huge_memory.c 79 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/highmem.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/shrinker.h>
  16. #include <linux/mm_inline.h>
  17. #include <linux/kthread.h>
  18. #include <linux/khugepaged.h>
  19. #include <linux/freezer.h>
  20. #include <linux/mman.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/migrate.h>
  23. #include <linux/hashtable.h>
  24. #include <asm/tlb.h>
  25. #include <asm/pgalloc.h>
  26. #include "internal.h"
  27. /*
  28. * By default transparent hugepage support is disabled in order that avoid
  29. * to risk increase the memory footprint of applications without a guaranteed
  30. * benefit. When transparent hugepage support is enabled, is for all mappings,
  31. * and khugepaged scans all mappings.
  32. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  33. * for all hugepage allocations.
  34. */
  35. unsigned long transparent_hugepage_flags __read_mostly =
  36. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  37. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  38. #endif
  39. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  40. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  41. #endif
  42. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  43. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  44. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  45. /* default scan 8*512 pte (or vmas) every 30 second */
  46. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  47. static unsigned int khugepaged_pages_collapsed;
  48. static unsigned int khugepaged_full_scans;
  49. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  50. /* during fragmentation poll the hugepage allocator once every minute */
  51. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  52. static struct task_struct *khugepaged_thread __read_mostly;
  53. static DEFINE_MUTEX(khugepaged_mutex);
  54. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  55. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  56. /*
  57. * default collapse hugepages if there is at least one pte mapped like
  58. * it would have happened if the vma was large enough during page
  59. * fault.
  60. */
  61. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  62. static int khugepaged(void *none);
  63. static int khugepaged_slab_init(void);
  64. static void khugepaged_slab_exit(void);
  65. #define MM_SLOTS_HASH_BITS 10
  66. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  67. static struct kmem_cache *mm_slot_cache __read_mostly;
  68. /**
  69. * struct mm_slot - hash lookup from mm to mm_slot
  70. * @hash: hash collision list
  71. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72. * @mm: the mm that this information is valid for
  73. */
  74. struct mm_slot {
  75. struct hlist_node hash;
  76. struct list_head mm_node;
  77. struct mm_struct *mm;
  78. };
  79. /**
  80. * struct khugepaged_scan - cursor for scanning
  81. * @mm_head: the head of the mm list to scan
  82. * @mm_slot: the current mm_slot we are scanning
  83. * @address: the next address inside that to be scanned
  84. *
  85. * There is only the one khugepaged_scan instance of this cursor structure.
  86. */
  87. struct khugepaged_scan {
  88. struct list_head mm_head;
  89. struct mm_slot *mm_slot;
  90. unsigned long address;
  91. };
  92. static struct khugepaged_scan khugepaged_scan = {
  93. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94. };
  95. static int set_recommended_min_free_kbytes(void)
  96. {
  97. struct zone *zone;
  98. int nr_zones = 0;
  99. unsigned long recommended_min;
  100. for_each_populated_zone(zone)
  101. nr_zones++;
  102. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  103. recommended_min = pageblock_nr_pages * nr_zones * 2;
  104. /*
  105. * Make sure that on average at least two pageblocks are almost free
  106. * of another type, one for a migratetype to fall back to and a
  107. * second to avoid subsequent fallbacks of other types There are 3
  108. * MIGRATE_TYPES we care about.
  109. */
  110. recommended_min += pageblock_nr_pages * nr_zones *
  111. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  112. /* don't ever allow to reserve more than 5% of the lowmem */
  113. recommended_min = min(recommended_min,
  114. (unsigned long) nr_free_buffer_pages() / 20);
  115. recommended_min <<= (PAGE_SHIFT-10);
  116. if (recommended_min > min_free_kbytes) {
  117. if (user_min_free_kbytes >= 0)
  118. pr_info("raising min_free_kbytes from %d to %lu "
  119. "to help transparent hugepage allocations\n",
  120. min_free_kbytes, recommended_min);
  121. min_free_kbytes = recommended_min;
  122. }
  123. setup_per_zone_wmarks();
  124. return 0;
  125. }
  126. static int start_stop_khugepaged(void)
  127. {
  128. int err = 0;
  129. if (khugepaged_enabled()) {
  130. if (!khugepaged_thread)
  131. khugepaged_thread = kthread_run(khugepaged, NULL,
  132. "khugepaged");
  133. if (unlikely(IS_ERR(khugepaged_thread))) {
  134. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  135. err = PTR_ERR(khugepaged_thread);
  136. khugepaged_thread = NULL;
  137. goto fail;
  138. }
  139. if (!list_empty(&khugepaged_scan.mm_head))
  140. wake_up_interruptible(&khugepaged_wait);
  141. set_recommended_min_free_kbytes();
  142. } else if (khugepaged_thread) {
  143. kthread_stop(khugepaged_thread);
  144. khugepaged_thread = NULL;
  145. }
  146. fail:
  147. return err;
  148. }
  149. static atomic_t huge_zero_refcount;
  150. struct page *huge_zero_page __read_mostly;
  151. static inline bool is_huge_zero_pmd(pmd_t pmd)
  152. {
  153. return is_huge_zero_page(pmd_page(pmd));
  154. }
  155. static struct page *get_huge_zero_page(void)
  156. {
  157. struct page *zero_page;
  158. retry:
  159. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  160. return READ_ONCE(huge_zero_page);
  161. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  162. HPAGE_PMD_ORDER);
  163. if (!zero_page) {
  164. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  165. return NULL;
  166. }
  167. count_vm_event(THP_ZERO_PAGE_ALLOC);
  168. preempt_disable();
  169. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  170. preempt_enable();
  171. __free_pages(zero_page, compound_order(zero_page));
  172. goto retry;
  173. }
  174. /* We take additional reference here. It will be put back by shrinker */
  175. atomic_set(&huge_zero_refcount, 2);
  176. preempt_enable();
  177. return READ_ONCE(huge_zero_page);
  178. }
  179. static void put_huge_zero_page(void)
  180. {
  181. /*
  182. * Counter should never go to zero here. Only shrinker can put
  183. * last reference.
  184. */
  185. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  186. }
  187. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  188. struct shrink_control *sc)
  189. {
  190. /* we can free zero page only if last reference remains */
  191. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  192. }
  193. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  194. struct shrink_control *sc)
  195. {
  196. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  197. struct page *zero_page = xchg(&huge_zero_page, NULL);
  198. BUG_ON(zero_page == NULL);
  199. __free_pages(zero_page, compound_order(zero_page));
  200. return HPAGE_PMD_NR;
  201. }
  202. return 0;
  203. }
  204. static struct shrinker huge_zero_page_shrinker = {
  205. .count_objects = shrink_huge_zero_page_count,
  206. .scan_objects = shrink_huge_zero_page_scan,
  207. .seeks = DEFAULT_SEEKS,
  208. };
  209. #ifdef CONFIG_SYSFS
  210. static ssize_t double_flag_show(struct kobject *kobj,
  211. struct kobj_attribute *attr, char *buf,
  212. enum transparent_hugepage_flag enabled,
  213. enum transparent_hugepage_flag req_madv)
  214. {
  215. if (test_bit(enabled, &transparent_hugepage_flags)) {
  216. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  217. return sprintf(buf, "[always] madvise never\n");
  218. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  219. return sprintf(buf, "always [madvise] never\n");
  220. else
  221. return sprintf(buf, "always madvise [never]\n");
  222. }
  223. static ssize_t double_flag_store(struct kobject *kobj,
  224. struct kobj_attribute *attr,
  225. const char *buf, size_t count,
  226. enum transparent_hugepage_flag enabled,
  227. enum transparent_hugepage_flag req_madv)
  228. {
  229. if (!memcmp("always", buf,
  230. min(sizeof("always")-1, count))) {
  231. set_bit(enabled, &transparent_hugepage_flags);
  232. clear_bit(req_madv, &transparent_hugepage_flags);
  233. } else if (!memcmp("madvise", buf,
  234. min(sizeof("madvise")-1, count))) {
  235. clear_bit(enabled, &transparent_hugepage_flags);
  236. set_bit(req_madv, &transparent_hugepage_flags);
  237. } else if (!memcmp("never", buf,
  238. min(sizeof("never")-1, count))) {
  239. clear_bit(enabled, &transparent_hugepage_flags);
  240. clear_bit(req_madv, &transparent_hugepage_flags);
  241. } else
  242. return -EINVAL;
  243. return count;
  244. }
  245. static ssize_t enabled_show(struct kobject *kobj,
  246. struct kobj_attribute *attr, char *buf)
  247. {
  248. return double_flag_show(kobj, attr, buf,
  249. TRANSPARENT_HUGEPAGE_FLAG,
  250. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  251. }
  252. static ssize_t enabled_store(struct kobject *kobj,
  253. struct kobj_attribute *attr,
  254. const char *buf, size_t count)
  255. {
  256. ssize_t ret;
  257. ret = double_flag_store(kobj, attr, buf, count,
  258. TRANSPARENT_HUGEPAGE_FLAG,
  259. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  260. if (ret > 0) {
  261. int err;
  262. mutex_lock(&khugepaged_mutex);
  263. err = start_stop_khugepaged();
  264. mutex_unlock(&khugepaged_mutex);
  265. if (err)
  266. ret = err;
  267. }
  268. return ret;
  269. }
  270. static struct kobj_attribute enabled_attr =
  271. __ATTR(enabled, 0644, enabled_show, enabled_store);
  272. static ssize_t single_flag_show(struct kobject *kobj,
  273. struct kobj_attribute *attr, char *buf,
  274. enum transparent_hugepage_flag flag)
  275. {
  276. return sprintf(buf, "%d\n",
  277. !!test_bit(flag, &transparent_hugepage_flags));
  278. }
  279. static ssize_t single_flag_store(struct kobject *kobj,
  280. struct kobj_attribute *attr,
  281. const char *buf, size_t count,
  282. enum transparent_hugepage_flag flag)
  283. {
  284. unsigned long value;
  285. int ret;
  286. ret = kstrtoul(buf, 10, &value);
  287. if (ret < 0)
  288. return ret;
  289. if (value > 1)
  290. return -EINVAL;
  291. if (value)
  292. set_bit(flag, &transparent_hugepage_flags);
  293. else
  294. clear_bit(flag, &transparent_hugepage_flags);
  295. return count;
  296. }
  297. /*
  298. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  299. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  300. * memory just to allocate one more hugepage.
  301. */
  302. static ssize_t defrag_show(struct kobject *kobj,
  303. struct kobj_attribute *attr, char *buf)
  304. {
  305. return double_flag_show(kobj, attr, buf,
  306. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  307. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  308. }
  309. static ssize_t defrag_store(struct kobject *kobj,
  310. struct kobj_attribute *attr,
  311. const char *buf, size_t count)
  312. {
  313. return double_flag_store(kobj, attr, buf, count,
  314. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  315. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  316. }
  317. static struct kobj_attribute defrag_attr =
  318. __ATTR(defrag, 0644, defrag_show, defrag_store);
  319. static ssize_t use_zero_page_show(struct kobject *kobj,
  320. struct kobj_attribute *attr, char *buf)
  321. {
  322. return single_flag_show(kobj, attr, buf,
  323. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  324. }
  325. static ssize_t use_zero_page_store(struct kobject *kobj,
  326. struct kobj_attribute *attr, const char *buf, size_t count)
  327. {
  328. return single_flag_store(kobj, attr, buf, count,
  329. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  330. }
  331. static struct kobj_attribute use_zero_page_attr =
  332. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  333. #ifdef CONFIG_DEBUG_VM
  334. static ssize_t debug_cow_show(struct kobject *kobj,
  335. struct kobj_attribute *attr, char *buf)
  336. {
  337. return single_flag_show(kobj, attr, buf,
  338. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  339. }
  340. static ssize_t debug_cow_store(struct kobject *kobj,
  341. struct kobj_attribute *attr,
  342. const char *buf, size_t count)
  343. {
  344. return single_flag_store(kobj, attr, buf, count,
  345. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  346. }
  347. static struct kobj_attribute debug_cow_attr =
  348. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  349. #endif /* CONFIG_DEBUG_VM */
  350. static struct attribute *hugepage_attr[] = {
  351. &enabled_attr.attr,
  352. &defrag_attr.attr,
  353. &use_zero_page_attr.attr,
  354. #ifdef CONFIG_DEBUG_VM
  355. &debug_cow_attr.attr,
  356. #endif
  357. NULL,
  358. };
  359. static struct attribute_group hugepage_attr_group = {
  360. .attrs = hugepage_attr,
  361. };
  362. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  363. struct kobj_attribute *attr,
  364. char *buf)
  365. {
  366. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  367. }
  368. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  369. struct kobj_attribute *attr,
  370. const char *buf, size_t count)
  371. {
  372. unsigned long msecs;
  373. int err;
  374. err = kstrtoul(buf, 10, &msecs);
  375. if (err || msecs > UINT_MAX)
  376. return -EINVAL;
  377. khugepaged_scan_sleep_millisecs = msecs;
  378. wake_up_interruptible(&khugepaged_wait);
  379. return count;
  380. }
  381. static struct kobj_attribute scan_sleep_millisecs_attr =
  382. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  383. scan_sleep_millisecs_store);
  384. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  385. struct kobj_attribute *attr,
  386. char *buf)
  387. {
  388. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  389. }
  390. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  391. struct kobj_attribute *attr,
  392. const char *buf, size_t count)
  393. {
  394. unsigned long msecs;
  395. int err;
  396. err = kstrtoul(buf, 10, &msecs);
  397. if (err || msecs > UINT_MAX)
  398. return -EINVAL;
  399. khugepaged_alloc_sleep_millisecs = msecs;
  400. wake_up_interruptible(&khugepaged_wait);
  401. return count;
  402. }
  403. static struct kobj_attribute alloc_sleep_millisecs_attr =
  404. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  405. alloc_sleep_millisecs_store);
  406. static ssize_t pages_to_scan_show(struct kobject *kobj,
  407. struct kobj_attribute *attr,
  408. char *buf)
  409. {
  410. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  411. }
  412. static ssize_t pages_to_scan_store(struct kobject *kobj,
  413. struct kobj_attribute *attr,
  414. const char *buf, size_t count)
  415. {
  416. int err;
  417. unsigned long pages;
  418. err = kstrtoul(buf, 10, &pages);
  419. if (err || !pages || pages > UINT_MAX)
  420. return -EINVAL;
  421. khugepaged_pages_to_scan = pages;
  422. return count;
  423. }
  424. static struct kobj_attribute pages_to_scan_attr =
  425. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  426. pages_to_scan_store);
  427. static ssize_t pages_collapsed_show(struct kobject *kobj,
  428. struct kobj_attribute *attr,
  429. char *buf)
  430. {
  431. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  432. }
  433. static struct kobj_attribute pages_collapsed_attr =
  434. __ATTR_RO(pages_collapsed);
  435. static ssize_t full_scans_show(struct kobject *kobj,
  436. struct kobj_attribute *attr,
  437. char *buf)
  438. {
  439. return sprintf(buf, "%u\n", khugepaged_full_scans);
  440. }
  441. static struct kobj_attribute full_scans_attr =
  442. __ATTR_RO(full_scans);
  443. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  444. struct kobj_attribute *attr, char *buf)
  445. {
  446. return single_flag_show(kobj, attr, buf,
  447. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  448. }
  449. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  450. struct kobj_attribute *attr,
  451. const char *buf, size_t count)
  452. {
  453. return single_flag_store(kobj, attr, buf, count,
  454. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  455. }
  456. static struct kobj_attribute khugepaged_defrag_attr =
  457. __ATTR(defrag, 0644, khugepaged_defrag_show,
  458. khugepaged_defrag_store);
  459. /*
  460. * max_ptes_none controls if khugepaged should collapse hugepages over
  461. * any unmapped ptes in turn potentially increasing the memory
  462. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  463. * reduce the available free memory in the system as it
  464. * runs. Increasing max_ptes_none will instead potentially reduce the
  465. * free memory in the system during the khugepaged scan.
  466. */
  467. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  468. struct kobj_attribute *attr,
  469. char *buf)
  470. {
  471. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  472. }
  473. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  474. struct kobj_attribute *attr,
  475. const char *buf, size_t count)
  476. {
  477. int err;
  478. unsigned long max_ptes_none;
  479. err = kstrtoul(buf, 10, &max_ptes_none);
  480. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  481. return -EINVAL;
  482. khugepaged_max_ptes_none = max_ptes_none;
  483. return count;
  484. }
  485. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  486. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  487. khugepaged_max_ptes_none_store);
  488. static struct attribute *khugepaged_attr[] = {
  489. &khugepaged_defrag_attr.attr,
  490. &khugepaged_max_ptes_none_attr.attr,
  491. &pages_to_scan_attr.attr,
  492. &pages_collapsed_attr.attr,
  493. &full_scans_attr.attr,
  494. &scan_sleep_millisecs_attr.attr,
  495. &alloc_sleep_millisecs_attr.attr,
  496. NULL,
  497. };
  498. static struct attribute_group khugepaged_attr_group = {
  499. .attrs = khugepaged_attr,
  500. .name = "khugepaged",
  501. };
  502. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  503. {
  504. int err;
  505. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  506. if (unlikely(!*hugepage_kobj)) {
  507. pr_err("failed to create transparent hugepage kobject\n");
  508. return -ENOMEM;
  509. }
  510. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  511. if (err) {
  512. pr_err("failed to register transparent hugepage group\n");
  513. goto delete_obj;
  514. }
  515. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  516. if (err) {
  517. pr_err("failed to register transparent hugepage group\n");
  518. goto remove_hp_group;
  519. }
  520. return 0;
  521. remove_hp_group:
  522. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  523. delete_obj:
  524. kobject_put(*hugepage_kobj);
  525. return err;
  526. }
  527. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  528. {
  529. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  530. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  531. kobject_put(hugepage_kobj);
  532. }
  533. #else
  534. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  535. {
  536. return 0;
  537. }
  538. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  539. {
  540. }
  541. #endif /* CONFIG_SYSFS */
  542. static int __init hugepage_init(void)
  543. {
  544. int err;
  545. struct kobject *hugepage_kobj;
  546. if (!has_transparent_hugepage()) {
  547. transparent_hugepage_flags = 0;
  548. return -EINVAL;
  549. }
  550. err = hugepage_init_sysfs(&hugepage_kobj);
  551. if (err)
  552. goto err_sysfs;
  553. err = khugepaged_slab_init();
  554. if (err)
  555. goto err_slab;
  556. err = register_shrinker(&huge_zero_page_shrinker);
  557. if (err)
  558. goto err_hzp_shrinker;
  559. /*
  560. * By default disable transparent hugepages on smaller systems,
  561. * where the extra memory used could hurt more than TLB overhead
  562. * is likely to save. The admin can still enable it through /sys.
  563. */
  564. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  565. transparent_hugepage_flags = 0;
  566. return 0;
  567. }
  568. err = start_stop_khugepaged();
  569. if (err)
  570. goto err_khugepaged;
  571. return 0;
  572. err_khugepaged:
  573. unregister_shrinker(&huge_zero_page_shrinker);
  574. err_hzp_shrinker:
  575. khugepaged_slab_exit();
  576. err_slab:
  577. hugepage_exit_sysfs(hugepage_kobj);
  578. err_sysfs:
  579. return err;
  580. }
  581. subsys_initcall(hugepage_init);
  582. static int __init setup_transparent_hugepage(char *str)
  583. {
  584. int ret = 0;
  585. if (!str)
  586. goto out;
  587. if (!strcmp(str, "always")) {
  588. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  589. &transparent_hugepage_flags);
  590. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  591. &transparent_hugepage_flags);
  592. ret = 1;
  593. } else if (!strcmp(str, "madvise")) {
  594. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  595. &transparent_hugepage_flags);
  596. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  597. &transparent_hugepage_flags);
  598. ret = 1;
  599. } else if (!strcmp(str, "never")) {
  600. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  601. &transparent_hugepage_flags);
  602. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  603. &transparent_hugepage_flags);
  604. ret = 1;
  605. }
  606. out:
  607. if (!ret)
  608. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  609. return ret;
  610. }
  611. __setup("transparent_hugepage=", setup_transparent_hugepage);
  612. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  613. {
  614. if (likely(vma->vm_flags & VM_WRITE))
  615. pmd = pmd_mkwrite(pmd);
  616. return pmd;
  617. }
  618. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  619. {
  620. pmd_t entry;
  621. entry = mk_pmd(page, prot);
  622. entry = pmd_mkhuge(entry);
  623. return entry;
  624. }
  625. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  626. struct vm_area_struct *vma,
  627. unsigned long haddr, pmd_t *pmd,
  628. struct page *page, gfp_t gfp)
  629. {
  630. struct mem_cgroup *memcg;
  631. pgtable_t pgtable;
  632. spinlock_t *ptl;
  633. VM_BUG_ON_PAGE(!PageCompound(page), page);
  634. if (mem_cgroup_try_charge(page, mm, gfp, &memcg))
  635. return VM_FAULT_OOM;
  636. pgtable = pte_alloc_one(mm, haddr);
  637. if (unlikely(!pgtable)) {
  638. mem_cgroup_cancel_charge(page, memcg);
  639. return VM_FAULT_OOM;
  640. }
  641. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  642. /*
  643. * The memory barrier inside __SetPageUptodate makes sure that
  644. * clear_huge_page writes become visible before the set_pmd_at()
  645. * write.
  646. */
  647. __SetPageUptodate(page);
  648. ptl = pmd_lock(mm, pmd);
  649. if (unlikely(!pmd_none(*pmd))) {
  650. spin_unlock(ptl);
  651. mem_cgroup_cancel_charge(page, memcg);
  652. put_page(page);
  653. pte_free(mm, pgtable);
  654. } else {
  655. pmd_t entry;
  656. entry = mk_huge_pmd(page, vma->vm_page_prot);
  657. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  658. page_add_new_anon_rmap(page, vma, haddr);
  659. mem_cgroup_commit_charge(page, memcg, false);
  660. lru_cache_add_active_or_unevictable(page, vma);
  661. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  662. set_pmd_at(mm, haddr, pmd, entry);
  663. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  664. atomic_long_inc(&mm->nr_ptes);
  665. spin_unlock(ptl);
  666. }
  667. return 0;
  668. }
  669. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  670. {
  671. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  672. }
  673. /* Caller must hold page table lock. */
  674. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  675. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  676. struct page *zero_page)
  677. {
  678. pmd_t entry;
  679. if (!pmd_none(*pmd))
  680. return false;
  681. entry = mk_pmd(zero_page, vma->vm_page_prot);
  682. entry = pmd_mkhuge(entry);
  683. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  684. set_pmd_at(mm, haddr, pmd, entry);
  685. atomic_long_inc(&mm->nr_ptes);
  686. return true;
  687. }
  688. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  689. unsigned long address, pmd_t *pmd,
  690. unsigned int flags)
  691. {
  692. gfp_t gfp;
  693. struct page *page;
  694. unsigned long haddr = address & HPAGE_PMD_MASK;
  695. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  696. return VM_FAULT_FALLBACK;
  697. if (unlikely(anon_vma_prepare(vma)))
  698. return VM_FAULT_OOM;
  699. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  700. return VM_FAULT_OOM;
  701. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
  702. transparent_hugepage_use_zero_page()) {
  703. spinlock_t *ptl;
  704. pgtable_t pgtable;
  705. struct page *zero_page;
  706. bool set;
  707. pgtable = pte_alloc_one(mm, haddr);
  708. if (unlikely(!pgtable))
  709. return VM_FAULT_OOM;
  710. zero_page = get_huge_zero_page();
  711. if (unlikely(!zero_page)) {
  712. pte_free(mm, pgtable);
  713. count_vm_event(THP_FAULT_FALLBACK);
  714. return VM_FAULT_FALLBACK;
  715. }
  716. ptl = pmd_lock(mm, pmd);
  717. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  718. zero_page);
  719. spin_unlock(ptl);
  720. if (!set) {
  721. pte_free(mm, pgtable);
  722. put_huge_zero_page();
  723. }
  724. return 0;
  725. }
  726. gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
  727. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  728. if (unlikely(!page)) {
  729. count_vm_event(THP_FAULT_FALLBACK);
  730. return VM_FAULT_FALLBACK;
  731. }
  732. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp))) {
  733. put_page(page);
  734. count_vm_event(THP_FAULT_FALLBACK);
  735. return VM_FAULT_FALLBACK;
  736. }
  737. count_vm_event(THP_FAULT_ALLOC);
  738. return 0;
  739. }
  740. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  741. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  742. struct vm_area_struct *vma)
  743. {
  744. spinlock_t *dst_ptl, *src_ptl;
  745. struct page *src_page;
  746. pmd_t pmd;
  747. pgtable_t pgtable;
  748. int ret;
  749. ret = -ENOMEM;
  750. pgtable = pte_alloc_one(dst_mm, addr);
  751. if (unlikely(!pgtable))
  752. goto out;
  753. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  754. src_ptl = pmd_lockptr(src_mm, src_pmd);
  755. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  756. ret = -EAGAIN;
  757. pmd = *src_pmd;
  758. if (unlikely(!pmd_trans_huge(pmd))) {
  759. pte_free(dst_mm, pgtable);
  760. goto out_unlock;
  761. }
  762. /*
  763. * When page table lock is held, the huge zero pmd should not be
  764. * under splitting since we don't split the page itself, only pmd to
  765. * a page table.
  766. */
  767. if (is_huge_zero_pmd(pmd)) {
  768. struct page *zero_page;
  769. bool set;
  770. /*
  771. * get_huge_zero_page() will never allocate a new page here,
  772. * since we already have a zero page to copy. It just takes a
  773. * reference.
  774. */
  775. zero_page = get_huge_zero_page();
  776. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  777. zero_page);
  778. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  779. ret = 0;
  780. goto out_unlock;
  781. }
  782. if (unlikely(pmd_trans_splitting(pmd))) {
  783. /* split huge page running from under us */
  784. spin_unlock(src_ptl);
  785. spin_unlock(dst_ptl);
  786. pte_free(dst_mm, pgtable);
  787. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  788. goto out;
  789. }
  790. src_page = pmd_page(pmd);
  791. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  792. get_page(src_page);
  793. page_dup_rmap(src_page);
  794. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  795. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  796. pmd = pmd_mkold(pmd_wrprotect(pmd));
  797. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  798. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  799. atomic_long_inc(&dst_mm->nr_ptes);
  800. ret = 0;
  801. out_unlock:
  802. spin_unlock(src_ptl);
  803. spin_unlock(dst_ptl);
  804. out:
  805. return ret;
  806. }
  807. void huge_pmd_set_accessed(struct mm_struct *mm,
  808. struct vm_area_struct *vma,
  809. unsigned long address,
  810. pmd_t *pmd, pmd_t orig_pmd,
  811. int dirty)
  812. {
  813. spinlock_t *ptl;
  814. pmd_t entry;
  815. unsigned long haddr;
  816. ptl = pmd_lock(mm, pmd);
  817. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  818. goto unlock;
  819. entry = pmd_mkyoung(orig_pmd);
  820. haddr = address & HPAGE_PMD_MASK;
  821. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  822. update_mmu_cache_pmd(vma, address, pmd);
  823. unlock:
  824. spin_unlock(ptl);
  825. }
  826. /*
  827. * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
  828. * during copy_user_huge_page()'s copy_page_rep(): in the case when
  829. * the source page gets split and a tail freed before copy completes.
  830. * Called under pmd_lock of checked pmd, so safe from splitting itself.
  831. */
  832. static void get_user_huge_page(struct page *page)
  833. {
  834. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
  835. struct page *endpage = page + HPAGE_PMD_NR;
  836. atomic_add(HPAGE_PMD_NR, &page->_count);
  837. while (++page < endpage)
  838. get_huge_page_tail(page);
  839. } else {
  840. get_page(page);
  841. }
  842. }
  843. static void put_user_huge_page(struct page *page)
  844. {
  845. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
  846. struct page *endpage = page + HPAGE_PMD_NR;
  847. while (page < endpage)
  848. put_page(page++);
  849. } else {
  850. put_page(page);
  851. }
  852. }
  853. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  854. struct vm_area_struct *vma,
  855. unsigned long address,
  856. pmd_t *pmd, pmd_t orig_pmd,
  857. struct page *page,
  858. unsigned long haddr)
  859. {
  860. struct mem_cgroup *memcg;
  861. spinlock_t *ptl;
  862. pgtable_t pgtable;
  863. pmd_t _pmd;
  864. int ret = 0, i;
  865. struct page **pages;
  866. unsigned long mmun_start; /* For mmu_notifiers */
  867. unsigned long mmun_end; /* For mmu_notifiers */
  868. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  869. GFP_KERNEL);
  870. if (unlikely(!pages)) {
  871. ret |= VM_FAULT_OOM;
  872. goto out;
  873. }
  874. for (i = 0; i < HPAGE_PMD_NR; i++) {
  875. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  876. __GFP_OTHER_NODE,
  877. vma, address, page_to_nid(page));
  878. if (unlikely(!pages[i] ||
  879. mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
  880. &memcg))) {
  881. if (pages[i])
  882. put_page(pages[i]);
  883. while (--i >= 0) {
  884. memcg = (void *)page_private(pages[i]);
  885. set_page_private(pages[i], 0);
  886. mem_cgroup_cancel_charge(pages[i], memcg);
  887. put_page(pages[i]);
  888. }
  889. kfree(pages);
  890. ret |= VM_FAULT_OOM;
  891. goto out;
  892. }
  893. set_page_private(pages[i], (unsigned long)memcg);
  894. }
  895. for (i = 0; i < HPAGE_PMD_NR; i++) {
  896. copy_user_highpage(pages[i], page + i,
  897. haddr + PAGE_SIZE * i, vma);
  898. __SetPageUptodate(pages[i]);
  899. cond_resched();
  900. }
  901. mmun_start = haddr;
  902. mmun_end = haddr + HPAGE_PMD_SIZE;
  903. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  904. ptl = pmd_lock(mm, pmd);
  905. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  906. goto out_free_pages;
  907. VM_BUG_ON_PAGE(!PageHead(page), page);
  908. pmdp_clear_flush_notify(vma, haddr, pmd);
  909. /* leave pmd empty until pte is filled */
  910. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  911. pmd_populate(mm, &_pmd, pgtable);
  912. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  913. pte_t *pte, entry;
  914. entry = mk_pte(pages[i], vma->vm_page_prot);
  915. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  916. memcg = (void *)page_private(pages[i]);
  917. set_page_private(pages[i], 0);
  918. page_add_new_anon_rmap(pages[i], vma, haddr);
  919. mem_cgroup_commit_charge(pages[i], memcg, false);
  920. lru_cache_add_active_or_unevictable(pages[i], vma);
  921. pte = pte_offset_map(&_pmd, haddr);
  922. VM_BUG_ON(!pte_none(*pte));
  923. set_pte_at(mm, haddr, pte, entry);
  924. pte_unmap(pte);
  925. }
  926. kfree(pages);
  927. smp_wmb(); /* make pte visible before pmd */
  928. pmd_populate(mm, pmd, pgtable);
  929. page_remove_rmap(page);
  930. spin_unlock(ptl);
  931. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  932. ret |= VM_FAULT_WRITE;
  933. put_page(page);
  934. out:
  935. return ret;
  936. out_free_pages:
  937. spin_unlock(ptl);
  938. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  939. for (i = 0; i < HPAGE_PMD_NR; i++) {
  940. memcg = (void *)page_private(pages[i]);
  941. set_page_private(pages[i], 0);
  942. mem_cgroup_cancel_charge(pages[i], memcg);
  943. put_page(pages[i]);
  944. }
  945. kfree(pages);
  946. goto out;
  947. }
  948. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  949. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  950. {
  951. spinlock_t *ptl;
  952. int ret = 0;
  953. struct page *page = NULL, *new_page;
  954. struct mem_cgroup *memcg;
  955. unsigned long haddr;
  956. unsigned long mmun_start; /* For mmu_notifiers */
  957. unsigned long mmun_end; /* For mmu_notifiers */
  958. gfp_t huge_gfp; /* for allocation and charge */
  959. ptl = pmd_lockptr(mm, pmd);
  960. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  961. haddr = address & HPAGE_PMD_MASK;
  962. if (is_huge_zero_pmd(orig_pmd))
  963. goto alloc;
  964. spin_lock(ptl);
  965. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  966. goto out_unlock;
  967. page = pmd_page(orig_pmd);
  968. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  969. if (page_mapcount(page) == 1) {
  970. pmd_t entry;
  971. entry = pmd_mkyoung(orig_pmd);
  972. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  973. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  974. update_mmu_cache_pmd(vma, address, pmd);
  975. ret |= VM_FAULT_WRITE;
  976. goto out_unlock;
  977. }
  978. get_user_huge_page(page);
  979. spin_unlock(ptl);
  980. alloc:
  981. if (transparent_hugepage_enabled(vma) &&
  982. !transparent_hugepage_debug_cow()) {
  983. huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
  984. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  985. } else
  986. new_page = NULL;
  987. if (unlikely(!new_page)) {
  988. if (!page) {
  989. split_huge_page_pmd(vma, address, pmd);
  990. ret |= VM_FAULT_FALLBACK;
  991. } else {
  992. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  993. pmd, orig_pmd, page, haddr);
  994. if (ret & VM_FAULT_OOM) {
  995. split_huge_page(page);
  996. ret |= VM_FAULT_FALLBACK;
  997. }
  998. put_user_huge_page(page);
  999. }
  1000. count_vm_event(THP_FAULT_FALLBACK);
  1001. goto out;
  1002. }
  1003. if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
  1004. put_page(new_page);
  1005. if (page) {
  1006. split_huge_page(page);
  1007. put_user_huge_page(page);
  1008. } else
  1009. split_huge_page_pmd(vma, address, pmd);
  1010. ret |= VM_FAULT_FALLBACK;
  1011. count_vm_event(THP_FAULT_FALLBACK);
  1012. goto out;
  1013. }
  1014. count_vm_event(THP_FAULT_ALLOC);
  1015. if (!page)
  1016. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1017. else
  1018. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1019. __SetPageUptodate(new_page);
  1020. mmun_start = haddr;
  1021. mmun_end = haddr + HPAGE_PMD_SIZE;
  1022. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1023. spin_lock(ptl);
  1024. if (page)
  1025. put_user_huge_page(page);
  1026. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1027. spin_unlock(ptl);
  1028. mem_cgroup_cancel_charge(new_page, memcg);
  1029. put_page(new_page);
  1030. goto out_mn;
  1031. } else {
  1032. pmd_t entry;
  1033. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1034. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1035. pmdp_clear_flush_notify(vma, haddr, pmd);
  1036. page_add_new_anon_rmap(new_page, vma, haddr);
  1037. mem_cgroup_commit_charge(new_page, memcg, false);
  1038. lru_cache_add_active_or_unevictable(new_page, vma);
  1039. set_pmd_at(mm, haddr, pmd, entry);
  1040. update_mmu_cache_pmd(vma, address, pmd);
  1041. if (!page) {
  1042. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1043. put_huge_zero_page();
  1044. } else {
  1045. VM_BUG_ON_PAGE(!PageHead(page), page);
  1046. page_remove_rmap(page);
  1047. put_page(page);
  1048. }
  1049. ret |= VM_FAULT_WRITE;
  1050. }
  1051. spin_unlock(ptl);
  1052. out_mn:
  1053. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1054. out:
  1055. return ret;
  1056. out_unlock:
  1057. spin_unlock(ptl);
  1058. return ret;
  1059. }
  1060. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1061. unsigned long addr,
  1062. pmd_t *pmd,
  1063. unsigned int flags)
  1064. {
  1065. struct mm_struct *mm = vma->vm_mm;
  1066. struct page *page = NULL;
  1067. assert_spin_locked(pmd_lockptr(mm, pmd));
  1068. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1069. goto out;
  1070. /* Avoid dumping huge zero page */
  1071. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1072. return ERR_PTR(-EFAULT);
  1073. /* Full NUMA hinting faults to serialise migration in fault paths */
  1074. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1075. goto out;
  1076. page = pmd_page(*pmd);
  1077. VM_BUG_ON_PAGE(!PageHead(page), page);
  1078. if (flags & FOLL_TOUCH) {
  1079. pmd_t _pmd;
  1080. /*
  1081. * We should set the dirty bit only for FOLL_WRITE but
  1082. * for now the dirty bit in the pmd is meaningless.
  1083. * And if the dirty bit will become meaningful and
  1084. * we'll only set it with FOLL_WRITE, an atomic
  1085. * set_bit will be required on the pmd to set the
  1086. * young bit, instead of the current set_pmd_at.
  1087. */
  1088. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1089. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  1090. pmd, _pmd, 1))
  1091. update_mmu_cache_pmd(vma, addr, pmd);
  1092. }
  1093. if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
  1094. if (page->mapping && trylock_page(page)) {
  1095. lru_add_drain();
  1096. if (page->mapping)
  1097. mlock_vma_page(page);
  1098. unlock_page(page);
  1099. }
  1100. }
  1101. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1102. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1103. if (flags & FOLL_GET)
  1104. get_page_foll(page);
  1105. out:
  1106. return page;
  1107. }
  1108. /* NUMA hinting page fault entry point for trans huge pmds */
  1109. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1110. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1111. {
  1112. spinlock_t *ptl;
  1113. struct anon_vma *anon_vma = NULL;
  1114. struct page *page;
  1115. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1116. int page_nid = -1, this_nid = numa_node_id();
  1117. int target_nid, last_cpupid = -1;
  1118. bool page_locked;
  1119. bool migrated = false;
  1120. bool was_writable;
  1121. int flags = 0;
  1122. /* A PROT_NONE fault should not end up here */
  1123. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  1124. ptl = pmd_lock(mm, pmdp);
  1125. if (unlikely(!pmd_same(pmd, *pmdp)))
  1126. goto out_unlock;
  1127. /*
  1128. * If there are potential migrations, wait for completion and retry
  1129. * without disrupting NUMA hinting information. Do not relock and
  1130. * check_same as the page may no longer be mapped.
  1131. */
  1132. if (unlikely(pmd_trans_migrating(*pmdp))) {
  1133. page = pmd_page(*pmdp);
  1134. spin_unlock(ptl);
  1135. wait_on_page_locked(page);
  1136. goto out;
  1137. }
  1138. page = pmd_page(pmd);
  1139. BUG_ON(is_huge_zero_page(page));
  1140. page_nid = page_to_nid(page);
  1141. last_cpupid = page_cpupid_last(page);
  1142. count_vm_numa_event(NUMA_HINT_FAULTS);
  1143. if (page_nid == this_nid) {
  1144. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1145. flags |= TNF_FAULT_LOCAL;
  1146. }
  1147. /* See similar comment in do_numa_page for explanation */
  1148. if (!(vma->vm_flags & VM_WRITE))
  1149. flags |= TNF_NO_GROUP;
  1150. /*
  1151. * Acquire the page lock to serialise THP migrations but avoid dropping
  1152. * page_table_lock if at all possible
  1153. */
  1154. page_locked = trylock_page(page);
  1155. target_nid = mpol_misplaced(page, vma, haddr);
  1156. if (target_nid == -1) {
  1157. /* If the page was locked, there are no parallel migrations */
  1158. if (page_locked)
  1159. goto clear_pmdnuma;
  1160. }
  1161. /* Migration could have started since the pmd_trans_migrating check */
  1162. if (!page_locked) {
  1163. spin_unlock(ptl);
  1164. wait_on_page_locked(page);
  1165. page_nid = -1;
  1166. goto out;
  1167. }
  1168. /*
  1169. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1170. * to serialises splits
  1171. */
  1172. get_page(page);
  1173. spin_unlock(ptl);
  1174. anon_vma = page_lock_anon_vma_read(page);
  1175. /* Confirm the PMD did not change while page_table_lock was released */
  1176. spin_lock(ptl);
  1177. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1178. unlock_page(page);
  1179. put_page(page);
  1180. page_nid = -1;
  1181. goto out_unlock;
  1182. }
  1183. /* Bail if we fail to protect against THP splits for any reason */
  1184. if (unlikely(!anon_vma)) {
  1185. put_page(page);
  1186. page_nid = -1;
  1187. goto clear_pmdnuma;
  1188. }
  1189. /*
  1190. * Migrate the THP to the requested node, returns with page unlocked
  1191. * and access rights restored.
  1192. */
  1193. spin_unlock(ptl);
  1194. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1195. pmdp, pmd, addr, page, target_nid);
  1196. if (migrated) {
  1197. flags |= TNF_MIGRATED;
  1198. page_nid = target_nid;
  1199. } else
  1200. flags |= TNF_MIGRATE_FAIL;
  1201. goto out;
  1202. clear_pmdnuma:
  1203. BUG_ON(!PageLocked(page));
  1204. was_writable = pmd_write(pmd);
  1205. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1206. pmd = pmd_mkyoung(pmd);
  1207. if (was_writable)
  1208. pmd = pmd_mkwrite(pmd);
  1209. set_pmd_at(mm, haddr, pmdp, pmd);
  1210. update_mmu_cache_pmd(vma, addr, pmdp);
  1211. unlock_page(page);
  1212. out_unlock:
  1213. spin_unlock(ptl);
  1214. out:
  1215. if (anon_vma)
  1216. page_unlock_anon_vma_read(anon_vma);
  1217. if (page_nid != -1)
  1218. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
  1219. return 0;
  1220. }
  1221. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1222. pmd_t *pmd, unsigned long addr)
  1223. {
  1224. spinlock_t *ptl;
  1225. int ret = 0;
  1226. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1227. struct page *page;
  1228. pgtable_t pgtable;
  1229. pmd_t orig_pmd;
  1230. /*
  1231. * For architectures like ppc64 we look at deposited pgtable
  1232. * when calling pmdp_get_and_clear. So do the
  1233. * pgtable_trans_huge_withdraw after finishing pmdp related
  1234. * operations.
  1235. */
  1236. orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
  1237. tlb->fullmm);
  1238. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1239. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1240. if (is_huge_zero_pmd(orig_pmd)) {
  1241. atomic_long_dec(&tlb->mm->nr_ptes);
  1242. spin_unlock(ptl);
  1243. put_huge_zero_page();
  1244. } else {
  1245. page = pmd_page(orig_pmd);
  1246. page_remove_rmap(page);
  1247. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1248. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1249. VM_BUG_ON_PAGE(!PageHead(page), page);
  1250. atomic_long_dec(&tlb->mm->nr_ptes);
  1251. spin_unlock(ptl);
  1252. tlb_remove_page(tlb, page);
  1253. }
  1254. pte_free(tlb->mm, pgtable);
  1255. ret = 1;
  1256. }
  1257. return ret;
  1258. }
  1259. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1260. unsigned long old_addr,
  1261. unsigned long new_addr, unsigned long old_end,
  1262. pmd_t *old_pmd, pmd_t *new_pmd)
  1263. {
  1264. spinlock_t *old_ptl, *new_ptl;
  1265. int ret = 0;
  1266. pmd_t pmd;
  1267. struct mm_struct *mm = vma->vm_mm;
  1268. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1269. (new_addr & ~HPAGE_PMD_MASK) ||
  1270. old_end - old_addr < HPAGE_PMD_SIZE ||
  1271. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1272. goto out;
  1273. /*
  1274. * The destination pmd shouldn't be established, free_pgtables()
  1275. * should have release it.
  1276. */
  1277. if (WARN_ON(!pmd_none(*new_pmd))) {
  1278. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1279. goto out;
  1280. }
  1281. /*
  1282. * We don't have to worry about the ordering of src and dst
  1283. * ptlocks because exclusive mmap_sem prevents deadlock.
  1284. */
  1285. ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
  1286. if (ret == 1) {
  1287. new_ptl = pmd_lockptr(mm, new_pmd);
  1288. if (new_ptl != old_ptl)
  1289. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1290. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1291. VM_BUG_ON(!pmd_none(*new_pmd));
  1292. if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
  1293. pgtable_t pgtable;
  1294. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1295. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1296. }
  1297. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1298. if (new_ptl != old_ptl)
  1299. spin_unlock(new_ptl);
  1300. spin_unlock(old_ptl);
  1301. }
  1302. out:
  1303. return ret;
  1304. }
  1305. /*
  1306. * Returns
  1307. * - 0 if PMD could not be locked
  1308. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1309. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1310. */
  1311. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1312. unsigned long addr, pgprot_t newprot, int prot_numa)
  1313. {
  1314. struct mm_struct *mm = vma->vm_mm;
  1315. spinlock_t *ptl;
  1316. int ret = 0;
  1317. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1318. pmd_t entry;
  1319. bool preserve_write = prot_numa && pmd_write(*pmd);
  1320. ret = 1;
  1321. /*
  1322. * Avoid trapping faults against the zero page. The read-only
  1323. * data is likely to be read-cached on the local CPU and
  1324. * local/remote hits to the zero page are not interesting.
  1325. */
  1326. if (prot_numa && is_huge_zero_pmd(*pmd)) {
  1327. spin_unlock(ptl);
  1328. return ret;
  1329. }
  1330. if (!prot_numa || !pmd_protnone(*pmd)) {
  1331. entry = pmdp_get_and_clear_notify(mm, addr, pmd);
  1332. entry = pmd_modify(entry, newprot);
  1333. if (preserve_write)
  1334. entry = pmd_mkwrite(entry);
  1335. ret = HPAGE_PMD_NR;
  1336. set_pmd_at(mm, addr, pmd, entry);
  1337. BUG_ON(!preserve_write && pmd_write(entry));
  1338. }
  1339. spin_unlock(ptl);
  1340. }
  1341. return ret;
  1342. }
  1343. /*
  1344. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1345. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1346. *
  1347. * Note that if it returns 1, this routine returns without unlocking page
  1348. * table locks. So callers must unlock them.
  1349. */
  1350. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
  1351. spinlock_t **ptl)
  1352. {
  1353. *ptl = pmd_lock(vma->vm_mm, pmd);
  1354. if (likely(pmd_trans_huge(*pmd))) {
  1355. if (unlikely(pmd_trans_splitting(*pmd))) {
  1356. spin_unlock(*ptl);
  1357. wait_split_huge_page(vma->anon_vma, pmd);
  1358. return -1;
  1359. } else {
  1360. /* Thp mapped by 'pmd' is stable, so we can
  1361. * handle it as it is. */
  1362. return 1;
  1363. }
  1364. }
  1365. spin_unlock(*ptl);
  1366. return 0;
  1367. }
  1368. /*
  1369. * This function returns whether a given @page is mapped onto the @address
  1370. * in the virtual space of @mm.
  1371. *
  1372. * When it's true, this function returns *pmd with holding the page table lock
  1373. * and passing it back to the caller via @ptl.
  1374. * If it's false, returns NULL without holding the page table lock.
  1375. */
  1376. pmd_t *page_check_address_pmd(struct page *page,
  1377. struct mm_struct *mm,
  1378. unsigned long address,
  1379. enum page_check_address_pmd_flag flag,
  1380. spinlock_t **ptl)
  1381. {
  1382. pgd_t *pgd;
  1383. pud_t *pud;
  1384. pmd_t *pmd;
  1385. if (address & ~HPAGE_PMD_MASK)
  1386. return NULL;
  1387. pgd = pgd_offset(mm, address);
  1388. if (!pgd_present(*pgd))
  1389. return NULL;
  1390. pud = pud_offset(pgd, address);
  1391. if (!pud_present(*pud))
  1392. return NULL;
  1393. pmd = pmd_offset(pud, address);
  1394. *ptl = pmd_lock(mm, pmd);
  1395. if (!pmd_present(*pmd))
  1396. goto unlock;
  1397. if (pmd_page(*pmd) != page)
  1398. goto unlock;
  1399. /*
  1400. * split_vma() may create temporary aliased mappings. There is
  1401. * no risk as long as all huge pmd are found and have their
  1402. * splitting bit set before __split_huge_page_refcount
  1403. * runs. Finding the same huge pmd more than once during the
  1404. * same rmap walk is not a problem.
  1405. */
  1406. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1407. pmd_trans_splitting(*pmd))
  1408. goto unlock;
  1409. if (pmd_trans_huge(*pmd)) {
  1410. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1411. !pmd_trans_splitting(*pmd));
  1412. return pmd;
  1413. }
  1414. unlock:
  1415. spin_unlock(*ptl);
  1416. return NULL;
  1417. }
  1418. static int __split_huge_page_splitting(struct page *page,
  1419. struct vm_area_struct *vma,
  1420. unsigned long address)
  1421. {
  1422. struct mm_struct *mm = vma->vm_mm;
  1423. spinlock_t *ptl;
  1424. pmd_t *pmd;
  1425. int ret = 0;
  1426. /* For mmu_notifiers */
  1427. const unsigned long mmun_start = address;
  1428. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1429. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1430. pmd = page_check_address_pmd(page, mm, address,
  1431. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
  1432. if (pmd) {
  1433. /*
  1434. * We can't temporarily set the pmd to null in order
  1435. * to split it, the pmd must remain marked huge at all
  1436. * times or the VM won't take the pmd_trans_huge paths
  1437. * and it won't wait on the anon_vma->root->rwsem to
  1438. * serialize against split_huge_page*.
  1439. */
  1440. pmdp_splitting_flush(vma, address, pmd);
  1441. ret = 1;
  1442. spin_unlock(ptl);
  1443. }
  1444. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1445. return ret;
  1446. }
  1447. static void __split_huge_page_refcount(struct page *page,
  1448. struct list_head *list)
  1449. {
  1450. int i;
  1451. struct zone *zone = page_zone(page);
  1452. struct lruvec *lruvec;
  1453. int tail_count = 0;
  1454. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1455. spin_lock_irq(&zone->lru_lock);
  1456. lruvec = mem_cgroup_page_lruvec(page, zone);
  1457. compound_lock(page);
  1458. /* complete memcg works before add pages to LRU */
  1459. mem_cgroup_split_huge_fixup(page);
  1460. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1461. struct page *page_tail = page + i;
  1462. /* tail_page->_mapcount cannot change */
  1463. BUG_ON(page_mapcount(page_tail) < 0);
  1464. tail_count += page_mapcount(page_tail);
  1465. /* check for overflow */
  1466. BUG_ON(tail_count < 0);
  1467. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1468. /*
  1469. * tail_page->_count is zero and not changing from
  1470. * under us. But get_page_unless_zero() may be running
  1471. * from under us on the tail_page. If we used
  1472. * atomic_set() below instead of atomic_add(), we
  1473. * would then run atomic_set() concurrently with
  1474. * get_page_unless_zero(), and atomic_set() is
  1475. * implemented in C not using locked ops. spin_unlock
  1476. * on x86 sometime uses locked ops because of PPro
  1477. * errata 66, 92, so unless somebody can guarantee
  1478. * atomic_set() here would be safe on all archs (and
  1479. * not only on x86), it's safer to use atomic_add().
  1480. */
  1481. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1482. &page_tail->_count);
  1483. /* after clearing PageTail the gup refcount can be released */
  1484. smp_mb__after_atomic();
  1485. /*
  1486. * retain hwpoison flag of the poisoned tail page:
  1487. * fix for the unsuitable process killed on Guest Machine(KVM)
  1488. * by the memory-failure.
  1489. */
  1490. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1491. page_tail->flags |= (page->flags &
  1492. ((1L << PG_referenced) |
  1493. (1L << PG_swapbacked) |
  1494. (1L << PG_mlocked) |
  1495. (1L << PG_uptodate) |
  1496. (1L << PG_active) |
  1497. (1L << PG_unevictable)));
  1498. page_tail->flags |= (1L << PG_dirty);
  1499. /* clear PageTail before overwriting first_page */
  1500. smp_wmb();
  1501. /*
  1502. * __split_huge_page_splitting() already set the
  1503. * splitting bit in all pmd that could map this
  1504. * hugepage, that will ensure no CPU can alter the
  1505. * mapcount on the head page. The mapcount is only
  1506. * accounted in the head page and it has to be
  1507. * transferred to all tail pages in the below code. So
  1508. * for this code to be safe, the split the mapcount
  1509. * can't change. But that doesn't mean userland can't
  1510. * keep changing and reading the page contents while
  1511. * we transfer the mapcount, so the pmd splitting
  1512. * status is achieved setting a reserved bit in the
  1513. * pmd, not by clearing the present bit.
  1514. */
  1515. page_tail->_mapcount = page->_mapcount;
  1516. BUG_ON(page_tail->mapping);
  1517. page_tail->mapping = page->mapping;
  1518. page_tail->index = page->index + i;
  1519. page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
  1520. BUG_ON(!PageAnon(page_tail));
  1521. BUG_ON(!PageUptodate(page_tail));
  1522. BUG_ON(!PageDirty(page_tail));
  1523. BUG_ON(!PageSwapBacked(page_tail));
  1524. lru_add_page_tail(page, page_tail, lruvec, list);
  1525. }
  1526. atomic_sub(tail_count, &page->_count);
  1527. BUG_ON(atomic_read(&page->_count) <= 0);
  1528. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1529. ClearPageCompound(page);
  1530. compound_unlock(page);
  1531. spin_unlock_irq(&zone->lru_lock);
  1532. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1533. struct page *page_tail = page + i;
  1534. BUG_ON(page_count(page_tail) <= 0);
  1535. /*
  1536. * Tail pages may be freed if there wasn't any mapping
  1537. * like if add_to_swap() is running on a lru page that
  1538. * had its mapping zapped. And freeing these pages
  1539. * requires taking the lru_lock so we do the put_page
  1540. * of the tail pages after the split is complete.
  1541. */
  1542. put_page(page_tail);
  1543. }
  1544. /*
  1545. * Only the head page (now become a regular page) is required
  1546. * to be pinned by the caller.
  1547. */
  1548. BUG_ON(page_count(page) <= 0);
  1549. }
  1550. static int __split_huge_page_map(struct page *page,
  1551. struct vm_area_struct *vma,
  1552. unsigned long address)
  1553. {
  1554. struct mm_struct *mm = vma->vm_mm;
  1555. spinlock_t *ptl;
  1556. pmd_t *pmd, _pmd;
  1557. int ret = 0, i;
  1558. pgtable_t pgtable;
  1559. unsigned long haddr;
  1560. pmd = page_check_address_pmd(page, mm, address,
  1561. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
  1562. if (pmd) {
  1563. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1564. pmd_populate(mm, &_pmd, pgtable);
  1565. if (pmd_write(*pmd))
  1566. BUG_ON(page_mapcount(page) != 1);
  1567. haddr = address;
  1568. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1569. pte_t *pte, entry;
  1570. BUG_ON(PageCompound(page+i));
  1571. /*
  1572. * Note that NUMA hinting access restrictions are not
  1573. * transferred to avoid any possibility of altering
  1574. * permissions across VMAs.
  1575. */
  1576. entry = mk_pte(page + i, vma->vm_page_prot);
  1577. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1578. if (!pmd_write(*pmd))
  1579. entry = pte_wrprotect(entry);
  1580. if (!pmd_young(*pmd))
  1581. entry = pte_mkold(entry);
  1582. pte = pte_offset_map(&_pmd, haddr);
  1583. BUG_ON(!pte_none(*pte));
  1584. set_pte_at(mm, haddr, pte, entry);
  1585. pte_unmap(pte);
  1586. }
  1587. smp_wmb(); /* make pte visible before pmd */
  1588. /*
  1589. * Up to this point the pmd is present and huge and
  1590. * userland has the whole access to the hugepage
  1591. * during the split (which happens in place). If we
  1592. * overwrite the pmd with the not-huge version
  1593. * pointing to the pte here (which of course we could
  1594. * if all CPUs were bug free), userland could trigger
  1595. * a small page size TLB miss on the small sized TLB
  1596. * while the hugepage TLB entry is still established
  1597. * in the huge TLB. Some CPU doesn't like that. See
  1598. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1599. * Erratum 383 on page 93. Intel should be safe but is
  1600. * also warns that it's only safe if the permission
  1601. * and cache attributes of the two entries loaded in
  1602. * the two TLB is identical (which should be the case
  1603. * here). But it is generally safer to never allow
  1604. * small and huge TLB entries for the same virtual
  1605. * address to be loaded simultaneously. So instead of
  1606. * doing "pmd_populate(); flush_tlb_range();" we first
  1607. * mark the current pmd notpresent (atomically because
  1608. * here the pmd_trans_huge and pmd_trans_splitting
  1609. * must remain set at all times on the pmd until the
  1610. * split is complete for this pmd), then we flush the
  1611. * SMP TLB and finally we write the non-huge version
  1612. * of the pmd entry with pmd_populate.
  1613. */
  1614. pmdp_invalidate(vma, address, pmd);
  1615. pmd_populate(mm, pmd, pgtable);
  1616. ret = 1;
  1617. spin_unlock(ptl);
  1618. }
  1619. return ret;
  1620. }
  1621. /* must be called with anon_vma->root->rwsem held */
  1622. static void __split_huge_page(struct page *page,
  1623. struct anon_vma *anon_vma,
  1624. struct list_head *list)
  1625. {
  1626. int mapcount, mapcount2;
  1627. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1628. struct anon_vma_chain *avc;
  1629. BUG_ON(!PageHead(page));
  1630. BUG_ON(PageTail(page));
  1631. mapcount = 0;
  1632. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1633. struct vm_area_struct *vma = avc->vma;
  1634. unsigned long addr = vma_address(page, vma);
  1635. BUG_ON(is_vma_temporary_stack(vma));
  1636. mapcount += __split_huge_page_splitting(page, vma, addr);
  1637. }
  1638. /*
  1639. * It is critical that new vmas are added to the tail of the
  1640. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1641. * and establishes a child pmd before
  1642. * __split_huge_page_splitting() freezes the parent pmd (so if
  1643. * we fail to prevent copy_huge_pmd() from running until the
  1644. * whole __split_huge_page() is complete), we will still see
  1645. * the newly established pmd of the child later during the
  1646. * walk, to be able to set it as pmd_trans_splitting too.
  1647. */
  1648. if (mapcount != page_mapcount(page)) {
  1649. pr_err("mapcount %d page_mapcount %d\n",
  1650. mapcount, page_mapcount(page));
  1651. BUG();
  1652. }
  1653. __split_huge_page_refcount(page, list);
  1654. mapcount2 = 0;
  1655. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1656. struct vm_area_struct *vma = avc->vma;
  1657. unsigned long addr = vma_address(page, vma);
  1658. BUG_ON(is_vma_temporary_stack(vma));
  1659. mapcount2 += __split_huge_page_map(page, vma, addr);
  1660. }
  1661. if (mapcount != mapcount2) {
  1662. pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
  1663. mapcount, mapcount2, page_mapcount(page));
  1664. BUG();
  1665. }
  1666. }
  1667. /*
  1668. * Split a hugepage into normal pages. This doesn't change the position of head
  1669. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1670. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1671. * from the hugepage.
  1672. * Return 0 if the hugepage is split successfully otherwise return 1.
  1673. */
  1674. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1675. {
  1676. struct anon_vma *anon_vma;
  1677. int ret = 1;
  1678. BUG_ON(is_huge_zero_page(page));
  1679. BUG_ON(!PageAnon(page));
  1680. /*
  1681. * The caller does not necessarily hold an mmap_sem that would prevent
  1682. * the anon_vma disappearing so we first we take a reference to it
  1683. * and then lock the anon_vma for write. This is similar to
  1684. * page_lock_anon_vma_read except the write lock is taken to serialise
  1685. * against parallel split or collapse operations.
  1686. */
  1687. anon_vma = page_get_anon_vma(page);
  1688. if (!anon_vma)
  1689. goto out;
  1690. anon_vma_lock_write(anon_vma);
  1691. ret = 0;
  1692. if (!PageCompound(page))
  1693. goto out_unlock;
  1694. BUG_ON(!PageSwapBacked(page));
  1695. __split_huge_page(page, anon_vma, list);
  1696. count_vm_event(THP_SPLIT);
  1697. BUG_ON(PageCompound(page));
  1698. out_unlock:
  1699. anon_vma_unlock_write(anon_vma);
  1700. put_anon_vma(anon_vma);
  1701. out:
  1702. return ret;
  1703. }
  1704. #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
  1705. int hugepage_madvise(struct vm_area_struct *vma,
  1706. unsigned long *vm_flags, int advice)
  1707. {
  1708. switch (advice) {
  1709. case MADV_HUGEPAGE:
  1710. #ifdef CONFIG_S390
  1711. /*
  1712. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  1713. * can't handle this properly after s390_enable_sie, so we simply
  1714. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  1715. */
  1716. if (mm_has_pgste(vma->vm_mm))
  1717. return 0;
  1718. #endif
  1719. /*
  1720. * Be somewhat over-protective like KSM for now!
  1721. */
  1722. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1723. return -EINVAL;
  1724. *vm_flags &= ~VM_NOHUGEPAGE;
  1725. *vm_flags |= VM_HUGEPAGE;
  1726. /*
  1727. * If the vma become good for khugepaged to scan,
  1728. * register it here without waiting a page fault that
  1729. * may not happen any time soon.
  1730. */
  1731. if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
  1732. return -ENOMEM;
  1733. break;
  1734. case MADV_NOHUGEPAGE:
  1735. /*
  1736. * Be somewhat over-protective like KSM for now!
  1737. */
  1738. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1739. return -EINVAL;
  1740. *vm_flags &= ~VM_HUGEPAGE;
  1741. *vm_flags |= VM_NOHUGEPAGE;
  1742. /*
  1743. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1744. * this vma even if we leave the mm registered in khugepaged if
  1745. * it got registered before VM_NOHUGEPAGE was set.
  1746. */
  1747. break;
  1748. }
  1749. return 0;
  1750. }
  1751. static int __init khugepaged_slab_init(void)
  1752. {
  1753. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1754. sizeof(struct mm_slot),
  1755. __alignof__(struct mm_slot), 0, NULL);
  1756. if (!mm_slot_cache)
  1757. return -ENOMEM;
  1758. return 0;
  1759. }
  1760. static void __init khugepaged_slab_exit(void)
  1761. {
  1762. kmem_cache_destroy(mm_slot_cache);
  1763. }
  1764. static inline struct mm_slot *alloc_mm_slot(void)
  1765. {
  1766. if (!mm_slot_cache) /* initialization failed */
  1767. return NULL;
  1768. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1769. }
  1770. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1771. {
  1772. kmem_cache_free(mm_slot_cache, mm_slot);
  1773. }
  1774. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1775. {
  1776. struct mm_slot *mm_slot;
  1777. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1778. if (mm == mm_slot->mm)
  1779. return mm_slot;
  1780. return NULL;
  1781. }
  1782. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1783. struct mm_slot *mm_slot)
  1784. {
  1785. mm_slot->mm = mm;
  1786. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1787. }
  1788. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1789. {
  1790. return atomic_read(&mm->mm_users) == 0;
  1791. }
  1792. int __khugepaged_enter(struct mm_struct *mm)
  1793. {
  1794. struct mm_slot *mm_slot;
  1795. int wakeup;
  1796. mm_slot = alloc_mm_slot();
  1797. if (!mm_slot)
  1798. return -ENOMEM;
  1799. /* __khugepaged_exit() must not run from under us */
  1800. VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
  1801. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1802. free_mm_slot(mm_slot);
  1803. return 0;
  1804. }
  1805. spin_lock(&khugepaged_mm_lock);
  1806. insert_to_mm_slots_hash(mm, mm_slot);
  1807. /*
  1808. * Insert just behind the scanning cursor, to let the area settle
  1809. * down a little.
  1810. */
  1811. wakeup = list_empty(&khugepaged_scan.mm_head);
  1812. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1813. spin_unlock(&khugepaged_mm_lock);
  1814. atomic_inc(&mm->mm_count);
  1815. if (wakeup)
  1816. wake_up_interruptible(&khugepaged_wait);
  1817. return 0;
  1818. }
  1819. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  1820. unsigned long vm_flags)
  1821. {
  1822. unsigned long hstart, hend;
  1823. if (!vma->anon_vma)
  1824. /*
  1825. * Not yet faulted in so we will register later in the
  1826. * page fault if needed.
  1827. */
  1828. return 0;
  1829. if (vma->vm_ops)
  1830. /* khugepaged not yet working on file or special mappings */
  1831. return 0;
  1832. VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
  1833. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1834. hend = vma->vm_end & HPAGE_PMD_MASK;
  1835. if (hstart < hend)
  1836. return khugepaged_enter(vma, vm_flags);
  1837. return 0;
  1838. }
  1839. void __khugepaged_exit(struct mm_struct *mm)
  1840. {
  1841. struct mm_slot *mm_slot;
  1842. int free = 0;
  1843. spin_lock(&khugepaged_mm_lock);
  1844. mm_slot = get_mm_slot(mm);
  1845. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1846. hash_del(&mm_slot->hash);
  1847. list_del(&mm_slot->mm_node);
  1848. free = 1;
  1849. }
  1850. spin_unlock(&khugepaged_mm_lock);
  1851. if (free) {
  1852. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1853. free_mm_slot(mm_slot);
  1854. mmdrop(mm);
  1855. } else if (mm_slot) {
  1856. /*
  1857. * This is required to serialize against
  1858. * khugepaged_test_exit() (which is guaranteed to run
  1859. * under mmap sem read mode). Stop here (after we
  1860. * return all pagetables will be destroyed) until
  1861. * khugepaged has finished working on the pagetables
  1862. * under the mmap_sem.
  1863. */
  1864. down_write(&mm->mmap_sem);
  1865. up_write(&mm->mmap_sem);
  1866. }
  1867. }
  1868. static void release_pte_page(struct page *page)
  1869. {
  1870. /* 0 stands for page_is_file_cache(page) == false */
  1871. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1872. unlock_page(page);
  1873. putback_lru_page(page);
  1874. }
  1875. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1876. {
  1877. while (--_pte >= pte) {
  1878. pte_t pteval = *_pte;
  1879. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  1880. release_pte_page(pte_page(pteval));
  1881. }
  1882. }
  1883. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1884. unsigned long address,
  1885. pte_t *pte)
  1886. {
  1887. struct page *page;
  1888. pte_t *_pte;
  1889. int none_or_zero = 0;
  1890. bool referenced = false, writable = false;
  1891. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1892. _pte++, address += PAGE_SIZE) {
  1893. pte_t pteval = *_pte;
  1894. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  1895. if (++none_or_zero <= khugepaged_max_ptes_none)
  1896. continue;
  1897. else
  1898. goto out;
  1899. }
  1900. if (!pte_present(pteval))
  1901. goto out;
  1902. page = vm_normal_page(vma, address, pteval);
  1903. if (unlikely(!page))
  1904. goto out;
  1905. VM_BUG_ON_PAGE(PageCompound(page), page);
  1906. VM_BUG_ON_PAGE(!PageAnon(page), page);
  1907. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1908. /*
  1909. * We can do it before isolate_lru_page because the
  1910. * page can't be freed from under us. NOTE: PG_lock
  1911. * is needed to serialize against split_huge_page
  1912. * when invoked from the VM.
  1913. */
  1914. if (!trylock_page(page))
  1915. goto out;
  1916. /*
  1917. * cannot use mapcount: can't collapse if there's a gup pin.
  1918. * The page must only be referenced by the scanned process
  1919. * and page swap cache.
  1920. */
  1921. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  1922. unlock_page(page);
  1923. goto out;
  1924. }
  1925. if (pte_write(pteval)) {
  1926. writable = true;
  1927. } else {
  1928. if (PageSwapCache(page) && !reuse_swap_page(page)) {
  1929. unlock_page(page);
  1930. goto out;
  1931. }
  1932. /*
  1933. * Page is not in the swap cache. It can be collapsed
  1934. * into a THP.
  1935. */
  1936. }
  1937. /*
  1938. * Isolate the page to avoid collapsing an hugepage
  1939. * currently in use by the VM.
  1940. */
  1941. if (isolate_lru_page(page)) {
  1942. unlock_page(page);
  1943. goto out;
  1944. }
  1945. /* 0 stands for page_is_file_cache(page) == false */
  1946. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1947. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1948. VM_BUG_ON_PAGE(PageLRU(page), page);
  1949. /* If there is no mapped pte young don't collapse the page */
  1950. if (pte_young(pteval) || PageReferenced(page) ||
  1951. mmu_notifier_test_young(vma->vm_mm, address))
  1952. referenced = true;
  1953. }
  1954. if (likely(referenced && writable))
  1955. return 1;
  1956. out:
  1957. release_pte_pages(pte, _pte);
  1958. return 0;
  1959. }
  1960. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1961. struct vm_area_struct *vma,
  1962. unsigned long address,
  1963. spinlock_t *ptl)
  1964. {
  1965. pte_t *_pte;
  1966. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1967. pte_t pteval = *_pte;
  1968. struct page *src_page;
  1969. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  1970. clear_user_highpage(page, address);
  1971. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1972. if (is_zero_pfn(pte_pfn(pteval))) {
  1973. /*
  1974. * ptl mostly unnecessary.
  1975. */
  1976. spin_lock(ptl);
  1977. /*
  1978. * paravirt calls inside pte_clear here are
  1979. * superfluous.
  1980. */
  1981. pte_clear(vma->vm_mm, address, _pte);
  1982. spin_unlock(ptl);
  1983. }
  1984. } else {
  1985. src_page = pte_page(pteval);
  1986. copy_user_highpage(page, src_page, address, vma);
  1987. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  1988. release_pte_page(src_page);
  1989. /*
  1990. * ptl mostly unnecessary, but preempt has to
  1991. * be disabled to update the per-cpu stats
  1992. * inside page_remove_rmap().
  1993. */
  1994. spin_lock(ptl);
  1995. /*
  1996. * paravirt calls inside pte_clear here are
  1997. * superfluous.
  1998. */
  1999. pte_clear(vma->vm_mm, address, _pte);
  2000. page_remove_rmap(src_page);
  2001. spin_unlock(ptl);
  2002. free_page_and_swap_cache(src_page);
  2003. }
  2004. address += PAGE_SIZE;
  2005. page++;
  2006. }
  2007. }
  2008. static void khugepaged_alloc_sleep(void)
  2009. {
  2010. wait_event_freezable_timeout(khugepaged_wait, false,
  2011. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  2012. }
  2013. static int khugepaged_node_load[MAX_NUMNODES];
  2014. static bool khugepaged_scan_abort(int nid)
  2015. {
  2016. int i;
  2017. /*
  2018. * If zone_reclaim_mode is disabled, then no extra effort is made to
  2019. * allocate memory locally.
  2020. */
  2021. if (!zone_reclaim_mode)
  2022. return false;
  2023. /* If there is a count for this node already, it must be acceptable */
  2024. if (khugepaged_node_load[nid])
  2025. return false;
  2026. for (i = 0; i < MAX_NUMNODES; i++) {
  2027. if (!khugepaged_node_load[i])
  2028. continue;
  2029. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  2030. return true;
  2031. }
  2032. return false;
  2033. }
  2034. #ifdef CONFIG_NUMA
  2035. static int khugepaged_find_target_node(void)
  2036. {
  2037. static int last_khugepaged_target_node = NUMA_NO_NODE;
  2038. int nid, target_node = 0, max_value = 0;
  2039. /* find first node with max normal pages hit */
  2040. for (nid = 0; nid < MAX_NUMNODES; nid++)
  2041. if (khugepaged_node_load[nid] > max_value) {
  2042. max_value = khugepaged_node_load[nid];
  2043. target_node = nid;
  2044. }
  2045. /* do some balance if several nodes have the same hit record */
  2046. if (target_node <= last_khugepaged_target_node)
  2047. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  2048. nid++)
  2049. if (max_value == khugepaged_node_load[nid]) {
  2050. target_node = nid;
  2051. break;
  2052. }
  2053. last_khugepaged_target_node = target_node;
  2054. return target_node;
  2055. }
  2056. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2057. {
  2058. if (IS_ERR(*hpage)) {
  2059. if (!*wait)
  2060. return false;
  2061. *wait = false;
  2062. *hpage = NULL;
  2063. khugepaged_alloc_sleep();
  2064. } else if (*hpage) {
  2065. put_page(*hpage);
  2066. *hpage = NULL;
  2067. }
  2068. return true;
  2069. }
  2070. static struct page *
  2071. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2072. struct vm_area_struct *vma, unsigned long address,
  2073. int node)
  2074. {
  2075. VM_BUG_ON_PAGE(*hpage, *hpage);
  2076. /*
  2077. * Before allocating the hugepage, release the mmap_sem read lock.
  2078. * The allocation can take potentially a long time if it involves
  2079. * sync compaction, and we do not need to hold the mmap_sem during
  2080. * that. We will recheck the vma after taking it again in write mode.
  2081. */
  2082. up_read(&mm->mmap_sem);
  2083. *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
  2084. if (unlikely(!*hpage)) {
  2085. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2086. *hpage = ERR_PTR(-ENOMEM);
  2087. return NULL;
  2088. }
  2089. count_vm_event(THP_COLLAPSE_ALLOC);
  2090. return *hpage;
  2091. }
  2092. #else
  2093. static int khugepaged_find_target_node(void)
  2094. {
  2095. return 0;
  2096. }
  2097. static inline struct page *alloc_hugepage(int defrag)
  2098. {
  2099. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  2100. HPAGE_PMD_ORDER);
  2101. }
  2102. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2103. {
  2104. struct page *hpage;
  2105. do {
  2106. hpage = alloc_hugepage(khugepaged_defrag());
  2107. if (!hpage) {
  2108. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2109. if (!*wait)
  2110. return NULL;
  2111. *wait = false;
  2112. khugepaged_alloc_sleep();
  2113. } else
  2114. count_vm_event(THP_COLLAPSE_ALLOC);
  2115. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2116. return hpage;
  2117. }
  2118. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2119. {
  2120. if (!*hpage)
  2121. *hpage = khugepaged_alloc_hugepage(wait);
  2122. if (unlikely(!*hpage))
  2123. return false;
  2124. return true;
  2125. }
  2126. static struct page *
  2127. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2128. struct vm_area_struct *vma, unsigned long address,
  2129. int node)
  2130. {
  2131. up_read(&mm->mmap_sem);
  2132. VM_BUG_ON(!*hpage);
  2133. return *hpage;
  2134. }
  2135. #endif
  2136. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2137. {
  2138. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2139. (vma->vm_flags & VM_NOHUGEPAGE))
  2140. return false;
  2141. if (!vma->anon_vma || vma->vm_ops)
  2142. return false;
  2143. if (is_vma_temporary_stack(vma))
  2144. return false;
  2145. VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
  2146. return true;
  2147. }
  2148. static void collapse_huge_page(struct mm_struct *mm,
  2149. unsigned long address,
  2150. struct page **hpage,
  2151. struct vm_area_struct *vma,
  2152. int node)
  2153. {
  2154. pmd_t *pmd, _pmd;
  2155. pte_t *pte;
  2156. pgtable_t pgtable;
  2157. struct page *new_page;
  2158. spinlock_t *pmd_ptl, *pte_ptl;
  2159. int isolated;
  2160. unsigned long hstart, hend;
  2161. struct mem_cgroup *memcg;
  2162. unsigned long mmun_start; /* For mmu_notifiers */
  2163. unsigned long mmun_end; /* For mmu_notifiers */
  2164. gfp_t gfp;
  2165. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2166. /* Only allocate from the target node */
  2167. gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
  2168. __GFP_THISNODE;
  2169. /* release the mmap_sem read lock. */
  2170. new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
  2171. if (!new_page)
  2172. return;
  2173. if (unlikely(mem_cgroup_try_charge(new_page, mm,
  2174. gfp, &memcg)))
  2175. return;
  2176. /*
  2177. * Prevent all access to pagetables with the exception of
  2178. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2179. * handled by the anon_vma lock + PG_lock.
  2180. */
  2181. down_write(&mm->mmap_sem);
  2182. if (unlikely(khugepaged_test_exit(mm)))
  2183. goto out;
  2184. vma = find_vma(mm, address);
  2185. if (!vma)
  2186. goto out;
  2187. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2188. hend = vma->vm_end & HPAGE_PMD_MASK;
  2189. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2190. goto out;
  2191. if (!hugepage_vma_check(vma))
  2192. goto out;
  2193. pmd = mm_find_pmd(mm, address);
  2194. if (!pmd)
  2195. goto out;
  2196. anon_vma_lock_write(vma->anon_vma);
  2197. pte = pte_offset_map(pmd, address);
  2198. pte_ptl = pte_lockptr(mm, pmd);
  2199. mmun_start = address;
  2200. mmun_end = address + HPAGE_PMD_SIZE;
  2201. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2202. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  2203. /*
  2204. * After this gup_fast can't run anymore. This also removes
  2205. * any huge TLB entry from the CPU so we won't allow
  2206. * huge and small TLB entries for the same virtual address
  2207. * to avoid the risk of CPU bugs in that area.
  2208. */
  2209. _pmd = pmdp_clear_flush(vma, address, pmd);
  2210. spin_unlock(pmd_ptl);
  2211. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2212. spin_lock(pte_ptl);
  2213. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2214. spin_unlock(pte_ptl);
  2215. if (unlikely(!isolated)) {
  2216. pte_unmap(pte);
  2217. spin_lock(pmd_ptl);
  2218. BUG_ON(!pmd_none(*pmd));
  2219. /*
  2220. * We can only use set_pmd_at when establishing
  2221. * hugepmds and never for establishing regular pmds that
  2222. * points to regular pagetables. Use pmd_populate for that
  2223. */
  2224. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2225. spin_unlock(pmd_ptl);
  2226. anon_vma_unlock_write(vma->anon_vma);
  2227. goto out;
  2228. }
  2229. /*
  2230. * All pages are isolated and locked so anon_vma rmap
  2231. * can't run anymore.
  2232. */
  2233. anon_vma_unlock_write(vma->anon_vma);
  2234. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  2235. pte_unmap(pte);
  2236. __SetPageUptodate(new_page);
  2237. pgtable = pmd_pgtable(_pmd);
  2238. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2239. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2240. /*
  2241. * spin_lock() below is not the equivalent of smp_wmb(), so
  2242. * this is needed to avoid the copy_huge_page writes to become
  2243. * visible after the set_pmd_at() write.
  2244. */
  2245. smp_wmb();
  2246. spin_lock(pmd_ptl);
  2247. BUG_ON(!pmd_none(*pmd));
  2248. page_add_new_anon_rmap(new_page, vma, address);
  2249. mem_cgroup_commit_charge(new_page, memcg, false);
  2250. lru_cache_add_active_or_unevictable(new_page, vma);
  2251. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2252. set_pmd_at(mm, address, pmd, _pmd);
  2253. update_mmu_cache_pmd(vma, address, pmd);
  2254. spin_unlock(pmd_ptl);
  2255. *hpage = NULL;
  2256. khugepaged_pages_collapsed++;
  2257. out_up_write:
  2258. up_write(&mm->mmap_sem);
  2259. return;
  2260. out:
  2261. mem_cgroup_cancel_charge(new_page, memcg);
  2262. goto out_up_write;
  2263. }
  2264. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2265. struct vm_area_struct *vma,
  2266. unsigned long address,
  2267. struct page **hpage)
  2268. {
  2269. pmd_t *pmd;
  2270. pte_t *pte, *_pte;
  2271. int ret = 0, none_or_zero = 0;
  2272. struct page *page;
  2273. unsigned long _address;
  2274. spinlock_t *ptl;
  2275. int node = NUMA_NO_NODE;
  2276. bool writable = false, referenced = false;
  2277. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2278. pmd = mm_find_pmd(mm, address);
  2279. if (!pmd)
  2280. goto out;
  2281. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2282. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2283. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2284. _pte++, _address += PAGE_SIZE) {
  2285. pte_t pteval = *_pte;
  2286. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  2287. if (++none_or_zero <= khugepaged_max_ptes_none)
  2288. continue;
  2289. else
  2290. goto out_unmap;
  2291. }
  2292. if (!pte_present(pteval))
  2293. goto out_unmap;
  2294. if (pte_write(pteval))
  2295. writable = true;
  2296. page = vm_normal_page(vma, _address, pteval);
  2297. if (unlikely(!page))
  2298. goto out_unmap;
  2299. /*
  2300. * Record which node the original page is from and save this
  2301. * information to khugepaged_node_load[].
  2302. * Khupaged will allocate hugepage from the node has the max
  2303. * hit record.
  2304. */
  2305. node = page_to_nid(page);
  2306. if (khugepaged_scan_abort(node))
  2307. goto out_unmap;
  2308. khugepaged_node_load[node]++;
  2309. VM_BUG_ON_PAGE(PageCompound(page), page);
  2310. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2311. goto out_unmap;
  2312. /*
  2313. * cannot use mapcount: can't collapse if there's a gup pin.
  2314. * The page must only be referenced by the scanned process
  2315. * and page swap cache.
  2316. */
  2317. if (page_count(page) != 1 + !!PageSwapCache(page))
  2318. goto out_unmap;
  2319. if (pte_young(pteval) || PageReferenced(page) ||
  2320. mmu_notifier_test_young(vma->vm_mm, address))
  2321. referenced = true;
  2322. }
  2323. if (referenced && writable)
  2324. ret = 1;
  2325. out_unmap:
  2326. pte_unmap_unlock(pte, ptl);
  2327. if (ret) {
  2328. node = khugepaged_find_target_node();
  2329. /* collapse_huge_page will return with the mmap_sem released */
  2330. collapse_huge_page(mm, address, hpage, vma, node);
  2331. }
  2332. out:
  2333. return ret;
  2334. }
  2335. static void collect_mm_slot(struct mm_slot *mm_slot)
  2336. {
  2337. struct mm_struct *mm = mm_slot->mm;
  2338. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2339. if (khugepaged_test_exit(mm)) {
  2340. /* free mm_slot */
  2341. hash_del(&mm_slot->hash);
  2342. list_del(&mm_slot->mm_node);
  2343. /*
  2344. * Not strictly needed because the mm exited already.
  2345. *
  2346. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2347. */
  2348. /* khugepaged_mm_lock actually not necessary for the below */
  2349. free_mm_slot(mm_slot);
  2350. mmdrop(mm);
  2351. }
  2352. }
  2353. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2354. struct page **hpage)
  2355. __releases(&khugepaged_mm_lock)
  2356. __acquires(&khugepaged_mm_lock)
  2357. {
  2358. struct mm_slot *mm_slot;
  2359. struct mm_struct *mm;
  2360. struct vm_area_struct *vma;
  2361. int progress = 0;
  2362. VM_BUG_ON(!pages);
  2363. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2364. if (khugepaged_scan.mm_slot)
  2365. mm_slot = khugepaged_scan.mm_slot;
  2366. else {
  2367. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2368. struct mm_slot, mm_node);
  2369. khugepaged_scan.address = 0;
  2370. khugepaged_scan.mm_slot = mm_slot;
  2371. }
  2372. spin_unlock(&khugepaged_mm_lock);
  2373. mm = mm_slot->mm;
  2374. down_read(&mm->mmap_sem);
  2375. if (unlikely(khugepaged_test_exit(mm)))
  2376. vma = NULL;
  2377. else
  2378. vma = find_vma(mm, khugepaged_scan.address);
  2379. progress++;
  2380. for (; vma; vma = vma->vm_next) {
  2381. unsigned long hstart, hend;
  2382. cond_resched();
  2383. if (unlikely(khugepaged_test_exit(mm))) {
  2384. progress++;
  2385. break;
  2386. }
  2387. if (!hugepage_vma_check(vma)) {
  2388. skip:
  2389. progress++;
  2390. continue;
  2391. }
  2392. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2393. hend = vma->vm_end & HPAGE_PMD_MASK;
  2394. if (hstart >= hend)
  2395. goto skip;
  2396. if (khugepaged_scan.address > hend)
  2397. goto skip;
  2398. if (khugepaged_scan.address < hstart)
  2399. khugepaged_scan.address = hstart;
  2400. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2401. while (khugepaged_scan.address < hend) {
  2402. int ret;
  2403. cond_resched();
  2404. if (unlikely(khugepaged_test_exit(mm)))
  2405. goto breakouterloop;
  2406. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2407. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2408. hend);
  2409. ret = khugepaged_scan_pmd(mm, vma,
  2410. khugepaged_scan.address,
  2411. hpage);
  2412. /* move to next address */
  2413. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2414. progress += HPAGE_PMD_NR;
  2415. if (ret)
  2416. /* we released mmap_sem so break loop */
  2417. goto breakouterloop_mmap_sem;
  2418. if (progress >= pages)
  2419. goto breakouterloop;
  2420. }
  2421. }
  2422. breakouterloop:
  2423. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2424. breakouterloop_mmap_sem:
  2425. spin_lock(&khugepaged_mm_lock);
  2426. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2427. /*
  2428. * Release the current mm_slot if this mm is about to die, or
  2429. * if we scanned all vmas of this mm.
  2430. */
  2431. if (khugepaged_test_exit(mm) || !vma) {
  2432. /*
  2433. * Make sure that if mm_users is reaching zero while
  2434. * khugepaged runs here, khugepaged_exit will find
  2435. * mm_slot not pointing to the exiting mm.
  2436. */
  2437. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2438. khugepaged_scan.mm_slot = list_entry(
  2439. mm_slot->mm_node.next,
  2440. struct mm_slot, mm_node);
  2441. khugepaged_scan.address = 0;
  2442. } else {
  2443. khugepaged_scan.mm_slot = NULL;
  2444. khugepaged_full_scans++;
  2445. }
  2446. collect_mm_slot(mm_slot);
  2447. }
  2448. return progress;
  2449. }
  2450. static int khugepaged_has_work(void)
  2451. {
  2452. return !list_empty(&khugepaged_scan.mm_head) &&
  2453. khugepaged_enabled();
  2454. }
  2455. static int khugepaged_wait_event(void)
  2456. {
  2457. return !list_empty(&khugepaged_scan.mm_head) ||
  2458. kthread_should_stop();
  2459. }
  2460. static void khugepaged_do_scan(void)
  2461. {
  2462. struct page *hpage = NULL;
  2463. unsigned int progress = 0, pass_through_head = 0;
  2464. unsigned int pages = khugepaged_pages_to_scan;
  2465. bool wait = true;
  2466. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2467. while (progress < pages) {
  2468. if (!khugepaged_prealloc_page(&hpage, &wait))
  2469. break;
  2470. cond_resched();
  2471. if (unlikely(kthread_should_stop() || freezing(current)))
  2472. break;
  2473. spin_lock(&khugepaged_mm_lock);
  2474. if (!khugepaged_scan.mm_slot)
  2475. pass_through_head++;
  2476. if (khugepaged_has_work() &&
  2477. pass_through_head < 2)
  2478. progress += khugepaged_scan_mm_slot(pages - progress,
  2479. &hpage);
  2480. else
  2481. progress = pages;
  2482. spin_unlock(&khugepaged_mm_lock);
  2483. }
  2484. if (!IS_ERR_OR_NULL(hpage))
  2485. put_page(hpage);
  2486. }
  2487. static void khugepaged_wait_work(void)
  2488. {
  2489. try_to_freeze();
  2490. if (khugepaged_has_work()) {
  2491. if (!khugepaged_scan_sleep_millisecs)
  2492. return;
  2493. wait_event_freezable_timeout(khugepaged_wait,
  2494. kthread_should_stop(),
  2495. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2496. return;
  2497. }
  2498. if (khugepaged_enabled())
  2499. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2500. }
  2501. static int khugepaged(void *none)
  2502. {
  2503. struct mm_slot *mm_slot;
  2504. set_freezable();
  2505. set_user_nice(current, MAX_NICE);
  2506. while (!kthread_should_stop()) {
  2507. khugepaged_do_scan();
  2508. khugepaged_wait_work();
  2509. }
  2510. spin_lock(&khugepaged_mm_lock);
  2511. mm_slot = khugepaged_scan.mm_slot;
  2512. khugepaged_scan.mm_slot = NULL;
  2513. if (mm_slot)
  2514. collect_mm_slot(mm_slot);
  2515. spin_unlock(&khugepaged_mm_lock);
  2516. return 0;
  2517. }
  2518. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2519. unsigned long haddr, pmd_t *pmd)
  2520. {
  2521. struct mm_struct *mm = vma->vm_mm;
  2522. pgtable_t pgtable;
  2523. pmd_t _pmd;
  2524. int i;
  2525. pmdp_clear_flush_notify(vma, haddr, pmd);
  2526. /* leave pmd empty until pte is filled */
  2527. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2528. pmd_populate(mm, &_pmd, pgtable);
  2529. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2530. pte_t *pte, entry;
  2531. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2532. entry = pte_mkspecial(entry);
  2533. pte = pte_offset_map(&_pmd, haddr);
  2534. VM_BUG_ON(!pte_none(*pte));
  2535. set_pte_at(mm, haddr, pte, entry);
  2536. pte_unmap(pte);
  2537. }
  2538. smp_wmb(); /* make pte visible before pmd */
  2539. pmd_populate(mm, pmd, pgtable);
  2540. put_huge_zero_page();
  2541. }
  2542. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2543. pmd_t *pmd)
  2544. {
  2545. spinlock_t *ptl;
  2546. struct page *page;
  2547. struct mm_struct *mm = vma->vm_mm;
  2548. unsigned long haddr = address & HPAGE_PMD_MASK;
  2549. unsigned long mmun_start; /* For mmu_notifiers */
  2550. unsigned long mmun_end; /* For mmu_notifiers */
  2551. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2552. mmun_start = haddr;
  2553. mmun_end = haddr + HPAGE_PMD_SIZE;
  2554. again:
  2555. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2556. ptl = pmd_lock(mm, pmd);
  2557. if (unlikely(!pmd_trans_huge(*pmd))) {
  2558. spin_unlock(ptl);
  2559. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2560. return;
  2561. }
  2562. if (is_huge_zero_pmd(*pmd)) {
  2563. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2564. spin_unlock(ptl);
  2565. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2566. return;
  2567. }
  2568. page = pmd_page(*pmd);
  2569. VM_BUG_ON_PAGE(!page_count(page), page);
  2570. get_page(page);
  2571. spin_unlock(ptl);
  2572. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2573. split_huge_page(page);
  2574. put_page(page);
  2575. /*
  2576. * We don't always have down_write of mmap_sem here: a racing
  2577. * do_huge_pmd_wp_page() might have copied-on-write to another
  2578. * huge page before our split_huge_page() got the anon_vma lock.
  2579. */
  2580. if (unlikely(pmd_trans_huge(*pmd)))
  2581. goto again;
  2582. }
  2583. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2584. pmd_t *pmd)
  2585. {
  2586. struct vm_area_struct *vma;
  2587. vma = find_vma(mm, address);
  2588. BUG_ON(vma == NULL);
  2589. split_huge_page_pmd(vma, address, pmd);
  2590. }
  2591. static void split_huge_page_address(struct mm_struct *mm,
  2592. unsigned long address)
  2593. {
  2594. pgd_t *pgd;
  2595. pud_t *pud;
  2596. pmd_t *pmd;
  2597. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2598. pgd = pgd_offset(mm, address);
  2599. if (!pgd_present(*pgd))
  2600. return;
  2601. pud = pud_offset(pgd, address);
  2602. if (!pud_present(*pud))
  2603. return;
  2604. pmd = pmd_offset(pud, address);
  2605. if (!pmd_present(*pmd))
  2606. return;
  2607. /*
  2608. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2609. * materialize from under us.
  2610. */
  2611. split_huge_page_pmd_mm(mm, address, pmd);
  2612. }
  2613. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2614. unsigned long start,
  2615. unsigned long end,
  2616. long adjust_next)
  2617. {
  2618. /*
  2619. * If the new start address isn't hpage aligned and it could
  2620. * previously contain an hugepage: check if we need to split
  2621. * an huge pmd.
  2622. */
  2623. if (start & ~HPAGE_PMD_MASK &&
  2624. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2625. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2626. split_huge_page_address(vma->vm_mm, start);
  2627. /*
  2628. * If the new end address isn't hpage aligned and it could
  2629. * previously contain an hugepage: check if we need to split
  2630. * an huge pmd.
  2631. */
  2632. if (end & ~HPAGE_PMD_MASK &&
  2633. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2634. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2635. split_huge_page_address(vma->vm_mm, end);
  2636. /*
  2637. * If we're also updating the vma->vm_next->vm_start, if the new
  2638. * vm_next->vm_start isn't page aligned and it could previously
  2639. * contain an hugepage: check if we need to split an huge pmd.
  2640. */
  2641. if (adjust_next > 0) {
  2642. struct vm_area_struct *next = vma->vm_next;
  2643. unsigned long nstart = next->vm_start;
  2644. nstart += adjust_next << PAGE_SHIFT;
  2645. if (nstart & ~HPAGE_PMD_MASK &&
  2646. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2647. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2648. split_huge_page_address(next->vm_mm, nstart);
  2649. }
  2650. }