1139. put_object(object);
  1140. object = tmp;
  1141. }
  1142. WARN_ON(!list_empty(&gray_list));
  1143. }
  1144. /*
  1145. * Scan data sections and all the referenced memory blocks allocated via the
  1146. * kernel's standard allocators. This function must be called with the
  1147. * scan_mutex held.
  1148. */
  1149. static void kmemleak_scan(void)
  1150. {
  1151. unsigned long flags;
  1152. struct kmemleak_object *object;
  1153. int i;
  1154. int new_leaks = 0;
  1155. jiffies_last_scan = jiffies;
  1156. /* prepare the kmemleak_object's */
  1157. rcu_read_lock();
  1158. list_for_each_entry_rcu(object, &object_list, object_list) {
  1159. spin_lock_irqsave(&object->lock, flags);
  1160. #ifdef DEBUG
  1161. /*
  1162. * With a few exceptions there should be a maximum of
  1163. * 1 reference to any object at this point.
  1164. */
  1165. if (atomic_read(&object->use_count) > 1) {
  1166. pr_debug("object->use_count = %d\n",
  1167. atomic_read(&object->use_count));
  1168. dump_object_info(object);
  1169. }
  1170. #endif
  1171. /* reset the reference count (whiten the object) */
  1172. object->count = 0;
  1173. if (color_gray(object) && get_object(object))
  1174. list_add_tail(&object->gray_list, &gray_list);
  1175. spin_unlock_irqrestore(&object->lock, flags);
  1176. }
  1177. rcu_read_unlock();
  1178. /* data/bss scanning */
  1179. scan_block(_sdata, _edata, NULL, 1);
  1180. scan_block(__bss_start, __bss_stop, NULL, 1);
  1181. #ifdef CONFIG_SMP
  1182. /* per-cpu sections scanning */
  1183. for_each_possible_cpu(i)
  1184. scan_block(__per_cpu_start + per_cpu_offset(i),
  1185. __per_cpu_end + per_cpu_offset(i), NULL, 1);
  1186. #endif
  1187. /*
  1188. * Struct page scanning for each node.
  1189. */
  1190. get_online_mems();
  1191. for_each_online_node(i) {
  1192. unsigned long start_pfn = node_start_pfn(i);
  1193. unsigned long end_pfn = node_end_pfn(i);
  1194. unsigned long pfn;
  1195. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1196. struct page *page;
  1197. if (!pfn_valid(pfn))
  1198. continue;
  1199. page = pfn_to_page(pfn);
  1200. /* only scan if page is in use */
  1201. if (page_count(page) == 0)
  1202. continue;
  1203. scan_block(page, page + 1, NULL, 1);
  1204. }
  1205. }
  1206. put_online_mems();
  1207. /*
  1208. * Scanning the task stacks (may introduce false negatives).
  1209. */
  1210. if (kmemleak_stack_scan) {
  1211. struct task_struct *p, *g;
  1212. read_lock(&tasklist_lock);
  1213. do_each_thread(g, p) {
  1214. scan_block(task_stack_page(p), task_stack_page(p) +
  1215. THREAD_SIZE, NULL, 0);
  1216. } while_each_thread(g, p);
  1217. read_unlock(&tasklist_lock);
  1218. }
  1219. /*
  1220. * Scan the objects already referenced from the sections scanned
  1221. * above.
  1222. */
  1223. scan_gray_list();
  1224. /*
  1225. * Check for new or unreferenced objects modified since the previous
  1226. * scan and color them gray until the next scan.
  1227. */
  1228. rcu_read_lock();
  1229. list_for_each_entry_rcu(object, &object_list, object_list) {
  1230. spin_lock_irqsave(&object->lock, flags);
  1231. if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
  1232. && update_checksum(object) && get_object(object)) {
  1233. /* color it gray temporarily */
  1234. object->count = object->min_count;
  1235. list_add_tail(&object->gray_list, &gray_list);
  1236. }
  1237. spin_unlock_irqrestore(&object->lock, flags);
  1238. }
  1239. rcu_read_unlock();
  1240. /*
  1241. * Re-scan the gray list for modified unreferenced objects.
  1242. */
  1243. scan_gray_list();
  1244. /*
  1245. * If scanning was stopped do not report any new unreferenced objects.
  1246. */
  1247. if (scan_should_stop())
  1248. return;
  1249. /*
  1250. * Scanning result reporting.
  1251. */
  1252. rcu_read_lock();
  1253. list_for_each_entry_rcu(object, &object_list, object_list) {
  1254. spin_lock_irqsave(&object->lock, flags);
  1255. if (unreferenced_object(object) &&
  1256. !(object->flags & OBJECT_REPORTED)) {
  1257. object->flags |= OBJECT_REPORTED;
  1258. new_leaks++;
  1259. }
  1260. spin_unlock_irqrestore(&object->lock, flags);
  1261. }
  1262. rcu_read_unlock();
  1263. if (new_leaks) {
  1264. kmemleak_found_leaks = true;
  1265. pr_info("%d new suspected memory leaks (see "
  1266. "/sys/kernel/debug/kmemleak)\n", new_leaks);
  1267. }
  1268. }
  1269. /*
  1270. * Thread function performing automatic memory scanning. Unreferenced objects
  1271. * at the end of a memory scan are reported but only the first time.
  1272. */
  1273. static int kmemleak_scan_thread(void *arg)
  1274. {
  1275. static int first_run = 1;
  1276. pr_info("Automatic memory scanning thread started\n");
  1277. set_user_nice(current, 10);
  1278. /*
  1279. * Wait before the first scan to allow the system to fully initialize.
  1280. */
  1281. if (first_run) {
  1282. first_run = 0;
  1283. ssleep(SECS_FIRST_SCAN);
  1284. }
  1285. while (!kthread_should_stop()) {
  1286. signed long timeout = jiffies_scan_wait;
  1287. mutex_lock(&scan_mutex);
  1288. kmemleak_scan();
  1289. mutex_unlock(&scan_mutex);
  1290. /* wait before the next scan */
  1291. while (timeout && !kthread_should_stop())
  1292. timeout = schedule_timeout_interruptible(timeout);
  1293. }
  1294. pr_info("Automatic memory scanning thread ended\n");
  1295. return 0;
  1296. }
  1297. /*
  1298. * Start the automatic memory scanning thread. This function must be called
  1299. * with the scan_mutex held.
  1300. */
  1301. static void start_scan_thread(void)
  1302. {
  1303. if (scan_thread)
  1304. return;
  1305. scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
  1306. if (IS_ERR(scan_thread)) {
  1307. pr_warning("Failed to create the scan thread\n");
  1308. scan_thread = NULL;
  1309. }
  1310. }
  1311. /*
  1312. * Stop the automatic memory scanning thread. This function must be called
  1313. * with the scan_mutex held.
  1314. */
  1315. static void stop_scan_thread(void)
  1316. {
  1317. if (scan_thread) {
  1318. kthread_stop(scan_thread);
  1319. scan_thread = NULL;
  1320. }
  1321. }
  1322. /*
  1323. * Iterate over the object_list and return the first valid object at or after
  1324. * the required position with its use_count incremented. The function triggers
  1325. * a memory scanning when the pos argument points to the first position.
  1326. */
  1327. static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
  1328. {
  1329. struct kmemleak_object *object;
  1330. loff_t n = *pos;
  1331. int err;
  1332. err = mutex_lock_interruptible(&scan_mutex);
  1333. if (err < 0)
  1334. return ERR_PTR(err);
  1335. rcu_read_lock();
  1336. list_for_each_entry_rcu(object, &object_list, object_list) {
  1337. if (n-- > 0)
  1338. continue;
  1339. if (get_object(object))
  1340. goto out;
  1341. }
  1342. object = NULL;
  1343. out:
  1344. return object;
  1345. }
  1346. /*
  1347. * Return the next object in the object_list. The function decrements the
  1348. * use_count of the previous object and increases that of the next one.
  1349. */
  1350. static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1351. {
  1352. struct kmemleak_object *prev_obj = v;
  1353. struct kmemleak_object *next_obj = NULL;
  1354. struct kmemleak_object *obj = prev_obj;
  1355. ++(*pos);
  1356. list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
  1357. if (get_object(obj)) {
  1358. next_obj = obj;
  1359. break;
  1360. }
  1361. }
  1362. put_object(prev_obj);
  1363. return next_obj;
  1364. }
  1365. /*
  1366. * Decrement the use_count of the last object required, if any.
  1367. */
  1368. static void kmemleak_seq_stop(struct seq_file *seq, void *v)
  1369. {
  1370. if (!IS_ERR(v)) {
  1371. /*
  1372. * kmemleak_seq_start may return ERR_PTR if the scan_mutex
  1373. * waiting was interrupted, so only release it if !IS_ERR.
  1374. */
  1375. rcu_read_unlock();
  1376. mutex_unlock(&scan_mutex);
  1377. if (v)
  1378. put_object(v);
  1379. }
  1380. }
  1381. /*
  1382. * Print the information for an unreferenced object to the seq file.
  1383. */
  1384. static int kmemleak_seq_show(struct seq_file *seq, void *v)
  1385. {
  1386. struct kmemleak_object *object = v;
  1387. unsigned long flags;
  1388. spin_lock_irqsave(&object->lock, flags);
  1389. if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
  1390. print_unreferenced(seq, object);
  1391. spin_unlock_irqrestore(&object->lock, flags);
  1392. return 0;
  1393. }
  1394. static const struct seq_operations kmemleak_seq_ops = {
  1395. .start = kmemleak_seq_start,
  1396. .next = kmemleak_seq_next,
  1397. .stop = kmemleak_seq_stop,
  1398. .show = kmemleak_seq_show,
  1399. };
  1400. static int kmemleak_open(struct inode *inode, struct file *file)
  1401. {
  1402. return seq_open(file, &kmemleak_seq_ops);
  1403. }
  1404. static int dump_str_object_info(const char *str)
  1405. {
  1406. unsigned long flags;
  1407. struct kmemleak_object *object;
  1408. unsigned long addr;
  1409. if (kstrtoul(str, 0, &addr))
  1410. return -EINVAL;
  1411. object = find_and_get_object(addr, 0);
  1412. if (!object) {
  1413. pr_info("Unknown object at 0x%08lx\n", addr);
  1414. return -EINVAL;
  1415. }
  1416. spin_lock_irqsave(&object->lock, flags);
  1417. dump_object_info(object);
  1418. spin_unlock_irqrestore(&object->lock, flags);
  1419. put_object(object);
  1420. return 0;
  1421. }
  1422. /*
  1423. * We use grey instead of black to ensure we can do future scans on the same
  1424. * objects. If we did not do future scans these black objects could
  1425. * potentially contain references to newly allocated objects in the future and
  1426. * we'd end up with false positives.
  1427. */
  1428. static void kmemleak_clear(void)
  1429. {
  1430. struct kmemleak_object *object;
  1431. unsigned long flags;
  1432. rcu_read_lock();
  1433. list_for_each_entry_rcu(object, &object_list, object_list) {
  1434. spin_lock_irqsave(&object->lock, flags);
  1435. if ((object->flags & OBJECT_REPORTED) &&
  1436. unreferenced_object(object))
  1437. __paint_it(object, KMEMLEAK_GREY);
  1438. spin_unlock_irqrestore(&object->lock, flags);
  1439. }
  1440. rcu_read_unlock();
  1441. kmemleak_found_leaks = false;
  1442. }
  1443. static void __kmemleak_do_cleanup(void);
  1444. /*
  1445. * File write operation to configure kmemleak at run-time. The following
  1446. * commands can be written to the /sys/kernel/debug/kmemleak file:
  1447. * off - disable kmemleak (irreversible)
  1448. * stack=on - enable the task stacks scanning
  1449. * stack=off - disable the tasks stacks scanning
  1450. * scan=on - start the automatic memory scanning thread
  1451. * scan=off - stop the automatic memory scanning thread
  1452. * scan=... - set the automatic memory scanning period in seconds (0 to
  1453. * disable it)
  1454. * scan - trigger a memory scan
  1455. * clear - mark all current reported unreferenced kmemleak objects as
  1456. * grey to ignore printing them, or free all kmemleak objects
  1457. * if kmemleak has been disabled.
  1458. * dump=... - dump information about the object found at the given address
  1459. */
  1460. static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
  1461. size_t size, loff_t *ppos)
  1462. {
  1463. char buf[64];
  1464. int buf_size;
  1465. int ret;
  1466. buf_size = min(size, (sizeof(buf) - 1));
  1467. if (strncpy_from_user(buf, user_buf, buf_size) < 0)
  1468. return -EFAULT;
  1469. buf[buf_size] = 0;
  1470. ret = mutex_lock_interruptible(&scan_mutex);
  1471. if (ret < 0)
  1472. return ret;
  1473. if (strncmp(buf, "clear", 5) == 0) {
  1474. if (kmemleak_enabled)
  1475. kmemleak_clear();
  1476. else
  1477. __kmemleak_do_cleanup();
  1478. goto out;
  1479. }
  1480. if (!kmemleak_enabled) {
  1481. ret = -EBUSY;
  1482. goto out;
  1483. }
  1484. if (strncmp(buf, "off", 3) == 0)
  1485. kmemleak_disable();
  1486. else if (strncmp(buf, "stack=on", 8) == 0)
  1487. kmemleak_stack_scan = 1;
  1488. else if (strncmp(buf, "stack=off", 9) == 0)
  1489. kmemleak_stack_scan = 0;
  1490. else if (strncmp(buf, "scan=on", 7) == 0)
  1491. start_scan_thread();
  1492. else if (strncmp(buf, "scan=off", 8) == 0)
  1493. stop_scan_thread();
  1494. else if (strncmp(buf, "scan=", 5) == 0) {
  1495. unsigned long secs;
  1496. ret = kstrtoul(buf + 5, 0, &secs);
  1497. if (ret < 0)
  1498. goto out;
  1499. stop_scan_thread();
  1500. if (secs) {
  1501. jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
  1502. start_scan_thread();
  1503. }
  1504. } else if (strncmp(buf, "scan", 4) == 0)
  1505. kmemleak_scan();
  1506. else if (strncmp(buf, "dump=", 5) == 0)
  1507. ret = dump_str_object_info(buf + 5);
  1508. else
  1509. ret = -EINVAL;
  1510. out:
  1511. mutex_unlock(&scan_mutex);
  1512. if (ret < 0)
  1513. return ret;
  1514. /* ignore the rest of the buffer, only one command at a time */
  1515. *ppos += size;
  1516. return size;
  1517. }
  1518. static const struct file_operations kmemleak_fops = {
  1519. .owner = THIS_MODULE,
  1520. .open = kmemleak_open,
  1521. .read = seq_read,
  1522. .write = kmemleak_write,
  1523. .llseek = seq_lseek,
  1524. .release = seq_release,
  1525. };
  1526. static void __kmemleak_do_cleanup(void)
  1527. {
  1528. struct kmemleak_object *object;
  1529. rcu_read_lock();
  1530. list_for_each_entry_rcu(object, &object_list, object_list)
  1531. delete_object_full(object->pointer);
  1532. rcu_read_unlock();
  1533. }
  1534. /*
  1535. * Stop the memory scanning thread and free the kmemleak internal objects if
  1536. * no previous scan thread (otherwise, kmemleak may still have some useful
  1537. * information on memory leaks).
  1538. */
  1539. static void kmemleak_do_cleanup(struct work_struct *work)
  1540. {
  1541. mutex_lock(&scan_mutex);
  1542. stop_scan_thread();
  1543. if (!kmemleak_found_leaks)
  1544. __kmemleak_do_cleanup();
  1545. else
  1546. pr_info("Kmemleak disabled without freeing internal data. "
  1547. "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
  1548. mutex_unlock(&scan_mutex);
  1549. }
  1550. static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
  1551. /*
  1552. * Disable kmemleak. No memory allocation/freeing will be traced once this
  1553. * function is called. Disabling kmemleak is an irreversible operation.
  1554. */
  1555. static void kmemleak_disable(void)
  1556. {
  1557. /* atomically check whether it was already invoked */
  1558. if (cmpxchg(&kmemleak_error, 0, 1))
  1559. return;
  1560. /* stop any memory operation tracing */
  1561. kmemleak_enabled = 0;
  1562. /* check whether it is too early for a kernel thread */
  1563. if (kmemleak_initialized)
  1564. schedule_work(&cleanup_work);
  1565. pr_info("Kernel memory leak detector disabled\n");
  1566. }
  1567. /*
  1568. * Allow boot-time kmemleak disabling (enabled by default).
  1569. */
  1570. static int kmemleak_boot_config(char *str)
  1571. {
  1572. if (!str)
  1573. return -EINVAL;
  1574. if (strcmp(str, "off") == 0)
  1575. kmemleak_disable();
  1576. else if (strcmp(str, "on") == 0)
  1577. kmemleak_skip_disable = 1;
  1578. else
  1579. return -EINVAL;
  1580. return 0;
  1581. }
  1582. early_param("kmemleak", kmemleak_boot_config);
  1583. static void __init print_log_trace(struct early_log *log)
  1584. {
  1585. struct stack_trace trace;
  1586. trace.nr_entries = log->trace_len;
  1587. trace.entries = log->trace;
  1588. pr_notice("Early log backtrace:\n");
  1589. print_stack_trace(&trace, 2);
  1590. }
  1591. /*
  1592. * Kmemleak initialization.
  1593. */
  1594. void __init kmemleak_init(void)
  1595. {
  1596. int i;
  1597. unsigned long flags;
  1598. #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
  1599. if (!kmemleak_skip_disable) {
  1600. kmemleak_early_log = 0;
  1601. kmemleak_disable();
  1602. return;
  1603. }
  1604. #endif
  1605. jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
  1606. jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
  1607. object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
  1608. scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
  1609. if (crt_early_log >= ARRAY_SIZE(early_log))
  1610. pr_warning("Early log buffer exceeded (%d), please increase "
  1611. "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
  1612. /* the kernel is still in UP mode, so disabling the IRQs is enough */
  1613. local_irq_save(flags);
  1614. kmemleak_early_log = 0;
  1615. if (kmemleak_error) {
  1616. local_irq_restore(flags);
  1617. return;
  1618. } else
  1619. kmemleak_enabled = 1;
  1620. local_irq_restore(flags);
  1621. /*
  1622. * This is the point where tracking allocations is safe. Automatic
  1623. * scanning is started during the late initcall. Add the early logged
  1624. * callbacks to the kmemleak infrastructure.
  1625. */
  1626. for (i = 0; i < crt_early_log; i++) {
  1627. struct early_log *log = &early_log[i];
  1628. switch (log->op_type) {
  1629. case KMEMLEAK_ALLOC:
  1630. early_alloc(log);
  1631. break;
  1632. case KMEMLEAK_ALLOC_PERCPU:
  1633. early_alloc_percpu(log);
  1634. break;
  1635. case KMEMLEAK_FREE:
  1636. kmemleak_free(log->ptr);
  1637. break;
  1638. case KMEMLEAK_FREE_PART:
  1639. kmemleak_free_part(log->ptr, log->size);
  1640. break;
  1641. case KMEMLEAK_FREE_PERCPU:
  1642. kmemleak_free_percpu(log->ptr);
  1643. break;
  1644. case KMEMLEAK_NOT_LEAK:
  1645. kmemleak_not_leak(log->ptr);
  1646. break;
  1647. case KMEMLEAK_IGNORE:
  1648. kmemleak_ignore(log->ptr);
  1649. break;
  1650. case KMEMLEAK_SCAN_AREA:
  1651. kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
  1652. break;
  1653. case KMEMLEAK_NO_SCAN:
  1654. kmemleak_no_scan(log->ptr);
  1655. break;
  1656. default:
  1657. kmemleak_warn("Unknown early log operation: %d\n",
  1658. log->op_type);
  1659. }
  1660. if (kmemleak_warning) {
  1661. print_log_trace(log);
  1662. kmemleak_warning = 0;
  1663. }
  1664. }
  1665. }
  1666. /*
  1667. * Late initialization function.
  1668. */
  1669. static int __init kmemleak_late_init(void)
  1670. {
  1671. struct dentry *dentry;
  1672. kmemleak_initialized = 1;
  1673. if (kmemleak_error) {
  1674. /*
  1675. * Some error occurred and kmemleak was disabled. There is a
  1676. * small chance that kmemleak_disable() was called immediately
  1677. * after setting kmemleak_initialized and we may end up with
  1678. * two clean-up threads but serialized by scan_mutex.
  1679. */
  1680. schedule_work(&cleanup_work);
  1681. return -ENOMEM;
  1682. }
  1683. dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
  1684. &kmemleak_fops);
  1685. if (!dentry)
  1686. pr_warning("Failed to create the debugfs kmemleak file\n");
  1687. mutex_lock(&scan_mutex);
  1688. start_scan_thread();
  1689. mutex_unlock(&scan_mutex);
  1690. pr_info("Kernel memory leak detector initialized\n");
  1691. return 0;
  1692. }
  1693. late_initcall(kmemleak_late_init);