fair.c 216 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/cpuidle.h>
  26. #include <linux/slab.h>
  27. #include <linux/profile.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/mempolicy.h>
  30. #include <linux/migrate.h>
  31. #include <linux/task_work.h>
  32. #include <trace/events/sched.h>
  33. #include "sched.h"
  34. /*
  35. * Targeted preemption latency for CPU-bound tasks:
  36. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  37. *
  38. * NOTE: this latency value is not the same as the concept of
  39. * 'timeslice length' - timeslices in CFS are of variable length
  40. * and have no persistent notion like in traditional, time-slice
  41. * based scheduling concepts.
  42. *
  43. * (to see the precise effective timeslice length of your workload,
  44. * run vmstat and monitor the context-switches (cs) field)
  45. */
  46. unsigned int sysctl_sched_latency = 6000000ULL;
  47. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  48. /*
  49. * The initial- and re-scaling of tunables is configurable
  50. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  51. *
  52. * Options are:
  53. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  54. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  55. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  56. */
  57. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  58. = SCHED_TUNABLESCALING_LOG;
  59. /*
  60. * Minimal preemption granularity for CPU-bound tasks:
  61. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  62. */
  63. unsigned int sysctl_sched_min_granularity = 750000ULL;
  64. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  65. /*
  66. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  67. */
  68. static unsigned int sched_nr_latency = 8;
  69. /*
  70. * After fork, child runs first. If set to 0 (default) then
  71. * parent will (try to) run first.
  72. */
  73. unsigned int sysctl_sched_child_runs_first __read_mostly;
  74. /*
  75. * SCHED_OTHER wake-up granularity.
  76. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  77. *
  78. * This option delays the preemption effects of decoupled workloads
  79. * and reduces their over-scheduling. Synchronous workloads will still
  80. * have immediate wakeup/sleep latencies.
  81. */
  82. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  83. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  84. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  85. /*
  86. * The exponential sliding window over which load is averaged for shares
  87. * distribution.
  88. * (default: 10msec)
  89. */
  90. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  91. #ifdef CONFIG_CFS_BANDWIDTH
  92. /*
  93. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  94. * each time a cfs_rq requests quota.
  95. *
  96. * Note: in the case that the slice exceeds the runtime remaining (either due
  97. * to consumption or the quota being specified to be smaller than the slice)
  98. * we will always only issue the remaining available time.
  99. *
  100. * default: 5 msec, units: microseconds
  101. */
  102. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  103. #endif
  104. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  105. {
  106. lw->weight += inc;
  107. lw->inv_weight = 0;
  108. }
  109. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  110. {
  111. lw->weight -= dec;
  112. lw->inv_weight = 0;
  113. }
  114. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  115. {
  116. lw->weight = w;
  117. lw->inv_weight = 0;
  118. }
  119. /*
  120. * Increase the granularity value when there are more CPUs,
  121. * because with more CPUs the 'effective latency' as visible
  122. * to users decreases. But the relationship is not linear,
  123. * so pick a second-best guess by going with the log2 of the
  124. * number of CPUs.
  125. *
  126. * This idea comes from the SD scheduler of Con Kolivas:
  127. */
  128. static int get_update_sysctl_factor(void)
  129. {
  130. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  131. unsigned int factor;
  132. switch (sysctl_sched_tunable_scaling) {
  133. case SCHED_TUNABLESCALING_NONE:
  134. factor = 1;
  135. break;
  136. case SCHED_TUNABLESCALING_LINEAR:
  137. factor = cpus;
  138. break;
  139. case SCHED_TUNABLESCALING_LOG:
  140. default:
  141. factor = 1 + ilog2(cpus);
  142. break;
  143. }
  144. return factor;
  145. }
  146. static void update_sysctl(void)
  147. {
  148. unsigned int factor = get_update_sysctl_factor();
  149. #define SET_SYSCTL(name) \
  150. (sysctl_##name = (factor) * normalized_sysctl_##name)
  151. SET_SYSCTL(sched_min_granularity);
  152. SET_SYSCTL(sched_latency);
  153. SET_SYSCTL(sched_wakeup_granularity);
  154. #undef SET_SYSCTL
  155. }
  156. void sched_init_granularity(void)
  157. {
  158. update_sysctl();
  159. }
  160. #define WMULT_CONST (~0U)
  161. #define WMULT_SHIFT 32
  162. static void __update_inv_weight(struct load_weight *lw)
  163. {
  164. unsigned long w;
  165. if (likely(lw->inv_weight))
  166. return;
  167. w = scale_load_down(lw->weight);
  168. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  169. lw->inv_weight = 1;
  170. else if (unlikely(!w))
  171. lw->inv_weight = WMULT_CONST;
  172. else
  173. lw->inv_weight = WMULT_CONST / w;
  174. }
  175. /*
  176. * delta_exec * weight / lw.weight
  177. * OR
  178. * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
  179. *
  180. * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
  181. * we're guaranteed shift stays positive because inv_weight is guaranteed to
  182. * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
  183. *
  184. * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
  185. * weight/lw.weight <= 1, and therefore our shift will also be positive.
  186. */
  187. static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
  188. {
  189. u64 fact = scale_load_down(weight);
  190. int shift = WMULT_SHIFT;
  191. __update_inv_weight(lw);
  192. if (unlikely(fact >> 32)) {
  193. while (fact >> 32) {
  194. fact >>= 1;
  195. shift--;
  196. }
  197. }
  198. /* hint to use a 32x32->64 mul */
  199. fact = (u64)(u32)fact * lw->inv_weight;
  200. while (fact >> 32) {
  201. fact >>= 1;
  202. shift--;
  203. }
  204. return mul_u64_u32_shr(delta_exec, fact, shift);
  205. }
  206. const struct sched_class fair_sched_class;
  207. /**************************************************************
  208. * CFS operations on generic schedulable entities:
  209. */
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* cpu runqueue to which this cfs_rq is attached */
  212. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  213. {
  214. return cfs_rq->rq;
  215. }
  216. /* An entity is a task if it doesn't "own" a runqueue */
  217. #define entity_is_task(se) (!se->my_q)
  218. static inline struct task_struct *task_of(struct sched_entity *se)
  219. {
  220. #ifdef CONFIG_SCHED_DEBUG
  221. WARN_ON_ONCE(!entity_is_task(se));
  222. #endif
  223. return container_of(se, struct task_struct, se);
  224. }
  225. /* Walk up scheduling entities hierarchy */
  226. #define for_each_sched_entity(se) \
  227. for (; se; se = se->parent)
  228. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  229. {
  230. return p->se.cfs_rq;
  231. }
  232. /* runqueue on which this entity is (to be) queued */
  233. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  234. {
  235. return se->cfs_rq;
  236. }
  237. /* runqueue "owned" by this group */
  238. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  239. {
  240. return grp->my_q;
  241. }
  242. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  243. int force_update);
  244. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  245. {
  246. if (!cfs_rq->on_list) {
  247. /*
  248. * Ensure we either appear before our parent (if already
  249. * enqueued) or force our parent to appear after us when it is
  250. * enqueued. The fact that we always enqueue bottom-up
  251. * reduces this to two cases.
  252. */
  253. if (cfs_rq->tg->parent &&
  254. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  255. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  256. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  257. } else {
  258. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  259. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  260. }
  261. cfs_rq->on_list = 1;
  262. /* We should have no load, but we need to update last_decay. */
  263. update_cfs_rq_blocked_load(cfs_rq, 0);
  264. }
  265. }
  266. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  267. {
  268. if (cfs_rq->on_list) {
  269. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  270. cfs_rq->on_list = 0;
  271. }
  272. }
  273. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  274. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  275. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  276. /* Do the two (enqueued) entities belong to the same group ? */
  277. static inline struct cfs_rq *
  278. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  279. {
  280. if (se->cfs_rq == pse->cfs_rq)
  281. return se->cfs_rq;
  282. return NULL;
  283. }
  284. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  285. {
  286. return se->parent;
  287. }
  288. static void
  289. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  290. {
  291. int se_depth, pse_depth;
  292. /*
  293. * preemption test can be made between sibling entities who are in the
  294. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  295. * both tasks until we find their ancestors who are siblings of common
  296. * parent.
  297. */
  298. /* First walk up until both entities are at same depth */
  299. se_depth = (*se)->depth;
  300. pse_depth = (*pse)->depth;
  301. while (se_depth > pse_depth) {
  302. se_depth--;
  303. *se = parent_entity(*se);
  304. }
  305. while (pse_depth > se_depth) {
  306. pse_depth--;
  307. *pse = parent_entity(*pse);
  308. }
  309. while (!is_same_group(*se, *pse)) {
  310. *se = parent_entity(*se);
  311. *pse = parent_entity(*pse);
  312. }
  313. }
  314. #else /* !CONFIG_FAIR_GROUP_SCHED */
  315. static inline struct task_struct *task_of(struct sched_entity *se)
  316. {
  317. return container_of(se, struct task_struct, se);
  318. }
  319. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  320. {
  321. return container_of(cfs_rq, struct rq, cfs);
  322. }
  323. #define entity_is_task(se) 1
  324. #define for_each_sched_entity(se) \
  325. for (; se; se = NULL)
  326. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  327. {
  328. return &task_rq(p)->cfs;
  329. }
  330. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  331. {
  332. struct task_struct *p = task_of(se);
  333. struct rq *rq = task_rq(p);
  334. return &rq->cfs;
  335. }
  336. /* runqueue "owned" by this group */
  337. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  338. {
  339. return NULL;
  340. }
  341. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  342. {
  343. }
  344. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  345. {
  346. }
  347. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  348. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  349. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  350. {
  351. return NULL;
  352. }
  353. static inline void
  354. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  355. {
  356. }
  357. #endif /* CONFIG_FAIR_GROUP_SCHED */
  358. static __always_inline
  359. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
  360. /**************************************************************
  361. * Scheduling class tree data structure manipulation methods:
  362. */
  363. static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
  364. {
  365. s64 delta = (s64)(vruntime - max_vruntime);
  366. if (delta > 0)
  367. max_vruntime = vruntime;
  368. return max_vruntime;
  369. }
  370. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  371. {
  372. s64 delta = (s64)(vruntime - min_vruntime);
  373. if (delta < 0)
  374. min_vruntime = vruntime;
  375. return min_vruntime;
  376. }
  377. static inline int entity_before(struct sched_entity *a,
  378. struct sched_entity *b)
  379. {
  380. return (s64)(a->vruntime - b->vruntime) < 0;
  381. }
  382. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  383. {
  384. u64 vruntime = cfs_rq->min_vruntime;
  385. if (cfs_rq->curr)
  386. vruntime = cfs_rq->curr->vruntime;
  387. if (cfs_rq->rb_leftmost) {
  388. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  389. struct sched_entity,
  390. run_node);
  391. if (!cfs_rq->curr)
  392. vruntime = se->vruntime;
  393. else
  394. vruntime = min_vruntime(vruntime, se->vruntime);
  395. }
  396. /* ensure we never gain time by being placed backwards. */
  397. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  398. #ifndef CONFIG_64BIT
  399. smp_wmb();
  400. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  401. #endif
  402. }
  403. /*
  404. * Enqueue an entity into the rb-tree:
  405. */
  406. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  407. {
  408. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  409. struct rb_node *parent = NULL;
  410. struct sched_entity *entry;
  411. int leftmost = 1;
  412. /*
  413. * Find the right place in the rbtree:
  414. */
  415. while (*link) {
  416. parent = *link;
  417. entry = rb_entry(parent, struct sched_entity, run_node);
  418. /*
  419. * We dont care about collisions. Nodes with
  420. * the same key stay together.
  421. */
  422. if (entity_before(se, entry)) {
  423. link = &parent->rb_left;
  424. } else {
  425. link = &parent->rb_right;
  426. leftmost = 0;
  427. }
  428. }
  429. /*
  430. * Maintain a cache of leftmost tree entries (it is frequently
  431. * used):
  432. */
  433. if (leftmost)
  434. cfs_rq->rb_leftmost = &se->run_node;
  435. rb_link_node(&se->run_node, parent, link);
  436. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  437. }
  438. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  439. {
  440. if (cfs_rq->rb_leftmost == &se->run_node) {
  441. struct rb_node *next_node;
  442. next_node = rb_next(&se->run_node);
  443. cfs_rq->rb_leftmost = next_node;
  444. }
  445. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  446. }
  447. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  448. {
  449. struct rb_node *left = cfs_rq->rb_leftmost;
  450. if (!left)
  451. return NULL;
  452. return rb_entry(left, struct sched_entity, run_node);
  453. }
  454. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  455. {
  456. struct rb_node *next = rb_next(&se->run_node);
  457. if (!next)
  458. return NULL;
  459. return rb_entry(next, struct sched_entity, run_node);
  460. }
  461. #ifdef CONFIG_SCHED_DEBUG
  462. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  463. {
  464. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  465. if (!last)
  466. return NULL;
  467. return rb_entry(last, struct sched_entity, run_node);
  468. }
  469. /**************************************************************
  470. * Scheduling class statistics methods:
  471. */
  472. int sched_proc_update_handler(struct ctl_table *table, int write,
  473. void __user *buffer, size_t *lenp,
  474. loff_t *ppos)
  475. {
  476. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  477. int factor = get_update_sysctl_factor();
  478. if (ret || !write)
  479. return ret;
  480. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  481. sysctl_sched_min_granularity);
  482. #define WRT_SYSCTL(name) \
  483. (normalized_sysctl_##name = sysctl_##name / (factor))
  484. WRT_SYSCTL(sched_min_granularity);
  485. WRT_SYSCTL(sched_latency);
  486. WRT_SYSCTL(sched_wakeup_granularity);
  487. #undef WRT_SYSCTL
  488. return 0;
  489. }
  490. #endif
  491. /*
  492. * delta /= w
  493. */
  494. static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
  495. {
  496. if (unlikely(se->load.weight != NICE_0_LOAD))
  497. delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
  498. return delta;
  499. }
  500. /*
  501. * The idea is to set a period in which each task runs once.
  502. *
  503. * When there are too many tasks (sched_nr_latency) we have to stretch
  504. * this period because otherwise the slices get too small.
  505. *
  506. * p = (nr <= nl) ? l : l*nr/nl
  507. */
  508. static u64 __sched_period(unsigned long nr_running)
  509. {
  510. u64 period = sysctl_sched_latency;
  511. unsigned long nr_latency = sched_nr_latency;
  512. if (unlikely(nr_running > nr_latency)) {
  513. period = sysctl_sched_min_granularity;
  514. period *= nr_running;
  515. }
  516. return period;
  517. }
  518. /*
  519. * We calculate the wall-time slice from the period by taking a part
  520. * proportional to the weight.
  521. *
  522. * s = p*P[w/rw]
  523. */
  524. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  525. {
  526. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  527. for_each_sched_entity(se) {
  528. struct load_weight *load;
  529. struct load_weight lw;
  530. cfs_rq = cfs_rq_of(se);
  531. load = &cfs_rq->load;
  532. if (unlikely(!se->on_rq)) {
  533. lw = cfs_rq->load;
  534. update_load_add(&lw, se->load.weight);
  535. load = &lw;
  536. }
  537. slice = __calc_delta(slice, se->load.weight, load);
  538. }
  539. return slice;
  540. }
  541. /*
  542. * We calculate the vruntime slice of a to-be-inserted task.
  543. *
  544. * vs = s/w
  545. */
  546. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  547. {
  548. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  549. }
  550. #ifdef CONFIG_SMP
  551. static int select_idle_sibling(struct task_struct *p, int cpu);
  552. static unsigned long task_h_load(struct task_struct *p);
  553. static inline void __update_task_entity_contrib(struct sched_entity *se);
  554. static inline void __update_task_entity_utilization(struct sched_entity *se);
  555. /* Give new task start runnable values to heavy its load in infant time */
  556. void init_task_runnable_average(struct task_struct *p)
  557. {
  558. u32 slice;
  559. slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
  560. p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
  561. p->se.avg.avg_period = slice;
  562. __update_task_entity_contrib(&p->se);
  563. __update_task_entity_utilization(&p->se);
  564. }
  565. #else
  566. void init_task_runnable_average(struct task_struct *p)
  567. {
  568. }
  569. #endif
  570. /*
  571. * Update the current task's runtime statistics.
  572. */
  573. static void update_curr(struct cfs_rq *cfs_rq)
  574. {
  575. struct sched_entity *curr = cfs_rq->curr;
  576. u64 now = rq_clock_task(rq_of(cfs_rq));
  577. u64 delta_exec;
  578. if (unlikely(!curr))
  579. return;
  580. delta_exec = now - curr->exec_start;
  581. if (unlikely((s64)delta_exec <= 0))
  582. return;
  583. curr->exec_start = now;
  584. schedstat_set(curr->statistics.exec_max,
  585. max(delta_exec, curr->statistics.exec_max));
  586. curr->sum_exec_runtime += delta_exec;
  587. schedstat_add(cfs_rq, exec_clock, delta_exec);
  588. curr->vruntime += calc_delta_fair(delta_exec, curr);
  589. update_min_vruntime(cfs_rq);
  590. if (entity_is_task(curr)) {
  591. struct task_struct *curtask = task_of(curr);
  592. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  593. cpuacct_charge(curtask, delta_exec);
  594. account_group_exec_runtime(curtask, delta_exec);
  595. }
  596. account_cfs_rq_runtime(cfs_rq, delta_exec);
  597. }
  598. static void update_curr_fair(struct rq *rq)
  599. {
  600. update_curr(cfs_rq_of(&rq->curr->se));
  601. }
  602. static inline void
  603. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  604. {
  605. schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
  606. }
  607. /*
  608. * Task is being enqueued - update stats:
  609. */
  610. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  611. {
  612. /*
  613. * Are we enqueueing a waiting task? (for current tasks
  614. * a dequeue/enqueue event is a NOP)
  615. */
  616. if (se != cfs_rq->curr)
  617. update_stats_wait_start(cfs_rq, se);
  618. }
  619. static void
  620. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  621. {
  622. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  623. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
  624. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  625. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  626. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  627. #ifdef CONFIG_SCHEDSTATS
  628. if (entity_is_task(se)) {
  629. trace_sched_stat_wait(task_of(se),
  630. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  631. }
  632. #endif
  633. schedstat_set(se->statistics.wait_start, 0);
  634. }
  635. static inline void
  636. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  637. {
  638. /*
  639. * Mark the end of the wait period if dequeueing a
  640. * waiting task:
  641. */
  642. if (se != cfs_rq->curr)
  643. update_stats_wait_end(cfs_rq, se);
  644. }
  645. /*
  646. * We are picking a new current task - update its stats:
  647. */
  648. static inline void
  649. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  650. {
  651. /*
  652. * We are starting a new run period:
  653. */
  654. se->exec_start = rq_clock_task(rq_of(cfs_rq));
  655. }
  656. /**************************************************
  657. * Scheduling class queueing methods:
  658. */
  659. #ifdef CONFIG_NUMA_BALANCING
  660. /*
  661. * Approximate time to scan a full NUMA task in ms. The task scan period is
  662. * calculated based on the tasks virtual memory size and
  663. * numa_balancing_scan_size.
  664. */
  665. unsigned int sysctl_numa_balancing_scan_period_min = 1000;
  666. unsigned int sysctl_numa_balancing_scan_period_max = 60000;
  667. /* Portion of address space to scan in MB */
  668. unsigned int sysctl_numa_balancing_scan_size = 256;
  669. /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
  670. unsigned int sysctl_numa_balancing_scan_delay = 1000;
  671. static unsigned int task_nr_scan_windows(struct task_struct *p)
  672. {
  673. unsigned long rss = 0;
  674. unsigned long nr_scan_pages;
  675. /*
  676. * Calculations based on RSS as non-present and empty pages are skipped
  677. * by the PTE scanner and NUMA hinting faults should be trapped based
  678. * on resident pages
  679. */
  680. nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
  681. rss = get_mm_rss(p->mm);
  682. if (!rss)
  683. rss = nr_scan_pages;
  684. rss = round_up(rss, nr_scan_pages);
  685. return rss / nr_scan_pages;
  686. }
  687. /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
  688. #define MAX_SCAN_WINDOW 2560
  689. static unsigned int task_scan_min(struct task_struct *p)
  690. {
  691. unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
  692. unsigned int scan, floor;
  693. unsigned int windows = 1;
  694. if (scan_size < MAX_SCAN_WINDOW)
  695. windows = MAX_SCAN_WINDOW / scan_size;
  696. floor = 1000 / windows;
  697. scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
  698. return max_t(unsigned int, floor, scan);
  699. }
  700. static unsigned int task_scan_max(struct task_struct *p)
  701. {
  702. unsigned int smin = task_scan_min(p);
  703. unsigned int smax;
  704. /* Watch for min being lower than max due to floor calculations */
  705. smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
  706. return max(smin, smax);
  707. }
  708. static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  709. {
  710. rq->nr_numa_running += (p->numa_preferred_nid != -1);
  711. rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
  712. }
  713. static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  714. {
  715. rq->nr_numa_running -= (p->numa_preferred_nid != -1);
  716. rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
  717. }
  718. struct numa_group {
  719. atomic_t refcount;
  720. spinlock_t lock; /* nr_tasks, tasks */
  721. int nr_tasks;
  722. pid_t gid;
  723. struct rcu_head rcu;
  724. nodemask_t active_nodes;
  725. unsigned long total_faults;
  726. /*
  727. * Faults_cpu is used to decide whether memory should move
  728. * towards the CPU. As a consequence, these stats are weighted
  729. * more by CPU use than by memory faults.
  730. */
  731. unsigned long *faults_cpu;
  732. unsigned long faults[0];
  733. };
  734. /* Shared or private faults. */
  735. #define NR_NUMA_HINT_FAULT_TYPES 2
  736. /* Memory and CPU locality */
  737. #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
  738. /* Averaged statistics, and temporary buffers. */
  739. #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
  740. pid_t task_numa_group_id(struct task_struct *p)
  741. {
  742. return p->numa_group ? p->numa_group->gid : 0;
  743. }
  744. /*
  745. * The averaged statistics, shared & private, memory & cpu,
  746. * occupy the first half of the array. The second half of the
  747. * array is for current counters, which are averaged into the
  748. * first set by task_numa_placement.
  749. */
  750. static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
  751. {
  752. return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
  753. }
  754. static inline unsigned long task_faults(struct task_struct *p, int nid)
  755. {
  756. if (!p->numa_faults)
  757. return 0;
  758. return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  759. p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
  760. }
  761. static inline unsigned long group_faults(struct task_struct *p, int nid)
  762. {
  763. if (!p->numa_group)
  764. return 0;
  765. return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  766. p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
  767. }
  768. static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
  769. {
  770. return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
  771. group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
  772. }
  773. /* Handle placement on systems where not all nodes are directly connected. */
  774. static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
  775. int maxdist, bool task)
  776. {
  777. unsigned long score = 0;
  778. int node;
  779. /*
  780. * All nodes are directly connected, and the same distance
  781. * from each other. No need for fancy placement algorithms.
  782. */
  783. if (sched_numa_topology_type == NUMA_DIRECT)
  784. return 0;
  785. /*
  786. * This code is called for each node, introducing N^2 complexity,
  787. * which should be ok given the number of nodes rarely exceeds 8.
  788. */
  789. for_each_online_node(node) {
  790. unsigned long faults;
  791. int dist = node_distance(nid, node);
  792. /*
  793. * The furthest away nodes in the system are not interesting
  794. * for placement; nid was already counted.
  795. */
  796. if (dist == sched_max_numa_distance || node == nid)
  797. continue;
  798. /*
  799. * On systems with a backplane NUMA topology, compare groups
  800. * of nodes, and move tasks towards the group with the most
  801. * memory accesses. When comparing two nodes at distance
  802. * "hoplimit", only nodes closer by than "hoplimit" are part
  803. * of each group. Skip other nodes.
  804. */
  805. if (sched_numa_topology_type == NUMA_BACKPLANE &&
  806. dist > maxdist)
  807. continue;
  808. /* Add up the faults from nearby nodes. */
  809. if (task)
  810. faults = task_faults(p, node);
  811. else
  812. faults = group_faults(p, node);
  813. /*
  814. * On systems with a glueless mesh NUMA topology, there are
  815. * no fixed "groups of nodes". Instead, nodes that are not
  816. * directly connected bounce traffic through intermediate
  817. * nodes; a numa_group can occupy any set of nodes.
  818. * The further away a node is, the less the faults count.
  819. * This seems to result in good task placement.
  820. */
  821. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  822. faults *= (sched_max_numa_distance - dist);
  823. faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
  824. }
  825. score += faults;
  826. }
  827. return score;
  828. }
  829. /*
  830. * These return the fraction of accesses done by a particular task, or
  831. * task group, on a particular numa node. The group weight is given a
  832. * larger multiplier, in order to group tasks together that are almost
  833. * evenly spread out between numa nodes.
  834. */
  835. static inline unsigned long task_weight(struct task_struct *p, int nid,
  836. int dist)
  837. {
  838. unsigned long faults, total_faults;
  839. if (!p->numa_faults)
  840. return 0;
  841. total_faults = p->total_numa_faults;
  842. if (!total_faults)
  843. return 0;
  844. faults = task_faults(p, nid);
  845. faults += score_nearby_nodes(p, nid, dist, true);
  846. return 1000 * faults / total_faults;
  847. }
  848. static inline unsigned long group_weight(struct task_struct *p, int nid,
  849. int dist)
  850. {
  851. unsigned long faults, total_faults;
  852. if (!p->numa_group)
  853. return 0;
  854. total_faults = p->numa_group->total_faults;
  855. if (!total_faults)
  856. return 0;
  857. faults = group_faults(p, nid);
  858. faults += score_nearby_nodes(p, nid, dist, false);
  859. return 1000 * faults / total_faults;
  860. }
  861. bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
  862. int src_nid, int dst_cpu)
  863. {
  864. struct numa_group *ng = p->numa_group;
  865. int dst_nid = cpu_to_node(dst_cpu);
  866. int last_cpupid, this_cpupid;
  867. this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
  868. /*
  869. * Multi-stage node selection is used in conjunction with a periodic
  870. * migration fault to build a temporal task<->page relation. By using
  871. * a two-stage filter we remove short/unlikely relations.
  872. *
  873. * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
  874. * a task's usage of a particular page (n_p) per total usage of this
  875. * page (n_t) (in a given time-span) to a probability.
  876. *
  877. * Our periodic faults will sample this probability and getting the
  878. * same result twice in a row, given these samples are fully
  879. * independent, is then given by P(n)^2, provided our sample period
  880. * is sufficiently short compared to the usage pattern.
  881. *
  882. * This quadric squishes small probabilities, making it less likely we
  883. * act on an unlikely task<->page relation.
  884. */
  885. last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
  886. if (!cpupid_pid_unset(last_cpupid) &&
  887. cpupid_to_nid(last_cpupid) != dst_nid)
  888. return false;
  889. /* Always allow migrate on private faults */
  890. if (cpupid_match_pid(p, last_cpupid))
  891. return true;
  892. /* A shared fault, but p->numa_group has not been set up yet. */
  893. if (!ng)
  894. return true;
  895. /*
  896. * Do not migrate if the destination is not a node that
  897. * is actively used by this numa group.
  898. */
  899. if (!node_isset(dst_nid, ng->active_nodes))
  900. return false;
  901. /*
  902. * Source is a node that is not actively used by this
  903. * numa group, while the destination is. Migrate.
  904. */
  905. if (!node_isset(src_nid, ng->active_nodes))
  906. return true;
  907. /*
  908. * Both source and destination are nodes in active
  909. * use by this numa group. Maximize memory bandwidth
  910. * by migrating from more heavily used groups, to less
  911. * heavily used ones, spreading the load around.
  912. * Use a 1/4 hysteresis to avoid spurious page movement.
  913. */
  914. return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
  915. }
  916. static unsigned long weighted_cpuload(const int cpu);
  917. static unsigned long source_load(int cpu, int type);
  918. static unsigned long target_load(int cpu, int type);
  919. static unsigned long capacity_of(int cpu);
  920. static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
  921. /* Cached statistics for all CPUs within a node */
  922. struct numa_stats {
  923. unsigned long nr_running;
  924. unsigned long load;
  925. /* Total compute capacity of CPUs on a node */
  926. unsigned long compute_capacity;
  927. /* Approximate capacity in terms of runnable tasks on a node */
  928. unsigned long task_capacity;
  929. int has_free_capacity;
  930. };
  931. /*
  932. * XXX borrowed from update_sg_lb_stats
  933. */
  934. static void update_numa_stats(struct numa_stats *ns, int nid)
  935. {
  936. int smt, cpu, cpus = 0;
  937. unsigned long capacity;
  938. memset(ns, 0, sizeof(*ns));
  939. for_each_cpu(cpu, cpumask_of_node(nid)) {
  940. struct rq *rq = cpu_rq(cpu);
  941. ns->nr_running += rq->nr_running;
  942. ns->load += weighted_cpuload(cpu);
  943. ns->compute_capacity += capacity_of(cpu);
  944. cpus++;
  945. }
  946. /*
  947. * If we raced with hotplug and there are no CPUs left in our mask
  948. * the @ns structure is NULL'ed and task_numa_compare() will
  949. * not find this node attractive.
  950. *
  951. * We'll either bail at !has_free_capacity, or we'll detect a huge
  952. * imbalance and bail there.
  953. */
  954. if (!cpus)
  955. return;
  956. /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
  957. smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
  958. capacity = cpus / smt; /* cores */
  959. ns->task_capacity = min_t(unsigned, capacity,
  960. DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
  961. ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
  962. }
  963. struct task_numa_env {
  964. struct task_struct *p;
  965. int src_cpu, src_nid;
  966. int dst_cpu, dst_nid;
  967. struct numa_stats src_stats, dst_stats;
  968. int imbalance_pct;
  969. int dist;
  970. struct task_struct *best_task;
  971. long best_imp;
  972. int best_cpu;
  973. };
  974. static void task_numa_assign(struct task_numa_env *env,
  975. struct task_struct *p, long imp)
  976. {
  977. if (env->best_task)
  978. put_task_struct(env->best_task);
  979. if (p)
  980. get_task_struct(p);
  981. env->best_task = p;
  982. env->best_imp = imp;
  983. env->best_cpu = env->dst_cpu;
  984. }
  985. static bool load_too_imbalanced(long src_load, long dst_load,
  986. struct task_numa_env *env)
  987. {
  988. long src_capacity, dst_capacity;
  989. long orig_src_load;
  990. long load_a, load_b;
  991. long moved_load;
  992. long imb;
  993. /*
  994. * The load is corrected for the CPU capacity available on each node.
  995. *
  996. * src_load dst_load
  997. * ------------ vs ---------
  998. * src_capacity dst_capacity
  999. */
  1000. src_capacity = env->src_stats.compute_capacity;
  1001. dst_capacity = env->dst_stats.compute_capacity;
  1002. /* We care about the slope of the imbalance, not the direction. */
  1003. load_a = dst_load;
  1004. load_b = src_load;
  1005. if (load_a < load_b)
  1006. swap(load_a, load_b);
  1007. /* Is the difference below the threshold? */
  1008. imb = load_a * src_capacity * 100 -
  1009. load_b * dst_capacity * env->imbalance_pct;
  1010. if (imb <= 0)
  1011. return false;
  1012. /*
  1013. * The imbalance is above the allowed threshold.
  1014. * Allow a move that brings us closer to a balanced situation,
  1015. * without moving things past the point of balance.
  1016. */
  1017. orig_src_load = env->src_stats.load;
  1018. /*
  1019. * In a task swap, there will be one load moving from src to dst,
  1020. * and another moving back. This is the net sum of both moves.
  1021. * A simple task move will always have a positive value.
  1022. * Allow the move if it brings the system closer to a balanced
  1023. * situation, without crossing over the balance point.
  1024. */
  1025. moved_load = orig_src_load - src_load;
  1026. if (moved_load > 0)
  1027. /* Moving src -> dst. Did we overshoot balance? */
  1028. return src_load * dst_capacity < dst_load * src_capacity;
  1029. else
  1030. /* Moving dst -> src. Did we overshoot balance? */
  1031. return dst_load * src_capacity < src_load * dst_capacity;
  1032. }
  1033. /*
  1034. * This checks if the overall compute and NUMA accesses of the system would
  1035. * be improved if the source tasks was migrated to the target dst_cpu taking
  1036. * into account that it might be best if task running on the dst_cpu should
  1037. * be exchanged with the source task
  1038. */
  1039. static void task_numa_compare(struct task_numa_env *env,
  1040. long taskimp, long groupimp)
  1041. {
  1042. struct rq *src_rq = cpu_rq(env->src_cpu);
  1043. struct rq *dst_rq = cpu_rq(env->dst_cpu);
  1044. struct task_struct *cur;
  1045. long src_load, dst_load;
  1046. long load;
  1047. long imp = env->p->numa_group ? groupimp : taskimp;
  1048. long moveimp = imp;
  1049. int dist = env->dist;
  1050. rcu_read_lock();
  1051. raw_spin_lock_irq(&dst_rq->lock);
  1052. cur = dst_rq->curr;
  1053. /*
  1054. * No need to move the exiting task, and this ensures that ->curr
  1055. * wasn't reaped and thus get_task_struct() in task_numa_assign()
  1056. * is safe under RCU read lock.
  1057. * Note that rcu_read_lock() itself can't protect from the final
  1058. * put_task_struct() after the last schedule().
  1059. */
  1060. if ((cur->flags & PF_EXITING) || is_idle_task(cur))
  1061. cur = NULL;
  1062. raw_spin_unlock_irq(&dst_rq->lock);
  1063. /*
  1064. * Because we have preemption enabled we can get migrated around and
  1065. * end try selecting ourselves (current == env->p) as a swap candidate.
  1066. */
  1067. if (cur == env->p)
  1068. goto unlock;
  1069. /*
  1070. * "imp" is the fault differential for the source task between the
  1071. * source and destination node. Calculate the total differential for
  1072. * the source task and potential destination task. The more negative
  1073. * the value is, the more rmeote accesses that would be expected to
  1074. * be incurred if the tasks were swapped.
  1075. */
  1076. if (cur) {
  1077. /* Skip this swap candidate if cannot move to the source cpu */
  1078. if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
  1079. goto unlock;
  1080. /*
  1081. * If dst and source tasks are in the same NUMA group, or not
  1082. * in any group then look only at task weights.
  1083. */
  1084. if (cur->numa_group == env->p->numa_group) {
  1085. imp = taskimp + task_weight(cur, env->src_nid, dist) -
  1086. task_weight(cur, env->dst_nid, dist);
  1087. /*
  1088. * Add some hysteresis to prevent swapping the
  1089. * tasks within a group over tiny differences.
  1090. */
  1091. if (cur->numa_group)
  1092. imp -= imp/16;
  1093. } else {
  1094. /*
  1095. * Compare the group weights. If a task is all by
  1096. * itself (not part of a group), use the task weight
  1097. * instead.
  1098. */
  1099. if (cur->numa_group)
  1100. imp += group_weight(cur, env->src_nid, dist) -
  1101. group_weight(cur, env->dst_nid, dist);
  1102. else
  1103. imp += task_weight(cur, env->src_nid, dist) -
  1104. task_weight(cur, env->dst_nid, dist);
  1105. }
  1106. }
  1107. if (imp <= env->best_imp && moveimp <= env->best_imp)
  1108. goto unlock;
  1109. if (!cur) {
  1110. /* Is there capacity at our destination? */
  1111. if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
  1112. !env->dst_stats.has_free_capacity)
  1113. goto unlock;
  1114. goto balance;
  1115. }
  1116. /* Balance doesn't matter much if we're running a task per cpu */
  1117. if (imp > env->best_imp && src_rq->nr_running == 1 &&
  1118. dst_rq->nr_running == 1)
  1119. goto assign;
  1120. /*
  1121. * In the overloaded case, try and keep the load balanced.
  1122. */
  1123. balance:
  1124. load = task_h_load(env->p);
  1125. dst_load = env->dst_stats.load + load;
  1126. src_load = env->src_stats.load - load;
  1127. if (moveimp > imp && moveimp > env->best_imp) {
  1128. /*
  1129. * If the improvement from just moving env->p direction is
  1130. * better than swapping tasks around, check if a move is
  1131. * possible. Store a slightly smaller score than moveimp,
  1132. * so an actually idle CPU will win.
  1133. */
  1134. if (!load_too_imbalanced(src_load, dst_load, env)) {
  1135. imp = moveimp - 1;
  1136. cur = NULL;
  1137. goto assign;
  1138. }
  1139. }
  1140. if (imp <= env->best_imp)
  1141. goto unlock;
  1142. if (cur) {
  1143. load = task_h_load(cur);
  1144. dst_load -= load;
  1145. src_load += load;
  1146. }
  1147. if (load_too_imbalanced(src_load, dst_load, env))
  1148. goto unlock;
  1149. /*
  1150. * One idle CPU per node is evaluated for a task numa move.
  1151. * Call select_idle_sibling to maybe find a better one.
  1152. */
  1153. if (!cur)
  1154. env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
  1155. assign:
  1156. task_numa_assign(env, cur, imp);
  1157. unlock:
  1158. rcu_read_unlock();
  1159. }
  1160. static void task_numa_find_cpu(struct task_numa_env *env,
  1161. long taskimp, long groupimp)
  1162. {
  1163. int cpu;
  1164. for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
  1165. /* Skip this CPU if the source task cannot migrate */
  1166. if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
  1167. continue;
  1168. env->dst_cpu = cpu;
  1169. task_numa_compare(env, taskimp, groupimp);
  1170. }
  1171. }
  1172. static int task_numa_migrate(struct task_struct *p)
  1173. {
  1174. struct task_numa_env env = {
  1175. .p = p,
  1176. .src_cpu = task_cpu(p),
  1177. .src_nid = task_node(p),
  1178. .imbalance_pct = 112,
  1179. .best_task = NULL,
  1180. .best_imp = 0,
  1181. .best_cpu = -1
  1182. };
  1183. struct sched_domain *sd;
  1184. unsigned long taskweight, groupweight;
  1185. int nid, ret, dist;
  1186. long taskimp, groupimp;
  1187. /*
  1188. * Pick the lowest SD_NUMA domain, as that would have the smallest
  1189. * imbalance and would be the first to start moving tasks about.
  1190. *
  1191. * And we want to avoid any moving of tasks about, as that would create
  1192. * random movement of tasks -- counter the numa conditions we're trying
  1193. * to satisfy here.
  1194. */
  1195. rcu_read_lock();
  1196. sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
  1197. if (sd)
  1198. env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
  1199. rcu_read_unlock();
  1200. /*
  1201. * Cpusets can break the scheduler domain tree into smaller
  1202. * balance domains, some of which do not cross NUMA boundaries.
  1203. * Tasks that are "trapped" in such domains cannot be migrated
  1204. * elsewhere, so there is no point in (re)trying.
  1205. */
  1206. if (unlikely(!sd)) {
  1207. p->numa_preferred_nid = task_node(p);
  1208. return -EINVAL;
  1209. }
  1210. env.dst_nid = p->numa_preferred_nid;
  1211. dist = env.dist = node_distance(env.src_nid, env.dst_nid);
  1212. taskweight = task_weight(p, env.src_nid, dist);
  1213. groupweight = group_weight(p, env.src_nid, dist);
  1214. update_numa_stats(&env.src_stats, env.src_nid);
  1215. taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
  1216. groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
  1217. update_numa_stats(&env.dst_stats, env.dst_nid);
  1218. /* Try to find a spot on the preferred nid. */
  1219. task_numa_find_cpu(&env, taskimp, groupimp);
  1220. /*
  1221. * Look at other nodes in these cases:
  1222. * - there is no space available on the preferred_nid
  1223. * - the task is part of a numa_group that is interleaved across
  1224. * multiple NUMA nodes; in order to better consolidate the group,
  1225. * we need to check other locations.
  1226. */
  1227. if (env.best_cpu == -1 || (p->numa_group &&
  1228. nodes_weight(p->numa_group->active_nodes) > 1)) {
  1229. for_each_online_node(nid) {
  1230. if (nid == env.src_nid || nid == p->numa_preferred_nid)
  1231. continue;
  1232. dist = node_distance(env.src_nid, env.dst_nid);
  1233. if (sched_numa_topology_type == NUMA_BACKPLANE &&
  1234. dist != env.dist) {
  1235. taskweight = task_weight(p, env.src_nid, dist);
  1236. groupweight = group_weight(p, env.src_nid, dist);
  1237. }
  1238. /* Only consider nodes where both task and groups benefit */
  1239. taskimp = task_weight(p, nid, dist) - taskweight;
  1240. groupimp = group_weight(p, nid, dist) - groupweight;
  1241. if (taskimp < 0 && groupimp < 0)
  1242. continue;
  1243. env.dist = dist;
  1244. env.dst_nid = nid;
  1245. update_numa_stats(&env.dst_stats, env.dst_nid);
  1246. task_numa_find_cpu(&env, taskimp, groupimp);
  1247. }
  1248. }
  1249. /*
  1250. * If the task is part of a workload that spans multiple NUMA nodes,
  1251. * and is migrating into one of the workload's active nodes, remember
  1252. * this node as the task's preferred numa node, so the workload can
  1253. * settle down.
  1254. * A task that migrated to a second choice node will be better off
  1255. * trying for a better one later. Do not set the preferred node here.
  1256. */
  1257. if (p->numa_group) {
  1258. if (env.best_cpu == -1)
  1259. nid = env.src_nid;
  1260. else
  1261. nid = env.dst_nid;
  1262. if (node_isset(nid, p->numa_group->active_nodes))
  1263. sched_setnuma(p, env.dst_nid);
  1264. }
  1265. /* No better CPU than the current one was found. */
  1266. if (env.best_cpu == -1)
  1267. return -EAGAIN;
  1268. /*
  1269. * Reset the scan period if the task is being rescheduled on an
  1270. * alternative node to recheck if the tasks is now properly placed.
  1271. */
  1272. p->numa_scan_period = task_scan_min(p);
  1273. if (env.best_task == NULL) {
  1274. ret = migrate_task_to(p, env.best_cpu);
  1275. if (ret != 0)
  1276. trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
  1277. return ret;
  1278. }
  1279. ret = migrate_swap(p, env.best_task);
  1280. if (ret != 0)
  1281. trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
  1282. put_task_struct(env.best_task);
  1283. return ret;
  1284. }
  1285. /* Attempt to migrate a task to a CPU on the preferred node. */
  1286. static void numa_migrate_preferred(struct task_struct *p)
  1287. {
  1288. unsigned long interval = HZ;
  1289. /* This task has no NUMA fault statistics yet */
  1290. if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
  1291. return;
  1292. /* Periodically retry migrating the task to the preferred node */
  1293. interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
  1294. p->numa_migrate_retry = jiffies + interval;
  1295. /* Success if task is already running on preferred CPU */
  1296. if (task_node(p) == p->numa_preferred_nid)
  1297. return;
  1298. /* Otherwise, try migrate to a CPU on the preferred node */
  1299. task_numa_migrate(p);
  1300. }
  1301. /*
  1302. * Find the nodes on which the workload is actively running. We do this by
  1303. * tracking the nodes from which NUMA hinting faults are triggered. This can
  1304. * be different from the set of nodes where the workload's memory is currently
  1305. * located.
  1306. *
  1307. * The bitmask is used to make smarter decisions on when to do NUMA page
  1308. * migrations, To prevent flip-flopping, and excessive page migrations, nodes
  1309. * are added when they cause over 6/16 of the maximum number of faults, but
  1310. * only removed when they drop below 3/16.
  1311. */
  1312. static void update_numa_active_node_mask(struct numa_group *numa_group)
  1313. {
  1314. unsigned long faults, max_faults = 0;
  1315. int nid;
  1316. for_each_online_node(nid) {
  1317. faults = group_faults_cpu(numa_group, nid);
  1318. if (faults > max_faults)
  1319. max_faults = faults;
  1320. }
  1321. for_each_online_node(nid) {
  1322. faults = group_faults_cpu(numa_group, nid);
  1323. if (!node_isset(nid, numa_group->active_nodes)) {
  1324. if (faults > max_faults * 6 / 16)
  1325. node_set(nid, numa_group->active_nodes);
  1326. } else if (faults < max_faults * 3 / 16)
  1327. node_clear(nid, numa_group->active_nodes);
  1328. }
  1329. }
  1330. /*
  1331. * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
  1332. * increments. The more local the fault statistics are, the higher the scan
  1333. * period will be for the next scan window. If local/(local+remote) ratio is
  1334. * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
  1335. * the scan period will decrease. Aim for 70% local accesses.
  1336. */
  1337. #define NUMA_PERIOD_SLOTS 10
  1338. #define NUMA_PERIOD_THRESHOLD 7
  1339. /*
  1340. * Increase the scan period (slow down scanning) if the majority of
  1341. * our memory is already on our local node, or if the majority of
  1342. * the page accesses are shared with other processes.
  1343. * Otherwise, decrease the scan period.
  1344. */
  1345. static void update_task_scan_period(struct task_struct *p,
  1346. unsigned long shared, unsigned long private)
  1347. {
  1348. unsigned int period_slot;
  1349. int ratio;
  1350. int diff;
  1351. unsigned long remote = p->numa_faults_locality[0];
  1352. unsigned long local = p->numa_faults_locality[1];
  1353. /*
  1354. * If there were no record hinting faults then either the task is
  1355. * completely idle or all activity is areas that are not of interest
  1356. * to automatic numa balancing. Related to that, if there were failed
  1357. * migration then it implies we are migrating too quickly or the local
  1358. * node is overloaded. In either case, scan slower
  1359. */
  1360. if (local + shared == 0 || p->numa_faults_locality[2]) {
  1361. p->numa_scan_period = min(p->numa_scan_period_max,
  1362. p->numa_scan_period << 1);
  1363. p->mm->numa_next_scan = jiffies +
  1364. msecs_to_jiffies(p->numa_scan_period);
  1365. return;
  1366. }
  1367. /*
  1368. * Prepare to scale scan period relative to the current period.
  1369. * == NUMA_PERIOD_THRESHOLD scan period stays the same
  1370. * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
  1371. * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
  1372. */
  1373. period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
  1374. ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
  1375. if (ratio >= NUMA_PERIOD_THRESHOLD) {
  1376. int slot = ratio - NUMA_PERIOD_THRESHOLD;
  1377. if (!slot)
  1378. slot = 1;
  1379. diff = slot * period_slot;
  1380. } else {
  1381. diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
  1382. /*
  1383. * Scale scan rate increases based on sharing. There is an
  1384. * inverse relationship between the degree of sharing and
  1385. * the adjustment made to the scanning period. Broadly
  1386. * speaking the intent is that there is little point
  1387. * scanning faster if shared accesses dominate as it may
  1388. * simply bounce migrations uselessly
  1389. */
  1390. ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
  1391. diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
  1392. }
  1393. p->numa_scan_period = clamp(p->numa_scan_period + diff,
  1394. task_scan_min(p), task_scan_max(p));
  1395. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1396. }
  1397. /*
  1398. * Get the fraction of time the task has been running since the last
  1399. * NUMA placement cycle. The scheduler keeps similar statistics, but
  1400. * decays those on a 32ms period, which is orders of magnitude off
  1401. * from the dozens-of-seconds NUMA balancing period. Use the scheduler
  1402. * stats only if the task is so new there are no NUMA statistics yet.
  1403. */
  1404. static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
  1405. {
  1406. u64 runtime, delta, now;
  1407. /* Use the start of this time slice to avoid calculations. */
  1408. now = p->se.exec_start;
  1409. runtime = p->se.sum_exec_runtime;
  1410. if (p->last_task_numa_placement) {
  1411. delta = runtime - p->last_sum_exec_runtime;
  1412. *period = now - p->last_task_numa_placement;
  1413. } else {
  1414. delta = p->se.avg.runnable_avg_sum;
  1415. *period = p->se.avg.avg_period;
  1416. }
  1417. p->last_sum_exec_runtime = runtime;
  1418. p->last_task_numa_placement = now;
  1419. return delta;
  1420. }
  1421. /*
  1422. * Determine the preferred nid for a task in a numa_group. This needs to
  1423. * be done in a way that produces consistent results with group_weight,
  1424. * otherwise workloads might not converge.
  1425. */
  1426. static int preferred_group_nid(struct task_struct *p, int nid)
  1427. {
  1428. nodemask_t nodes;
  1429. int dist;
  1430. /* Direct connections between all NUMA nodes. */
  1431. if (sched_numa_topology_type == NUMA_DIRECT)
  1432. return nid;
  1433. /*
  1434. * On a system with glueless mesh NUMA topology, group_weight
  1435. * scores nodes according to the number of NUMA hinting faults on
  1436. * both the node itself, and on nearby nodes.
  1437. */
  1438. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  1439. unsigned long score, max_score = 0;
  1440. int node, max_node = nid;
  1441. dist = sched_max_numa_distance;
  1442. for_each_online_node(node) {
  1443. score = group_weight(p, node, dist);
  1444. if (score > max_score) {
  1445. max_score = score;
  1446. max_node = node;
  1447. }
  1448. }
  1449. return max_node;
  1450. }
  1451. /*
  1452. * Finding the preferred nid in a system with NUMA backplane
  1453. * interconnect topology is more involved. The goal is to locate
  1454. * tasks from numa_groups near each other in the system, and
  1455. * untangle workloads from different sides of the system. This requires
  1456. * searching down the hierarchy of node groups, recursively searching
  1457. * inside the highest scoring group of nodes. The nodemask tricks
  1458. * keep the complexity of the search down.
  1459. */
  1460. nodes = node_online_map;
  1461. for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
  1462. unsigned long max_faults = 0;
  1463. nodemask_t max_group = NODE_MASK_NONE;
  1464. int a, b;
  1465. /* Are there nodes at this distance from each other? */
  1466. if (!find_numa_distance(dist))
  1467. continue;
  1468. for_each_node_mask(a, nodes) {
  1469. unsigned long faults = 0;
  1470. nodemask_t this_group;
  1471. nodes_clear(this_group);
  1472. /* Sum group's NUMA faults; includes a==b case. */
  1473. for_each_node_mask(b, nodes) {
  1474. if (node_distance(a, b) < dist) {
  1475. faults += group_faults(p, b);
  1476. node_set(b, this_group);
  1477. node_clear(b, nodes);
  1478. }
  1479. }
  1480. /* Remember the top group. */
  1481. if (faults > max_faults) {
  1482. max_faults = faults;
  1483. max_group = this_group;
  1484. /*
  1485. * subtle: at the smallest distance there is
  1486. * just one node left in each "group", the
  1487. * winner is the preferred nid.
  1488. */
  1489. nid = a;
  1490. }
  1491. }
  1492. /* Next round, evaluate the nodes within max_group. */
  1493. if (!max_faults)
  1494. break;
  1495. nodes = max_group;
  1496. }
  1497. return nid;
  1498. }
  1499. static void task_numa_placement(struct task_struct *p)
  1500. {
  1501. int seq, nid, max_nid = -1, max_group_nid = -1;
  1502. unsigned long max_faults = 0, max_group_faults = 0;
  1503. unsigned long fault_types[2] = { 0, 0 };
  1504. unsigned long total_faults;
  1505. u64 runtime, period;
  1506. spinlock_t *group_lock = NULL;
  1507. seq = ACCESS_ONCE(p->mm->numa_scan_seq);
  1508. if (p->numa_scan_seq == seq)
  1509. return;
  1510. p->numa_scan_seq = seq;
  1511. p->numa_scan_period_max = task_scan_max(p);
  1512. total_faults = p->numa_faults_locality[0] +
  1513. p->numa_faults_locality[1];
  1514. runtime = numa_get_avg_runtime(p, &period);
  1515. /* If the task is part of a group prevent parallel updates to group stats */
  1516. if (p->numa_group) {
  1517. group_lock = &p->numa_group->lock;
  1518. spin_lock_irq(group_lock);
  1519. }
  1520. /* Find the node with the highest number of faults */
  1521. for_each_online_node(nid) {
  1522. /* Keep track of the offsets in numa_faults array */
  1523. int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
  1524. unsigned long faults = 0, group_faults = 0;
  1525. int priv;
  1526. for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
  1527. long diff, f_diff, f_weight;
  1528. mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
  1529. membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
  1530. cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
  1531. cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
  1532. /* Decay existing window, copy faults since last scan */
  1533. diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
  1534. fault_types[priv] += p->numa_faults[membuf_idx];
  1535. p->numa_faults[membuf_idx] = 0;
  1536. /*
  1537. * Normalize the faults_from, so all tasks in a group
  1538. * count according to CPU use, instead of by the raw
  1539. * number of faults. Tasks with little runtime have
  1540. * little over-all impact on throughput, and thus their
  1541. * faults are less important.
  1542. */
  1543. f_weight = div64_u64(runtime << 16, period + 1);
  1544. f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
  1545. (total_faults + 1);
  1546. f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
  1547. p->numa_faults[cpubuf_idx] = 0;
  1548. p->numa_faults[mem_idx] += diff;
  1549. p->numa_faults[cpu_idx] += f_diff;
  1550. faults += p->numa_faults[mem_idx];
  1551. p->total_numa_faults += diff;
  1552. if (p->numa_group) {
  1553. /*
  1554. * safe because we can only change our own group
  1555. *
  1556. * mem_idx represents the offset for a given
  1557. * nid and priv in a specific region because it
  1558. * is at the beginning of the numa_faults array.
  1559. */
  1560. p->numa_group->faults[mem_idx] += diff;
  1561. p->numa_group->faults_cpu[mem_idx] += f_diff;
  1562. p->numa_group->total_faults += diff;
  1563. group_faults += p->numa_group->faults[mem_idx];
  1564. }
  1565. }
  1566. if (faults > max_faults) {
  1567. max_faults = faults;
  1568. max_nid = nid;
  1569. }
  1570. if (group_faults > max_group_faults) {
  1571. max_group_faults = group_faults;
  1572. max_group_nid = nid;
  1573. }
  1574. }
  1575. update_task_scan_period(p, fault_types[0], fault_types[1]);
  1576. if (p->numa_group) {
  1577. update_numa_active_node_mask(p->numa_group);
  1578. spin_unlock_irq(group_lock);
  1579. max_nid = preferred_group_nid(p, max_group_nid);
  1580. }
  1581. if (max_faults) {
  1582. /* Set the new preferred node */
  1583. if (max_nid != p->numa_preferred_nid)
  1584. sched_setnuma(p, max_nid);
  1585. if (task_node(p) != p->numa_preferred_nid)
  1586. numa_migrate_preferred(p);
  1587. }
  1588. }
  1589. static inline int get_numa_group(struct numa_group *grp)
  1590. {
  1591. return atomic_inc_not_zero(&grp->refcount);
  1592. }
  1593. static inline void put_numa_group(struct numa_group *grp)
  1594. {
  1595. if (atomic_dec_and_test(&grp->refcount))
  1596. kfree_rcu(grp, rcu);
  1597. }
  1598. static void task_numa_group(struct task_struct *p, int cpupid, int flags,
  1599. int *priv)
  1600. {
  1601. struct numa_group *grp, *my_grp;
  1602. struct task_struct *tsk;
  1603. bool join = false;
  1604. int cpu = cpupid_to_cpu(cpupid);
  1605. int i;
  1606. if (unlikely(!p->numa_group)) {
  1607. unsigned int size = sizeof(struct numa_group) +
  1608. 4*nr_node_ids*sizeof(unsigned long);
  1609. grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
  1610. if (!grp)
  1611. return;
  1612. atomic_set(&grp->refcount, 1);
  1613. spin_lock_init(&grp->lock);
  1614. grp->gid = p->pid;
  1615. /* Second half of the array tracks nids where faults happen */
  1616. grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
  1617. nr_node_ids;
  1618. node_set(task_node(current), grp->active_nodes);
  1619. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  1620. grp->faults[i] = p->numa_faults[i];
  1621. grp->total_faults = p->total_numa_faults;
  1622. grp->nr_tasks++;
  1623. rcu_assign_pointer(p->numa_group, grp);
  1624. }
  1625. rcu_read_lock();
  1626. tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
  1627. if (!cpupid_match_pid(tsk, cpupid))
  1628. goto no_join;
  1629. grp = rcu_dereference(tsk->numa_group);
  1630. if (!grp)
  1631. goto no_join;
  1632. my_grp = p->numa_group;
  1633. if (grp == my_grp)
  1634. goto no_join;
  1635. /*
  1636. * Only join the other group if its bigger; if we're the bigger group,
  1637. * the other task will join us.
  1638. */
  1639. if (my_grp->nr_tasks > grp->nr_tasks)
  1640. goto no_join;
  1641. /*
  1642. * Tie-break on the grp address.
  1643. */
  1644. if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
  1645. goto no_join;
  1646. /* Always join threads in the same process. */
  1647. if (tsk->mm == current->mm)
  1648. join = true;
  1649. /* Simple filter to avoid false positives due to PID collisions */
  1650. if (flags & TNF_SHARED)
  1651. join = true;
  1652. /* Update priv based on whether false sharing was detected */
  1653. *priv = !join;
  1654. if (join && !get_numa_group(grp))
  1655. goto no_join;
  1656. rcu_read_unlock();
  1657. if (!join)
  1658. return;
  1659. BUG_ON(irqs_disabled());
  1660. double_lock_irq(&my_grp->lock, &grp->lock);
  1661. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
  1662. my_grp->faults[i] -= p->numa_faults[i];
  1663. grp->faults[i] += p->numa_faults[i];
  1664. }
  1665. my_grp->total_faults -= p->total_numa_faults;
  1666. grp->total_faults += p->total_numa_faults;
  1667. my_grp->nr_tasks--;
  1668. grp->nr_tasks++;
  1669. spin_unlock(&my_grp->lock);
  1670. spin_unlock_irq(&grp->lock);
  1671. rcu_assign_pointer(p->numa_group, grp);
  1672. put_numa_group(my_grp);
  1673. return;
  1674. no_join:
  1675. rcu_read_unlock();
  1676. return;
  1677. }
  1678. void task_numa_free(struct task_struct *p)
  1679. {
  1680. struct numa_group *grp = p->numa_group;
  1681. void *numa_faults = p->numa_faults;
  1682. unsigned long flags;
  1683. int i;
  1684. if (grp) {
  1685. spin_lock_irqsave(&grp->lock, flags);
  1686. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  1687. grp->faults[i] -= p->numa_faults[i];
  1688. grp->total_faults -= p->total_numa_faults;
  1689. grp->nr_tasks--;
  1690. spin_unlock_irqrestore(&grp->lock, flags);
  1691. RCU_INIT_POINTER(p->numa_group, NULL);
  1692. put_numa_group(grp);
  1693. }
  1694. p->numa_faults = NULL;
  1695. kfree(numa_faults);
  1696. }
  1697. /*
  1698. * Got a PROT_NONE fault for a page on @node.
  1699. */
  1700. void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
  1701. {
  1702. struct task_struct *p = current;
  1703. bool migrated = flags & TNF_MIGRATED;
  1704. int cpu_node = task_node(current);
  1705. int local = !!(flags & TNF_FAULT_LOCAL);
  1706. int priv;
  1707. if (!numabalancing_enabled)
  1708. return;
  1709. /* for example, ksmd faulting in a user's mm */
  1710. if (!p->mm)
  1711. return;
  1712. /* Allocate buffer to track faults on a per-node basis */
  1713. if (unlikely(!p->numa_faults)) {
  1714. int size = sizeof(*p->numa_faults) *
  1715. NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
  1716. p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
  1717. if (!p->numa_faults)
  1718. return;
  1719. p->total_numa_faults = 0;
  1720. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1721. }
  1722. /*
  1723. * First accesses are treated as private, otherwise consider accesses
  1724. * to be private if the accessing pid has not changed
  1725. */
  1726. if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
  1727. priv = 1;
  1728. } else {
  1729. priv = cpupid_match_pid(p, last_cpupid);
  1730. if (!priv && !(flags & TNF_NO_GROUP))
  1731. task_numa_group(p, last_cpupid, flags, &priv);
  1732. }
  1733. /*
  1734. * If a workload spans multiple NUMA nodes, a shared fault that
  1735. * occurs wholly within the set of nodes that the workload is
  1736. * actively using should be counted as local. This allows the
  1737. * scan rate to slow down when a workload has settled down.
  1738. */
  1739. if (!priv && !local && p->numa_group &&
  1740. node_isset(cpu_node, p->numa_group->active_nodes) &&
  1741. node_isset(mem_node, p->numa_group->active_nodes))
  1742. local = 1;
  1743. task_numa_placement(p);
  1744. /*
  1745. * Retry task to preferred node migration periodically, in case it
  1746. * case it previously failed, or the scheduler moved us.
  1747. */
  1748. if (time_after(jiffies, p->numa_migrate_retry))
  1749. numa_migrate_preferred(p);
  1750. if (migrated)
  1751. p->numa_pages_migrated += pages;
  1752. if (flags & TNF_MIGRATE_FAIL)
  1753. p->numa_faults_locality[2] += pages;
  1754. p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
  1755. p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
  1756. p->numa_faults_locality[local] += pages;
  1757. }
  1758. static void reset_ptenuma_scan(struct task_struct *p)
  1759. {
  1760. ACCESS_ONCE(p->mm->numa_scan_seq)++;
  1761. p->mm->numa_scan_offset = 0;
  1762. }
  1763. /*
  1764. * The expensive part of numa migration is done from task_work context.
  1765. * Triggered from task_tick_numa().
  1766. */
  1767. void task_numa_work(struct callback_head *work)
  1768. {
  1769. unsigned long migrate, next_scan, now = jiffies;
  1770. struct task_struct *p = current;
  1771. struct mm_struct *mm = p->mm;
  1772. struct vm_area_struct *vma;
  1773. unsigned long start, end;
  1774. unsigned long nr_pte_updates = 0;
  1775. long pages;
  1776. WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
  1777. work->next = work; /* protect against double add */
  1778. /*
  1779. * Who cares about NUMA placement when they're dying.
  1780. *
  1781. * NOTE: make sure not to dereference p->mm before this check,
  1782. * exit_task_work() happens _after_ exit_mm() so we could be called
  1783. * without p->mm even though we still had it when we enqueued this
  1784. * work.
  1785. */
  1786. if (p->flags & PF_EXITING)
  1787. return;
  1788. if (!mm->numa_next_scan) {
  1789. mm->numa_next_scan = now +
  1790. msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1791. }
  1792. /*
  1793. * Enforce maximal scan/migration frequency..
  1794. */
  1795. migrate = mm->numa_next_scan;
  1796. if (time_before(now, migrate))
  1797. return;
  1798. if (p->numa_scan_period == 0) {
  1799. p->numa_scan_period_max = task_scan_max(p);
  1800. p->numa_scan_period = task_scan_min(p);
  1801. }
  1802. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  1803. if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
  1804. return;
  1805. /*
  1806. * Delay this task enough that another task of this mm will likely win
  1807. * the next time around.
  1808. */
  1809. p->node_stamp += 2 * TICK_NSEC;
  1810. start = mm->numa_scan_offset;
  1811. pages = sysctl_numa_balancing_scan_size;
  1812. pages <<= 20 - PAGE_SHIFT; /* MB in pages */
  1813. if (!pages)
  1814. return;
  1815. down_read(&mm->mmap_sem);
  1816. vma = find_vma(mm, start);
  1817. if (!vma) {
  1818. reset_ptenuma_scan(p);
  1819. start = 0;
  1820. vma = mm->mmap;
  1821. }
  1822. for (; vma; vma = vma->vm_next) {
  1823. if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
  1824. is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
  1825. continue;
  1826. }
  1827. /*
  1828. * Shared library pages mapped by multiple processes are not
  1829. * migrated as it is expected they are cache replicated. Avoid
  1830. * hinting faults in read-only file-backed mappings or the vdso
  1831. * as migrating the pages will be of marginal benefit.
  1832. */
  1833. if (!vma->vm_mm ||
  1834. (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
  1835. continue;
  1836. /*
  1837. * Skip inaccessible VMAs to avoid any confusion between
  1838. * PROT_NONE and NUMA hinting ptes
  1839. */
  1840. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  1841. continue;
  1842. do {
  1843. start = max(start, vma->vm_start);
  1844. end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
  1845. end = min(end, vma->vm_end);
  1846. nr_pte_updates += change_prot_numa(vma, start, end);
  1847. /*
  1848. * Scan sysctl_numa_balancing_scan_size but ensure that
  1849. * at least one PTE is updated so that unused virtual
  1850. * address space is quickly skipped.
  1851. */
  1852. if (nr_pte_updates)
  1853. pages -= (end - start) >> PAGE_SHIFT;
  1854. start = end;
  1855. if (pages <= 0)
  1856. goto out;
  1857. cond_resched();
  1858. } while (end != vma->vm_end);
  1859. }
  1860. out:
  1861. /*
  1862. * It is possible to reach the end of the VMA list but the last few
  1863. * VMAs are not guaranteed to the vma_migratable. If they are not, we
  1864. * would find the !migratable VMA on the next scan but not reset the
  1865. * scanner to the start so check it now.
  1866. */
  1867. if (vma)
  1868. mm->numa_scan_offset = start;
  1869. else
  1870. reset_ptenuma_scan(p);
  1871. up_read(&mm->mmap_sem);
  1872. }
  1873. /*
  1874. * Drive the periodic memory faults..
  1875. */
  1876. void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1877. {
  1878. struct callback_head *work = &curr->numa_work;
  1879. u64 period, now;
  1880. /*
  1881. * We don't care about NUMA placement if we don't have memory.
  1882. */
  1883. if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
  1884. return;
  1885. /*
  1886. * Using runtime rather than walltime has the dual advantage that
  1887. * we (mostly) drive the selection from busy threads and that the
  1888. * task needs to have done some actual work before we bother with
  1889. * NUMA placement.
  1890. */
  1891. now = curr->se.sum_exec_runtime;
  1892. period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
  1893. if (now - curr->node_stamp > period) {
  1894. if (!curr->node_stamp)
  1895. curr->numa_scan_period = task_scan_min(curr);
  1896. curr->node_stamp += period;
  1897. if (!time_before(jiffies, curr->mm->numa_next_scan)) {
  1898. init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
  1899. task_work_add(curr, work, true);
  1900. }
  1901. }
  1902. }
  1903. #else
  1904. static void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1905. {
  1906. }
  1907. static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  1908. {
  1909. }
  1910. static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  1911. {
  1912. }
  1913. #endif /* CONFIG_NUMA_BALANCING */
  1914. static void
  1915. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1916. {
  1917. update_load_add(&cfs_rq->load, se->load.weight);
  1918. if (!parent_entity(se))
  1919. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  1920. #ifdef CONFIG_SMP
  1921. if (entity_is_task(se)) {
  1922. struct rq *rq = rq_of(cfs_rq);
  1923. account_numa_enqueue(rq, task_of(se));
  1924. list_add(&se->group_node, &rq->cfs_tasks);
  1925. }
  1926. #endif
  1927. cfs_rq->nr_running++;
  1928. }
  1929. static void
  1930. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1931. {
  1932. update_load_sub(&cfs_rq->load, se->load.weight);
  1933. if (!parent_entity(se))
  1934. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  1935. if (entity_is_task(se)) {
  1936. account_numa_dequeue(rq_of(cfs_rq), task_of(se));
  1937. list_del_init(&se->group_node);
  1938. }
  1939. cfs_rq->nr_running--;
  1940. }
  1941. #ifdef CONFIG_FAIR_GROUP_SCHED
  1942. # ifdef CONFIG_SMP
  1943. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  1944. {
  1945. long tg_weight;
  1946. /*
  1947. * Use this CPU's actual weight instead of the last load_contribution
  1948. * to gain a more accurate current total weight. See
  1949. * update_cfs_rq_load_contribution().
  1950. */
  1951. tg_weight = atomic_long_read(&tg->load_avg);
  1952. tg_weight -= cfs_rq->tg_load_contrib;
  1953. tg_weight += cfs_rq->load.weight;
  1954. return tg_weight;
  1955. }
  1956. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  1957. {
  1958. long tg_weight, load, shares;
  1959. tg_weight = calc_tg_weight(tg, cfs_rq);
  1960. load = cfs_rq->load.weight;
  1961. shares = (tg->shares * load);
  1962. if (tg_weight)
  1963. shares /= tg_weight;
  1964. if (shares < MIN_SHARES)
  1965. shares = MIN_SHARES;
  1966. if (shares > tg->shares)
  1967. shares = tg->shares;
  1968. return shares;
  1969. }
  1970. # else /* CONFIG_SMP */
  1971. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  1972. {
  1973. return tg->shares;
  1974. }
  1975. # endif /* CONFIG_SMP */
  1976. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  1977. unsigned long weight)
  1978. {
  1979. if (se->on_rq) {
  1980. /* commit outstanding execution time */
  1981. if (cfs_rq->curr == se)
  1982. update_curr(cfs_rq);
  1983. account_entity_dequeue(cfs_rq, se);
  1984. }
  1985. update_load_set(&se->load, weight);
  1986. if (se->on_rq)
  1987. account_entity_enqueue(cfs_rq, se);
  1988. }
  1989. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  1990. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  1991. {
  1992. struct task_group *tg;
  1993. struct sched_entity *se;
  1994. long shares;
  1995. tg = cfs_rq->tg;
  1996. se = tg->se[cpu_of(rq_of(cfs_rq))];
  1997. if (!se || throttled_hierarchy(cfs_rq))
  1998. return;
  1999. #ifndef CONFIG_SMP
  2000. if (likely(se->load.weight == tg->shares))
  2001. return;
  2002. #endif
  2003. shares = calc_cfs_shares(cfs_rq, tg);
  2004. reweight_entity(cfs_rq_of(se), se, shares);
  2005. }
  2006. #else /* CONFIG_FAIR_GROUP_SCHED */
  2007. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  2008. {
  2009. }
  2010. #endif /* CONFIG_FAIR_GROUP_SCHED */
  2011. #ifdef CONFIG_SMP
  2012. /*
  2013. * We choose a half-life close to 1 scheduling period.
  2014. * Note: The tables below are dependent on this value.
  2015. */
  2016. #define LOAD_AVG_PERIOD 32
  2017. #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
  2018. #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
  2019. /* Precomputed fixed inverse multiplies for multiplication by y^n */
  2020. static const u32 runnable_avg_yN_inv[] = {
  2021. 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
  2022. 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
  2023. 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
  2024. 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
  2025. 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
  2026. 0x85aac367, 0x82cd8698,
  2027. };
  2028. /*
  2029. * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
  2030. * over-estimates when re-combining.
  2031. */
  2032. static const u32 runnable_avg_yN_sum[] = {
  2033. 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
  2034. 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
  2035. 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
  2036. };
  2037. /*
  2038. * Approximate:
  2039. * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
  2040. */
  2041. static __always_inline u64 decay_load(u64 val, u64 n)
  2042. {
  2043. unsigned int local_n;
  2044. if (!n)
  2045. return val;
  2046. else if (unlikely(n > LOAD_AVG_PERIOD * 63))
  2047. return 0;
  2048. /* after bounds checking we can collapse to 32-bit */
  2049. local_n = n;
  2050. /*
  2051. * As y^PERIOD = 1/2, we can combine
  2052. * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
  2053. * With a look-up table which covers y^n (n<PERIOD)
  2054. *
  2055. * To achieve constant time decay_load.
  2056. */
  2057. if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  2058. val >>= local_n / LOAD_AVG_PERIOD;
  2059. local_n %= LOAD_AVG_PERIOD;
  2060. }
  2061. val *= runnable_avg_yN_inv[local_n];
  2062. /* We don't use SRR here since we always want to round down. */
  2063. return val >> 32;
  2064. }
  2065. /*
  2066. * For updates fully spanning n periods, the contribution to runnable
  2067. * average will be: \Sum 1024*y^n
  2068. *
  2069. * We can compute this reasonably efficiently by combining:
  2070. * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
  2071. */
  2072. static u32 __compute_runnable_contrib(u64 n)
  2073. {
  2074. u32 contrib = 0;
  2075. if (likely(n <= LOAD_AVG_PERIOD))
  2076. return runnable_avg_yN_sum[n];
  2077. else if (unlikely(n >= LOAD_AVG_MAX_N))
  2078. return LOAD_AVG_MAX;
  2079. /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
  2080. do {
  2081. contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
  2082. contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
  2083. n -= LOAD_AVG_PERIOD;
  2084. } while (n > LOAD_AVG_PERIOD);
  2085. contrib = decay_load(contrib, n);
  2086. return contrib + runnable_avg_yN_sum[n];
  2087. }
  2088. /*
  2089. * We can represent the historical contribution to runnable average as the
  2090. * coefficients of a geometric series. To do this we sub-divide our runnable
  2091. * history into segments of approximately 1ms (1024us); label the segment that
  2092. * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
  2093. *
  2094. * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
  2095. * p0 p1 p2
  2096. * (now) (~1ms ago) (~2ms ago)
  2097. *
  2098. * Let u_i denote the fraction of p_i that the entity was runnable.
  2099. *
  2100. * We then designate the fractions u_i as our co-efficients, yielding the
  2101. * following representation of historical load:
  2102. * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
  2103. *
  2104. * We choose y based on the with of a reasonably scheduling period, fixing:
  2105. * y^32 = 0.5
  2106. *
  2107. * This means that the contribution to load ~32ms ago (u_32) will be weighted
  2108. * approximately half as much as the contribution to load within the last ms
  2109. * (u_0).
  2110. *
  2111. * When a period "rolls over" and we have new u_0`, multiplying the previous
  2112. * sum again by y is sufficient to update:
  2113. * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
  2114. * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
  2115. */
  2116. static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
  2117. struct sched_avg *sa,
  2118. int runnable,
  2119. int running)
  2120. {
  2121. u64 delta, periods;
  2122. u32 runnable_contrib;
  2123. int delta_w, decayed = 0;
  2124. unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
  2125. delta = now - sa->last_runnable_update;
  2126. /*
  2127. * This should only happen when time goes backwards, which it
  2128. * unfortunately does during sched clock init when we swap over to TSC.
  2129. */
  2130. if ((s64)delta < 0) {
  2131. sa->last_runnable_update = now;
  2132. return 0;
  2133. }
  2134. /*
  2135. * Use 1024ns as the unit of measurement since it's a reasonable
  2136. * approximation of 1us and fast to compute.
  2137. */
  2138. delta >>= 10;
  2139. if (!delta)
  2140. return 0;
  2141. sa->last_runnable_update = now;
  2142. /* delta_w is the amount already accumulated against our next period */
  2143. delta_w = sa->avg_period % 1024;
  2144. if (delta + delta_w >= 1024) {
  2145. /* period roll-over */
  2146. decayed = 1;
  2147. /*
  2148. * Now that we know we're crossing a period boundary, figure
  2149. * out how much from delta we need to complete the current
  2150. * period and accrue it.
  2151. */
  2152. delta_w = 1024 - delta_w;
  2153. if (runnable)
  2154. sa->runnable_avg_sum += delta_w;
  2155. if (running)
  2156. sa->running_avg_sum += delta_w * scale_freq
  2157. >> SCHED_CAPACITY_SHIFT;
  2158. sa->avg_period += delta_w;
  2159. delta -= delta_w;
  2160. /* Figure out how many additional periods this update spans */
  2161. periods = delta / 1024;
  2162. delta %= 1024;
  2163. sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
  2164. periods + 1);
  2165. sa->running_avg_sum = decay_load(sa->running_avg_sum,
  2166. periods + 1);
  2167. sa->avg_period = decay_load(sa->avg_period,
  2168. periods + 1);
  2169. /* Efficiently calculate \sum (1..n_period) 1024*y^i */
  2170. runnable_contrib = __compute_runnable_contrib(periods);
  2171. if (runnable)
  2172. sa->runnable_avg_sum += runnable_contrib;
  2173. if (running)
  2174. sa->running_avg_sum += runnable_contrib * scale_freq
  2175. >> SCHED_CAPACITY_SHIFT;
  2176. sa->avg_period += runnable_contrib;
  2177. }
  2178. /* Remainder of delta accrued against u_0` */
  2179. if (runnable)
  2180. sa->runnable_avg_sum += delta;
  2181. if (running)
  2182. sa->running_avg_sum += delta * scale_freq
  2183. >> SCHED_CAPACITY_SHIFT;
  2184. sa->avg_period += delta;
  2185. return decayed;
  2186. }
  2187. /* Synchronize an entity's decay with its parenting cfs_rq.*/
  2188. static inline u64 __synchronize_entity_decay(struct sched_entity *se)
  2189. {
  2190. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2191. u64 decays = atomic64_read(&cfs_rq->decay_counter);
  2192. decays -= se->avg.decay_count;
  2193. se->avg.decay_count = 0;
  2194. if (!decays)
  2195. return 0;
  2196. se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
  2197. se->avg.utilization_avg_contrib =
  2198. decay_load(se->avg.utilization_avg_contrib, decays);
  2199. return decays;
  2200. }
  2201. #ifdef CONFIG_FAIR_GROUP_SCHED
  2202. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  2203. int force_update)
  2204. {
  2205. struct task_group *tg = cfs_rq->tg;
  2206. long tg_contrib;
  2207. tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
  2208. tg_contrib -= cfs_rq->tg_load_contrib;
  2209. if (!tg_contrib)
  2210. return;
  2211. if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
  2212. atomic_long_add(tg_contrib, &tg->load_avg);
  2213. cfs_rq->tg_load_contrib += tg_contrib;
  2214. }
  2215. }
  2216. /*
  2217. * Aggregate cfs_rq runnable averages into an equivalent task_group
  2218. * representation for computing load contributions.
  2219. */
  2220. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  2221. struct cfs_rq *cfs_rq)
  2222. {
  2223. struct task_group *tg = cfs_rq->tg;
  2224. long contrib;
  2225. /* The fraction of a cpu used by this cfs_rq */
  2226. contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
  2227. sa->avg_period + 1);
  2228. contrib -= cfs_rq->tg_runnable_contrib;
  2229. if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
  2230. atomic_add(contrib, &tg->runnable_avg);
  2231. cfs_rq->tg_runnable_contrib += contrib;
  2232. }
  2233. }
  2234. static inline void __update_group_entity_contrib(struct sched_entity *se)
  2235. {
  2236. struct cfs_rq *cfs_rq = group_cfs_rq(se);
  2237. struct task_group *tg = cfs_rq->tg;
  2238. int runnable_avg;
  2239. u64 contrib;
  2240. contrib = cfs_rq->tg_load_contrib * tg->shares;
  2241. se->avg.load_avg_contrib = div_u64(contrib,
  2242. atomic_long_read(&tg->load_avg) + 1);
  2243. /*
  2244. * For group entities we need to compute a correction term in the case
  2245. * that they are consuming <1 cpu so that we would contribute the same
  2246. * load as a task of equal weight.
  2247. *
  2248. * Explicitly co-ordinating this measurement would be expensive, but
  2249. * fortunately the sum of each cpus contribution forms a usable
  2250. * lower-bound on the true value.
  2251. *
  2252. * Consider the aggregate of 2 contributions. Either they are disjoint
  2253. * (and the sum represents true value) or they are disjoint and we are
  2254. * understating by the aggregate of their overlap.
  2255. *
  2256. * Extending this to N cpus, for a given overlap, the maximum amount we
  2257. * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
  2258. * cpus that overlap for this interval and w_i is the interval width.
  2259. *
  2260. * On a small machine; the first term is well-bounded which bounds the
  2261. * total error since w_i is a subset of the period. Whereas on a
  2262. * larger machine, while this first term can be larger, if w_i is the
  2263. * of consequential size guaranteed to see n_i*w_i quickly converge to
  2264. * our upper bound of 1-cpu.
  2265. */
  2266. runnable_avg = atomic_read(&tg->runnable_avg);
  2267. if (runnable_avg < NICE_0_LOAD) {
  2268. se->avg.load_avg_contrib *= runnable_avg;
  2269. se->avg.load_avg_contrib >>= NICE_0_SHIFT;
  2270. }
  2271. }
  2272. static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
  2273. {
  2274. __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
  2275. runnable, runnable);
  2276. __update_tg_runnable_avg(&rq->avg, &rq->cfs);
  2277. }
  2278. #else /* CONFIG_FAIR_GROUP_SCHED */
  2279. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  2280. int force_update) {}
  2281. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  2282. struct cfs_rq *cfs_rq) {}
  2283. static inline void __update_group_entity_contrib(struct sched_entity *se) {}
  2284. static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
  2285. #endif /* CONFIG_FAIR_GROUP_SCHED */
  2286. static inline void __update_task_entity_contrib(struct sched_entity *se)
  2287. {
  2288. u32 contrib;
  2289. /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
  2290. contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
  2291. contrib /= (se->avg.avg_period + 1);
  2292. se->avg.load_avg_contrib = scale_load(contrib);
  2293. }
  2294. /* Compute the current contribution to load_avg by se, return any delta */
  2295. static long __update_entity_load_avg_contrib(struct sched_entity *se)
  2296. {
  2297. long old_contrib = se->avg.load_avg_contrib;
  2298. if (entity_is_task(se)) {
  2299. __update_task_entity_contrib(se);
  2300. } else {
  2301. __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
  2302. __update_group_entity_contrib(se);
  2303. }
  2304. return se->avg.load_avg_contrib - old_contrib;
  2305. }
  2306. static inline void __update_task_entity_utilization(struct sched_entity *se)
  2307. {
  2308. u32 contrib;
  2309. /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
  2310. contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
  2311. contrib /= (se->avg.avg_period + 1);
  2312. se->avg.utilization_avg_contrib = scale_load(contrib);
  2313. }
  2314. static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
  2315. {
  2316. long old_contrib = se->avg.utilization_avg_contrib;
  2317. if (entity_is_task(se))
  2318. __update_task_entity_utilization(se);
  2319. else
  2320. se->avg.utilization_avg_contrib =
  2321. group_cfs_rq(se)->utilization_load_avg;
  2322. return se->avg.utilization_avg_contrib - old_contrib;
  2323. }
  2324. static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
  2325. long load_contrib)
  2326. {
  2327. if (likely(load_contrib < cfs_rq->blocked_load_avg))
  2328. cfs_rq->blocked_load_avg -= load_contrib;
  2329. else
  2330. cfs_rq->blocked_load_avg = 0;
  2331. }
  2332. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
  2333. /* Update a sched_entity's runnable average */
  2334. static inline void update_entity_load_avg(struct sched_entity *se,
  2335. int update_cfs_rq)
  2336. {
  2337. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2338. long contrib_delta, utilization_delta;
  2339. int cpu = cpu_of(rq_of(cfs_rq));
  2340. u64 now;
  2341. /*
  2342. * For a group entity we need to use their owned cfs_rq_clock_task() in
  2343. * case they are the parent of a throttled hierarchy.
  2344. */
  2345. if (entity_is_task(se))
  2346. now = cfs_rq_clock_task(cfs_rq);
  2347. else
  2348. now = cfs_rq_clock_task(group_cfs_rq(se));
  2349. if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
  2350. cfs_rq->curr == se))
  2351. return;
  2352. contrib_delta = __update_entity_load_avg_contrib(se);
  2353. utilization_delta = __update_entity_utilization_avg_contrib(se);
  2354. if (!update_cfs_rq)
  2355. return;
  2356. if (se->on_rq) {
  2357. cfs_rq->runnable_load_avg += contrib_delta;
  2358. cfs_rq->utilization_load_avg += utilization_delta;
  2359. } else {
  2360. subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
  2361. }
  2362. }
  2363. /*
  2364. * Decay the load contributed by all blocked children and account this so that
  2365. * their contribution may appropriately discounted when they wake up.
  2366. */
  2367. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
  2368. {
  2369. u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
  2370. u64 decays;
  2371. decays = now - cfs_rq->last_decay;
  2372. if (!decays && !force_update)
  2373. return;
  2374. if (atomic_long_read(&cfs_rq->removed_load)) {
  2375. unsigned long removed_load;
  2376. removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
  2377. subtract_blocked_load_contrib(cfs_rq, removed_load);
  2378. }
  2379. if (decays) {
  2380. cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
  2381. decays);
  2382. atomic64_add(decays, &cfs_rq->decay_counter);
  2383. cfs_rq->last_decay = now;
  2384. }
  2385. __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
  2386. }
  2387. /* Add the load generated by se into cfs_rq's child load-average */
  2388. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  2389. struct sched_entity *se,
  2390. int wakeup)
  2391. {
  2392. /*
  2393. * We track migrations using entity decay_count <= 0, on a wake-up
  2394. * migration we use a negative decay count to track the remote decays
  2395. * accumulated while sleeping.
  2396. *
  2397. * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
  2398. * are seen by enqueue_entity_load_avg() as a migration with an already
  2399. * constructed load_avg_contrib.
  2400. */
  2401. if (unlikely(se->avg.decay_count <= 0)) {
  2402. se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
  2403. if (se->avg.decay_count) {
  2404. /*
  2405. * In a wake-up migration we have to approximate the
  2406. * time sleeping. This is because we can't synchronize
  2407. * clock_task between the two cpus, and it is not
  2408. * guaranteed to be read-safe. Instead, we can
  2409. * approximate this using our carried decays, which are
  2410. * explicitly atomically readable.
  2411. */
  2412. se->avg.last_runnable_update -= (-se->avg.decay_count)
  2413. << 20;
  2414. update_entity_load_avg(se, 0);
  2415. /* Indicate that we're now synchronized and on-rq */
  2416. se->avg.decay_count = 0;
  2417. }
  2418. wakeup = 0;
  2419. } else {
  2420. __synchronize_entity_decay(se);
  2421. }
  2422. /* migrated tasks did not contribute to our blocked load */
  2423. if (wakeup) {
  2424. subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
  2425. update_entity_load_avg(se, 0);
  2426. }
  2427. cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
  2428. cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
  2429. /* we force update consideration on load-balancer moves */
  2430. update_cfs_rq_blocked_load(cfs_rq, !wakeup);
  2431. }
  2432. /*
  2433. * Remove se's load from this cfs_rq child load-average, if the entity is
  2434. * transitioning to a blocked state we track its projected decay using
  2435. * blocked_load_avg.
  2436. */
  2437. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  2438. struct sched_entity *se,
  2439. int sleep)
  2440. {
  2441. update_entity_load_avg(se, 1);
  2442. /* we force update consideration on load-balancer moves */
  2443. update_cfs_rq_blocked_load(cfs_rq, !sleep);
  2444. cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
  2445. cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
  2446. if (sleep) {
  2447. cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
  2448. se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  2449. } /* migrations, e.g. sleep=0 leave decay_count == 0 */
  2450. }
  2451. /*
  2452. * Update the rq's load with the elapsed running time before entering
  2453. * idle. if the last scheduled task is not a CFS task, idle_enter will
  2454. * be the only way to update the runnable statistic.
  2455. */
  2456. void idle_enter_fair(struct rq *this_rq)
  2457. {
  2458. update_rq_runnable_avg(this_rq, 1);
  2459. }
  2460. /*
  2461. * Update the rq's load with the elapsed idle time before a task is
  2462. * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
  2463. * be the only way to update the runnable statistic.
  2464. */
  2465. void idle_exit_fair(struct rq *this_rq)
  2466. {
  2467. update_rq_runnable_avg(this_rq, 0);
  2468. }
  2469. static int idle_balance(struct rq *this_rq);
  2470. #else /* CONFIG_SMP */
  2471. static inline void update_entity_load_avg(struct sched_entity *se,
  2472. int update_cfs_rq) {}
  2473. static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
  2474. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  2475. struct sched_entity *se,
  2476. int wakeup) {}
  2477. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  2478. struct sched_entity *se,
  2479. int sleep) {}
  2480. static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  2481. int force_update) {}
  2482. static inline int idle_balance(struct rq *rq)
  2483. {
  2484. return 0;
  2485. }
  2486. #endif /* CONFIG_SMP */
  2487. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2488. {
  2489. #ifdef CONFIG_SCHEDSTATS
  2490. struct task_struct *tsk = NULL;
  2491. if (entity_is_task(se))
  2492. tsk = task_of(se);
  2493. if (se->statistics.sleep_start) {
  2494. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
  2495. if ((s64)delta < 0)
  2496. delta = 0;
  2497. if (unlikely(delta > se->statistics.sleep_max))
  2498. se->statistics.sleep_max = delta;
  2499. se->statistics.sleep_start = 0;
  2500. se->statistics.sum_sleep_runtime += delta;
  2501. if (tsk) {
  2502. account_scheduler_latency(tsk, delta >> 10, 1);
  2503. trace_sched_stat_sleep(tsk, delta);
  2504. }
  2505. }
  2506. if (se->statistics.block_start) {
  2507. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
  2508. if ((s64)delta < 0)
  2509. delta = 0;
  2510. if (unlikely(delta > se->statistics.block_max))
  2511. se->statistics.block_max = delta;
  2512. se->statistics.block_start = 0;
  2513. se->statistics.sum_sleep_runtime += delta;
  2514. if (tsk) {
  2515. if (tsk->in_iowait) {
  2516. se->statistics.iowait_sum += delta;
  2517. se->statistics.iowait_count++;
  2518. trace_sched_stat_iowait(tsk, delta);
  2519. }
  2520. trace_sched_stat_blocked(tsk, delta);
  2521. /*
  2522. * Blocking time is in units of nanosecs, so shift by
  2523. * 20 to get a milliseconds-range estimation of the
  2524. * amount of time that the task spent sleeping:
  2525. */
  2526. if (unlikely(prof_on == SLEEP_PROFILING)) {
  2527. profile_hits(SLEEP_PROFILING,
  2528. (void *)get_wchan(tsk),
  2529. delta >> 20);
  2530. }
  2531. account_scheduler_latency(tsk, delta >> 10, 0);
  2532. }
  2533. }
  2534. #endif
  2535. }
  2536. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2537. {
  2538. #ifdef CONFIG_SCHED_DEBUG
  2539. s64 d = se->vruntime - cfs_rq->min_vruntime;
  2540. if (d < 0)
  2541. d = -d;
  2542. if (d > 3*sysctl_sched_latency)
  2543. schedstat_inc(cfs_rq, nr_spread_over);
  2544. #endif
  2545. }
  2546. static void
  2547. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  2548. {
  2549. u64 vruntime = cfs_rq->min_vruntime;
  2550. /*
  2551. * The 'current' period is already promised to the current tasks,
  2552. * however the extra weight of the new task will slow them down a
  2553. * little, place the new task so that it fits in the slot that
  2554. * stays open at the end.
  2555. */
  2556. if (initial && sched_feat(START_DEBIT))
  2557. vruntime += sched_vslice(cfs_rq, se);
  2558. /* sleeps up to a single latency don't count. */
  2559. if (!initial) {
  2560. unsigned long thresh = sysctl_sched_latency;
  2561. /*
  2562. * Halve their sleep time's effect, to allow
  2563. * for a gentler effect of sleepers:
  2564. */
  2565. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  2566. thresh >>= 1;
  2567. vruntime -= thresh;
  2568. }
  2569. /* ensure we never gain time by being placed backwards. */
  2570. se->vruntime = max_vruntime(se->vruntime, vruntime);
  2571. }
  2572. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  2573. static void
  2574. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2575. {
  2576. /*
  2577. * Update the normalized vruntime before updating min_vruntime
  2578. * through calling update_curr().
  2579. */
  2580. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  2581. se->vruntime += cfs_rq->min_vruntime;
  2582. /*
  2583. * Update run-time statistics of the 'current'.
  2584. */
  2585. update_curr(cfs_rq);
  2586. enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
  2587. account_entity_enqueue(cfs_rq, se);
  2588. update_cfs_shares(cfs_rq);
  2589. if (flags & ENQUEUE_WAKEUP) {
  2590. place_entity(cfs_rq, se, 0);
  2591. enqueue_sleeper(cfs_rq, se);
  2592. }
  2593. update_stats_enqueue(cfs_rq, se);
  2594. check_spread(cfs_rq, se);
  2595. if (se != cfs_rq->curr)
  2596. __enqueue_entity(cfs_rq, se);
  2597. se->on_rq = 1;
  2598. if (cfs_rq->nr_running == 1) {
  2599. list_add_leaf_cfs_rq(cfs_rq);
  2600. check_enqueue_throttle(cfs_rq);
  2601. }
  2602. }
  2603. static void __clear_buddies_last(struct sched_entity *se)
  2604. {
  2605. for_each_sched_entity(se) {
  2606. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2607. if (cfs_rq->last != se)
  2608. break;
  2609. cfs_rq->last = NULL;
  2610. }
  2611. }
  2612. static void __clear_buddies_next(struct sched_entity *se)
  2613. {
  2614. for_each_sched_entity(se) {
  2615. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2616. if (cfs_rq->next != se)
  2617. break;
  2618. cfs_rq->next = NULL;
  2619. }
  2620. }
  2621. static void __clear_buddies_skip(struct sched_entity *se)
  2622. {
  2623. for_each_sched_entity(se) {
  2624. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2625. if (cfs_rq->skip != se)
  2626. break;
  2627. cfs_rq->skip = NULL;
  2628. }
  2629. }
  2630. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2631. {
  2632. if (cfs_rq->last == se)
  2633. __clear_buddies_last(se);
  2634. if (cfs_rq->next == se)
  2635. __clear_buddies_next(se);
  2636. if (cfs_rq->skip == se)
  2637. __clear_buddies_skip(se);
  2638. }
  2639. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  2640. static void
  2641. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2642. {
  2643. /*
  2644. * Update run-time statistics of the 'current'.
  2645. */
  2646. update_curr(cfs_rq);
  2647. dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
  2648. update_stats_dequeue(cfs_rq, se);
  2649. if (flags & DEQUEUE_SLEEP) {
  2650. #ifdef CONFIG_SCHEDSTATS
  2651. if (entity_is_task(se)) {
  2652. struct task_struct *tsk = task_of(se);
  2653. if (tsk->state & TASK_INTERRUPTIBLE)
  2654. se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
  2655. if (tsk->state & TASK_UNINTERRUPTIBLE)
  2656. se->statistics.block_start = rq_clock(rq_of(cfs_rq));
  2657. }
  2658. #endif
  2659. }
  2660. clear_buddies(cfs_rq, se);
  2661. if (se != cfs_rq->curr)
  2662. __dequeue_entity(cfs_rq, se);
  2663. se->on_rq = 0;
  2664. account_entity_dequeue(cfs_rq, se);
  2665. /*
  2666. * Normalize the entity after updating the min_vruntime because the
  2667. * update can refer to the ->curr item and we need to reflect this
  2668. * movement in our normalized position.
  2669. */
  2670. if (!(flags & DEQUEUE_SLEEP))
  2671. se->vruntime -= cfs_rq->min_vruntime;
  2672. /* return excess runtime on last dequeue */
  2673. return_cfs_rq_runtime(cfs_rq);
  2674. update_min_vruntime(cfs_rq);
  2675. update_cfs_shares(cfs_rq);
  2676. }
  2677. /*
  2678. * Preempt the current task with a newly woken task if needed:
  2679. */
  2680. static void
  2681. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  2682. {
  2683. unsigned long ideal_runtime, delta_exec;
  2684. struct sched_entity *se;
  2685. s64 delta;
  2686. ideal_runtime = sched_slice(cfs_rq, curr);
  2687. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  2688. if (delta_exec > ideal_runtime) {
  2689. resched_curr(rq_of(cfs_rq));
  2690. /*
  2691. * The current task ran long enough, ensure it doesn't get
  2692. * re-elected due to buddy favours.
  2693. */
  2694. clear_buddies(cfs_rq, curr);
  2695. return;
  2696. }
  2697. /*
  2698. * Ensure that a task that missed wakeup preemption by a
  2699. * narrow margin doesn't have to wait for a full slice.
  2700. * This also mitigates buddy induced latencies under load.
  2701. */
  2702. if (delta_exec < sysctl_sched_min_granularity)
  2703. return;
  2704. se = __pick_first_entity(cfs_rq);
  2705. delta = curr->vruntime - se->vruntime;
  2706. if (delta < 0)
  2707. return;
  2708. if (delta > ideal_runtime)
  2709. resched_curr(rq_of(cfs_rq));
  2710. }
  2711. static void
  2712. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2713. {
  2714. /* 'current' is not kept within the tree. */
  2715. if (se->on_rq) {
  2716. /*
  2717. * Any task has to be enqueued before it get to execute on
  2718. * a CPU. So account for the time it spent waiting on the
  2719. * runqueue.
  2720. */
  2721. update_stats_wait_end(cfs_rq, se);
  2722. __dequeue_entity(cfs_rq, se);
  2723. update_entity_load_avg(se, 1);
  2724. }
  2725. update_stats_curr_start(cfs_rq, se);
  2726. cfs_rq->curr = se;
  2727. #ifdef CONFIG_SCHEDSTATS
  2728. /*
  2729. * Track our maximum slice length, if the CPU's load is at
  2730. * least twice that of our own weight (i.e. dont track it
  2731. * when there are only lesser-weight tasks around):
  2732. */
  2733. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  2734. se->statistics.slice_max = max(se->statistics.slice_max,
  2735. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  2736. }
  2737. #endif
  2738. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  2739. }
  2740. static int
  2741. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  2742. /*
  2743. * Pick the next process, keeping these things in mind, in this order:
  2744. * 1) keep things fair between processes/task groups
  2745. * 2) pick the "next" process, since someone really wants that to run
  2746. * 3) pick the "last" process, for cache locality
  2747. * 4) do not run the "skip" process, if something else is available
  2748. */
  2749. static struct sched_entity *
  2750. pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  2751. {
  2752. struct sched_entity *left = __pick_first_entity(cfs_rq);
  2753. struct sched_entity *se;
  2754. /*
  2755. * If curr is set we have to see if its left of the leftmost entity
  2756. * still in the tree, provided there was anything in the tree at all.
  2757. */
  2758. if (!left || (curr && entity_before(curr, left)))
  2759. left = curr;
  2760. se = left; /* ideally we run the leftmost entity */
  2761. /*
  2762. * Avoid running the skip buddy, if running something else can
  2763. * be done without getting too unfair.
  2764. */
  2765. if (cfs_rq->skip == se) {
  2766. struct sched_entity *second;
  2767. if (se == curr) {
  2768. second = __pick_first_entity(cfs_rq);
  2769. } else {
  2770. second = __pick_next_entity(se);
  2771. if (!second || (curr && entity_before(curr, second)))
  2772. second = curr;
  2773. }
  2774. if (second && wakeup_preempt_entity(second, left) < 1)
  2775. se = second;
  2776. }
  2777. /*
  2778. * Prefer last buddy, try to return the CPU to a preempted task.
  2779. */
  2780. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  2781. se = cfs_rq->last;
  2782. /*
  2783. * Someone really wants this to run. If it's not unfair, run it.
  2784. */
  2785. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  2786. se = cfs_rq->next;
  2787. clear_buddies(cfs_rq, se);
  2788. return se;
  2789. }
  2790. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  2791. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  2792. {
  2793. /*
  2794. * If still on the runqueue then deactivate_task()
  2795. * was not called and update_curr() has to be done:
  2796. */
  2797. if (prev->on_rq)
  2798. update_curr(cfs_rq);
  2799. /* throttle cfs_rqs exceeding runtime */
  2800. check_cfs_rq_runtime(cfs_rq);
  2801. check_spread(cfs_rq, prev);
  2802. if (prev->on_rq) {
  2803. update_stats_wait_start(cfs_rq, prev);
  2804. /* Put 'current' back into the tree. */
  2805. __enqueue_entity(cfs_rq, prev);
  2806. /* in !on_rq case, update occurred at dequeue */
  2807. update_entity_load_avg(prev, 1);
  2808. }
  2809. cfs_rq->curr = NULL;
  2810. }
  2811. static void
  2812. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  2813. {
  2814. /*
  2815. * Update run-time statistics of the 'current'.
  2816. */
  2817. update_curr(cfs_rq);
  2818. /*
  2819. * Ensure that runnable average is periodically updated.
  2820. */
  2821. update_entity_load_avg(curr, 1);
  2822. update_cfs_rq_blocked_load(cfs_rq, 1);
  2823. update_cfs_shares(cfs_rq);
  2824. #ifdef CONFIG_SCHED_HRTICK
  2825. /*
  2826. * queued ticks are scheduled to match the slice, so don't bother
  2827. * validating it and just reschedule.
  2828. */
  2829. if (queued) {
  2830. resched_curr(rq_of(cfs_rq));
  2831. return;
  2832. }
  2833. /*
  2834. * don't let the period tick interfere with the hrtick preemption
  2835. */
  2836. if (!sched_feat(DOUBLE_TICK) &&
  2837. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  2838. return;
  2839. #endif
  2840. if (cfs_rq->nr_running > 1)
  2841. check_preempt_tick(cfs_rq, curr);
  2842. }
  2843. /**************************************************
  2844. * CFS bandwidth control machinery
  2845. */
  2846. #ifdef CONFIG_CFS_BANDWIDTH
  2847. #ifdef HAVE_JUMP_LABEL
  2848. static struct static_key __cfs_bandwidth_used;
  2849. static inline bool cfs_bandwidth_used(void)
  2850. {
  2851. return static_key_false(&__cfs_bandwidth_used);
  2852. }
  2853. void cfs_bandwidth_usage_inc(void)
  2854. {
  2855. static_key_slow_inc(&__cfs_bandwidth_used);
  2856. }
  2857. void cfs_bandwidth_usage_dec(void)
  2858. {
  2859. static_key_slow_dec(&__cfs_bandwidth_used);
  2860. }
  2861. #else /* HAVE_JUMP_LABEL */
  2862. static bool cfs_bandwidth_used(void)
  2863. {
  2864. return true;
  2865. }
  2866. void cfs_bandwidth_usage_inc(void) {}
  2867. void cfs_bandwidth_usage_dec(void) {}
  2868. #endif /* HAVE_JUMP_LABEL */
  2869. /*
  2870. * default period for cfs group bandwidth.
  2871. * default: 0.1s, units: nanoseconds
  2872. */
  2873. static inline u64 default_cfs_period(void)
  2874. {
  2875. return 100000000ULL;
  2876. }
  2877. static inline u64 sched_cfs_bandwidth_slice(void)
  2878. {
  2879. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  2880. }
  2881. /*
  2882. * Replenish runtime according to assigned quota and update expiration time.
  2883. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  2884. * additional synchronization around rq->lock.
  2885. *
  2886. * requires cfs_b->lock
  2887. */
  2888. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  2889. {
  2890. u64 now;
  2891. if (cfs_b->quota == RUNTIME_INF)
  2892. return;
  2893. now = sched_clock_cpu(smp_processor_id());
  2894. cfs_b->runtime = cfs_b->quota;
  2895. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  2896. }
  2897. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  2898. {
  2899. return &tg->cfs_bandwidth;
  2900. }
  2901. /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
  2902. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  2903. {
  2904. if (unlikely(cfs_rq->throttle_count))
  2905. return cfs_rq->throttled_clock_task;
  2906. return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
  2907. }
  2908. /* returns 0 on failure to allocate runtime */
  2909. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2910. {
  2911. struct task_group *tg = cfs_rq->tg;
  2912. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  2913. u64 amount = 0, min_amount, expires;
  2914. /* note: this is a positive sum as runtime_remaining <= 0 */
  2915. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  2916. raw_spin_lock(&cfs_b->lock);
  2917. if (cfs_b->quota == RUNTIME_INF)
  2918. amount = min_amount;
  2919. else {
  2920. /*
  2921. * If the bandwidth pool has become inactive, then at least one
  2922. * period must have elapsed since the last consumption.
  2923. * Refresh the global state and ensure bandwidth timer becomes
  2924. * active.
  2925. */
  2926. if (!cfs_b->timer_active) {
  2927. __refill_cfs_bandwidth_runtime(cfs_b);
  2928. __start_cfs_bandwidth(cfs_b, false);
  2929. }
  2930. if (cfs_b->runtime > 0) {
  2931. amount = min(cfs_b->runtime, min_amount);
  2932. cfs_b->runtime -= amount;
  2933. cfs_b->idle = 0;
  2934. }
  2935. }
  2936. expires = cfs_b->runtime_expires;
  2937. raw_spin_unlock(&cfs_b->lock);
  2938. cfs_rq->runtime_remaining += amount;
  2939. /*
  2940. * we may have advanced our local expiration to account for allowed
  2941. * spread between our sched_clock and the one on which runtime was
  2942. * issued.
  2943. */
  2944. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  2945. cfs_rq->runtime_expires = expires;
  2946. return cfs_rq->runtime_remaining > 0;
  2947. }
  2948. /*
  2949. * Note: This depends on the synchronization provided by sched_clock and the
  2950. * fact that rq->clock snapshots this value.
  2951. */
  2952. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2953. {
  2954. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2955. /* if the deadline is ahead of our clock, nothing to do */
  2956. if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
  2957. return;
  2958. if (cfs_rq->runtime_remaining < 0)
  2959. return;
  2960. /*
  2961. * If the local deadline has passed we have to consider the
  2962. * possibility that our sched_clock is 'fast' and the global deadline
  2963. * has not truly expired.
  2964. *
  2965. * Fortunately we can check determine whether this the case by checking
  2966. * whether the global deadline has advanced. It is valid to compare
  2967. * cfs_b->runtime_expires without any locks since we only care about
  2968. * exact equality, so a partial write will still work.
  2969. */
  2970. if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
  2971. /* extend local deadline, drift is bounded above by 2 ticks */
  2972. cfs_rq->runtime_expires += TICK_NSEC;
  2973. } else {
  2974. /* global deadline is ahead, expiration has passed */
  2975. cfs_rq->runtime_remaining = 0;
  2976. }
  2977. }
  2978. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  2979. {
  2980. /* dock delta_exec before expiring quota (as it could span periods) */
  2981. cfs_rq->runtime_remaining -= delta_exec;
  2982. expire_cfs_rq_runtime(cfs_rq);
  2983. if (likely(cfs_rq->runtime_remaining > 0))
  2984. return;
  2985. /*
  2986. * if we're unable to extend our runtime we resched so that the active
  2987. * hierarchy can be throttled
  2988. */
  2989. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  2990. resched_curr(rq_of(cfs_rq));
  2991. }
  2992. static __always_inline
  2993. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  2994. {
  2995. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  2996. return;
  2997. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  2998. }
  2999. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  3000. {
  3001. return cfs_bandwidth_used() && cfs_rq->throttled;
  3002. }
  3003. /* check whether cfs_rq, or any parent, is throttled */
  3004. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  3005. {
  3006. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  3007. }
  3008. /*
  3009. * Ensure that neither of the group entities corresponding to src_cpu or
  3010. * dest_cpu are members of a throttled hierarchy when performing group
  3011. * load-balance operations.
  3012. */
  3013. static inline int throttled_lb_pair(struct task_group *tg,
  3014. int src_cpu, int dest_cpu)
  3015. {
  3016. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  3017. src_cfs_rq = tg->cfs_rq[src_cpu];
  3018. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  3019. return throttled_hierarchy(src_cfs_rq) ||
  3020. throttled_hierarchy(dest_cfs_rq);
  3021. }
  3022. /* updated child weight may affect parent so we have to do this bottom up */
  3023. static int tg_unthrottle_up(struct task_group *tg, void *data)
  3024. {
  3025. struct rq *rq = data;
  3026. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  3027. cfs_rq->throttle_count--;
  3028. #ifdef CONFIG_SMP
  3029. if (!cfs_rq->throttle_count) {
  3030. /* adjust cfs_rq_clock_task() */
  3031. cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
  3032. cfs_rq->throttled_clock_task;
  3033. }
  3034. #endif
  3035. return 0;
  3036. }
  3037. static int tg_throttle_down(struct task_group *tg, void *data)
  3038. {
  3039. struct rq *rq = data;
  3040. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  3041. /* group is entering throttled state, stop time */
  3042. if (!cfs_rq->throttle_count)
  3043. cfs_rq->throttled_clock_task = rq_clock_task(rq);
  3044. cfs_rq->throttle_count++;
  3045. return 0;
  3046. }
  3047. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  3048. {
  3049. struct rq *rq = rq_of(cfs_rq);
  3050. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3051. struct sched_entity *se;
  3052. long task_delta, dequeue = 1;
  3053. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  3054. /* freeze hierarchy runnable averages while throttled */
  3055. rcu_read_lock();
  3056. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  3057. rcu_read_unlock();
  3058. task_delta = cfs_rq->h_nr_running;
  3059. for_each_sched_entity(se) {
  3060. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  3061. /* throttled entity or throttle-on-deactivate */
  3062. if (!se->on_rq)
  3063. break;
  3064. if (dequeue)
  3065. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  3066. qcfs_rq->h_nr_running -= task_delta;
  3067. if (qcfs_rq->load.weight)
  3068. dequeue = 0;
  3069. }
  3070. if (!se)
  3071. sub_nr_running(rq, task_delta);
  3072. cfs_rq->throttled = 1;
  3073. cfs_rq->throttled_clock = rq_clock(rq);
  3074. raw_spin_lock(&cfs_b->lock);
  3075. /*
  3076. * Add to the _head_ of the list, so that an already-started
  3077. * distribute_cfs_runtime will not see us
  3078. */
  3079. list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  3080. if (!cfs_b->timer_active)
  3081. __start_cfs_bandwidth(cfs_b, false);
  3082. raw_spin_unlock(&cfs_b->lock);
  3083. }
  3084. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  3085. {
  3086. struct rq *rq = rq_of(cfs_rq);
  3087. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3088. struct sched_entity *se;
  3089. int enqueue = 1;
  3090. long task_delta;
  3091. se = cfs_rq->tg->se[cpu_of(rq)];
  3092. cfs_rq->throttled = 0;
  3093. update_rq_clock(rq);
  3094. raw_spin_lock(&cfs_b->lock);
  3095. cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
  3096. list_del_rcu(&cfs_rq->throttled_list);
  3097. raw_spin_unlock(&cfs_b->lock);
  3098. /* update hierarchical throttle state */
  3099. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  3100. if (!cfs_rq->load.weight)
  3101. return;
  3102. task_delta = cfs_rq->h_nr_running;
  3103. for_each_sched_entity(se) {
  3104. if (se->on_rq)
  3105. enqueue = 0;
  3106. cfs_rq = cfs_rq_of(se);
  3107. if (enqueue)
  3108. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  3109. cfs_rq->h_nr_running += task_delta;
  3110. if (cfs_rq_throttled(cfs_rq))
  3111. break;
  3112. }
  3113. if (!se)
  3114. add_nr_running(rq, task_delta);
  3115. /* determine whether we need to wake up potentially idle cpu */
  3116. if (rq->curr == rq->idle && rq->cfs.nr_running)
  3117. resched_curr(rq);
  3118. }
  3119. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  3120. u64 remaining, u64 expires)
  3121. {
  3122. struct cfs_rq *cfs_rq;
  3123. u64 runtime;
  3124. u64 starting_runtime = remaining;
  3125. rcu_read_lock();
  3126. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  3127. throttled_list) {
  3128. struct rq *rq = rq_of(cfs_rq);
  3129. raw_spin_lock(&rq->lock);
  3130. if (!cfs_rq_throttled(cfs_rq))
  3131. goto next;
  3132. runtime = -cfs_rq->runtime_remaining + 1;
  3133. if (runtime > remaining)
  3134. runtime = remaining;
  3135. remaining -= runtime;
  3136. cfs_rq->runtime_remaining += runtime;
  3137. cfs_rq->runtime_expires = expires;
  3138. /* we check whether we're throttled above */
  3139. if (cfs_rq->runtime_remaining > 0)
  3140. unthrottle_cfs_rq(cfs_rq);
  3141. next:
  3142. raw_spin_unlock(&rq->lock);
  3143. if (!remaining)
  3144. break;
  3145. }
  3146. rcu_read_unlock();
  3147. return starting_runtime - remaining;
  3148. }
  3149. /*
  3150. * Responsible for refilling a task_group's bandwidth and unthrottling its
  3151. * cfs_rqs as appropriate. If there has been no activity within the last
  3152. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  3153. * used to track this state.
  3154. */
  3155. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  3156. {
  3157. u64 runtime, runtime_expires;
  3158. int throttled;
  3159. /* no need to continue the timer with no bandwidth constraint */
  3160. if (cfs_b->quota == RUNTIME_INF)
  3161. goto out_deactivate;
  3162. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  3163. cfs_b->nr_periods += overrun;
  3164. /*
  3165. * idle depends on !throttled (for the case of a large deficit), and if
  3166. * we're going inactive then everything else can be deferred
  3167. */
  3168. if (cfs_b->idle && !throttled)
  3169. goto out_deactivate;
  3170. /*
  3171. * if we have relooped after returning idle once, we need to update our
  3172. * status as actually running, so that other cpus doing
  3173. * __start_cfs_bandwidth will stop trying to cancel us.
  3174. */
  3175. cfs_b->timer_active = 1;
  3176. __refill_cfs_bandwidth_runtime(cfs_b);
  3177. if (!throttled) {
  3178. /* mark as potentially idle for the upcoming period */
  3179. cfs_b->idle = 1;
  3180. return 0;
  3181. }
  3182. /* account preceding periods in which throttling occurred */
  3183. cfs_b->nr_throttled += overrun;
  3184. runtime_expires = cfs_b->runtime_expires;
  3185. /*
  3186. * This check is repeated as we are holding onto the new bandwidth while
  3187. * we unthrottle. This can potentially race with an unthrottled group
  3188. * trying to acquire new bandwidth from the global pool. This can result
  3189. * in us over-using our runtime if it is all used during this loop, but
  3190. * only by limited amounts in that extreme case.
  3191. */
  3192. while (throttled && cfs_b->runtime > 0) {
  3193. runtime = cfs_b->runtime;
  3194. raw_spin_unlock(&cfs_b->lock);
  3195. /* we can't nest cfs_b->lock while distributing bandwidth */
  3196. runtime = distribute_cfs_runtime(cfs_b, runtime,
  3197. runtime_expires);
  3198. raw_spin_lock(&cfs_b->lock);
  3199. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  3200. cfs_b->runtime -= min(runtime, cfs_b->runtime);
  3201. }
  3202. /*
  3203. * While we are ensured activity in the period following an
  3204. * unthrottle, this also covers the case in which the new bandwidth is
  3205. * insufficient to cover the existing bandwidth deficit. (Forcing the
  3206. * timer to remain active while there are any throttled entities.)
  3207. */
  3208. cfs_b->idle = 0;
  3209. return 0;
  3210. out_deactivate:
  3211. cfs_b->timer_active = 0;
  3212. return 1;
  3213. }
  3214. /* a cfs_rq won't donate quota below this amount */
  3215. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  3216. /* minimum remaining period time to redistribute slack quota */
  3217. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  3218. /* how long we wait to gather additional slack before distributing */
  3219. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  3220. /*
  3221. * Are we near the end of the current quota period?
  3222. *
  3223. * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
  3224. * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
  3225. * migrate_hrtimers, base is never cleared, so we are fine.
  3226. */
  3227. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  3228. {
  3229. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  3230. u64 remaining;
  3231. /* if the call-back is running a quota refresh is already occurring */
  3232. if (hrtimer_callback_running(refresh_timer))
  3233. return 1;
  3234. /* is a quota refresh about to occur? */
  3235. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  3236. if (remaining < min_expire)
  3237. return 1;
  3238. return 0;
  3239. }
  3240. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  3241. {
  3242. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  3243. /* if there's a quota refresh soon don't bother with slack */
  3244. if (runtime_refresh_within(cfs_b, min_left))
  3245. return;
  3246. start_bandwidth_timer(&cfs_b->slack_timer,
  3247. ns_to_ktime(cfs_bandwidth_slack_period));
  3248. }
  3249. /* we know any runtime found here is valid as update_curr() precedes return */
  3250. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3251. {
  3252. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3253. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  3254. if (slack_runtime <= 0)
  3255. return;
  3256. raw_spin_lock(&cfs_b->lock);
  3257. if (cfs_b->quota != RUNTIME_INF &&
  3258. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  3259. cfs_b->runtime += slack_runtime;
  3260. /* we are under rq->lock, defer unthrottling using a timer */
  3261. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  3262. !list_empty(&cfs_b->throttled_cfs_rq))
  3263. start_cfs_slack_bandwidth(cfs_b);
  3264. }
  3265. raw_spin_unlock(&cfs_b->lock);
  3266. /* even if it's not valid for return we don't want to try again */
  3267. cfs_rq->runtime_remaining -= slack_runtime;
  3268. }
  3269. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3270. {
  3271. if (!cfs_bandwidth_used())
  3272. return;
  3273. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  3274. return;
  3275. __return_cfs_rq_runtime(cfs_rq);
  3276. }
  3277. /*
  3278. * This is done with a timer (instead of inline with bandwidth return) since
  3279. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  3280. */
  3281. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  3282. {
  3283. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  3284. u64 expires;
  3285. /* confirm we're still not at a refresh boundary */
  3286. raw_spin_lock(&cfs_b->lock);
  3287. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
  3288. raw_spin_unlock(&cfs_b->lock);
  3289. return;
  3290. }
  3291. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
  3292. runtime = cfs_b->runtime;
  3293. expires = cfs_b->runtime_expires;
  3294. raw_spin_unlock(&cfs_b->lock);
  3295. if (!runtime)
  3296. return;
  3297. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  3298. raw_spin_lock(&cfs_b->lock);
  3299. if (expires == cfs_b->runtime_expires)
  3300. cfs_b->runtime -= min(runtime, cfs_b->runtime);
  3301. raw_spin_unlock(&cfs_b->lock);
  3302. }
  3303. /*
  3304. * When a group wakes up we want to make sure that its quota is not already
  3305. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  3306. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  3307. */
  3308. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  3309. {
  3310. if (!cfs_bandwidth_used())
  3311. return;
  3312. /* an active group must be handled by the update_curr()->put() path */
  3313. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  3314. return;
  3315. /* ensure the group is not already throttled */
  3316. if (cfs_rq_throttled(cfs_rq))
  3317. return;
  3318. /* update runtime allocation */
  3319. account_cfs_rq_runtime(cfs_rq, 0);
  3320. if (cfs_rq->runtime_remaining <= 0)
  3321. throttle_cfs_rq(cfs_rq);
  3322. }
  3323. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  3324. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3325. {
  3326. if (!cfs_bandwidth_used())
  3327. return false;
  3328. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  3329. return false;
  3330. /*
  3331. * it's possible for a throttled entity to be forced into a running
  3332. * state (e.g. set_curr_task), in this case we're finished.
  3333. */
  3334. if (cfs_rq_throttled(cfs_rq))
  3335. return true;
  3336. throttle_cfs_rq(cfs_rq);
  3337. return true;
  3338. }
  3339. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  3340. {
  3341. struct cfs_bandwidth *cfs_b =
  3342. container_of(timer, struct cfs_bandwidth, slack_timer);
  3343. do_sched_cfs_slack_timer(cfs_b);
  3344. return HRTIMER_NORESTART;
  3345. }
  3346. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  3347. {
  3348. struct cfs_bandwidth *cfs_b =
  3349. container_of(timer, struct cfs_bandwidth, period_timer);
  3350. ktime_t now;
  3351. int overrun;
  3352. int idle = 0;
  3353. raw_spin_lock(&cfs_b->lock);
  3354. for (;;) {
  3355. now = hrtimer_cb_get_time(timer);
  3356. overrun = hrtimer_forward(timer, now, cfs_b->period);
  3357. if (!overrun)
  3358. break;
  3359. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  3360. }
  3361. raw_spin_unlock(&cfs_b->lock);
  3362. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  3363. }
  3364. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  3365. {
  3366. raw_spin_lock_init(&cfs_b->lock);
  3367. cfs_b->runtime = 0;
  3368. cfs_b->quota = RUNTIME_INF;
  3369. cfs_b->period = ns_to_ktime(default_cfs_period());
  3370. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  3371. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  3372. cfs_b->period_timer.function = sched_cfs_period_timer;
  3373. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  3374. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  3375. }
  3376. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3377. {
  3378. cfs_rq->runtime_enabled = 0;
  3379. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  3380. }
  3381. /* requires cfs_b->lock, may release to reprogram timer */
  3382. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
  3383. {
  3384. /*
  3385. * The timer may be active because we're trying to set a new bandwidth
  3386. * period or because we're racing with the tear-down path
  3387. * (timer_active==0 becomes visible before the hrtimer call-back
  3388. * terminates). In either case we ensure that it's re-programmed
  3389. */
  3390. while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
  3391. hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
  3392. /* bounce the lock to allow do_sched_cfs_period_timer to run */
  3393. raw_spin_unlock(&cfs_b->lock);
  3394. cpu_relax();
  3395. raw_spin_lock(&cfs_b->lock);
  3396. /* if someone else restarted the timer then we're done */
  3397. if (!force && cfs_b->timer_active)
  3398. return;
  3399. }
  3400. cfs_b->timer_active = 1;
  3401. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  3402. }
  3403. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  3404. {
  3405. /* init_cfs_bandwidth() was not called */
  3406. if (!cfs_b->throttled_cfs_rq.next)
  3407. return;
  3408. hrtimer_cancel(&cfs_b->period_timer);
  3409. hrtimer_cancel(&cfs_b->slack_timer);
  3410. }
  3411. static void __maybe_unused update_runtime_enabled(struct rq *rq)
  3412. {
  3413. struct cfs_rq *cfs_rq;
  3414. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3415. struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
  3416. raw_spin_lock(&cfs_b->lock);
  3417. cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
  3418. raw_spin_unlock(&cfs_b->lock);
  3419. }
  3420. }
  3421. static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
  3422. {
  3423. struct cfs_rq *cfs_rq;
  3424. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3425. if (!cfs_rq->runtime_enabled)
  3426. continue;
  3427. /*
  3428. * clock_task is not advancing so we just need to make sure
  3429. * there's some valid quota amount
  3430. */
  3431. cfs_rq->runtime_remaining = 1;
  3432. /*
  3433. * Offline rq is schedulable till cpu is completely disabled
  3434. * in take_cpu_down(), so we prevent new cfs throttling here.
  3435. */
  3436. cfs_rq->runtime_enabled = 0;
  3437. if (cfs_rq_throttled(cfs_rq))
  3438. unthrottle_cfs_rq(cfs_rq);
  3439. }
  3440. }
  3441. #else /* CONFIG_CFS_BANDWIDTH */
  3442. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  3443. {
  3444. return rq_clock_task(rq_of(cfs_rq));
  3445. }
  3446. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
  3447. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
  3448. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  3449. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  3450. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  3451. {
  3452. return 0;
  3453. }
  3454. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  3455. {
  3456. return 0;
  3457. }
  3458. static inline int throttled_lb_pair(struct task_group *tg,
  3459. int src_cpu, int dest_cpu)
  3460. {
  3461. return 0;
  3462. }
  3463. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  3464. #ifdef CONFIG_FAIR_GROUP_SCHED
  3465. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  3466. #endif
  3467. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  3468. {
  3469. return NULL;
  3470. }
  3471. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  3472. static inline void update_runtime_enabled(struct rq *rq) {}
  3473. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  3474. #endif /* CONFIG_CFS_BANDWIDTH */
  3475. /**************************************************
  3476. * CFS operations on tasks:
  3477. */
  3478. #ifdef CONFIG_SCHED_HRTICK
  3479. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  3480. {
  3481. struct sched_entity *se = &p->se;
  3482. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3483. WARN_ON(task_rq(p) != rq);
  3484. if (cfs_rq->nr_running > 1) {
  3485. u64 slice = sched_slice(cfs_rq, se);
  3486. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  3487. s64 delta = slice - ran;
  3488. if (delta < 0) {
  3489. if (rq->curr == p)
  3490. resched_curr(rq);
  3491. return;
  3492. }
  3493. hrtick_start(rq, delta);
  3494. }
  3495. }
  3496. /*
  3497. * called from enqueue/dequeue and updates the hrtick when the
  3498. * current task is from our class and nr_running is low enough
  3499. * to matter.
  3500. */
  3501. static void hrtick_update(struct rq *rq)
  3502. {
  3503. struct task_struct *curr = rq->curr;
  3504. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  3505. return;
  3506. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  3507. hrtick_start_fair(rq, curr);
  3508. }
  3509. #else /* !CONFIG_SCHED_HRTICK */
  3510. static inline void
  3511. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  3512. {
  3513. }
  3514. static inline void hrtick_update(struct rq *rq)
  3515. {
  3516. }
  3517. #endif
  3518. /*
  3519. * The enqueue_task method is called before nr_running is
  3520. * increased. Here we update the fair scheduling stats and
  3521. * then put the task into the rbtree:
  3522. */
  3523. static void
  3524. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  3525. {
  3526. struct cfs_rq *cfs_rq;
  3527. struct sched_entity *se = &p->se;
  3528. for_each_sched_entity(se) {
  3529. if (se->on_rq)
  3530. break;
  3531. cfs_rq = cfs_rq_of(se);
  3532. enqueue_entity(cfs_rq, se, flags);
  3533. /*
  3534. * end evaluation on encountering a throttled cfs_rq
  3535. *
  3536. * note: in the case of encountering a throttled cfs_rq we will
  3537. * post the final h_nr_running increment below.
  3538. */
  3539. if (cfs_rq_throttled(cfs_rq))
  3540. break;
  3541. cfs_rq->h_nr_running++;
  3542. flags = ENQUEUE_WAKEUP;
  3543. }
  3544. for_each_sched_entity(se) {
  3545. cfs_rq = cfs_rq_of(se);
  3546. cfs_rq->h_nr_running++;
  3547. if (cfs_rq_throttled(cfs_rq))
  3548. break;
  3549. update_cfs_shares(cfs_rq);
  3550. update_entity_load_avg(se, 1);
  3551. }
  3552. if (!se) {
  3553. update_rq_runnable_avg(rq, rq->nr_running);
  3554. add_nr_running(rq, 1);
  3555. }
  3556. hrtick_update(rq);
  3557. }
  3558. static void set_next_buddy(struct sched_entity *se);
  3559. /*
  3560. * The dequeue_task method is called before nr_running is
  3561. * decreased. We remove the task from the rbtree and
  3562. * update the fair scheduling stats:
  3563. */
  3564. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  3565. {
  3566. struct cfs_rq *cfs_rq;
  3567. struct sched_entity *se = &p->se;
  3568. int task_sleep = flags & DEQUEUE_SLEEP;
  3569. for_each_sched_entity(se) {
  3570. cfs_rq = cfs_rq_of(se);
  3571. dequeue_entity(cfs_rq, se, flags);
  3572. /*
  3573. * end evaluation on encountering a throttled cfs_rq
  3574. *
  3575. * note: in the case of encountering a throttled cfs_rq we will
  3576. * post the final h_nr_running decrement below.
  3577. */
  3578. if (cfs_rq_throttled(cfs_rq))
  3579. break;
  3580. cfs_rq->h_nr_running--;
  3581. /* Don't dequeue parent if it has other entities besides us */
  3582. if (cfs_rq->load.weight) {
  3583. /*
  3584. * Bias pick_next to pick a task from this cfs_rq, as
  3585. * p is sleeping when it is within its sched_slice.
  3586. */
  3587. if (task_sleep && parent_entity(se))
  3588. set_next_buddy(parent_entity(se));
  3589. /* avoid re-evaluating load for this entity */
  3590. se = parent_entity(se);
  3591. break;
  3592. }
  3593. flags |= DEQUEUE_SLEEP;
  3594. }
  3595. for_each_sched_entity(se) {
  3596. cfs_rq = cfs_rq_of(se);
  3597. cfs_rq->h_nr_running--;
  3598. if (cfs_rq_throttled(cfs_rq))
  3599. break;
  3600. update_cfs_shares(cfs_rq);
  3601. update_entity_load_avg(se, 1);
  3602. }
  3603. if (!se) {
  3604. sub_nr_running(rq, 1);
  3605. update_rq_runnable_avg(rq, 1);
  3606. }
  3607. hrtick_update(rq);
  3608. }
  3609. #ifdef CONFIG_SMP
  3610. /* Used instead of source_load when we know the type == 0 */
  3611. static unsigned long weighted_cpuload(const int cpu)
  3612. {
  3613. return cpu_rq(cpu)->cfs.runnable_load_avg;
  3614. }
  3615. /*
  3616. * Return a low guess at the load of a migration-source cpu weighted
  3617. * according to the scheduling class and "nice" value.
  3618. *
  3619. * We want to under-estimate the load of migration sources, to
  3620. * balance conservatively.
  3621. */
  3622. static unsigned long source_load(int cpu, int type)
  3623. {
  3624. struct rq *rq = cpu_rq(cpu);
  3625. unsigned long total = weighted_cpuload(cpu);
  3626. if (type == 0 || !sched_feat(LB_BIAS))
  3627. return total;
  3628. return min(rq->cpu_load[type-1], total);
  3629. }
  3630. /*
  3631. * Return a high guess at the load of a migration-target cpu weighted
  3632. * according to the scheduling class and "nice" value.
  3633. */
  3634. static unsigned long target_load(int cpu, int type)
  3635. {
  3636. struct rq *rq = cpu_rq(cpu);
  3637. unsigned long total = weighted_cpuload(cpu);
  3638. if (type == 0 || !sched_feat(LB_BIAS))
  3639. return total;
  3640. return max(rq->cpu_load[type-1], total);
  3641. }
  3642. static unsigned long capacity_of(int cpu)
  3643. {
  3644. return cpu_rq(cpu)->cpu_capacity;
  3645. }
  3646. static unsigned long capacity_orig_of(int cpu)
  3647. {
  3648. return cpu_rq(cpu)->cpu_capacity_orig;
  3649. }
  3650. static unsigned long cpu_avg_load_per_task(int cpu)
  3651. {
  3652. struct rq *rq = cpu_rq(cpu);
  3653. unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
  3654. unsigned long load_avg = rq->cfs.runnable_load_avg;
  3655. if (nr_running)
  3656. return load_avg / nr_running;
  3657. return 0;
  3658. }
  3659. static void record_wakee(struct task_struct *p)
  3660. {
  3661. /*
  3662. * Rough decay (wiping) for cost saving, don't worry
  3663. * about the boundary, really active task won't care
  3664. * about the loss.
  3665. */
  3666. if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
  3667. current->wakee_flips >>= 1;
  3668. current->wakee_flip_decay_ts = jiffies;
  3669. }
  3670. if (current->last_wakee != p) {
  3671. current->last_wakee = p;
  3672. current->wakee_flips++;
  3673. }
  3674. }
  3675. static void task_waking_fair(struct task_struct *p)
  3676. {
  3677. struct sched_entity *se = &p->se;
  3678. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3679. u64 min_vruntime;
  3680. #ifndef CONFIG_64BIT
  3681. u64 min_vruntime_copy;
  3682. do {
  3683. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  3684. smp_rmb();
  3685. min_vruntime = cfs_rq->min_vruntime;
  3686. } while (min_vruntime != min_vruntime_copy);
  3687. #else
  3688. min_vruntime = cfs_rq->min_vruntime;
  3689. #endif
  3690. se->vruntime -= min_vruntime;
  3691. record_wakee(p);
  3692. }
  3693. #ifdef CONFIG_FAIR_GROUP_SCHED
  3694. /*
  3695. * effective_load() calculates the load change as seen from the root_task_group
  3696. *
  3697. * Adding load to a group doesn't make a group heavier, but can cause movement
  3698. * of group shares between cpus. Assuming the shares were perfectly aligned one
  3699. * can calculate the shift in shares.
  3700. *
  3701. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  3702. * on this @cpu and results in a total addition (subtraction) of @wg to the
  3703. * total group weight.
  3704. *
  3705. * Given a runqueue weight distribution (rw_i) we can compute a shares
  3706. * distribution (s_i) using:
  3707. *
  3708. * s_i = rw_i / \Sum rw_j (1)
  3709. *
  3710. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  3711. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  3712. * shares distribution (s_i):
  3713. *
  3714. * rw_i = { 2, 4, 1, 0 }
  3715. * s_i = { 2/7, 4/7, 1/7, 0 }
  3716. *
  3717. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  3718. * task used to run on and the CPU the waker is running on), we need to
  3719. * compute the effect of waking a task on either CPU and, in case of a sync
  3720. * wakeup, compute the effect of the current task going to sleep.
  3721. *
  3722. * So for a change of @wl to the local @cpu with an overall group weight change
  3723. * of @wl we can compute the new shares distribution (s'_i) using:
  3724. *
  3725. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  3726. *
  3727. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  3728. * differences in waking a task to CPU 0. The additional task changes the
  3729. * weight and shares distributions like:
  3730. *
  3731. * rw'_i = { 3, 4, 1, 0 }
  3732. * s'_i = { 3/8, 4/8, 1/8, 0 }
  3733. *
  3734. * We can then compute the difference in effective weight by using:
  3735. *
  3736. * dw_i = S * (s'_i - s_i) (3)
  3737. *
  3738. * Where 'S' is the group weight as seen by its parent.
  3739. *
  3740. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  3741. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  3742. * 4/7) times the weight of the group.
  3743. */
  3744. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  3745. {
  3746. struct sched_entity *se = tg->se[cpu];
  3747. if (!tg->parent) /* the trivial, non-cgroup case */
  3748. return wl;
  3749. for_each_sched_entity(se) {
  3750. long w, W;
  3751. tg = se->my_q->tg;
  3752. /*
  3753. * W = @wg + \Sum rw_j
  3754. */
  3755. W = wg + calc_tg_weight(tg, se->my_q);
  3756. /*
  3757. * w = rw_i + @wl
  3758. */
  3759. w = se->my_q->load.weight + wl;
  3760. /*
  3761. * wl = S * s'_i; see (2)
  3762. */
  3763. if (W > 0 && w < W)
  3764. wl = (w * (long)tg->shares) / W;
  3765. else
  3766. wl = tg->shares;
  3767. /*
  3768. * Per the above, wl is the new se->load.weight value; since
  3769. * those are clipped to [MIN_SHARES, ...) do so now. See
  3770. * calc_cfs_shares().
  3771. */
  3772. if (wl < MIN_SHARES)
  3773. wl = MIN_SHARES;
  3774. /*
  3775. * wl = dw_i = S * (s'_i - s_i); see (3)
  3776. */
  3777. wl -= se->load.weight;
  3778. /*
  3779. * Recursively apply this logic to all parent groups to compute
  3780. * the final effective load change on the root group. Since
  3781. * only the @tg group gets extra weight, all parent groups can
  3782. * only redistribute existing shares. @wl is the shift in shares
  3783. * resulting from this level per the above.
  3784. */
  3785. wg = 0;
  3786. }
  3787. return wl;
  3788. }
  3789. #else
  3790. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  3791. {
  3792. return wl;
  3793. }
  3794. #endif
  3795. static int wake_wide(struct task_struct *p)
  3796. {
  3797. int factor = this_cpu_read(sd_llc_size);
  3798. /*
  3799. * Yeah, it's the switching-frequency, could means many wakee or
  3800. * rapidly switch, use factor here will just help to automatically
  3801. * adjust the loose-degree, so bigger node will lead to more pull.
  3802. */
  3803. if (p->wakee_flips > factor) {
  3804. /*
  3805. * wakee is somewhat hot, it needs certain amount of cpu
  3806. * resource, so if waker is far more hot, prefer to leave
  3807. * it alone.
  3808. */
  3809. if (current->wakee_flips > (factor * p->wakee_flips))
  3810. return 1;
  3811. }
  3812. return 0;
  3813. }
  3814. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  3815. {
  3816. s64 this_load, load;
  3817. s64 this_eff_load, prev_eff_load;
  3818. int idx, this_cpu, prev_cpu;
  3819. struct task_group *tg;
  3820. unsigned long weight;
  3821. int balanced;
  3822. /*
  3823. * If we wake multiple tasks be careful to not bounce
  3824. * ourselves around too much.
  3825. */
  3826. if (wake_wide(p))
  3827. return 0;
  3828. idx = sd->wake_idx;
  3829. this_cpu = smp_processor_id();
  3830. prev_cpu = task_cpu(p);
  3831. load = source_load(prev_cpu, idx);
  3832. this_load = target_load(this_cpu, idx);
  3833. /*
  3834. * If sync wakeup then subtract the (maximum possible)
  3835. * effect of the currently running task from the load
  3836. * of the current CPU:
  3837. */
  3838. if (sync) {
  3839. tg = task_group(current);
  3840. weight = current->se.load.weight;
  3841. this_load += effective_load(tg, this_cpu, -weight, -weight);
  3842. load += effective_load(tg, prev_cpu, 0, -weight);
  3843. }
  3844. tg = task_group(p);
  3845. weight = p->se.load.weight;
  3846. /*
  3847. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  3848. * due to the sync cause above having dropped this_load to 0, we'll
  3849. * always have an imbalance, but there's really nothing you can do
  3850. * about that, so that's good too.
  3851. *
  3852. * Otherwise check if either cpus are near enough in load to allow this
  3853. * task to be woken on this_cpu.
  3854. */
  3855. this_eff_load = 100;
  3856. this_eff_load *= capacity_of(prev_cpu);
  3857. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  3858. prev_eff_load *= capacity_of(this_cpu);
  3859. if (this_load > 0) {
  3860. this_eff_load *= this_load +
  3861. effective_load(tg, this_cpu, weight, weight);
  3862. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  3863. }
  3864. balanced = this_eff_load <= prev_eff_load;
  3865. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  3866. if (!balanced)
  3867. return 0;
  3868. schedstat_inc(sd, ttwu_move_affine);
  3869. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  3870. return 1;
  3871. }
  3872. /*
  3873. * find_idlest_group finds and returns the least busy CPU group within the
  3874. * domain.
  3875. */
  3876. static struct sched_group *
  3877. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  3878. int this_cpu, int sd_flag)
  3879. {
  3880. struct sched_group *idlest = NULL, *group = sd->groups;
  3881. unsigned long min_load = ULONG_MAX, this_load = 0;
  3882. int load_idx = sd->forkexec_idx;
  3883. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  3884. if (sd_flag & SD_BALANCE_WAKE)
  3885. load_idx = sd->wake_idx;
  3886. do {
  3887. unsigned long load, avg_load;
  3888. int local_group;
  3889. int i;
  3890. /* Skip over this group if it has no CPUs allowed */
  3891. if (!cpumask_intersects(sched_group_cpus(group),
  3892. tsk_cpus_allowed(p)))
  3893. continue;
  3894. local_group = cpumask_test_cpu(this_cpu,
  3895. sched_group_cpus(group));
  3896. /* Tally up the load of all CPUs in the group */
  3897. avg_load = 0;
  3898. for_each_cpu(i, sched_group_cpus(group)) {
  3899. /* Bias balancing toward cpus of our domain */
  3900. if (local_group)
  3901. load = source_load(i, load_idx);
  3902. else
  3903. load = target_load(i, load_idx);
  3904. avg_load += load;
  3905. }
  3906. /* Adjust by relative CPU capacity of the group */
  3907. avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
  3908. if (local_group) {
  3909. this_load = avg_load;
  3910. } else if (avg_load < min_load) {
  3911. min_load = avg_load;
  3912. idlest = group;
  3913. }
  3914. } while (group = group->next, group != sd->groups);
  3915. if (!idlest || 100*this_load < imbalance*min_load)
  3916. return NULL;
  3917. return idlest;
  3918. }
  3919. /*
  3920. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  3921. */
  3922. static int
  3923. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  3924. {
  3925. unsigned long load, min_load = ULONG_MAX;
  3926. unsigned int min_exit_latency = UINT_MAX;
  3927. u64 latest_idle_timestamp = 0;
  3928. int least_loaded_cpu = this_cpu;
  3929. int shallowest_idle_cpu = -1;
  3930. int i;
  3931. /* Traverse only the allowed CPUs */
  3932. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  3933. if (idle_cpu(i)) {
  3934. struct rq *rq = cpu_rq(i);
  3935. struct cpuidle_state *idle = idle_get_state(rq);
  3936. if (idle && idle->exit_latency < min_exit_latency) {
  3937. /*
  3938. * We give priority to a CPU whose idle state
  3939. * has the smallest exit latency irrespective
  3940. * of any idle timestamp.
  3941. */
  3942. min_exit_latency = idle->exit_latency;
  3943. latest_idle_timestamp = rq->idle_stamp;
  3944. shallowest_idle_cpu = i;
  3945. } else if ((!idle || idle->exit_latency == min_exit_latency) &&
  3946. rq->idle_stamp > latest_idle_timestamp) {
  3947. /*
  3948. * If equal or no active idle state, then
  3949. * the most recently idled CPU might have
  3950. * a warmer cache.
  3951. */
  3952. latest_idle_timestamp = rq->idle_stamp;
  3953. shallowest_idle_cpu = i;
  3954. }
  3955. } else if (shallowest_idle_cpu == -1) {
  3956. load = weighted_cpuload(i);
  3957. if (load < min_load || (load == min_load && i == this_cpu)) {
  3958. min_load = load;
  3959. least_loaded_cpu = i;
  3960. }
  3961. }
  3962. }
  3963. return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
  3964. }
  3965. /*
  3966. * Try and locate an idle CPU in the sched_domain.
  3967. */
  3968. static int select_idle_sibling(struct task_struct *p, int target)
  3969. {
  3970. struct sched_domain *sd;
  3971. struct sched_group *sg;
  3972. int i = task_cpu(p);
  3973. if (idle_cpu(target))
  3974. return target;
  3975. /*
  3976. * If the prevous cpu is cache affine and idle, don't be stupid.
  3977. */
  3978. if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
  3979. return i;
  3980. /*
  3981. * Otherwise, iterate the domains and find an elegible idle cpu.
  3982. */
  3983. sd = rcu_dereference(per_cpu(sd_llc, target));
  3984. for_each_lower_domain(sd) {
  3985. sg = sd->groups;
  3986. do {
  3987. if (!cpumask_intersects(sched_group_cpus(sg),
  3988. tsk_cpus_allowed(p)))
  3989. goto next;
  3990. for_each_cpu(i, sched_group_cpus(sg)) {
  3991. if (i == target || !idle_cpu(i))
  3992. goto next;
  3993. }
  3994. target = cpumask_first_and(sched_group_cpus(sg),
  3995. tsk_cpus_allowed(p));
  3996. goto done;
  3997. next:
  3998. sg = sg->next;
  3999. } while (sg != sd->groups);
  4000. }
  4001. done:
  4002. return target;
  4003. }
  4004. /*
  4005. * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
  4006. * tasks. The unit of the return value must be the one of capacity so we can
  4007. * compare the usage with the capacity of the CPU that is available for CFS
  4008. * task (ie cpu_capacity).
  4009. * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
  4010. * CPU. It represents the amount of utilization of a CPU in the range
  4011. * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
  4012. * capacity of the CPU because it's about the running time on this CPU.
  4013. * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
  4014. * because of unfortunate rounding in avg_period and running_load_avg or just
  4015. * after migrating tasks until the average stabilizes with the new running
  4016. * time. So we need to check that the usage stays into the range
  4017. * [0..cpu_capacity_orig] and cap if necessary.
  4018. * Without capping the usage, a group could be seen as overloaded (CPU0 usage
  4019. * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
  4020. */
  4021. static int get_cpu_usage(int cpu)
  4022. {
  4023. unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
  4024. unsigned long capacity = capacity_orig_of(cpu);
  4025. if (usage >= SCHED_LOAD_SCALE)
  4026. return capacity;
  4027. return (usage * capacity) >> SCHED_LOAD_SHIFT;
  4028. }
  4029. /*
  4030. * select_task_rq_fair: Select target runqueue for the waking task in domains
  4031. * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
  4032. * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
  4033. *
  4034. * Balances load by selecting the idlest cpu in the idlest group, or under
  4035. * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
  4036. *
  4037. * Returns the target cpu number.
  4038. *
  4039. * preempt must be disabled.
  4040. */
  4041. static int
  4042. select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
  4043. {
  4044. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  4045. int cpu = smp_processor_id();
  4046. int new_cpu = cpu;
  4047. int want_affine = 0;
  4048. int sync = wake_flags & WF_SYNC;
  4049. if (sd_flag & SD_BALANCE_WAKE)
  4050. want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
  4051. rcu_read_lock();
  4052. for_each_domain(cpu, tmp) {
  4053. if (!(tmp->flags & SD_LOAD_BALANCE))
  4054. continue;
  4055. /*
  4056. * If both cpu and prev_cpu are part of this domain,
  4057. * cpu is a valid SD_WAKE_AFFINE target.
  4058. */
  4059. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  4060. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  4061. affine_sd = tmp;
  4062. break;
  4063. }
  4064. if (tmp->flags & sd_flag)
  4065. sd = tmp;
  4066. }
  4067. if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
  4068. prev_cpu = cpu;
  4069. if (sd_flag & SD_BALANCE_WAKE) {
  4070. new_cpu = select_idle_sibling(p, prev_cpu);
  4071. goto unlock;
  4072. }
  4073. while (sd) {
  4074. struct sched_group *group;
  4075. int weight;
  4076. if (!(sd->flags & sd_flag)) {
  4077. sd = sd->child;
  4078. continue;
  4079. }
  4080. group = find_idlest_group(sd, p, cpu, sd_flag);
  4081. if (!group) {
  4082. sd = sd->child;
  4083. continue;
  4084. }
  4085. new_cpu = find_idlest_cpu(group, p, cpu);
  4086. if (new_cpu == -1 || new_cpu == cpu) {
  4087. /* Now try balancing at a lower domain level of cpu */
  4088. sd = sd->child;
  4089. continue;
  4090. }
  4091. /* Now try balancing at a lower domain level of new_cpu */
  4092. cpu = new_cpu;
  4093. weight = sd->span_weight;
  4094. sd = NULL;
  4095. for_each_domain(cpu, tmp) {
  4096. if (weight <= tmp->span_weight)
  4097. break;
  4098. if (tmp->flags & sd_flag)
  4099. sd = tmp;
  4100. }
  4101. /* while loop will break here if sd == NULL */
  4102. }
  4103. unlock:
  4104. rcu_read_unlock();
  4105. return new_cpu;
  4106. }
  4107. /*
  4108. * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
  4109. * cfs_rq_of(p) references at time of call are still valid and identify the
  4110. * previous cpu. However, the caller only guarantees p->pi_lock is held; no
  4111. * other assumptions, including the state of rq->lock, should be made.
  4112. */
  4113. static void
  4114. migrate_task_rq_fair(struct task_struct *p, int next_cpu)
  4115. {
  4116. struct sched_entity *se = &p->se;
  4117. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4118. /*
  4119. * Load tracking: accumulate removed load so that it can be processed
  4120. * when we next update owning cfs_rq under rq->lock. Tasks contribute
  4121. * to blocked load iff they have a positive decay-count. It can never
  4122. * be negative here since on-rq tasks have decay-count == 0.
  4123. */
  4124. if (se->avg.decay_count) {
  4125. se->avg.decay_count = -__synchronize_entity_decay(se);
  4126. atomic_long_add(se->avg.load_avg_contrib,
  4127. &cfs_rq->removed_load);
  4128. }
  4129. /* We have migrated, no longer consider this task hot */
  4130. se->exec_start = 0;
  4131. }
  4132. #endif /* CONFIG_SMP */
  4133. static unsigned long
  4134. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  4135. {
  4136. unsigned long gran = sysctl_sched_wakeup_granularity;
  4137. /*
  4138. * Since its curr running now, convert the gran from real-time
  4139. * to virtual-time in his units.
  4140. *
  4141. * By using 'se' instead of 'curr' we penalize light tasks, so
  4142. * they get preempted easier. That is, if 'se' < 'curr' then
  4143. * the resulting gran will be larger, therefore penalizing the
  4144. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  4145. * be smaller, again penalizing the lighter task.
  4146. *
  4147. * This is especially important for buddies when the leftmost
  4148. * task is higher priority than the buddy.
  4149. */
  4150. return calc_delta_fair(gran, se);
  4151. }
  4152. /*
  4153. * Should 'se' preempt 'curr'.
  4154. *
  4155. * |s1
  4156. * |s2
  4157. * |s3
  4158. * g
  4159. * |<--->|c
  4160. *
  4161. * w(c, s1) = -1
  4162. * w(c, s2) = 0
  4163. * w(c, s3) = 1
  4164. *
  4165. */
  4166. static int
  4167. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  4168. {
  4169. s64 gran, vdiff = curr->vruntime - se->vruntime;
  4170. if (vdiff <= 0)
  4171. return -1;
  4172. gran = wakeup_gran(curr, se);
  4173. if (vdiff > gran)
  4174. return 1;
  4175. return 0;
  4176. }
  4177. static void set_last_buddy(struct sched_entity *se)
  4178. {
  4179. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  4180. return;
  4181. for_each_sched_entity(se)
  4182. cfs_rq_of(se)->last = se;
  4183. }
  4184. static void set_next_buddy(struct sched_entity *se)
  4185. {
  4186. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  4187. return;
  4188. for_each_sched_entity(se)
  4189. cfs_rq_of(se)->next = se;
  4190. }
  4191. static void set_skip_buddy(struct sched_entity *se)
  4192. {
  4193. for_each_sched_entity(se)
  4194. cfs_rq_of(se)->skip = se;
  4195. }
  4196. /*
  4197. * Preempt the current task with a newly woken task if needed:
  4198. */
  4199. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  4200. {
  4201. struct task_struct *curr = rq->curr;
  4202. struct sched_entity *se = &curr->se, *pse = &p->se;
  4203. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  4204. int scale = cfs_rq->nr_running >= sched_nr_latency;
  4205. int next_buddy_marked = 0;
  4206. if (unlikely(se == pse))
  4207. return;
  4208. /*
  4209. * This is possible from callers such as attach_tasks(), in which we
  4210. * unconditionally check_prempt_curr() after an enqueue (which may have
  4211. * lead to a throttle). This both saves work and prevents false
  4212. * next-buddy nomination below.
  4213. */
  4214. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  4215. return;
  4216. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  4217. set_next_buddy(pse);
  4218. next_buddy_marked = 1;
  4219. }
  4220. /*
  4221. * We can come here with TIF_NEED_RESCHED already set from new task
  4222. * wake up path.
  4223. *
  4224. * Note: this also catches the edge-case of curr being in a throttled
  4225. * group (e.g. via set_curr_task), since update_curr() (in the
  4226. * enqueue of curr) will have resulted in resched being set. This
  4227. * prevents us from potentially nominating it as a false LAST_BUDDY
  4228. * below.
  4229. */
  4230. if (test_tsk_need_resched(curr))
  4231. return;
  4232. /* Idle tasks are by definition preempted by non-idle tasks. */
  4233. if (unlikely(curr->policy == SCHED_IDLE) &&
  4234. likely(p->policy != SCHED_IDLE))
  4235. goto preempt;
  4236. /*
  4237. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  4238. * is driven by the tick):
  4239. */
  4240. if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
  4241. return;
  4242. find_matching_se(&se, &pse);
  4243. update_curr(cfs_rq_of(se));
  4244. BUG_ON(!pse);
  4245. if (wakeup_preempt_entity(se, pse) == 1) {
  4246. /*
  4247. * Bias pick_next to pick the sched entity that is
  4248. * triggering this preemption.
  4249. */
  4250. if (!next_buddy_marked)
  4251. set_next_buddy(pse);
  4252. goto preempt;
  4253. }
  4254. return;
  4255. preempt:
  4256. resched_curr(rq);
  4257. /*
  4258. * Only set the backward buddy when the current task is still
  4259. * on the rq. This can happen when a wakeup gets interleaved
  4260. * with schedule on the ->pre_schedule() or idle_balance()
  4261. * point, either of which can * drop the rq lock.
  4262. *
  4263. * Also, during early boot the idle thread is in the fair class,
  4264. * for obvious reasons its a bad idea to schedule back to it.
  4265. */
  4266. if (unlikely(!se->on_rq || curr == rq->idle))
  4267. return;
  4268. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  4269. set_last_buddy(se);
  4270. }
  4271. static struct task_struct *
  4272. pick_next_task_fair(struct rq *rq, struct task_struct *prev)
  4273. {
  4274. struct cfs_rq *cfs_rq = &rq->cfs;
  4275. struct sched_entity *se;
  4276. struct task_struct *p;
  4277. int new_tasks;
  4278. again:
  4279. #ifdef CONFIG_FAIR_GROUP_SCHED
  4280. if (!cfs_rq->nr_running)
  4281. goto idle;
  4282. if (prev->sched_class != &fair_sched_class)
  4283. goto simple;
  4284. /*
  4285. * Because of the set_next_buddy() in dequeue_task_fair() it is rather
  4286. * likely that a next task is from the same cgroup as the current.
  4287. *
  4288. * Therefore attempt to avoid putting and setting the entire cgroup
  4289. * hierarchy, only change the part that actually changes.
  4290. */
  4291. do {
  4292. struct sched_entity *curr = cfs_rq->curr;
  4293. /*
  4294. * Since we got here without doing put_prev_entity() we also
  4295. * have to consider cfs_rq->curr. If it is still a runnable
  4296. * entity, update_curr() will update its vruntime, otherwise
  4297. * forget we've ever seen it.
  4298. */
  4299. if (curr && curr->on_rq)
  4300. update_curr(cfs_rq);
  4301. else
  4302. curr = NULL;
  4303. /*
  4304. * This call to check_cfs_rq_runtime() will do the throttle and
  4305. * dequeue its entity in the parent(s). Therefore the 'simple'
  4306. * nr_running test will indeed be correct.
  4307. */
  4308. if (unlikely(check_cfs_rq_runtime(cfs_rq)))
  4309. goto simple;
  4310. se = pick_next_entity(cfs_rq, curr);
  4311. cfs_rq = group_cfs_rq(se);
  4312. } while (cfs_rq);
  4313. p = task_of(se);
  4314. /*
  4315. * Since we haven't yet done put_prev_entity and if the selected task
  4316. * is a different task than we started out with, try and touch the
  4317. * least amount of cfs_rqs.
  4318. */
  4319. if (prev != p) {
  4320. struct sched_entity *pse = &prev->se;
  4321. while (!(cfs_rq = is_same_group(se, pse))) {
  4322. int se_depth = se->depth;
  4323. int pse_depth = pse->depth;
  4324. if (se_depth <= pse_depth) {
  4325. put_prev_entity(cfs_rq_of(pse), pse);
  4326. pse = parent_entity(pse);
  4327. }
  4328. if (se_depth >= pse_depth) {
  4329. set_next_entity(cfs_rq_of(se), se);
  4330. se = parent_entity(se);
  4331. }
  4332. }
  4333. put_prev_entity(cfs_rq, pse);
  4334. set_next_entity(cfs_rq, se);
  4335. }
  4336. if (hrtick_enabled(rq))
  4337. hrtick_start_fair(rq, p);
  4338. return p;
  4339. simple:
  4340. cfs_rq = &rq->cfs;
  4341. #endif
  4342. if (!cfs_rq->nr_running)
  4343. goto idle;
  4344. put_prev_task(rq, prev);
  4345. do {
  4346. se = pick_next_entity(cfs_rq, NULL);
  4347. set_next_entity(cfs_rq, se);
  4348. cfs_rq = group_cfs_rq(se);
  4349. } while (cfs_rq);
  4350. p = task_of(se);
  4351. if (hrtick_enabled(rq))
  4352. hrtick_start_fair(rq, p);
  4353. return p;
  4354. idle:
  4355. new_tasks = idle_balance(rq);
  4356. /*
  4357. * Because idle_balance() releases (and re-acquires) rq->lock, it is
  4358. * possible for any higher priority task to appear. In that case we
  4359. * must re-start the pick_next_entity() loop.
  4360. */
  4361. if (new_tasks < 0)
  4362. return RETRY_TASK;
  4363. if (new_tasks > 0)
  4364. goto again;
  4365. return NULL;
  4366. }
  4367. /*
  4368. * Account for a descheduled task:
  4369. */
  4370. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  4371. {
  4372. struct sched_entity *se = &prev->se;
  4373. struct cfs_rq *cfs_rq;
  4374. for_each_sched_entity(se) {
  4375. cfs_rq = cfs_rq_of(se);
  4376. put_prev_entity(cfs_rq, se);
  4377. }
  4378. }
  4379. /*
  4380. * sched_yield() is very simple
  4381. *
  4382. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  4383. */
  4384. static void yield_task_fair(struct rq *rq)
  4385. {
  4386. struct task_struct *curr = rq->curr;
  4387. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  4388. struct sched_entity *se = &curr->se;
  4389. /*
  4390. * Are we the only task in the tree?
  4391. */
  4392. if (unlikely(rq->nr_running == 1))
  4393. return;
  4394. clear_buddies(cfs_rq, se);
  4395. if (curr->policy != SCHED_BATCH) {
  4396. update_rq_clock(rq);
  4397. /*
  4398. * Update run-time statistics of the 'current'.
  4399. */
  4400. update_curr(cfs_rq);
  4401. /*
  4402. * Tell update_rq_clock() that we've just updated,
  4403. * so we don't do microscopic update in schedule()
  4404. * and double the fastpath cost.
  4405. */
  4406. rq_clock_skip_update(rq, true);
  4407. }
  4408. set_skip_buddy(se);
  4409. }
  4410. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  4411. {
  4412. struct sched_entity *se = &p->se;
  4413. /* throttled hierarchies are not runnable */
  4414. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  4415. return false;
  4416. /* Tell the scheduler that we'd really like pse to run next. */
  4417. set_next_buddy(se);
  4418. yield_task_fair(rq);
  4419. return true;
  4420. }
  4421. #ifdef CONFIG_SMP
  4422. /**************************************************
  4423. * Fair scheduling class load-balancing methods.
  4424. *
  4425. * BASICS
  4426. *
  4427. * The purpose of load-balancing is to achieve the same basic fairness the
  4428. * per-cpu scheduler provides, namely provide a proportional amount of compute
  4429. * time to each task. This is expressed in the following equation:
  4430. *
  4431. * W_i,n/P_i == W_j,n/P_j for all i,j (1)
  4432. *
  4433. * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
  4434. * W_i,0 is defined as:
  4435. *
  4436. * W_i,0 = \Sum_j w_i,j (2)
  4437. *
  4438. * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
  4439. * is derived from the nice value as per prio_to_weight[].
  4440. *
  4441. * The weight average is an exponential decay average of the instantaneous
  4442. * weight:
  4443. *
  4444. * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
  4445. *
  4446. * C_i is the compute capacity of cpu i, typically it is the
  4447. * fraction of 'recent' time available for SCHED_OTHER task execution. But it
  4448. * can also include other factors [XXX].
  4449. *
  4450. * To achieve this balance we define a measure of imbalance which follows
  4451. * directly from (1):
  4452. *
  4453. * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
  4454. *
  4455. * We them move tasks around to minimize the imbalance. In the continuous
  4456. * function space it is obvious this converges, in the discrete case we get
  4457. * a few fun cases generally called infeasible weight scenarios.
  4458. *
  4459. * [XXX expand on:
  4460. * - infeasible weights;
  4461. * - local vs global optima in the discrete case. ]
  4462. *
  4463. *
  4464. * SCHED DOMAINS
  4465. *
  4466. * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
  4467. * for all i,j solution, we create a tree of cpus that follows the hardware
  4468. * topology where each level pairs two lower groups (or better). This results
  4469. * in O(log n) layers. Furthermore we reduce the number of cpus going up the
  4470. * tree to only the first of the previous level and we decrease the frequency
  4471. * of load-balance at each level inv. proportional to the number of cpus in
  4472. * the groups.
  4473. *
  4474. * This yields:
  4475. *
  4476. * log_2 n 1 n
  4477. * \Sum { --- * --- * 2^i } = O(n) (5)
  4478. * i = 0 2^i 2^i
  4479. * `- size of each group
  4480. * | | `- number of cpus doing load-balance
  4481. * | `- freq
  4482. * `- sum over all levels
  4483. *
  4484. * Coupled with a limit on how many tasks we can migrate every balance pass,
  4485. * this makes (5) the runtime complexity of the balancer.
  4486. *
  4487. * An important property here is that each CPU is still (indirectly) connected
  4488. * to every other cpu in at most O(log n) steps:
  4489. *
  4490. * The adjacency matrix of the resulting graph is given by:
  4491. *
  4492. * log_2 n
  4493. * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
  4494. * k = 0
  4495. *
  4496. * And you'll find that:
  4497. *
  4498. * A^(log_2 n)_i,j != 0 for all i,j (7)
  4499. *
  4500. * Showing there's indeed a path between every cpu in at most O(log n) steps.
  4501. * The task movement gives a factor of O(m), giving a convergence complexity
  4502. * of:
  4503. *
  4504. * O(nm log n), n := nr_cpus, m := nr_tasks (8)
  4505. *
  4506. *
  4507. * WORK CONSERVING
  4508. *
  4509. * In order to avoid CPUs going idle while there's still work to do, new idle
  4510. * balancing is more aggressive and has the newly idle cpu iterate up the domain
  4511. * tree itself instead of relying on other CPUs to bring it work.
  4512. *
  4513. * This adds some complexity to both (5) and (8) but it reduces the total idle
  4514. * time.
  4515. *
  4516. * [XXX more?]
  4517. *
  4518. *
  4519. * CGROUPS
  4520. *
  4521. * Cgroups make a horror show out of (2), instead of a simple sum we get:
  4522. *
  4523. * s_k,i
  4524. * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
  4525. * S_k
  4526. *
  4527. * Where
  4528. *
  4529. * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
  4530. *
  4531. * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
  4532. *
  4533. * The big problem is S_k, its a global sum needed to compute a local (W_i)
  4534. * property.
  4535. *
  4536. * [XXX write more on how we solve this.. _after_ merging pjt's patches that
  4537. * rewrite all of this once again.]
  4538. */
  4539. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  4540. enum fbq_type { regular, remote, all };
  4541. #define LBF_ALL_PINNED 0x01
  4542. #define LBF_NEED_BREAK 0x02
  4543. #define LBF_DST_PINNED 0x04
  4544. #define LBF_SOME_PINNED 0x08
  4545. struct lb_env {
  4546. struct sched_domain *sd;
  4547. struct rq *src_rq;
  4548. int src_cpu;
  4549. int dst_cpu;
  4550. struct rq *dst_rq;
  4551. struct cpumask *dst_grpmask;
  4552. int new_dst_cpu;
  4553. enum cpu_idle_type idle;
  4554. long imbalance;
  4555. /* The set of CPUs under consideration for load-balancing */
  4556. struct cpumask *cpus;
  4557. unsigned int flags;
  4558. unsigned int loop;
  4559. unsigned int loop_break;
  4560. unsigned int loop_max;
  4561. enum fbq_type fbq_type;
  4562. struct list_head tasks;
  4563. };
  4564. /*
  4565. * Is this task likely cache-hot:
  4566. */
  4567. static int task_hot(struct task_struct *p, struct lb_env *env)
  4568. {
  4569. s64 delta;
  4570. lockdep_assert_held(&env->src_rq->lock);
  4571. if (p->sched_class != &fair_sched_class)
  4572. return 0;
  4573. if (unlikely(p->policy == SCHED_IDLE))
  4574. return 0;
  4575. /*
  4576. * Buddy candidates are cache hot:
  4577. */
  4578. if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
  4579. (&p->se == cfs_rq_of(&p->se)->next ||
  4580. &p->se == cfs_rq_of(&p->se)->last))
  4581. return 1;
  4582. if (sysctl_sched_migration_cost == -1)
  4583. return 1;
  4584. if (sysctl_sched_migration_cost == 0)
  4585. return 0;
  4586. delta = rq_clock_task(env->src_rq) - p->se.exec_start;
  4587. return delta < (s64)sysctl_sched_migration_cost;
  4588. }
  4589. #ifdef CONFIG_NUMA_BALANCING
  4590. /* Returns true if the destination node has incurred more faults */
  4591. static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
  4592. {
  4593. struct numa_group *numa_group = rcu_dereference(p->numa_group);
  4594. int src_nid, dst_nid;
  4595. if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
  4596. !(env->sd->flags & SD_NUMA)) {
  4597. return false;
  4598. }
  4599. src_nid = cpu_to_node(env->src_cpu);
  4600. dst_nid = cpu_to_node(env->dst_cpu);
  4601. if (src_nid == dst_nid)
  4602. return false;
  4603. if (numa_group) {
  4604. /* Task is already in the group's interleave set. */
  4605. if (node_isset(src_nid, numa_group->active_nodes))
  4606. return false;
  4607. /* Task is moving into the group's interleave set. */
  4608. if (node_isset(dst_nid, numa_group->active_nodes))
  4609. return true;
  4610. return group_faults(p, dst_nid) > group_faults(p, src_nid);
  4611. }
  4612. /* Encourage migration to the preferred node. */
  4613. if (dst_nid == p->numa_preferred_nid)
  4614. return true;
  4615. return task_faults(p, dst_nid) > task_faults(p, src_nid);
  4616. }
  4617. static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
  4618. {
  4619. struct numa_group *numa_group = rcu_dereference(p->numa_group);
  4620. int src_nid, dst_nid;
  4621. if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
  4622. return false;
  4623. if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
  4624. return false;
  4625. src_nid = cpu_to_node(env->src_cpu);
  4626. dst_nid = cpu_to_node(env->dst_cpu);
  4627. if (src_nid == dst_nid)
  4628. return false;
  4629. if (numa_group) {
  4630. /* Task is moving within/into the group's interleave set. */
  4631. if (node_isset(dst_nid, numa_group->active_nodes))
  4632. return false;
  4633. /* Task is moving out of the group's interleave set. */
  4634. if (node_isset(src_nid, numa_group->active_nodes))
  4635. return true;
  4636. return group_faults(p, dst_nid) < group_faults(p, src_nid);
  4637. }
  4638. /* Migrating away from the preferred node is always bad. */
  4639. if (src_nid == p->numa_preferred_nid)
  4640. return true;
  4641. return task_faults(p, dst_nid) < task_faults(p, src_nid);
  4642. }
  4643. #else
  4644. static inline bool migrate_improves_locality(struct task_struct *p,
  4645. struct lb_env *env)
  4646. {
  4647. return false;
  4648. }
  4649. static inline bool migrate_degrades_locality(struct task_struct *p,
  4650. struct lb_env *env)
  4651. {
  4652. return false;
  4653. }
  4654. #endif
  4655. /*
  4656. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  4657. */
  4658. static
  4659. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  4660. {
  4661. int tsk_cache_hot = 0;
  4662. lockdep_assert_held(&env->src_rq->lock);
  4663. /*
  4664. * We do not migrate tasks that are:
  4665. * 1) throttled_lb_pair, or
  4666. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  4667. * 3) running (obviously), or
  4668. * 4) are cache-hot on their current CPU.
  4669. */
  4670. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  4671. return 0;
  4672. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  4673. int cpu;
  4674. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  4675. env->flags |= LBF_SOME_PINNED;
  4676. /*
  4677. * Remember if this task can be migrated to any other cpu in
  4678. * our sched_group. We may want to revisit it if we couldn't
  4679. * meet load balance goals by pulling other tasks on src_cpu.
  4680. *
  4681. * Also avoid computing new_dst_cpu if we have already computed
  4682. * one in current iteration.
  4683. */
  4684. if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
  4685. return 0;
  4686. /* Prevent to re-select dst_cpu via env's cpus */
  4687. for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
  4688. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
  4689. env->flags |= LBF_DST_PINNED;
  4690. env->new_dst_cpu = cpu;
  4691. break;
  4692. }
  4693. }
  4694. return 0;
  4695. }
  4696. /* Record that we found atleast one task that could run on dst_cpu */
  4697. env->flags &= ~LBF_ALL_PINNED;
  4698. if (task_running(env->src_rq, p)) {
  4699. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  4700. return 0;
  4701. }
  4702. /*
  4703. * Aggressive migration if:
  4704. * 1) destination numa is preferred
  4705. * 2) task is cache cold, or
  4706. * 3) too many balance attempts have failed.
  4707. */
  4708. tsk_cache_hot = task_hot(p, env);
  4709. if (!tsk_cache_hot)
  4710. tsk_cache_hot = migrate_degrades_locality(p, env);
  4711. if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
  4712. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  4713. if (tsk_cache_hot) {
  4714. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  4715. schedstat_inc(p, se.statistics.nr_forced_migrations);
  4716. }
  4717. return 1;
  4718. }
  4719. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  4720. return 0;
  4721. }
  4722. /*
  4723. * detach_task() -- detach the task for the migration specified in env
  4724. */
  4725. static void detach_task(struct task_struct *p, struct lb_env *env)
  4726. {
  4727. lockdep_assert_held(&env->src_rq->lock);
  4728. deactivate_task(env->src_rq, p, 0);
  4729. p->on_rq = TASK_ON_RQ_MIGRATING;
  4730. set_task_cpu(p, env->dst_cpu);
  4731. }
  4732. /*
  4733. * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
  4734. * part of active balancing operations within "domain".
  4735. *
  4736. * Returns a task if successful and NULL otherwise.
  4737. */
  4738. static struct task_struct *detach_one_task(struct lb_env *env)
  4739. {
  4740. struct task_struct *p, *n;
  4741. lockdep_assert_held(&env->src_rq->lock);
  4742. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  4743. if (!can_migrate_task(p, env))
  4744. continue;
  4745. detach_task(p, env);
  4746. /*
  4747. * Right now, this is only the second place where
  4748. * lb_gained[env->idle] is updated (other is detach_tasks)
  4749. * so we can safely collect stats here rather than
  4750. * inside detach_tasks().
  4751. */
  4752. schedstat_inc(env->sd, lb_gained[env->idle]);
  4753. return p;
  4754. }
  4755. return NULL;
  4756. }
  4757. static const unsigned int sched_nr_migrate_break = 32;
  4758. /*
  4759. * detach_tasks() -- tries to detach up to imbalance weighted load from
  4760. * busiest_rq, as part of a balancing operation within domain "sd".
  4761. *
  4762. * Returns number of detached tasks if successful and 0 otherwise.
  4763. */
  4764. static int detach_tasks(struct lb_env *env)
  4765. {
  4766. struct list_head *tasks = &env->src_rq->cfs_tasks;
  4767. struct task_struct *p;
  4768. unsigned long load;
  4769. int detached = 0;
  4770. lockdep_assert_held(&env->src_rq->lock);
  4771. if (env->imbalance <= 0)
  4772. return 0;
  4773. while (!list_empty(tasks)) {
  4774. p = list_first_entry(tasks, struct task_struct, se.group_node);
  4775. env->loop++;
  4776. /* We've more or less seen every task there is, call it quits */
  4777. if (env->loop > env->loop_max)
  4778. break;
  4779. /* take a breather every nr_migrate tasks */
  4780. if (env->loop > env->loop_break) {
  4781. env->loop_break += sched_nr_migrate_break;
  4782. env->flags |= LBF_NEED_BREAK;
  4783. break;
  4784. }
  4785. if (!can_migrate_task(p, env))
  4786. goto next;
  4787. load = task_h_load(p);
  4788. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  4789. goto next;
  4790. if ((load / 2) > env->imbalance)
  4791. goto next;
  4792. detach_task(p, env);
  4793. list_add(&p->se.group_node, &env->tasks);
  4794. detached++;
  4795. env->imbalance -= load;
  4796. #ifdef CONFIG_PREEMPT
  4797. /*
  4798. * NEWIDLE balancing is a source of latency, so preemptible
  4799. * kernels will stop after the first task is detached to minimize
  4800. * the critical section.
  4801. */
  4802. if (env->idle == CPU_NEWLY_IDLE)
  4803. break;
  4804. #endif
  4805. /*
  4806. * We only want to steal up to the prescribed amount of
  4807. * weighted load.
  4808. */
  4809. if (env->imbalance <= 0)
  4810. break;
  4811. continue;
  4812. next:
  4813. list_move_tail(&p->se.group_node, tasks);
  4814. }
  4815. /*
  4816. * Right now, this is one of only two places we collect this stat
  4817. * so we can safely collect detach_one_task() stats here rather
  4818. * than inside detach_one_task().
  4819. */
  4820. schedstat_add(env->sd, lb_gained[env->idle], detached);
  4821. return detached;
  4822. }
  4823. /*
  4824. * attach_task() -- attach the task detached by detach_task() to its new rq.
  4825. */
  4826. static void attach_task(struct rq *rq, struct task_struct *p)
  4827. {
  4828. lockdep_assert_held(&rq->lock);
  4829. BUG_ON(task_rq(p) != rq);
  4830. p->on_rq = TASK_ON_RQ_QUEUED;
  4831. activate_task(rq, p, 0);
  4832. check_preempt_curr(rq, p, 0);
  4833. }
  4834. /*
  4835. * attach_one_task() -- attaches the task returned from detach_one_task() to
  4836. * its new rq.
  4837. */
  4838. static void attach_one_task(struct rq *rq, struct task_struct *p)
  4839. {
  4840. raw_spin_lock(&rq->lock);
  4841. attach_task(rq, p);
  4842. raw_spin_unlock(&rq->lock);
  4843. }
  4844. /*
  4845. * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
  4846. * new rq.
  4847. */
  4848. static void attach_tasks(struct lb_env *env)
  4849. {
  4850. struct list_head *tasks = &env->tasks;
  4851. struct task_struct *p;
  4852. raw_spin_lock(&env->dst_rq->lock);
  4853. while (!list_empty(tasks)) {
  4854. p = list_first_entry(tasks, struct task_struct, se.group_node);
  4855. list_del_init(&p->se.group_node);
  4856. attach_task(env->dst_rq, p);
  4857. }
  4858. raw_spin_unlock(&env->dst_rq->lock);
  4859. }
  4860. #ifdef CONFIG_FAIR_GROUP_SCHED
  4861. /*
  4862. * update tg->load_weight by folding this cpu's load_avg
  4863. */
  4864. static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
  4865. {
  4866. struct sched_entity *se = tg->se[cpu];
  4867. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
  4868. /* throttled entities do not contribute to load */
  4869. if (throttled_hierarchy(cfs_rq))
  4870. return;
  4871. update_cfs_rq_blocked_load(cfs_rq, 1);
  4872. if (se) {
  4873. update_entity_load_avg(se, 1);
  4874. /*
  4875. * We pivot on our runnable average having decayed to zero for
  4876. * list removal. This generally implies that all our children
  4877. * have also been removed (modulo rounding error or bandwidth
  4878. * control); however, such cases are rare and we can fix these
  4879. * at enqueue.
  4880. *
  4881. * TODO: fix up out-of-order children on enqueue.
  4882. */
  4883. if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
  4884. list_del_leaf_cfs_rq(cfs_rq);
  4885. } else {
  4886. struct rq *rq = rq_of(cfs_rq);
  4887. update_rq_runnable_avg(rq, rq->nr_running);
  4888. }
  4889. }
  4890. static void update_blocked_averages(int cpu)
  4891. {
  4892. struct rq *rq = cpu_rq(cpu);
  4893. struct cfs_rq *cfs_rq;
  4894. unsigned long flags;
  4895. raw_spin_lock_irqsave(&rq->lock, flags);
  4896. update_rq_clock(rq);
  4897. /*
  4898. * Iterates the task_group tree in a bottom up fashion, see
  4899. * list_add_leaf_cfs_rq() for details.
  4900. */
  4901. for_each_leaf_cfs_rq(rq, cfs_rq) {
  4902. /*
  4903. * Note: We may want to consider periodically releasing
  4904. * rq->lock about these updates so that creating many task
  4905. * groups does not result in continually extending hold time.
  4906. */
  4907. __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
  4908. }
  4909. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4910. }
  4911. /*
  4912. * Compute the hierarchical load factor for cfs_rq and all its ascendants.
  4913. * This needs to be done in a top-down fashion because the load of a child
  4914. * group is a fraction of its parents load.
  4915. */
  4916. static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
  4917. {
  4918. struct rq *rq = rq_of(cfs_rq);
  4919. struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
  4920. unsigned long now = jiffies;
  4921. unsigned long load;
  4922. if (cfs_rq->last_h_load_update == now)
  4923. return;
  4924. cfs_rq->h_load_next = NULL;
  4925. for_each_sched_entity(se) {
  4926. cfs_rq = cfs_rq_of(se);
  4927. cfs_rq->h_load_next = se;
  4928. if (cfs_rq->last_h_load_update == now)
  4929. break;
  4930. }
  4931. if (!se) {
  4932. cfs_rq->h_load = cfs_rq->runnable_load_avg;
  4933. cfs_rq->last_h_load_update = now;
  4934. }
  4935. while ((se = cfs_rq->h_load_next) != NULL) {
  4936. load = cfs_rq->h_load;
  4937. load = div64_ul(load * se->avg.load_avg_contrib,
  4938. cfs_rq->runnable_load_avg + 1);
  4939. cfs_rq = group_cfs_rq(se);
  4940. cfs_rq->h_load = load;
  4941. cfs_rq->last_h_load_update = now;
  4942. }
  4943. }
  4944. static unsigned long task_h_load(struct task_struct *p)
  4945. {
  4946. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  4947. update_cfs_rq_h_load(cfs_rq);
  4948. return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
  4949. cfs_rq->runnable_load_avg + 1);
  4950. }
  4951. #else
  4952. static inline void update_blocked_averages(int cpu)
  4953. {
  4954. }
  4955. static unsigned long task_h_load(struct task_struct *p)
  4956. {
  4957. return p->se.avg.load_avg_contrib;
  4958. }
  4959. #endif
  4960. /********** Helpers for find_busiest_group ************************/
  4961. enum group_type {
  4962. group_other = 0,
  4963. group_imbalanced,
  4964. group_overloaded,
  4965. };
  4966. /*
  4967. * sg_lb_stats - stats of a sched_group required for load_balancing
  4968. */
  4969. struct sg_lb_stats {
  4970. unsigned long avg_load; /*Avg load across the CPUs of the group */
  4971. unsigned long group_load; /* Total load over the CPUs of the group */
  4972. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  4973. unsigned long load_per_task;
  4974. unsigned long group_capacity;
  4975. unsigned long group_usage; /* Total usage of the group */
  4976. unsigned int sum_nr_running; /* Nr tasks running in the group */
  4977. unsigned int idle_cpus;
  4978. unsigned int group_weight;
  4979. enum group_type group_type;
  4980. int group_no_capacity;
  4981. #ifdef CONFIG_NUMA_BALANCING
  4982. unsigned int nr_numa_running;
  4983. unsigned int nr_preferred_running;
  4984. #endif
  4985. };
  4986. /*
  4987. * sd_lb_stats - Structure to store the statistics of a sched_domain
  4988. * during load balancing.
  4989. */
  4990. struct sd_lb_stats {
  4991. struct sched_group *busiest; /* Busiest group in this sd */
  4992. struct sched_group *local; /* Local group in this sd */
  4993. unsigned long total_load; /* Total load of all groups in sd */
  4994. unsigned long total_capacity; /* Total capacity of all groups in sd */
  4995. unsigned long avg_load; /* Average load across all groups in sd */
  4996. struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
  4997. struct sg_lb_stats local_stat; /* Statistics of the local group */
  4998. };
  4999. static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
  5000. {
  5001. /*
  5002. * Skimp on the clearing to avoid duplicate work. We can avoid clearing
  5003. * local_stat because update_sg_lb_stats() does a full clear/assignment.
  5004. * We must however clear busiest_stat::avg_load because
  5005. * update_sd_pick_busiest() reads this before assignment.
  5006. */
  5007. *sds = (struct sd_lb_stats){
  5008. .busiest = NULL,
  5009. .local = NULL,
  5010. .total_load = 0UL,
  5011. .total_capacity = 0UL,
  5012. .busiest_stat = {
  5013. .avg_load = 0UL,
  5014. .sum_nr_running = 0,
  5015. .group_type = group_other,
  5016. },
  5017. };
  5018. }
  5019. /**
  5020. * get_sd_load_idx - Obtain the load index for a given sched domain.
  5021. * @sd: The sched_domain whose load_idx is to be obtained.
  5022. * @idle: The idle status of the CPU for whose sd load_idx is obtained.
  5023. *
  5024. * Return: The load index.
  5025. */
  5026. static inline int get_sd_load_idx(struct sched_domain *sd,
  5027. enum cpu_idle_type idle)
  5028. {
  5029. int load_idx;
  5030. switch (idle) {
  5031. case CPU_NOT_IDLE:
  5032. load_idx = sd->busy_idx;
  5033. break;
  5034. case CPU_NEWLY_IDLE:
  5035. load_idx = sd->newidle_idx;
  5036. break;
  5037. default:
  5038. load_idx = sd->idle_idx;
  5039. break;
  5040. }
  5041. return load_idx;
  5042. }
  5043. static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
  5044. {
  5045. if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
  5046. return sd->smt_gain / sd->span_weight;
  5047. return SCHED_CAPACITY_SCALE;
  5048. }
  5049. unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
  5050. {
  5051. return default_scale_cpu_capacity(sd, cpu);
  5052. }
  5053. static unsigned long scale_rt_capacity(int cpu)
  5054. {
  5055. struct rq *rq = cpu_rq(cpu);
  5056. u64 total, used, age_stamp, avg;
  5057. s64 delta;
  5058. /*
  5059. * Since we're reading these variables without serialization make sure
  5060. * we read them once before doing sanity checks on them.
  5061. */
  5062. age_stamp = ACCESS_ONCE(rq->age_stamp);
  5063. avg = ACCESS_ONCE(rq->rt_avg);
  5064. delta = __rq_clock_broken(rq) - age_stamp;
  5065. if (unlikely(delta < 0))
  5066. delta = 0;
  5067. total = sched_avg_period() + delta;
  5068. used = div_u64(avg, total);
  5069. if (likely(used < SCHED_CAPACITY_SCALE))
  5070. return SCHED_CAPACITY_SCALE - used;
  5071. return 1;
  5072. }
  5073. static void update_cpu_capacity(struct sched_domain *sd, int cpu)
  5074. {
  5075. unsigned long capacity = SCHED_CAPACITY_SCALE;
  5076. struct sched_group *sdg = sd->groups;
  5077. if (sched_feat(ARCH_CAPACITY))
  5078. capacity *= arch_scale_cpu_capacity(sd, cpu);
  5079. else
  5080. capacity *= default_scale_cpu_capacity(sd, cpu);
  5081. capacity >>= SCHED_CAPACITY_SHIFT;
  5082. cpu_rq(cpu)->cpu_capacity_orig = capacity;
  5083. capacity *= scale_rt_capacity(cpu);
  5084. capacity >>= SCHED_CAPACITY_SHIFT;
  5085. if (!capacity)
  5086. capacity = 1;
  5087. cpu_rq(cpu)->cpu_capacity = capacity;
  5088. sdg->sgc->capacity = capacity;
  5089. }
  5090. void update_group_capacity(struct sched_domain *sd, int cpu)
  5091. {
  5092. struct sched_domain *child = sd->child;
  5093. struct sched_group *group, *sdg = sd->groups;
  5094. unsigned long capacity;
  5095. unsigned long interval;
  5096. interval = msecs_to_jiffies(sd->balance_interval);
  5097. interval = clamp(interval, 1UL, max_load_balance_interval);
  5098. sdg->sgc->next_update = jiffies + interval;
  5099. if (!child) {
  5100. update_cpu_capacity(sd, cpu);
  5101. return;
  5102. }
  5103. capacity = 0;
  5104. if (child->flags & SD_OVERLAP) {
  5105. /*
  5106. * SD_OVERLAP domains cannot assume that child groups
  5107. * span the current group.
  5108. */
  5109. for_each_cpu(cpu, sched_group_cpus(sdg)) {
  5110. struct sched_group_capacity *sgc;
  5111. struct rq *rq = cpu_rq(cpu);
  5112. /*
  5113. * build_sched_domains() -> init_sched_groups_capacity()
  5114. * gets here before we've attached the domains to the
  5115. * runqueues.
  5116. *
  5117. * Use capacity_of(), which is set irrespective of domains
  5118. * in update_cpu_capacity().
  5119. *
  5120. * This avoids capacity from being 0 and
  5121. * causing divide-by-zero issues on boot.
  5122. */
  5123. if (unlikely(!rq->sd)) {
  5124. capacity += capacity_of(cpu);
  5125. continue;
  5126. }
  5127. sgc = rq->sd->groups->sgc;
  5128. capacity += sgc->capacity;
  5129. }
  5130. } else {
  5131. /*
  5132. * !SD_OVERLAP domains can assume that child groups
  5133. * span the current group.
  5134. */
  5135. group = child->groups;
  5136. do {
  5137. capacity += group->sgc->capacity;
  5138. group = group->next;
  5139. } while (group != child->groups);
  5140. }
  5141. sdg->sgc->capacity = capacity;
  5142. }
  5143. /*
  5144. * Check whether the capacity of the rq has been noticeably reduced by side
  5145. * activity. The imbalance_pct is used for the threshold.
  5146. * Return true is the capacity is reduced
  5147. */
  5148. static inline int
  5149. check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
  5150. {
  5151. return ((rq->cpu_capacity * sd->imbalance_pct) <
  5152. (rq->cpu_capacity_orig * 100));
  5153. }
  5154. /*
  5155. * Group imbalance indicates (and tries to solve) the problem where balancing
  5156. * groups is inadequate due to tsk_cpus_allowed() constraints.
  5157. *
  5158. * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
  5159. * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
  5160. * Something like:
  5161. *
  5162. * { 0 1 2 3 } { 4 5 6 7 }
  5163. * * * * *
  5164. *
  5165. * If we were to balance group-wise we'd place two tasks in the first group and
  5166. * two tasks in the second group. Clearly this is undesired as it will overload
  5167. * cpu 3 and leave one of the cpus in the second group unused.
  5168. *
  5169. * The current solution to this issue is detecting the skew in the first group
  5170. * by noticing the lower domain failed to reach balance and had difficulty
  5171. * moving tasks due to affinity constraints.
  5172. *
  5173. * When this is so detected; this group becomes a candidate for busiest; see
  5174. * update_sd_pick_busiest(). And calculate_imbalance() and
  5175. * find_busiest_group() avoid some of the usual balance conditions to allow it
  5176. * to create an effective group imbalance.
  5177. *
  5178. * This is a somewhat tricky proposition since the next run might not find the
  5179. * group imbalance and decide the groups need to be balanced again. A most
  5180. * subtle and fragile situation.
  5181. */
  5182. static inline int sg_imbalanced(struct sched_group *group)
  5183. {
  5184. return group->sgc->imbalance;
  5185. }
  5186. /*
  5187. * group_has_capacity returns true if the group has spare capacity that could
  5188. * be used by some tasks.
  5189. * We consider that a group has spare capacity if the * number of task is
  5190. * smaller than the number of CPUs or if the usage is lower than the available
  5191. * capacity for CFS tasks.
  5192. * For the latter, we use a threshold to stabilize the state, to take into
  5193. * account the variance of the tasks' load and to return true if the available
  5194. * capacity in meaningful for the load balancer.
  5195. * As an example, an available capacity of 1% can appear but it doesn't make
  5196. * any benefit for the load balance.
  5197. */
  5198. static inline bool
  5199. group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
  5200. {
  5201. if (sgs->sum_nr_running < sgs->group_weight)
  5202. return true;
  5203. if ((sgs->group_capacity * 100) >
  5204. (sgs->group_usage * env->sd->imbalance_pct))
  5205. return true;
  5206. return false;
  5207. }
  5208. /*
  5209. * group_is_overloaded returns true if the group has more tasks than it can
  5210. * handle.
  5211. * group_is_overloaded is not equals to !group_has_capacity because a group
  5212. * with the exact right number of tasks, has no more spare capacity but is not
  5213. * overloaded so both group_has_capacity and group_is_overloaded return
  5214. * false.
  5215. */
  5216. static inline bool
  5217. group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
  5218. {
  5219. if (sgs->sum_nr_running <= sgs->group_weight)
  5220. return false;
  5221. if ((sgs->group_capacity * 100) <
  5222. (sgs->group_usage * env->sd->imbalance_pct))
  5223. return true;
  5224. return false;
  5225. }
  5226. static enum group_type group_classify(struct lb_env *env,
  5227. struct sched_group *group,
  5228. struct sg_lb_stats *sgs)
  5229. {
  5230. if (sgs->group_no_capacity)
  5231. return group_overloaded;
  5232. if (sg_imbalanced(group))
  5233. return group_imbalanced;
  5234. return group_other;
  5235. }
  5236. /**
  5237. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  5238. * @env: The load balancing environment.
  5239. * @group: sched_group whose statistics are to be updated.
  5240. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  5241. * @local_group: Does group contain this_cpu.
  5242. * @sgs: variable to hold the statistics for this group.
  5243. * @overload: Indicate more than one runnable task for any CPU.
  5244. */
  5245. static inline void update_sg_lb_stats(struct lb_env *env,
  5246. struct sched_group *group, int load_idx,
  5247. int local_group, struct sg_lb_stats *sgs,
  5248. bool *overload)
  5249. {
  5250. unsigned long load;
  5251. int i;
  5252. memset(sgs, 0, sizeof(*sgs));
  5253. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  5254. struct rq *rq = cpu_rq(i);
  5255. /* Bias balancing toward cpus of our domain */
  5256. if (local_group)
  5257. load = target_load(i, load_idx);
  5258. else
  5259. load = source_load(i, load_idx);
  5260. sgs->group_load += load;
  5261. sgs->group_usage += get_cpu_usage(i);
  5262. sgs->sum_nr_running += rq->cfs.h_nr_running;
  5263. if (rq->nr_running > 1)
  5264. *overload = true;
  5265. #ifdef CONFIG_NUMA_BALANCING
  5266. sgs->nr_numa_running += rq->nr_numa_running;
  5267. sgs->nr_preferred_running += rq->nr_preferred_running;
  5268. #endif
  5269. sgs->sum_weighted_load += weighted_cpuload(i);
  5270. if (idle_cpu(i))
  5271. sgs->idle_cpus++;
  5272. }
  5273. /* Adjust by relative CPU capacity of the group */
  5274. sgs->group_capacity = group->sgc->capacity;
  5275. sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
  5276. if (sgs->sum_nr_running)
  5277. sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  5278. sgs->group_weight = group->group_weight;
  5279. sgs->group_no_capacity = group_is_overloaded(env, sgs);
  5280. sgs->group_type = group_classify(env, group, sgs);
  5281. }
  5282. /**
  5283. * update_sd_pick_busiest - return 1 on busiest group
  5284. * @env: The load balancing environment.
  5285. * @sds: sched_domain statistics
  5286. * @sg: sched_group candidate to be checked for being the busiest
  5287. * @sgs: sched_group statistics
  5288. *
  5289. * Determine if @sg is a busier group than the previously selected
  5290. * busiest group.
  5291. *
  5292. * Return: %true if @sg is a busier group than the previously selected
  5293. * busiest group. %false otherwise.
  5294. */
  5295. static bool update_sd_pick_busiest(struct lb_env *env,
  5296. struct sd_lb_stats *sds,
  5297. struct sched_group *sg,
  5298. struct sg_lb_stats *sgs)
  5299. {
  5300. struct sg_lb_stats *busiest = &sds->busiest_stat;
  5301. if (sgs->group_type > busiest->group_type)
  5302. return true;
  5303. if (sgs->group_type < busiest->group_type)
  5304. return false;
  5305. if (sgs->avg_load <= busiest->avg_load)
  5306. return false;
  5307. /* This is the busiest node in its class. */
  5308. if (!(env->sd->flags & SD_ASYM_PACKING))
  5309. return true;
  5310. /*
  5311. * ASYM_PACKING needs to move all the work to the lowest
  5312. * numbered CPUs in the group, therefore mark all groups
  5313. * higher than ourself as busy.
  5314. */
  5315. if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
  5316. if (!sds->busiest)
  5317. return true;
  5318. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  5319. return true;
  5320. }
  5321. return false;
  5322. }
  5323. #ifdef CONFIG_NUMA_BALANCING
  5324. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  5325. {
  5326. if (sgs->sum_nr_running > sgs->nr_numa_running)
  5327. return regular;
  5328. if (sgs->sum_nr_running > sgs->nr_preferred_running)
  5329. return remote;
  5330. return all;
  5331. }
  5332. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  5333. {
  5334. if (rq->nr_running > rq->nr_numa_running)
  5335. return regular;
  5336. if (rq->nr_running > rq->nr_preferred_running)
  5337. return remote;
  5338. return all;
  5339. }
  5340. #else
  5341. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  5342. {
  5343. return all;
  5344. }
  5345. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  5346. {
  5347. return regular;
  5348. }
  5349. #endif /* CONFIG_NUMA_BALANCING */
  5350. /**
  5351. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  5352. * @env: The load balancing environment.
  5353. * @sds: variable to hold the statistics for this sched_domain.
  5354. */
  5355. static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
  5356. {
  5357. struct sched_domain *child = env->sd->child;
  5358. struct sched_group *sg = env->sd->groups;
  5359. struct sg_lb_stats tmp_sgs;
  5360. int load_idx, prefer_sibling = 0;
  5361. bool overload = false;
  5362. if (child && child->flags & SD_PREFER_SIBLING)
  5363. prefer_sibling = 1;
  5364. load_idx = get_sd_load_idx(env->sd, env->idle);
  5365. do {
  5366. struct sg_lb_stats *sgs = &tmp_sgs;
  5367. int local_group;
  5368. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  5369. if (local_group) {
  5370. sds->local = sg;
  5371. sgs = &sds->local_stat;
  5372. if (env->idle != CPU_NEWLY_IDLE ||
  5373. time_after_eq(jiffies, sg->sgc->next_update))
  5374. update_group_capacity(env->sd, env->dst_cpu);
  5375. }
  5376. update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
  5377. &overload);
  5378. if (local_group)
  5379. goto next_group;
  5380. /*
  5381. * In case the child domain prefers tasks go to siblings
  5382. * first, lower the sg capacity so that we'll try
  5383. * and move all the excess tasks away. We lower the capacity
  5384. * of a group only if the local group has the capacity to fit
  5385. * these excess tasks. The extra check prevents the case where
  5386. * you always pull from the heaviest group when it is already
  5387. * under-utilized (possible with a large weight task outweighs
  5388. * the tasks on the system).
  5389. */
  5390. if (prefer_sibling && sds->local &&
  5391. group_has_capacity(env, &sds->local_stat) &&
  5392. (sgs->sum_nr_running > 1)) {
  5393. sgs->group_no_capacity = 1;
  5394. sgs->group_type = group_overloaded;
  5395. }
  5396. if (update_sd_pick_busiest(env, sds, sg, sgs)) {
  5397. sds->busiest = sg;
  5398. sds->busiest_stat = *sgs;
  5399. }
  5400. next_group:
  5401. /* Now, start updating sd_lb_stats */
  5402. sds->total_load += sgs->group_load;
  5403. sds->total_capacity += sgs->group_capacity;
  5404. sg = sg->next;
  5405. } while (sg != env->sd->groups);
  5406. if (env->sd->flags & SD_NUMA)
  5407. env->fbq_type = fbq_classify_group(&sds->busiest_stat);
  5408. if (!env->sd->parent) {
  5409. /* update overload indicator if we are at root domain */
  5410. if (env->dst_rq->rd->overload != overload)
  5411. env->dst_rq->rd->overload = overload;
  5412. }
  5413. }
  5414. /**
  5415. * check_asym_packing - Check to see if the group is packed into the
  5416. * sched doman.
  5417. *
  5418. * This is primarily intended to used at the sibling level. Some
  5419. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  5420. * case of POWER7, it can move to lower SMT modes only when higher
  5421. * threads are idle. When in lower SMT modes, the threads will
  5422. * perform better since they share less core resources. Hence when we
  5423. * have idle threads, we want them to be the higher ones.
  5424. *
  5425. * This packing function is run on idle threads. It checks to see if
  5426. * the busiest CPU in this domain (core in the P7 case) has a higher
  5427. * CPU number than the packing function is being run on. Here we are
  5428. * assuming lower CPU number will be equivalent to lower a SMT thread
  5429. * number.
  5430. *
  5431. * Return: 1 when packing is required and a task should be moved to
  5432. * this CPU. The amount of the imbalance is returned in *imbalance.
  5433. *
  5434. * @env: The load balancing environment.
  5435. * @sds: Statistics of the sched_domain which is to be packed
  5436. */
  5437. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  5438. {
  5439. int busiest_cpu;
  5440. if (!(env->sd->flags & SD_ASYM_PACKING))
  5441. return 0;
  5442. if (!sds->busiest)
  5443. return 0;
  5444. busiest_cpu = group_first_cpu(sds->busiest);
  5445. if (env->dst_cpu > busiest_cpu)
  5446. return 0;
  5447. env->imbalance = DIV_ROUND_CLOSEST(
  5448. sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
  5449. SCHED_CAPACITY_SCALE);
  5450. return 1;
  5451. }
  5452. /**
  5453. * fix_small_imbalance - Calculate the minor imbalance that exists
  5454. * amongst the groups of a sched_domain, during
  5455. * load balancing.
  5456. * @env: The load balancing environment.
  5457. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  5458. */
  5459. static inline
  5460. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  5461. {
  5462. unsigned long tmp, capa_now = 0, capa_move = 0;
  5463. unsigned int imbn = 2;
  5464. unsigned long scaled_busy_load_per_task;
  5465. struct sg_lb_stats *local, *busiest;
  5466. local = &sds->local_stat;
  5467. busiest = &sds->busiest_stat;
  5468. if (!local->sum_nr_running)
  5469. local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
  5470. else if (busiest->load_per_task > local->load_per_task)
  5471. imbn = 1;
  5472. scaled_busy_load_per_task =
  5473. (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
  5474. busiest->group_capacity;
  5475. if (busiest->avg_load + scaled_busy_load_per_task >=
  5476. local->avg_load + (scaled_busy_load_per_task * imbn)) {
  5477. env->imbalance = busiest->load_per_task;
  5478. return;
  5479. }
  5480. /*
  5481. * OK, we don't have enough imbalance to justify moving tasks,
  5482. * however we may be able to increase total CPU capacity used by
  5483. * moving them.
  5484. */
  5485. capa_now += busiest->group_capacity *
  5486. min(busiest->load_per_task, busiest->avg_load);
  5487. capa_now += local->group_capacity *
  5488. min(local->load_per_task, local->avg_load);
  5489. capa_now /= SCHED_CAPACITY_SCALE;
  5490. /* Amount of load we'd subtract */
  5491. if (busiest->avg_load > scaled_busy_load_per_task) {
  5492. capa_move += busiest->group_capacity *
  5493. min(busiest->load_per_task,
  5494. busiest->avg_load - scaled_busy_load_per_task);
  5495. }
  5496. /* Amount of load we'd add */
  5497. if (busiest->avg_load * busiest->group_capacity <
  5498. busiest->load_per_task * SCHED_CAPACITY_SCALE) {
  5499. tmp = (busiest->avg_load * busiest->group_capacity) /
  5500. local->group_capacity;
  5501. } else {
  5502. tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
  5503. local->group_capacity;
  5504. }
  5505. capa_move += local->group_capacity *
  5506. min(local->load_per_task, local->avg_load + tmp);
  5507. capa_move /= SCHED_CAPACITY_SCALE;
  5508. /* Move if we gain throughput */
  5509. if (capa_move > capa_now)
  5510. env->imbalance = busiest->load_per_task;
  5511. }
  5512. /**
  5513. * calculate_imbalance - Calculate the amount of imbalance present within the
  5514. * groups of a given sched_domain during load balance.
  5515. * @env: load balance environment
  5516. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  5517. */
  5518. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  5519. {
  5520. unsigned long max_pull, load_above_capacity = ~0UL;
  5521. struct sg_lb_stats *local, *busiest;
  5522. local = &sds->local_stat;
  5523. busiest = &sds->busiest_stat;
  5524. if (busiest->group_type == group_imbalanced) {
  5525. /*
  5526. * In the group_imb case we cannot rely on group-wide averages
  5527. * to ensure cpu-load equilibrium, look at wider averages. XXX
  5528. */
  5529. busiest->load_per_task =
  5530. min(busiest->load_per_task, sds->avg_load);
  5531. }
  5532. /*
  5533. * In the presence of smp nice balancing, certain scenarios can have
  5534. * max load less than avg load(as we skip the groups at or below
  5535. * its cpu_capacity, while calculating max_load..)
  5536. */
  5537. if (busiest->avg_load <= sds->avg_load ||
  5538. local->avg_load >= sds->avg_load) {
  5539. env->imbalance = 0;
  5540. return fix_small_imbalance(env, sds);
  5541. }
  5542. /*
  5543. * If there aren't any idle cpus, avoid creating some.
  5544. */
  5545. if (busiest->group_type == group_overloaded &&
  5546. local->group_type == group_overloaded) {
  5547. load_above_capacity = busiest->sum_nr_running *
  5548. SCHED_LOAD_SCALE;
  5549. if (load_above_capacity > busiest->group_capacity)
  5550. load_above_capacity -= busiest->group_capacity;
  5551. else
  5552. load_above_capacity = ~0UL;
  5553. }
  5554. /*
  5555. * We're trying to get all the cpus to the average_load, so we don't
  5556. * want to push ourselves above the average load, nor do we wish to
  5557. * reduce the max loaded cpu below the average load. At the same time,
  5558. * we also don't want to reduce the group load below the group capacity
  5559. * (so that we can implement power-savings policies etc). Thus we look
  5560. * for the minimum possible imbalance.
  5561. */
  5562. max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
  5563. /* How much load to actually move to equalise the imbalance */
  5564. env->imbalance = min(
  5565. max_pull * busiest->group_capacity,
  5566. (sds->avg_load - local->avg_load) * local->group_capacity
  5567. ) / SCHED_CAPACITY_SCALE;
  5568. /*
  5569. * if *imbalance is less than the average load per runnable task
  5570. * there is no guarantee that any tasks will be moved so we'll have
  5571. * a think about bumping its value to force at least one task to be
  5572. * moved
  5573. */
  5574. if (env->imbalance < busiest->load_per_task)
  5575. return fix_small_imbalance(env, sds);
  5576. }
  5577. /******* find_busiest_group() helpers end here *********************/
  5578. /**
  5579. * find_busiest_group - Returns the busiest group within the sched_domain
  5580. * if there is an imbalance. If there isn't an imbalance, and
  5581. * the user has opted for power-savings, it returns a group whose
  5582. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  5583. * such a group exists.
  5584. *
  5585. * Also calculates the amount of weighted load which should be moved
  5586. * to restore balance.
  5587. *
  5588. * @env: The load balancing environment.
  5589. *
  5590. * Return: - The busiest group if imbalance exists.
  5591. * - If no imbalance and user has opted for power-savings balance,
  5592. * return the least loaded group whose CPUs can be
  5593. * put to idle by rebalancing its tasks onto our group.
  5594. */
  5595. static struct sched_group *find_busiest_group(struct lb_env *env)
  5596. {
  5597. struct sg_lb_stats *local, *busiest;
  5598. struct sd_lb_stats sds;
  5599. init_sd_lb_stats(&sds);
  5600. /*
  5601. * Compute the various statistics relavent for load balancing at
  5602. * this level.
  5603. */
  5604. update_sd_lb_stats(env, &sds);
  5605. local = &sds.local_stat;
  5606. busiest = &sds.busiest_stat;
  5607. /* ASYM feature bypasses nice load balance check */
  5608. if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
  5609. check_asym_packing(env, &sds))
  5610. return sds.busiest;
  5611. /* There is no busy sibling group to pull tasks from */
  5612. if (!sds.busiest || busiest->sum_nr_running == 0)
  5613. goto out_balanced;
  5614. sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
  5615. / sds.total_capacity;
  5616. /*
  5617. * If the busiest group is imbalanced the below checks don't
  5618. * work because they assume all things are equal, which typically
  5619. * isn't true due to cpus_allowed constraints and the like.
  5620. */
  5621. if (busiest->group_type == group_imbalanced)
  5622. goto force_balance;
  5623. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  5624. if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
  5625. busiest->group_no_capacity)
  5626. goto force_balance;
  5627. /*
  5628. * If the local group is busier than the selected busiest group
  5629. * don't try and pull any tasks.
  5630. */
  5631. if (local->avg_load >= busiest->avg_load)
  5632. goto out_balanced;
  5633. /*
  5634. * Don't pull any tasks if this group is already above the domain
  5635. * average load.
  5636. */
  5637. if (local->avg_load >= sds.avg_load)
  5638. goto out_balanced;
  5639. if (env->idle == CPU_IDLE) {
  5640. /*
  5641. * This cpu is idle. If the busiest group is not overloaded
  5642. * and there is no imbalance between this and busiest group
  5643. * wrt idle cpus, it is balanced. The imbalance becomes
  5644. * significant if the diff is greater than 1 otherwise we
  5645. * might end up to just move the imbalance on another group
  5646. */
  5647. if ((busiest->group_type != group_overloaded) &&
  5648. (local->idle_cpus <= (busiest->idle_cpus + 1)))
  5649. goto out_balanced;
  5650. } else {
  5651. /*
  5652. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  5653. * imbalance_pct to be conservative.
  5654. */
  5655. if (100 * busiest->avg_load <=
  5656. env->sd->imbalance_pct * local->avg_load)
  5657. goto out_balanced;
  5658. }
  5659. force_balance:
  5660. /* Looks like there is an imbalance. Compute it */
  5661. calculate_imbalance(env, &sds);
  5662. return sds.busiest;
  5663. out_balanced:
  5664. env->imbalance = 0;
  5665. return NULL;
  5666. }
  5667. /*
  5668. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  5669. */
  5670. static struct rq *find_busiest_queue(struct lb_env *env,
  5671. struct sched_group *group)
  5672. {
  5673. struct rq *busiest = NULL, *rq;
  5674. unsigned long busiest_load = 0, busiest_capacity = 1;
  5675. int i;
  5676. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  5677. unsigned long capacity, wl;
  5678. enum fbq_type rt;
  5679. rq = cpu_rq(i);
  5680. rt = fbq_classify_rq(rq);
  5681. /*
  5682. * We classify groups/runqueues into three groups:
  5683. * - regular: there are !numa tasks
  5684. * - remote: there are numa tasks that run on the 'wrong' node
  5685. * - all: there is no distinction
  5686. *
  5687. * In order to avoid migrating ideally placed numa tasks,
  5688. * ignore those when there's better options.
  5689. *
  5690. * If we ignore the actual busiest queue to migrate another
  5691. * task, the next balance pass can still reduce the busiest
  5692. * queue by moving tasks around inside the node.
  5693. *
  5694. * If we cannot move enough load due to this classification
  5695. * the next pass will adjust the group classification and
  5696. * allow migration of more tasks.
  5697. *
  5698. * Both cases only affect the total convergence complexity.
  5699. */
  5700. if (rt > env->fbq_type)
  5701. continue;
  5702. capacity = capacity_of(i);
  5703. wl = weighted_cpuload(i);
  5704. /*
  5705. * When comparing with imbalance, use weighted_cpuload()
  5706. * which is not scaled with the cpu capacity.
  5707. */
  5708. if (rq->nr_running == 1 && wl > env->imbalance &&
  5709. !check_cpu_capacity(rq, env->sd))
  5710. continue;
  5711. /*
  5712. * For the load comparisons with the other cpu's, consider
  5713. * the weighted_cpuload() scaled with the cpu capacity, so
  5714. * that the load can be moved away from the cpu that is
  5715. * potentially running at a lower capacity.
  5716. *
  5717. * Thus we're looking for max(wl_i / capacity_i), crosswise
  5718. * multiplication to rid ourselves of the division works out
  5719. * to: wl_i * capacity_j > wl_j * capacity_i; where j is
  5720. * our previous maximum.
  5721. */
  5722. if (wl * busiest_capacity > busiest_load * capacity) {
  5723. busiest_load = wl;
  5724. busiest_capacity = capacity;
  5725. busiest = rq;
  5726. }
  5727. }
  5728. return busiest;
  5729. }
  5730. /*
  5731. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  5732. * so long as it is large enough.
  5733. */
  5734. #define MAX_PINNED_INTERVAL 512
  5735. /* Working cpumask for load_balance and load_balance_newidle. */
  5736. DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
  5737. static int need_active_balance(struct lb_env *env)
  5738. {
  5739. struct sched_domain *sd = env->sd;
  5740. if (env->idle == CPU_NEWLY_IDLE) {
  5741. /*
  5742. * ASYM_PACKING needs to force migrate tasks from busy but
  5743. * higher numbered CPUs in order to pack all tasks in the
  5744. * lowest numbered CPUs.
  5745. */
  5746. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  5747. return 1;
  5748. }
  5749. /*
  5750. * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
  5751. * It's worth migrating the task if the src_cpu's capacity is reduced
  5752. * because of other sched_class or IRQs if more capacity stays
  5753. * available on dst_cpu.
  5754. */
  5755. if ((env->idle != CPU_NOT_IDLE) &&
  5756. (env->src_rq->cfs.h_nr_running == 1)) {
  5757. if ((check_cpu_capacity(env->src_rq, sd)) &&
  5758. (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
  5759. return 1;
  5760. }
  5761. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  5762. }
  5763. static int active_load_balance_cpu_stop(void *data);
  5764. static int should_we_balance(struct lb_env *env)
  5765. {
  5766. struct sched_group *sg = env->sd->groups;
  5767. struct cpumask *sg_cpus, *sg_mask;
  5768. int cpu, balance_cpu = -1;
  5769. /*
  5770. * In the newly idle case, we will allow all the cpu's
  5771. * to do the newly idle load balance.
  5772. */
  5773. if (env->idle == CPU_NEWLY_IDLE)
  5774. return 1;
  5775. sg_cpus = sched_group_cpus(sg);
  5776. sg_mask = sched_group_mask(sg);
  5777. /* Try to find first idle cpu */
  5778. for_each_cpu_and(cpu, sg_cpus, env->cpus) {
  5779. if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
  5780. continue;
  5781. balance_cpu = cpu;
  5782. break;
  5783. }
  5784. if (balance_cpu == -1)
  5785. balance_cpu = group_balance_cpu(sg);
  5786. /*
  5787. * First idle cpu or the first cpu(busiest) in this sched group
  5788. * is eligible for doing load balancing at this and above domains.
  5789. */
  5790. return balance_cpu == env->dst_cpu;
  5791. }
  5792. /*
  5793. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  5794. * tasks if there is an imbalance.
  5795. */
  5796. static int load_balance(int this_cpu, struct rq *this_rq,
  5797. struct sched_domain *sd, enum cpu_idle_type idle,
  5798. int *continue_balancing)
  5799. {
  5800. int ld_moved, cur_ld_moved, active_balance = 0;
  5801. struct sched_domain *sd_parent = sd->parent;
  5802. struct sched_group *group;
  5803. struct rq *busiest;
  5804. unsigned long flags;
  5805. struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
  5806. struct lb_env env = {
  5807. .sd = sd,
  5808. .dst_cpu = this_cpu,
  5809. .dst_rq = this_rq,
  5810. .dst_grpmask = sched_group_cpus(sd->groups),
  5811. .idle = idle,
  5812. .loop_break = sched_nr_migrate_break,
  5813. .cpus = cpus,
  5814. .fbq_type = all,
  5815. .tasks = LIST_HEAD_INIT(env.tasks),
  5816. };
  5817. /*
  5818. * For NEWLY_IDLE load_balancing, we don't need to consider
  5819. * other cpus in our group
  5820. */
  5821. if (idle == CPU_NEWLY_IDLE)
  5822. env.dst_grpmask = NULL;
  5823. cpumask_copy(cpus, cpu_active_mask);
  5824. schedstat_inc(sd, lb_count[idle]);
  5825. redo:
  5826. if (!should_we_balance(&env)) {
  5827. *continue_balancing = 0;
  5828. goto out_balanced;
  5829. }
  5830. group = find_busiest_group(&env);
  5831. if (!group) {
  5832. schedstat_inc(sd, lb_nobusyg[idle]);
  5833. goto out_balanced;
  5834. }
  5835. busiest = find_busiest_queue(&env, group);
  5836. if (!busiest) {
  5837. schedstat_inc(sd, lb_nobusyq[idle]);
  5838. goto out_balanced;
  5839. }
  5840. BUG_ON(busiest == env.dst_rq);
  5841. schedstat_add(sd, lb_imbalance[idle], env.imbalance);
  5842. env.src_cpu = busiest->cpu;
  5843. env.src_rq = busiest;
  5844. ld_moved = 0;
  5845. if (busiest->nr_running > 1) {
  5846. /*
  5847. * Attempt to move tasks. If find_busiest_group has found
  5848. * an imbalance but busiest->nr_running <= 1, the group is
  5849. * still unbalanced. ld_moved simply stays zero, so it is
  5850. * correctly treated as an imbalance.
  5851. */
  5852. env.flags |= LBF_ALL_PINNED;
  5853. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  5854. more_balance:
  5855. raw_spin_lock_irqsave(&busiest->lock, flags);
  5856. /*
  5857. * cur_ld_moved - load moved in current iteration
  5858. * ld_moved - cumulative load moved across iterations
  5859. */
  5860. cur_ld_moved = detach_tasks(&env);
  5861. /*
  5862. * We've detached some tasks from busiest_rq. Every
  5863. * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
  5864. * unlock busiest->lock, and we are able to be sure
  5865. * that nobody can manipulate the tasks in parallel.
  5866. * See task_rq_lock() family for the details.
  5867. */
  5868. raw_spin_unlock(&busiest->lock);
  5869. if (cur_ld_moved) {
  5870. attach_tasks(&env);
  5871. ld_moved += cur_ld_moved;
  5872. }
  5873. local_irq_restore(flags);
  5874. if (env.flags & LBF_NEED_BREAK) {
  5875. env.flags &= ~LBF_NEED_BREAK;
  5876. goto more_balance;
  5877. }
  5878. /*
  5879. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  5880. * us and move them to an alternate dst_cpu in our sched_group
  5881. * where they can run. The upper limit on how many times we
  5882. * iterate on same src_cpu is dependent on number of cpus in our
  5883. * sched_group.
  5884. *
  5885. * This changes load balance semantics a bit on who can move
  5886. * load to a given_cpu. In addition to the given_cpu itself
  5887. * (or a ilb_cpu acting on its behalf where given_cpu is
  5888. * nohz-idle), we now have balance_cpu in a position to move
  5889. * load to given_cpu. In rare situations, this may cause
  5890. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  5891. * _independently_ and at _same_ time to move some load to
  5892. * given_cpu) causing exceess load to be moved to given_cpu.
  5893. * This however should not happen so much in practice and
  5894. * moreover subsequent load balance cycles should correct the
  5895. * excess load moved.
  5896. */
  5897. if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
  5898. /* Prevent to re-select dst_cpu via env's cpus */
  5899. cpumask_clear_cpu(env.dst_cpu, env.cpus);
  5900. env.dst_rq = cpu_rq(env.new_dst_cpu);
  5901. env.dst_cpu = env.new_dst_cpu;
  5902. env.flags &= ~LBF_DST_PINNED;
  5903. env.loop = 0;
  5904. env.loop_break = sched_nr_migrate_break;
  5905. /*
  5906. * Go back to "more_balance" rather than "redo" since we
  5907. * need to continue with same src_cpu.
  5908. */
  5909. goto more_balance;
  5910. }
  5911. /*
  5912. * We failed to reach balance because of affinity.
  5913. */
  5914. if (sd_parent) {
  5915. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  5916. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
  5917. *group_imbalance = 1;
  5918. }
  5919. /* All tasks on this runqueue were pinned by CPU affinity */
  5920. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  5921. cpumask_clear_cpu(cpu_of(busiest), cpus);
  5922. if (!cpumask_empty(cpus)) {
  5923. env.loop = 0;
  5924. env.loop_break = sched_nr_migrate_break;
  5925. goto redo;
  5926. }
  5927. goto out_all_pinned;
  5928. }
  5929. }
  5930. if (!ld_moved) {
  5931. schedstat_inc(sd, lb_failed[idle]);
  5932. /*
  5933. * Increment the failure counter only on periodic balance.
  5934. * We do not want newidle balance, which can be very
  5935. * frequent, pollute the failure counter causing
  5936. * excessive cache_hot migrations and active balances.
  5937. */
  5938. if (idle != CPU_NEWLY_IDLE)
  5939. sd->nr_balance_failed++;
  5940. if (need_active_balance(&env)) {
  5941. raw_spin_lock_irqsave(&busiest->lock, flags);
  5942. /* don't kick the active_load_balance_cpu_stop,
  5943. * if the curr task on busiest cpu can't be
  5944. * moved to this_cpu
  5945. */
  5946. if (!cpumask_test_cpu(this_cpu,
  5947. tsk_cpus_allowed(busiest->curr))) {
  5948. raw_spin_unlock_irqrestore(&busiest->lock,
  5949. flags);
  5950. env.flags |= LBF_ALL_PINNED;
  5951. goto out_one_pinned;
  5952. }
  5953. /*
  5954. * ->active_balance synchronizes accesses to
  5955. * ->active_balance_work. Once set, it's cleared
  5956. * only after active load balance is finished.
  5957. */
  5958. if (!busiest->active_balance) {
  5959. busiest->active_balance = 1;
  5960. busiest->push_cpu = this_cpu;
  5961. active_balance = 1;
  5962. }
  5963. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  5964. if (active_balance) {
  5965. stop_one_cpu_nowait(cpu_of(busiest),
  5966. active_load_balance_cpu_stop, busiest,
  5967. &busiest->active_balance_work);
  5968. }
  5969. /*
  5970. * We've kicked active balancing, reset the failure
  5971. * counter.
  5972. */
  5973. sd->nr_balance_failed = sd->cache_nice_tries+1;
  5974. }
  5975. } else
  5976. sd->nr_balance_failed = 0;
  5977. if (likely(!active_balance)) {
  5978. /* We were unbalanced, so reset the balancing interval */
  5979. sd->balance_interval = sd->min_interval;
  5980. } else {
  5981. /*
  5982. * If we've begun active balancing, start to back off. This
  5983. * case may not be covered by the all_pinned logic if there
  5984. * is only 1 task on the busy runqueue (because we don't call
  5985. * detach_tasks).
  5986. */
  5987. if (sd->balance_interval < sd->max_interval)
  5988. sd->balance_interval *= 2;
  5989. }
  5990. goto out;
  5991. out_balanced:
  5992. /*
  5993. * We reach balance although we may have faced some affinity
  5994. * constraints. Clear the imbalance flag if it was set.
  5995. */
  5996. if (sd_parent) {
  5997. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  5998. if (*group_imbalance)
  5999. *group_imbalance = 0;
  6000. }
  6001. out_all_pinned:
  6002. /*
  6003. * We reach balance because all tasks are pinned at this level so
  6004. * we can't migrate them. Let the imbalance flag set so parent level
  6005. * can try to migrate them.
  6006. */
  6007. schedstat_inc(sd, lb_balanced[idle]);
  6008. sd->nr_balance_failed = 0;
  6009. out_one_pinned:
  6010. /* tune up the balancing interval */
  6011. if (((env.flags & LBF_ALL_PINNED) &&
  6012. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  6013. (sd->balance_interval < sd->max_interval))
  6014. sd->balance_interval *= 2;
  6015. ld_moved = 0;
  6016. out:
  6017. return ld_moved;
  6018. }
  6019. static inline unsigned long
  6020. get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
  6021. {
  6022. unsigned long interval = sd->balance_interval;
  6023. if (cpu_busy)
  6024. interval *= sd->busy_factor;
  6025. /* scale ms to jiffies */
  6026. interval = msecs_to_jiffies(interval);
  6027. interval = clamp(interval, 1UL, max_load_balance_interval);
  6028. return interval;
  6029. }
  6030. static inline void
  6031. update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
  6032. {
  6033. unsigned long interval, next;
  6034. interval = get_sd_balance_interval(sd, cpu_busy);
  6035. next = sd->last_balance + interval;
  6036. if (time_after(*next_balance, next))
  6037. *next_balance = next;
  6038. }
  6039. /*
  6040. * idle_balance is called by schedule() if this_cpu is about to become
  6041. * idle. Attempts to pull tasks from other CPUs.
  6042. */
  6043. static int idle_balance(struct rq *this_rq)
  6044. {
  6045. unsigned long next_balance = jiffies + HZ;
  6046. int this_cpu = this_rq->cpu;
  6047. struct sched_domain *sd;
  6048. int pulled_task = 0;
  6049. u64 curr_cost = 0;
  6050. idle_enter_fair(this_rq);
  6051. /*
  6052. * We must set idle_stamp _before_ calling idle_balance(), such that we
  6053. * measure the duration of idle_balance() as idle time.
  6054. */
  6055. this_rq->idle_stamp = rq_clock(this_rq);
  6056. if (this_rq->avg_idle < sysctl_sched_migration_cost ||
  6057. !this_rq->rd->overload) {
  6058. rcu_read_lock();
  6059. sd = rcu_dereference_check_sched_domain(this_rq->sd);
  6060. if (sd)
  6061. update_next_balance(sd, 0, &next_balance);
  6062. rcu_read_unlock();
  6063. goto out;
  6064. }
  6065. /*
  6066. * Drop the rq->lock, but keep IRQ/preempt disabled.
  6067. */
  6068. raw_spin_unlock(&this_rq->lock);
  6069. update_blocked_averages(this_cpu);
  6070. rcu_read_lock();
  6071. for_each_domain(this_cpu, sd) {
  6072. int continue_balancing = 1;
  6073. u64 t0, domain_cost;
  6074. if (!(sd->flags & SD_LOAD_BALANCE))
  6075. continue;
  6076. if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
  6077. update_next_balance(sd, 0, &next_balance);
  6078. break;
  6079. }
  6080. if (sd->flags & SD_BALANCE_NEWIDLE) {
  6081. t0 = sched_clock_cpu(this_cpu);
  6082. pulled_task = load_balance(this_cpu, this_rq,
  6083. sd, CPU_NEWLY_IDLE,
  6084. &continue_balancing);
  6085. domain_cost = sched_clock_cpu(this_cpu) - t0;
  6086. if (domain_cost > sd->max_newidle_lb_cost)
  6087. sd->max_newidle_lb_cost = domain_cost;
  6088. curr_cost += domain_cost;
  6089. }
  6090. update_next_balance(sd, 0, &next_balance);
  6091. /*
  6092. * Stop searching for tasks to pull if there are
  6093. * now runnable tasks on this rq.
  6094. */
  6095. if (pulled_task || this_rq->nr_running > 0)
  6096. break;
  6097. }
  6098. rcu_read_unlock();
  6099. raw_spin_lock(&this_rq->lock);
  6100. if (curr_cost > this_rq->max_idle_balance_cost)
  6101. this_rq->max_idle_balance_cost = curr_cost;
  6102. /*
  6103. * While browsing the domains, we released the rq lock, a task could
  6104. * have been enqueued in the meantime. Since we're not going idle,
  6105. * pretend we pulled a task.
  6106. */
  6107. if (this_rq->cfs.h_nr_running && !pulled_task)
  6108. pulled_task = 1;
  6109. out:
  6110. /* Move the next balance forward */
  6111. if (time_after(this_rq->next_balance, next_balance))
  6112. this_rq->next_balance = next_balance;
  6113. /* Is there a task of a high priority class? */
  6114. if (this_rq->nr_running != this_rq->cfs.h_nr_running)
  6115. pulled_task = -1;
  6116. if (pulled_task) {
  6117. idle_exit_fair(this_rq);
  6118. this_rq->idle_stamp = 0;
  6119. }
  6120. return pulled_task;
  6121. }
  6122. /*
  6123. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  6124. * running tasks off the busiest CPU onto idle CPUs. It requires at
  6125. * least 1 task to be running on each physical CPU where possible, and
  6126. * avoids physical / logical imbalances.
  6127. */
  6128. static int active_load_balance_cpu_stop(void *data)
  6129. {
  6130. struct rq *busiest_rq = data;
  6131. int busiest_cpu = cpu_of(busiest_rq);
  6132. int target_cpu = busiest_rq->push_cpu;
  6133. struct rq *target_rq = cpu_rq(target_cpu);
  6134. struct sched_domain *sd;
  6135. struct task_struct *p = NULL;
  6136. raw_spin_lock_irq(&busiest_rq->lock);
  6137. /* make sure the requested cpu hasn't gone down in the meantime */
  6138. if (unlikely(busiest_cpu != smp_processor_id() ||
  6139. !busiest_rq->active_balance))
  6140. goto out_unlock;
  6141. /* Is there any task to move? */
  6142. if (busiest_rq->nr_running <= 1)
  6143. goto out_unlock;
  6144. /*
  6145. * This condition is "impossible", if it occurs
  6146. * we need to fix it. Originally reported by
  6147. * Bjorn Helgaas on a 128-cpu setup.
  6148. */
  6149. BUG_ON(busiest_rq == target_rq);
  6150. /* Search for an sd spanning us and the target CPU. */
  6151. rcu_read_lock();
  6152. for_each_domain(target_cpu, sd) {
  6153. if ((sd->flags & SD_LOAD_BALANCE) &&
  6154. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  6155. break;
  6156. }
  6157. if (likely(sd)) {
  6158. struct lb_env env = {
  6159. .sd = sd,
  6160. .dst_cpu = target_cpu,
  6161. .dst_rq = target_rq,
  6162. .src_cpu = busiest_rq->cpu,
  6163. .src_rq = busiest_rq,
  6164. .idle = CPU_IDLE,
  6165. };
  6166. schedstat_inc(sd, alb_count);
  6167. p = detach_one_task(&env);
  6168. if (p)
  6169. schedstat_inc(sd, alb_pushed);
  6170. else
  6171. schedstat_inc(sd, alb_failed);
  6172. }
  6173. rcu_read_unlock();
  6174. out_unlock:
  6175. busiest_rq->active_balance = 0;
  6176. raw_spin_unlock(&busiest_rq->lock);
  6177. if (p)
  6178. attach_one_task(target_rq, p);
  6179. local_irq_enable();
  6180. return 0;
  6181. }
  6182. static inline int on_null_domain(struct rq *rq)
  6183. {
  6184. return unlikely(!rcu_dereference_sched(rq->sd));
  6185. }
  6186. #ifdef CONFIG_NO_HZ_COMMON
  6187. /*
  6188. * idle load balancing details
  6189. * - When one of the busy CPUs notice that there may be an idle rebalancing
  6190. * needed, they will kick the idle load balancer, which then does idle
  6191. * load balancing for all the idle CPUs.
  6192. */
  6193. static struct {
  6194. cpumask_var_t idle_cpus_mask;
  6195. atomic_t nr_cpus;
  6196. unsigned long next_balance; /* in jiffy units */
  6197. } nohz ____cacheline_aligned;
  6198. static inline int find_new_ilb(void)
  6199. {
  6200. int ilb = cpumask_first(nohz.idle_cpus_mask);
  6201. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  6202. return ilb;
  6203. return nr_cpu_ids;
  6204. }
  6205. /*
  6206. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  6207. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  6208. * CPU (if there is one).
  6209. */
  6210. static void nohz_balancer_kick(void)
  6211. {
  6212. int ilb_cpu;
  6213. nohz.next_balance++;
  6214. ilb_cpu = find_new_ilb();
  6215. if (ilb_cpu >= nr_cpu_ids)
  6216. return;
  6217. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  6218. return;
  6219. /*
  6220. * Use smp_send_reschedule() instead of resched_cpu().
  6221. * This way we generate a sched IPI on the target cpu which
  6222. * is idle. And the softirq performing nohz idle load balance
  6223. * will be run before returning from the IPI.
  6224. */
  6225. smp_send_reschedule(ilb_cpu);
  6226. return;
  6227. }
  6228. static inline void nohz_balance_exit_idle(int cpu)
  6229. {
  6230. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  6231. /*
  6232. * Completely isolated CPUs don't ever set, so we must test.
  6233. */
  6234. if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
  6235. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  6236. atomic_dec(&nohz.nr_cpus);
  6237. }
  6238. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  6239. }
  6240. }
  6241. static inline void set_cpu_sd_state_busy(void)
  6242. {
  6243. struct sched_domain *sd;
  6244. int cpu = smp_processor_id();
  6245. rcu_read_lock();
  6246. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  6247. if (!sd || !sd->nohz_idle)
  6248. goto unlock;
  6249. sd->nohz_idle = 0;
  6250. atomic_inc(&sd->groups->sgc->nr_busy_cpus);
  6251. unlock:
  6252. rcu_read_unlock();
  6253. }
  6254. void set_cpu_sd_state_idle(void)
  6255. {
  6256. struct sched_domain *sd;
  6257. int cpu = smp_processor_id();
  6258. rcu_read_lock();
  6259. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  6260. if (!sd || sd->nohz_idle)
  6261. goto unlock;
  6262. sd->nohz_idle = 1;
  6263. atomic_dec(&sd->groups->sgc->nr_busy_cpus);
  6264. unlock:
  6265. rcu_read_unlock();
  6266. }
  6267. /*
  6268. * This routine will record that the cpu is going idle with tick stopped.
  6269. * This info will be used in performing idle load balancing in the future.
  6270. */
  6271. void nohz_balance_enter_idle(int cpu)
  6272. {
  6273. /*
  6274. * If this cpu is going down, then nothing needs to be done.
  6275. */
  6276. if (!cpu_active(cpu))
  6277. return;
  6278. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  6279. return;
  6280. /*
  6281. * If we're a completely isolated CPU, we don't play.
  6282. */
  6283. if (on_null_domain(cpu_rq(cpu)))
  6284. return;
  6285. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  6286. atomic_inc(&nohz.nr_cpus);
  6287. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  6288. }
  6289. static int sched_ilb_notifier(struct notifier_block *nfb,
  6290. unsigned long action, void *hcpu)
  6291. {
  6292. switch (action & ~CPU_TASKS_FROZEN) {
  6293. case CPU_DYING:
  6294. nohz_balance_exit_idle(smp_processor_id());
  6295. return NOTIFY_OK;
  6296. default:
  6297. return NOTIFY_DONE;
  6298. }
  6299. }
  6300. #endif
  6301. static DEFINE_SPINLOCK(balancing);
  6302. /*
  6303. * Scale the max load_balance interval with the number of CPUs in the system.
  6304. * This trades load-balance latency on larger machines for less cross talk.
  6305. */
  6306. void update_max_interval(void)
  6307. {
  6308. max_load_balance_interval = HZ*num_online_cpus()/10;
  6309. }
  6310. /*
  6311. * It checks each scheduling domain to see if it is due to be balanced,
  6312. * and initiates a balancing operation if so.
  6313. *
  6314. * Balancing parameters are set up in init_sched_domains.
  6315. */
  6316. static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
  6317. {
  6318. int continue_balancing = 1;
  6319. int cpu = rq->cpu;
  6320. unsigned long interval;
  6321. struct sched_domain *sd;
  6322. /* Earliest time when we have to do rebalance again */
  6323. unsigned long next_balance = jiffies + 60*HZ;
  6324. int update_next_balance = 0;
  6325. int need_serialize, need_decay = 0;
  6326. u64 max_cost = 0;
  6327. update_blocked_averages(cpu);
  6328. rcu_read_lock();
  6329. for_each_domain(cpu, sd) {
  6330. /*
  6331. * Decay the newidle max times here because this is a regular
  6332. * visit to all the domains. Decay ~1% per second.
  6333. */
  6334. if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
  6335. sd->max_newidle_lb_cost =
  6336. (sd->max_newidle_lb_cost * 253) / 256;
  6337. sd->next_decay_max_lb_cost = jiffies + HZ;
  6338. need_decay = 1;
  6339. }
  6340. max_cost += sd->max_newidle_lb_cost;
  6341. if (!(sd->flags & SD_LOAD_BALANCE))
  6342. continue;
  6343. /*
  6344. * Stop the load balance at this level. There is another
  6345. * CPU in our sched group which is doing load balancing more
  6346. * actively.
  6347. */
  6348. if (!continue_balancing) {
  6349. if (need_decay)
  6350. continue;
  6351. break;
  6352. }
  6353. interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
  6354. need_serialize = sd->flags & SD_SERIALIZE;
  6355. if (need_serialize) {
  6356. if (!spin_trylock(&balancing))
  6357. goto out;
  6358. }
  6359. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  6360. if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
  6361. /*
  6362. * The LBF_DST_PINNED logic could have changed
  6363. * env->dst_cpu, so we can't know our idle
  6364. * state even if we migrated tasks. Update it.
  6365. */
  6366. idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
  6367. }
  6368. sd->last_balance = jiffies;
  6369. interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
  6370. }
  6371. if (need_serialize)
  6372. spin_unlock(&balancing);
  6373. out:
  6374. if (time_after(next_balance, sd->last_balance + interval)) {
  6375. next_balance = sd->last_balance + interval;
  6376. update_next_balance = 1;
  6377. }
  6378. }
  6379. if (need_decay) {
  6380. /*
  6381. * Ensure the rq-wide value also decays but keep it at a
  6382. * reasonable floor to avoid funnies with rq->avg_idle.
  6383. */
  6384. rq->max_idle_balance_cost =
  6385. max((u64)sysctl_sched_migration_cost, max_cost);
  6386. }
  6387. rcu_read_unlock();
  6388. /*
  6389. * next_balance will be updated only when there is a need.
  6390. * When the cpu is attached to null domain for ex, it will not be
  6391. * updated.
  6392. */
  6393. if (likely(update_next_balance))
  6394. rq->next_balance = next_balance;
  6395. }
  6396. #ifdef CONFIG_NO_HZ_COMMON
  6397. /*
  6398. * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
  6399. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  6400. */
  6401. static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
  6402. {
  6403. int this_cpu = this_rq->cpu;
  6404. struct rq *rq;
  6405. int balance_cpu;
  6406. if (idle != CPU_IDLE ||
  6407. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  6408. goto end;
  6409. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  6410. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  6411. continue;
  6412. /*
  6413. * If this cpu gets work to do, stop the load balancing
  6414. * work being done for other cpus. Next load
  6415. * balancing owner will pick it up.
  6416. */
  6417. if (need_resched())
  6418. break;
  6419. rq = cpu_rq(balance_cpu);
  6420. /*
  6421. * If time for next balance is due,
  6422. * do the balance.
  6423. */
  6424. if (time_after_eq(jiffies, rq->next_balance)) {
  6425. raw_spin_lock_irq(&rq->lock);
  6426. update_rq_clock(rq);
  6427. update_idle_cpu_load(rq);
  6428. raw_spin_unlock_irq(&rq->lock);
  6429. rebalance_domains(rq, CPU_IDLE);
  6430. }
  6431. if (time_after(this_rq->next_balance, rq->next_balance))
  6432. this_rq->next_balance = rq->next_balance;
  6433. }
  6434. nohz.next_balance = this_rq->next_balance;
  6435. end:
  6436. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  6437. }
  6438. /*
  6439. * Current heuristic for kicking the idle load balancer in the presence
  6440. * of an idle cpu in the system.
  6441. * - This rq has more than one task.
  6442. * - This rq has at least one CFS task and the capacity of the CPU is
  6443. * significantly reduced because of RT tasks or IRQs.
  6444. * - At parent of LLC scheduler domain level, this cpu's scheduler group has
  6445. * multiple busy cpu.
  6446. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  6447. * domain span are idle.
  6448. */
  6449. static inline bool nohz_kick_needed(struct rq *rq)
  6450. {
  6451. unsigned long now = jiffies;
  6452. struct sched_domain *sd;
  6453. struct sched_group_capacity *sgc;
  6454. int nr_busy, cpu = rq->cpu;
  6455. bool kick = false;
  6456. if (unlikely(rq->idle_balance))
  6457. return false;
  6458. /*
  6459. * We may be recently in ticked or tickless idle mode. At the first
  6460. * busy tick after returning from idle, we will update the busy stats.
  6461. */
  6462. set_cpu_sd_state_busy();
  6463. nohz_balance_exit_idle(cpu);
  6464. /*
  6465. * None are in tickless mode and hence no need for NOHZ idle load
  6466. * balancing.
  6467. */
  6468. if (likely(!atomic_read(&nohz.nr_cpus)))
  6469. return false;
  6470. if (time_before(now, nohz.next_balance))
  6471. return false;
  6472. if (rq->nr_running >= 2)
  6473. return true;
  6474. rcu_read_lock();
  6475. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  6476. if (sd) {
  6477. sgc = sd->groups->sgc;
  6478. nr_busy = atomic_read(&sgc->nr_busy_cpus);
  6479. if (nr_busy > 1) {
  6480. kick = true;
  6481. goto unlock;
  6482. }
  6483. }
  6484. sd = rcu_dereference(rq->sd);
  6485. if (sd) {
  6486. if ((rq->cfs.h_nr_running >= 1) &&
  6487. check_cpu_capacity(rq, sd)) {
  6488. kick = true;
  6489. goto unlock;
  6490. }
  6491. }
  6492. sd = rcu_dereference(per_cpu(sd_asym, cpu));
  6493. if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
  6494. sched_domain_span(sd)) < cpu)) {
  6495. kick = true;
  6496. goto unlock;
  6497. }
  6498. unlock:
  6499. rcu_read_unlock();
  6500. return kick;
  6501. }
  6502. #else
  6503. static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
  6504. #endif
  6505. /*
  6506. * run_rebalance_domains is triggered when needed from the scheduler tick.
  6507. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  6508. */
  6509. static void run_rebalance_domains(struct softirq_action *h)
  6510. {
  6511. struct rq *this_rq = this_rq();
  6512. enum cpu_idle_type idle = this_rq->idle_balance ?
  6513. CPU_IDLE : CPU_NOT_IDLE;
  6514. /*
  6515. * If this cpu has a pending nohz_balance_kick, then do the
  6516. * balancing on behalf of the other idle cpus whose ticks are
  6517. * stopped. Do nohz_idle_balance *before* rebalance_domains to
  6518. * give the idle cpus a chance to load balance. Else we may
  6519. * load balance only within the local sched_domain hierarchy
  6520. * and abort nohz_idle_balance altogether if we pull some load.
  6521. */
  6522. nohz_idle_balance(this_rq, idle);
  6523. rebalance_domains(this_rq, idle);
  6524. }
  6525. /*
  6526. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  6527. */
  6528. void trigger_load_balance(struct rq *rq)
  6529. {
  6530. /* Don't need to rebalance while attached to NULL domain */
  6531. if (unlikely(on_null_domain(rq)))
  6532. return;
  6533. if (time_after_eq(jiffies, rq->next_balance))
  6534. raise_softirq(SCHED_SOFTIRQ);
  6535. #ifdef CONFIG_NO_HZ_COMMON
  6536. if (nohz_kick_needed(rq))
  6537. nohz_balancer_kick();
  6538. #endif
  6539. }
  6540. static void rq_online_fair(struct rq *rq)
  6541. {
  6542. update_sysctl();
  6543. update_runtime_enabled(rq);
  6544. }
  6545. static void rq_offline_fair(struct rq *rq)
  6546. {
  6547. update_sysctl();
  6548. /* Ensure any throttled groups are reachable by pick_next_task */
  6549. unthrottle_offline_cfs_rqs(rq);
  6550. }
  6551. #endif /* CONFIG_SMP */
  6552. /*
  6553. * scheduler tick hitting a task of our scheduling class:
  6554. */
  6555. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  6556. {
  6557. struct cfs_rq *cfs_rq;
  6558. struct sched_entity *se = &curr->se;
  6559. for_each_sched_entity(se) {
  6560. cfs_rq = cfs_rq_of(se);
  6561. entity_tick(cfs_rq, se, queued);
  6562. }
  6563. if (numabalancing_enabled)
  6564. task_tick_numa(rq, curr);
  6565. update_rq_runnable_avg(rq, 1);
  6566. }
  6567. /*
  6568. * called on fork with the child task as argument from the parent's context
  6569. * - child not yet on the tasklist
  6570. * - preemption disabled
  6571. */
  6572. static void task_fork_fair(struct task_struct *p)
  6573. {
  6574. struct cfs_rq *cfs_rq;
  6575. struct sched_entity *se = &p->se, *curr;
  6576. int this_cpu = smp_processor_id();
  6577. struct rq *rq = this_rq();
  6578. unsigned long flags;
  6579. raw_spin_lock_irqsave(&rq->lock, flags);
  6580. update_rq_clock(rq);
  6581. cfs_rq = task_cfs_rq(current);
  6582. curr = cfs_rq->curr;
  6583. /*
  6584. * Not only the cpu but also the task_group of the parent might have
  6585. * been changed after parent->se.parent,cfs_rq were copied to
  6586. * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
  6587. * of child point to valid ones.
  6588. */
  6589. rcu_read_lock();
  6590. __set_task_cpu(p, this_cpu);
  6591. rcu_read_unlock();
  6592. update_curr(cfs_rq);
  6593. if (curr)
  6594. se->vruntime = curr->vruntime;
  6595. place_entity(cfs_rq, se, 1);
  6596. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  6597. /*
  6598. * Upon rescheduling, sched_class::put_prev_task() will place
  6599. * 'current' within the tree based on its new key value.
  6600. */
  6601. swap(curr->vruntime, se->vruntime);
  6602. resched_curr(rq);
  6603. }
  6604. se->vruntime -= cfs_rq->min_vruntime;
  6605. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6606. }
  6607. /*
  6608. * Priority of the task has changed. Check to see if we preempt
  6609. * the current task.
  6610. */
  6611. static void
  6612. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  6613. {
  6614. if (!task_on_rq_queued(p))
  6615. return;
  6616. /*
  6617. * Reschedule if we are currently running on this runqueue and
  6618. * our priority decreased, or if we are not currently running on
  6619. * this runqueue and our priority is higher than the current's
  6620. */
  6621. if (rq->curr == p) {
  6622. if (p->prio > oldprio)
  6623. resched_curr(rq);
  6624. } else
  6625. check_preempt_curr(rq, p, 0);
  6626. }
  6627. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  6628. {
  6629. struct sched_entity *se = &p->se;
  6630. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  6631. /*
  6632. * Ensure the task's vruntime is normalized, so that when it's
  6633. * switched back to the fair class the enqueue_entity(.flags=0) will
  6634. * do the right thing.
  6635. *
  6636. * If it's queued, then the dequeue_entity(.flags=0) will already
  6637. * have normalized the vruntime, if it's !queued, then only when
  6638. * the task is sleeping will it still have non-normalized vruntime.
  6639. */
  6640. if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
  6641. /*
  6642. * Fix up our vruntime so that the current sleep doesn't
  6643. * cause 'unlimited' sleep bonus.
  6644. */
  6645. place_entity(cfs_rq, se, 0);
  6646. se->vruntime -= cfs_rq->min_vruntime;
  6647. }
  6648. #ifdef CONFIG_SMP
  6649. /*
  6650. * Remove our load from contribution when we leave sched_fair
  6651. * and ensure we don't carry in an old decay_count if we
  6652. * switch back.
  6653. */
  6654. if (se->avg.decay_count) {
  6655. __synchronize_entity_decay(se);
  6656. subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
  6657. }
  6658. #endif
  6659. }
  6660. /*
  6661. * We switched to the sched_fair class.
  6662. */
  6663. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  6664. {
  6665. #ifdef CONFIG_FAIR_GROUP_SCHED
  6666. struct sched_entity *se = &p->se;
  6667. /*
  6668. * Since the real-depth could have been changed (only FAIR
  6669. * class maintain depth value), reset depth properly.
  6670. */
  6671. se->depth = se->parent ? se->parent->depth + 1 : 0;
  6672. #endif
  6673. if (!task_on_rq_queued(p))
  6674. return;
  6675. /*
  6676. * We were most likely switched from sched_rt, so
  6677. * kick off the schedule if running, otherwise just see
  6678. * if we can still preempt the current task.
  6679. */
  6680. if (rq->curr == p)
  6681. resched_curr(rq);
  6682. else
  6683. check_preempt_curr(rq, p, 0);
  6684. }
  6685. /* Account for a task changing its policy or group.
  6686. *
  6687. * This routine is mostly called to set cfs_rq->curr field when a task
  6688. * migrates between groups/classes.
  6689. */
  6690. static void set_curr_task_fair(struct rq *rq)
  6691. {
  6692. struct sched_entity *se = &rq->curr->se;
  6693. for_each_sched_entity(se) {
  6694. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  6695. set_next_entity(cfs_rq, se);
  6696. /* ensure bandwidth has been allocated on our new cfs_rq */
  6697. account_cfs_rq_runtime(cfs_rq, 0);
  6698. }
  6699. }
  6700. void init_cfs_rq(struct cfs_rq *cfs_rq)
  6701. {
  6702. cfs_rq->tasks_timeline = RB_ROOT;
  6703. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6704. #ifndef CONFIG_64BIT
  6705. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  6706. #endif
  6707. #ifdef CONFIG_SMP
  6708. atomic64_set(&cfs_rq->decay_counter, 1);
  6709. atomic_long_set(&cfs_rq->removed_load, 0);
  6710. #endif
  6711. }
  6712. #ifdef CONFIG_FAIR_GROUP_SCHED
  6713. static void task_move_group_fair(struct task_struct *p, int queued)
  6714. {
  6715. struct sched_entity *se = &p->se;
  6716. struct cfs_rq *cfs_rq;
  6717. /*
  6718. * If the task was not on the rq at the time of this cgroup movement
  6719. * it must have been asleep, sleeping tasks keep their ->vruntime
  6720. * absolute on their old rq until wakeup (needed for the fair sleeper
  6721. * bonus in place_entity()).
  6722. *
  6723. * If it was on the rq, we've just 'preempted' it, which does convert
  6724. * ->vruntime to a relative base.
  6725. *
  6726. * Make sure both cases convert their relative position when migrating
  6727. * to another cgroup's rq. This does somewhat interfere with the
  6728. * fair sleeper stuff for the first placement, but who cares.
  6729. */
  6730. /*
  6731. * When !queued, vruntime of the task has usually NOT been normalized.
  6732. * But there are some cases where it has already been normalized:
  6733. *
  6734. * - Moving a forked child which is waiting for being woken up by
  6735. * wake_up_new_task().
  6736. * - Moving a task which has been woken up by try_to_wake_up() and
  6737. * waiting for actually being woken up by sched_ttwu_pending().
  6738. *
  6739. * To prevent boost or penalty in the new cfs_rq caused by delta
  6740. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  6741. */
  6742. if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
  6743. queued = 1;
  6744. if (!queued)
  6745. se->vruntime -= cfs_rq_of(se)->min_vruntime;
  6746. set_task_rq(p, task_cpu(p));
  6747. se->depth = se->parent ? se->parent->depth + 1 : 0;
  6748. if (!queued) {
  6749. cfs_rq = cfs_rq_of(se);
  6750. se->vruntime += cfs_rq->min_vruntime;
  6751. #ifdef CONFIG_SMP
  6752. /*
  6753. * migrate_task_rq_fair() will have removed our previous
  6754. * contribution, but we must synchronize for ongoing future
  6755. * decay.
  6756. */
  6757. se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  6758. cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
  6759. #endif
  6760. }
  6761. }
  6762. void free_fair_sched_group(struct task_group *tg)
  6763. {
  6764. int i;
  6765. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  6766. for_each_possible_cpu(i) {
  6767. if (tg->cfs_rq)
  6768. kfree(tg->cfs_rq[i]);
  6769. if (tg->se)
  6770. kfree(tg->se[i]);
  6771. }
  6772. kfree(tg->cfs_rq);
  6773. kfree(tg->se);
  6774. }
  6775. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6776. {
  6777. struct cfs_rq *cfs_rq;
  6778. struct sched_entity *se;
  6779. int i;
  6780. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6781. if (!tg->cfs_rq)
  6782. goto err;
  6783. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6784. if (!tg->se)
  6785. goto err;
  6786. tg->shares = NICE_0_LOAD;
  6787. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  6788. for_each_possible_cpu(i) {
  6789. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6790. GFP_KERNEL, cpu_to_node(i));
  6791. if (!cfs_rq)
  6792. goto err;
  6793. se = kzalloc_node(sizeof(struct sched_entity),
  6794. GFP_KERNEL, cpu_to_node(i));
  6795. if (!se)
  6796. goto err_free_rq;
  6797. init_cfs_rq(cfs_rq);
  6798. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  6799. }
  6800. return 1;
  6801. err_free_rq:
  6802. kfree(cfs_rq);
  6803. err:
  6804. return 0;
  6805. }
  6806. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6807. {
  6808. struct rq *rq = cpu_rq(cpu);
  6809. unsigned long flags;
  6810. /*
  6811. * Only empty task groups can be destroyed; so we can speculatively
  6812. * check on_list without danger of it being re-added.
  6813. */
  6814. if (!tg->cfs_rq[cpu]->on_list)
  6815. return;
  6816. raw_spin_lock_irqsave(&rq->lock, flags);
  6817. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  6818. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6819. }
  6820. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6821. struct sched_entity *se, int cpu,
  6822. struct sched_entity *parent)
  6823. {
  6824. struct rq *rq = cpu_rq(cpu);
  6825. cfs_rq->tg = tg;
  6826. cfs_rq->rq = rq;
  6827. init_cfs_rq_runtime(cfs_rq);
  6828. tg->cfs_rq[cpu] = cfs_rq;
  6829. tg->se[cpu] = se;
  6830. /* se could be NULL for root_task_group */
  6831. if (!se)
  6832. return;
  6833. if (!parent) {
  6834. se->cfs_rq = &rq->cfs;
  6835. se->depth = 0;
  6836. } else {
  6837. se->cfs_rq = parent->my_q;
  6838. se->depth = parent->depth + 1;
  6839. }
  6840. se->my_q = cfs_rq;
  6841. /* guarantee group entities always have weight */
  6842. update_load_set(&se->load, NICE_0_LOAD);
  6843. se->parent = parent;
  6844. }
  6845. static DEFINE_MUTEX(shares_mutex);
  6846. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6847. {
  6848. int i;
  6849. unsigned long flags;
  6850. /*
  6851. * We can't change the weight of the root cgroup.
  6852. */
  6853. if (!tg->se[0])
  6854. return -EINVAL;
  6855. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  6856. mutex_lock(&shares_mutex);
  6857. if (tg->shares == shares)
  6858. goto done;
  6859. tg->shares = shares;
  6860. for_each_possible_cpu(i) {
  6861. struct rq *rq = cpu_rq(i);
  6862. struct sched_entity *se;
  6863. se = tg->se[i];
  6864. /* Propagate contribution to hierarchy */
  6865. raw_spin_lock_irqsave(&rq->lock, flags);
  6866. /* Possible calls to update_curr() need rq clock */
  6867. update_rq_clock(rq);
  6868. for_each_sched_entity(se)
  6869. update_cfs_shares(group_cfs_rq(se));
  6870. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6871. }
  6872. done:
  6873. mutex_unlock(&shares_mutex);
  6874. return 0;
  6875. }
  6876. #else /* CONFIG_FAIR_GROUP_SCHED */
  6877. void free_fair_sched_group(struct task_group *tg) { }
  6878. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6879. {
  6880. return 1;
  6881. }
  6882. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  6883. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6884. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  6885. {
  6886. struct sched_entity *se = &task->se;
  6887. unsigned int rr_interval = 0;
  6888. /*
  6889. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  6890. * idle runqueue:
  6891. */
  6892. if (rq->cfs.load.weight)
  6893. rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  6894. return rr_interval;
  6895. }
  6896. /*
  6897. * All the scheduling class methods:
  6898. */
  6899. const struct sched_class fair_sched_class = {
  6900. .next = &idle_sched_class,
  6901. .enqueue_task = enqueue_task_fair,
  6902. .dequeue_task = dequeue_task_fair,
  6903. .yield_task = yield_task_fair,
  6904. .yield_to_task = yield_to_task_fair,
  6905. .check_preempt_curr = check_preempt_wakeup,
  6906. .pick_next_task = pick_next_task_fair,
  6907. .put_prev_task = put_prev_task_fair,
  6908. #ifdef CONFIG_SMP
  6909. .select_task_rq = select_task_rq_fair,
  6910. .migrate_task_rq = migrate_task_rq_fair,
  6911. .rq_online = rq_online_fair,
  6912. .rq_offline = rq_offline_fair,
  6913. .task_waking = task_waking_fair,
  6914. #endif
  6915. .set_curr_task = set_curr_task_fair,
  6916. .task_tick = task_tick_fair,
  6917. .task_fork = task_fork_fair,
  6918. .prio_changed = prio_changed_fair,
  6919. .switched_from = switched_from_fair,
  6920. .switched_to = switched_to_fair,
  6921. .get_rr_interval = get_rr_interval_fair,
  6922. .update_curr = update_curr_fair,
  6923. #ifdef CONFIG_FAIR_GROUP_SCHED
  6924. .task_move_group = task_move_group_fair,
  6925. #endif
  6926. };
  6927. #ifdef CONFIG_SCHED_DEBUG
  6928. void print_cfs_stats(struct seq_file *m, int cpu)
  6929. {
  6930. struct cfs_rq *cfs_rq;
  6931. rcu_read_lock();
  6932. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  6933. print_cfs_rq(m, cpu, cfs_rq);
  6934. rcu_read_unlock();
  6935. }
  6936. #endif
  6937. __init void init_sched_fair_class(void)
  6938. {
  6939. #ifdef CONFIG_SMP
  6940. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6941. #ifdef CONFIG_NO_HZ_COMMON
  6942. nohz.next_balance = jiffies;
  6943. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6944. cpu_notifier(sched_ilb_notifier, 0);
  6945. #endif
  6946. #endif /* SMP */
  6947. }