core.c 200 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  89. {
  90. unsigned long delta;
  91. ktime_t soft, hard, now;
  92. for (;;) {
  93. if (hrtimer_active(period_timer))
  94. break;
  95. now = hrtimer_cb_get_time(period_timer);
  96. hrtimer_forward(period_timer, now, period);
  97. soft = hrtimer_get_softexpires(period_timer);
  98. hard = hrtimer_get_expires(period_timer);
  99. delta = ktime_to_ns(ktime_sub(hard, soft));
  100. __hrtimer_start_range_ns(period_timer, soft, delta,
  101. HRTIMER_MODE_ABS_PINNED, 0);
  102. }
  103. }
  104. DEFINE_MUTEX(sched_domains_mutex);
  105. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  106. static void update_rq_clock_task(struct rq *rq, s64 delta);
  107. void update_rq_clock(struct rq *rq)
  108. {
  109. s64 delta;
  110. lockdep_assert_held(&rq->lock);
  111. if (rq->clock_skip_update & RQCF_ACT_SKIP)
  112. return;
  113. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  114. if (delta < 0)
  115. return;
  116. rq->clock += delta;
  117. update_rq_clock_task(rq, delta);
  118. }
  119. /*
  120. * Debugging: various feature bits
  121. */
  122. #define SCHED_FEAT(name, enabled) \
  123. (1UL << __SCHED_FEAT_##name) * enabled |
  124. const_debug unsigned int sysctl_sched_features =
  125. #include "features.h"
  126. 0;
  127. #undef SCHED_FEAT
  128. #ifdef CONFIG_SCHED_DEBUG
  129. #define SCHED_FEAT(name, enabled) \
  130. #name ,
  131. static const char * const sched_feat_names[] = {
  132. #include "features.h"
  133. };
  134. #undef SCHED_FEAT
  135. static int sched_feat_show(struct seq_file *m, void *v)
  136. {
  137. int i;
  138. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  139. if (!(sysctl_sched_features & (1UL << i)))
  140. seq_puts(m, "NO_");
  141. seq_printf(m, "%s ", sched_feat_names[i]);
  142. }
  143. seq_puts(m, "\n");
  144. return 0;
  145. }
  146. #ifdef HAVE_JUMP_LABEL
  147. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  148. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  149. #define SCHED_FEAT(name, enabled) \
  150. jump_label_key__##enabled ,
  151. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  152. #include "features.h"
  153. };
  154. #undef SCHED_FEAT
  155. static void sched_feat_disable(int i)
  156. {
  157. if (static_key_enabled(&sched_feat_keys[i]))
  158. static_key_slow_dec(&sched_feat_keys[i]);
  159. }
  160. static void sched_feat_enable(int i)
  161. {
  162. if (!static_key_enabled(&sched_feat_keys[i]))
  163. static_key_slow_inc(&sched_feat_keys[i]);
  164. }
  165. #else
  166. static void sched_feat_disable(int i) { };
  167. static void sched_feat_enable(int i) { };
  168. #endif /* HAVE_JUMP_LABEL */
  169. static int sched_feat_set(char *cmp)
  170. {
  171. int i;
  172. int neg = 0;
  173. if (strncmp(cmp, "NO_", 3) == 0) {
  174. neg = 1;
  175. cmp += 3;
  176. }
  177. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  178. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  179. if (neg) {
  180. sysctl_sched_features &= ~(1UL << i);
  181. sched_feat_disable(i);
  182. } else {
  183. sysctl_sched_features |= (1UL << i);
  184. sched_feat_enable(i);
  185. }
  186. break;
  187. }
  188. }
  189. return i;
  190. }
  191. static ssize_t
  192. sched_feat_write(struct file *filp, const char __user *ubuf,
  193. size_t cnt, loff_t *ppos)
  194. {
  195. char buf[64];
  196. char *cmp;
  197. int i;
  198. struct inode *inode;
  199. if (cnt > 63)
  200. cnt = 63;
  201. if (copy_from_user(&buf, ubuf, cnt))
  202. return -EFAULT;
  203. buf[cnt] = 0;
  204. cmp = strstrip(buf);
  205. /* Ensure the static_key remains in a consistent state */
  206. inode = file_inode(filp);
  207. mutex_lock(&inode->i_mutex);
  208. i = sched_feat_set(cmp);
  209. mutex_unlock(&inode->i_mutex);
  210. if (i == __SCHED_FEAT_NR)
  211. return -EINVAL;
  212. *ppos += cnt;
  213. return cnt;
  214. }
  215. static int sched_feat_open(struct inode *inode, struct file *filp)
  216. {
  217. return single_open(filp, sched_feat_show, NULL);
  218. }
  219. static const struct file_operations sched_feat_fops = {
  220. .open = sched_feat_open,
  221. .write = sched_feat_write,
  222. .read = seq_read,
  223. .llseek = seq_lseek,
  224. .release = single_release,
  225. };
  226. static __init int sched_init_debug(void)
  227. {
  228. debugfs_create_file("sched_features", 0644, NULL, NULL,
  229. &sched_feat_fops);
  230. return 0;
  231. }
  232. late_initcall(sched_init_debug);
  233. #endif /* CONFIG_SCHED_DEBUG */
  234. /*
  235. * Number of tasks to iterate in a single balance run.
  236. * Limited because this is done with IRQs disabled.
  237. */
  238. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  239. /*
  240. * period over which we average the RT time consumption, measured
  241. * in ms.
  242. *
  243. * default: 1s
  244. */
  245. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  246. /*
  247. * period over which we measure -rt task cpu usage in us.
  248. * default: 1s
  249. */
  250. unsigned int sysctl_sched_rt_period = 1000000;
  251. __read_mostly int scheduler_running;
  252. /*
  253. * part of the period that we allow rt tasks to run in us.
  254. * default: 0.95s
  255. */
  256. int sysctl_sched_rt_runtime = 950000;
  257. /* cpus with isolated domains */
  258. cpumask_var_t cpu_isolated_map;
  259. /*
  260. * this_rq_lock - lock this runqueue and disable interrupts.
  261. */
  262. static struct rq *this_rq_lock(void)
  263. __acquires(rq->lock)
  264. {
  265. struct rq *rq;
  266. local_irq_disable();
  267. rq = this_rq();
  268. raw_spin_lock(&rq->lock);
  269. return rq;
  270. }
  271. #ifdef CONFIG_SCHED_HRTICK
  272. /*
  273. * Use HR-timers to deliver accurate preemption points.
  274. */
  275. static void hrtick_clear(struct rq *rq)
  276. {
  277. if (hrtimer_active(&rq->hrtick_timer))
  278. hrtimer_cancel(&rq->hrtick_timer);
  279. }
  280. /*
  281. * High-resolution timer tick.
  282. * Runs from hardirq context with interrupts disabled.
  283. */
  284. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  285. {
  286. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  287. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  288. raw_spin_lock(&rq->lock);
  289. update_rq_clock(rq);
  290. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  291. raw_spin_unlock(&rq->lock);
  292. return HRTIMER_NORESTART;
  293. }
  294. #ifdef CONFIG_SMP
  295. static int __hrtick_restart(struct rq *rq)
  296. {
  297. struct hrtimer *timer = &rq->hrtick_timer;
  298. ktime_t time = hrtimer_get_softexpires(timer);
  299. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  300. }
  301. /*
  302. * called from hardirq (IPI) context
  303. */
  304. static void __hrtick_start(void *arg)
  305. {
  306. struct rq *rq = arg;
  307. raw_spin_lock(&rq->lock);
  308. __hrtick_restart(rq);
  309. rq->hrtick_csd_pending = 0;
  310. raw_spin_unlock(&rq->lock);
  311. }
  312. /*
  313. * Called to set the hrtick timer state.
  314. *
  315. * called with rq->lock held and irqs disabled
  316. */
  317. void hrtick_start(struct rq *rq, u64 delay)
  318. {
  319. struct hrtimer *timer = &rq->hrtick_timer;
  320. ktime_t time;
  321. s64 delta;
  322. /*
  323. * Don't schedule slices shorter than 10000ns, that just
  324. * doesn't make sense and can cause timer DoS.
  325. */
  326. delta = max_t(s64, delay, 10000LL);
  327. time = ktime_add_ns(timer->base->get_time(), delta);
  328. hrtimer_set_expires(timer, time);
  329. if (rq == this_rq()) {
  330. __hrtick_restart(rq);
  331. } else if (!rq->hrtick_csd_pending) {
  332. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  333. rq->hrtick_csd_pending = 1;
  334. }
  335. }
  336. static int
  337. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  338. {
  339. int cpu = (int)(long)hcpu;
  340. switch (action) {
  341. case CPU_UP_CANCELED:
  342. case CPU_UP_CANCELED_FROZEN:
  343. case CPU_DOWN_PREPARE:
  344. case CPU_DOWN_PREPARE_FROZEN:
  345. case CPU_DEAD:
  346. case CPU_DEAD_FROZEN:
  347. hrtick_clear(cpu_rq(cpu));
  348. return NOTIFY_OK;
  349. }
  350. return NOTIFY_DONE;
  351. }
  352. static __init void init_hrtick(void)
  353. {
  354. hotcpu_notifier(hotplug_hrtick, 0);
  355. }
  356. #else
  357. /*
  358. * Called to set the hrtick timer state.
  359. *
  360. * called with rq->lock held and irqs disabled
  361. */
  362. void hrtick_start(struct rq *rq, u64 delay)
  363. {
  364. /*
  365. * Don't schedule slices shorter than 10000ns, that just
  366. * doesn't make sense. Rely on vruntime for fairness.
  367. */
  368. delay = max_t(u64, delay, 10000LL);
  369. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  370. HRTIMER_MODE_REL_PINNED, 0);
  371. }
  372. static inline void init_hrtick(void)
  373. {
  374. }
  375. #endif /* CONFIG_SMP */
  376. static void init_rq_hrtick(struct rq *rq)
  377. {
  378. #ifdef CONFIG_SMP
  379. rq->hrtick_csd_pending = 0;
  380. rq->hrtick_csd.flags = 0;
  381. rq->hrtick_csd.func = __hrtick_start;
  382. rq->hrtick_csd.info = rq;
  383. #endif
  384. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  385. rq->hrtick_timer.function = hrtick;
  386. }
  387. #else /* CONFIG_SCHED_HRTICK */
  388. static inline void hrtick_clear(struct rq *rq)
  389. {
  390. }
  391. static inline void init_rq_hrtick(struct rq *rq)
  392. {
  393. }
  394. static inline void init_hrtick(void)
  395. {
  396. }
  397. #endif /* CONFIG_SCHED_HRTICK */
  398. /*
  399. * cmpxchg based fetch_or, macro so it works for different integer types
  400. */
  401. #define fetch_or(ptr, val) \
  402. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  403. for (;;) { \
  404. __old = cmpxchg((ptr), __val, __val | (val)); \
  405. if (__old == __val) \
  406. break; \
  407. __val = __old; \
  408. } \
  409. __old; \
  410. })
  411. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  412. /*
  413. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  414. * this avoids any races wrt polling state changes and thereby avoids
  415. * spurious IPIs.
  416. */
  417. static bool set_nr_and_not_polling(struct task_struct *p)
  418. {
  419. struct thread_info *ti = task_thread_info(p);
  420. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  421. }
  422. /*
  423. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  424. *
  425. * If this returns true, then the idle task promises to call
  426. * sched_ttwu_pending() and reschedule soon.
  427. */
  428. static bool set_nr_if_polling(struct task_struct *p)
  429. {
  430. struct thread_info *ti = task_thread_info(p);
  431. typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
  432. for (;;) {
  433. if (!(val & _TIF_POLLING_NRFLAG))
  434. return false;
  435. if (val & _TIF_NEED_RESCHED)
  436. return true;
  437. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  438. if (old == val)
  439. break;
  440. val = old;
  441. }
  442. return true;
  443. }
  444. #else
  445. static bool set_nr_and_not_polling(struct task_struct *p)
  446. {
  447. set_tsk_need_resched(p);
  448. return true;
  449. }
  450. #ifdef CONFIG_SMP
  451. static bool set_nr_if_polling(struct task_struct *p)
  452. {
  453. return false;
  454. }
  455. #endif
  456. #endif
  457. /*
  458. * resched_curr - mark rq's current task 'to be rescheduled now'.
  459. *
  460. * On UP this means the setting of the need_resched flag, on SMP it
  461. * might also involve a cross-CPU call to trigger the scheduler on
  462. * the target CPU.
  463. */
  464. void resched_curr(struct rq *rq)
  465. {
  466. struct task_struct *curr = rq->curr;
  467. int cpu;
  468. lockdep_assert_held(&rq->lock);
  469. if (test_tsk_need_resched(curr))
  470. return;
  471. cpu = cpu_of(rq);
  472. if (cpu == smp_processor_id()) {
  473. set_tsk_need_resched(curr);
  474. set_preempt_need_resched();
  475. return;
  476. }
  477. if (set_nr_and_not_polling(curr))
  478. smp_send_reschedule(cpu);
  479. else
  480. trace_sched_wake_idle_without_ipi(cpu);
  481. }
  482. void resched_cpu(int cpu)
  483. {
  484. struct rq *rq = cpu_rq(cpu);
  485. unsigned long flags;
  486. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  487. return;
  488. resched_curr(rq);
  489. raw_spin_unlock_irqrestore(&rq->lock, flags);
  490. }
  491. #ifdef CONFIG_SMP
  492. #ifdef CONFIG_NO_HZ_COMMON
  493. /*
  494. * In the semi idle case, use the nearest busy cpu for migrating timers
  495. * from an idle cpu. This is good for power-savings.
  496. *
  497. * We don't do similar optimization for completely idle system, as
  498. * selecting an idle cpu will add more delays to the timers than intended
  499. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  500. */
  501. int get_nohz_timer_target(int pinned)
  502. {
  503. int cpu = smp_processor_id();
  504. int i;
  505. struct sched_domain *sd;
  506. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  507. return cpu;
  508. rcu_read_lock();
  509. for_each_domain(cpu, sd) {
  510. for_each_cpu(i, sched_domain_span(sd)) {
  511. if (!idle_cpu(i)) {
  512. cpu = i;
  513. goto unlock;
  514. }
  515. }
  516. }
  517. unlock:
  518. rcu_read_unlock();
  519. return cpu;
  520. }
  521. /*
  522. * When add_timer_on() enqueues a timer into the timer wheel of an
  523. * idle CPU then this timer might expire before the next timer event
  524. * which is scheduled to wake up that CPU. In case of a completely
  525. * idle system the next event might even be infinite time into the
  526. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  527. * leaves the inner idle loop so the newly added timer is taken into
  528. * account when the CPU goes back to idle and evaluates the timer
  529. * wheel for the next timer event.
  530. */
  531. static void wake_up_idle_cpu(int cpu)
  532. {
  533. struct rq *rq = cpu_rq(cpu);
  534. if (cpu == smp_processor_id())
  535. return;
  536. if (set_nr_and_not_polling(rq->idle))
  537. smp_send_reschedule(cpu);
  538. else
  539. trace_sched_wake_idle_without_ipi(cpu);
  540. }
  541. static bool wake_up_full_nohz_cpu(int cpu)
  542. {
  543. /*
  544. * We just need the target to call irq_exit() and re-evaluate
  545. * the next tick. The nohz full kick at least implies that.
  546. * If needed we can still optimize that later with an
  547. * empty IRQ.
  548. */
  549. if (tick_nohz_full_cpu(cpu)) {
  550. if (cpu != smp_processor_id() ||
  551. tick_nohz_tick_stopped())
  552. tick_nohz_full_kick_cpu(cpu);
  553. return true;
  554. }
  555. return false;
  556. }
  557. void wake_up_nohz_cpu(int cpu)
  558. {
  559. if (!wake_up_full_nohz_cpu(cpu))
  560. wake_up_idle_cpu(cpu);
  561. }
  562. static inline bool got_nohz_idle_kick(void)
  563. {
  564. int cpu = smp_processor_id();
  565. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  566. return false;
  567. if (idle_cpu(cpu) && !need_resched())
  568. return true;
  569. /*
  570. * We can't run Idle Load Balance on this CPU for this time so we
  571. * cancel it and clear NOHZ_BALANCE_KICK
  572. */
  573. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  574. return false;
  575. }
  576. #else /* CONFIG_NO_HZ_COMMON */
  577. static inline bool got_nohz_idle_kick(void)
  578. {
  579. return false;
  580. }
  581. #endif /* CONFIG_NO_HZ_COMMON */
  582. #ifdef CONFIG_NO_HZ_FULL
  583. bool sched_can_stop_tick(void)
  584. {
  585. /*
  586. * FIFO realtime policy runs the highest priority task. Other runnable
  587. * tasks are of a lower priority. The scheduler tick does nothing.
  588. */
  589. if (current->policy == SCHED_FIFO)
  590. return true;
  591. /*
  592. * Round-robin realtime tasks time slice with other tasks at the same
  593. * realtime priority. Is this task the only one at this priority?
  594. */
  595. if (current->policy == SCHED_RR) {
  596. struct sched_rt_entity *rt_se = &current->rt;
  597. return rt_se->run_list.prev == rt_se->run_list.next;
  598. }
  599. /*
  600. * More than one running task need preemption.
  601. * nr_running update is assumed to be visible
  602. * after IPI is sent from wakers.
  603. */
  604. if (this_rq()->nr_running > 1)
  605. return false;
  606. return true;
  607. }
  608. #endif /* CONFIG_NO_HZ_FULL */
  609. void sched_avg_update(struct rq *rq)
  610. {
  611. s64 period = sched_avg_period();
  612. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  613. /*
  614. * Inline assembly required to prevent the compiler
  615. * optimising this loop into a divmod call.
  616. * See __iter_div_u64_rem() for another example of this.
  617. */
  618. asm("" : "+rm" (rq->age_stamp));
  619. rq->age_stamp += period;
  620. rq->rt_avg /= 2;
  621. }
  622. }
  623. #endif /* CONFIG_SMP */
  624. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  625. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  626. /*
  627. * Iterate task_group tree rooted at *from, calling @down when first entering a
  628. * node and @up when leaving it for the final time.
  629. *
  630. * Caller must hold rcu_lock or sufficient equivalent.
  631. */
  632. int walk_tg_tree_from(struct task_group *from,
  633. tg_visitor down, tg_visitor up, void *data)
  634. {
  635. struct task_group *parent, *child;
  636. int ret;
  637. parent = from;
  638. down:
  639. ret = (*down)(parent, data);
  640. if (ret)
  641. goto out;
  642. list_for_each_entry_rcu(child, &parent->children, siblings) {
  643. parent = child;
  644. goto down;
  645. up:
  646. continue;
  647. }
  648. ret = (*up)(parent, data);
  649. if (ret || parent == from)
  650. goto out;
  651. child = parent;
  652. parent = parent->parent;
  653. if (parent)
  654. goto up;
  655. out:
  656. return ret;
  657. }
  658. int tg_nop(struct task_group *tg, void *data)
  659. {
  660. return 0;
  661. }
  662. #endif
  663. static void set_load_weight(struct task_struct *p)
  664. {
  665. int prio = p->static_prio - MAX_RT_PRIO;
  666. struct load_weight *load = &p->se.load;
  667. /*
  668. * SCHED_IDLE tasks get minimal weight:
  669. */
  670. if (p->policy == SCHED_IDLE) {
  671. load->weight = scale_load(WEIGHT_IDLEPRIO);
  672. load->inv_weight = WMULT_IDLEPRIO;
  673. return;
  674. }
  675. load->weight = scale_load(prio_to_weight[prio]);
  676. load->inv_weight = prio_to_wmult[prio];
  677. }
  678. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  679. {
  680. update_rq_clock(rq);
  681. sched_info_queued(rq, p);
  682. p->sched_class->enqueue_task(rq, p, flags);
  683. }
  684. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  685. {
  686. update_rq_clock(rq);
  687. sched_info_dequeued(rq, p);
  688. p->sched_class->dequeue_task(rq, p, flags);
  689. }
  690. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  691. {
  692. if (task_contributes_to_load(p))
  693. rq->nr_uninterruptible--;
  694. enqueue_task(rq, p, flags);
  695. }
  696. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  697. {
  698. if (task_contributes_to_load(p))
  699. rq->nr_uninterruptible++;
  700. dequeue_task(rq, p, flags);
  701. }
  702. static void update_rq_clock_task(struct rq *rq, s64 delta)
  703. {
  704. /*
  705. * In theory, the compile should just see 0 here, and optimize out the call
  706. * to sched_rt_avg_update. But I don't trust it...
  707. */
  708. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  709. s64 steal = 0, irq_delta = 0;
  710. #endif
  711. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  712. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  713. /*
  714. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  715. * this case when a previous update_rq_clock() happened inside a
  716. * {soft,}irq region.
  717. *
  718. * When this happens, we stop ->clock_task and only update the
  719. * prev_irq_time stamp to account for the part that fit, so that a next
  720. * update will consume the rest. This ensures ->clock_task is
  721. * monotonic.
  722. *
  723. * It does however cause some slight miss-attribution of {soft,}irq
  724. * time, a more accurate solution would be to update the irq_time using
  725. * the current rq->clock timestamp, except that would require using
  726. * atomic ops.
  727. */
  728. if (irq_delta > delta)
  729. irq_delta = delta;
  730. rq->prev_irq_time += irq_delta;
  731. delta -= irq_delta;
  732. #endif
  733. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  734. if (static_key_false((&paravirt_steal_rq_enabled))) {
  735. steal = paravirt_steal_clock(cpu_of(rq));
  736. steal -= rq->prev_steal_time_rq;
  737. if (unlikely(steal > delta))
  738. steal = delta;
  739. rq->prev_steal_time_rq += steal;
  740. delta -= steal;
  741. }
  742. #endif
  743. rq->clock_task += delta;
  744. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  745. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  746. sched_rt_avg_update(rq, irq_delta + steal);
  747. #endif
  748. }
  749. void sched_set_stop_task(int cpu, struct task_struct *stop)
  750. {
  751. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  752. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  753. if (stop) {
  754. /*
  755. * Make it appear like a SCHED_FIFO task, its something
  756. * userspace knows about and won't get confused about.
  757. *
  758. * Also, it will make PI more or less work without too
  759. * much confusion -- but then, stop work should not
  760. * rely on PI working anyway.
  761. */
  762. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  763. stop->sched_class = &stop_sched_class;
  764. }
  765. cpu_rq(cpu)->stop = stop;
  766. if (old_stop) {
  767. /*
  768. * Reset it back to a normal scheduling class so that
  769. * it can die in pieces.
  770. */
  771. old_stop->sched_class = &rt_sched_class;
  772. }
  773. }
  774. /*
  775. * __normal_prio - return the priority that is based on the static prio
  776. */
  777. static inline int __normal_prio(struct task_struct *p)
  778. {
  779. return p->static_prio;
  780. }
  781. /*
  782. * Calculate the expected normal priority: i.e. priority
  783. * without taking RT-inheritance into account. Might be
  784. * boosted by interactivity modifiers. Changes upon fork,
  785. * setprio syscalls, and whenever the interactivity
  786. * estimator recalculates.
  787. */
  788. static inline int normal_prio(struct task_struct *p)
  789. {
  790. int prio;
  791. if (task_has_dl_policy(p))
  792. prio = MAX_DL_PRIO-1;
  793. else if (task_has_rt_policy(p))
  794. prio = MAX_RT_PRIO-1 - p->rt_priority;
  795. else
  796. prio = __normal_prio(p);
  797. return prio;
  798. }
  799. /*
  800. * Calculate the current priority, i.e. the priority
  801. * taken into account by the scheduler. This value might
  802. * be boosted by RT tasks, or might be boosted by
  803. * interactivity modifiers. Will be RT if the task got
  804. * RT-boosted. If not then it returns p->normal_prio.
  805. */
  806. static int effective_prio(struct task_struct *p)
  807. {
  808. p->normal_prio = normal_prio(p);
  809. /*
  810. * If we are RT tasks or we were boosted to RT priority,
  811. * keep the priority unchanged. Otherwise, update priority
  812. * to the normal priority:
  813. */
  814. if (!rt_prio(p->prio))
  815. return p->normal_prio;
  816. return p->prio;
  817. }
  818. /**
  819. * task_curr - is this task currently executing on a CPU?
  820. * @p: the task in question.
  821. *
  822. * Return: 1 if the task is currently executing. 0 otherwise.
  823. */
  824. inline int task_curr(const struct task_struct *p)
  825. {
  826. return cpu_curr(task_cpu(p)) == p;
  827. }
  828. /*
  829. * Can drop rq->lock because from sched_class::switched_from() methods drop it.
  830. */
  831. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  832. const struct sched_class *prev_class,
  833. int oldprio)
  834. {
  835. if (prev_class != p->sched_class) {
  836. if (prev_class->switched_from)
  837. prev_class->switched_from(rq, p);
  838. /* Possble rq->lock 'hole'. */
  839. p->sched_class->switched_to(rq, p);
  840. } else if (oldprio != p->prio || dl_task(p))
  841. p->sched_class->prio_changed(rq, p, oldprio);
  842. }
  843. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  844. {
  845. const struct sched_class *class;
  846. if (p->sched_class == rq->curr->sched_class) {
  847. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  848. } else {
  849. for_each_class(class) {
  850. if (class == rq->curr->sched_class)
  851. break;
  852. if (class == p->sched_class) {
  853. resched_curr(rq);
  854. break;
  855. }
  856. }
  857. }
  858. /*
  859. * A queue event has occurred, and we're going to schedule. In
  860. * this case, we can save a useless back to back clock update.
  861. */
  862. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  863. rq_clock_skip_update(rq, true);
  864. }
  865. #ifdef CONFIG_SMP
  866. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  867. {
  868. #ifdef CONFIG_SCHED_DEBUG
  869. /*
  870. * We should never call set_task_cpu() on a blocked task,
  871. * ttwu() will sort out the placement.
  872. */
  873. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  874. !p->on_rq);
  875. #ifdef CONFIG_LOCKDEP
  876. /*
  877. * The caller should hold either p->pi_lock or rq->lock, when changing
  878. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  879. *
  880. * sched_move_task() holds both and thus holding either pins the cgroup,
  881. * see task_group().
  882. *
  883. * Furthermore, all task_rq users should acquire both locks, see
  884. * task_rq_lock().
  885. */
  886. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  887. lockdep_is_held(&task_rq(p)->lock)));
  888. #endif
  889. #endif
  890. trace_sched_migrate_task(p, new_cpu);
  891. if (task_cpu(p) != new_cpu) {
  892. if (p->sched_class->migrate_task_rq)
  893. p->sched_class->migrate_task_rq(p, new_cpu);
  894. p->se.nr_migrations++;
  895. perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
  896. }
  897. __set_task_cpu(p, new_cpu);
  898. }
  899. static void __migrate_swap_task(struct task_struct *p, int cpu)
  900. {
  901. if (task_on_rq_queued(p)) {
  902. struct rq *src_rq, *dst_rq;
  903. src_rq = task_rq(p);
  904. dst_rq = cpu_rq(cpu);
  905. deactivate_task(src_rq, p, 0);
  906. set_task_cpu(p, cpu);
  907. activate_task(dst_rq, p, 0);
  908. check_preempt_curr(dst_rq, p, 0);
  909. } else {
  910. /*
  911. * Task isn't running anymore; make it appear like we migrated
  912. * it before it went to sleep. This means on wakeup we make the
  913. * previous cpu our targer instead of where it really is.
  914. */
  915. p->wake_cpu = cpu;
  916. }
  917. }
  918. struct migration_swap_arg {
  919. struct task_struct *src_task, *dst_task;
  920. int src_cpu, dst_cpu;
  921. };
  922. static int migrate_swap_stop(void *data)
  923. {
  924. struct migration_swap_arg *arg = data;
  925. struct rq *src_rq, *dst_rq;
  926. int ret = -EAGAIN;
  927. src_rq = cpu_rq(arg->src_cpu);
  928. dst_rq = cpu_rq(arg->dst_cpu);
  929. double_raw_lock(&arg->src_task->pi_lock,
  930. &arg->dst_task->pi_lock);
  931. double_rq_lock(src_rq, dst_rq);
  932. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  933. goto unlock;
  934. if (task_cpu(arg->src_task) != arg->src_cpu)
  935. goto unlock;
  936. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  937. goto unlock;
  938. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  939. goto unlock;
  940. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  941. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  942. ret = 0;
  943. unlock:
  944. double_rq_unlock(src_rq, dst_rq);
  945. raw_spin_unlock(&arg->dst_task->pi_lock);
  946. raw_spin_unlock(&arg->src_task->pi_lock);
  947. return ret;
  948. }
  949. /*
  950. * Cross migrate two tasks
  951. */
  952. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  953. {
  954. struct migration_swap_arg arg;
  955. int ret = -EINVAL;
  956. arg = (struct migration_swap_arg){
  957. .src_task = cur,
  958. .src_cpu = task_cpu(cur),
  959. .dst_task = p,
  960. .dst_cpu = task_cpu(p),
  961. };
  962. if (arg.src_cpu == arg.dst_cpu)
  963. goto out;
  964. /*
  965. * These three tests are all lockless; this is OK since all of them
  966. * will be re-checked with proper locks held further down the line.
  967. */
  968. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  969. goto out;
  970. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  971. goto out;
  972. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  973. goto out;
  974. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  975. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  976. out:
  977. return ret;
  978. }
  979. struct migration_arg {
  980. struct task_struct *task;
  981. int dest_cpu;
  982. };
  983. static int migration_cpu_stop(void *data);
  984. /*
  985. * wait_task_inactive - wait for a thread to unschedule.
  986. *
  987. * If @match_state is nonzero, it's the @p->state value just checked and
  988. * not expected to change. If it changes, i.e. @p might have woken up,
  989. * then return zero. When we succeed in waiting for @p to be off its CPU,
  990. * we return a positive number (its total switch count). If a second call
  991. * a short while later returns the same number, the caller can be sure that
  992. * @p has remained unscheduled the whole time.
  993. *
  994. * The caller must ensure that the task *will* unschedule sometime soon,
  995. * else this function might spin for a *long* time. This function can't
  996. * be called with interrupts off, or it may introduce deadlock with
  997. * smp_call_function() if an IPI is sent by the same process we are
  998. * waiting to become inactive.
  999. */
  1000. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1001. {
  1002. unsigned long flags;
  1003. int running, queued;
  1004. unsigned long ncsw;
  1005. struct rq *rq;
  1006. for (;;) {
  1007. /*
  1008. * We do the initial early heuristics without holding
  1009. * any task-queue locks at all. We'll only try to get
  1010. * the runqueue lock when things look like they will
  1011. * work out!
  1012. */
  1013. rq = task_rq(p);
  1014. /*
  1015. * If the task is actively running on another CPU
  1016. * still, just relax and busy-wait without holding
  1017. * any locks.
  1018. *
  1019. * NOTE! Since we don't hold any locks, it's not
  1020. * even sure that "rq" stays as the right runqueue!
  1021. * But we don't care, since "task_running()" will
  1022. * return false if the runqueue has changed and p
  1023. * is actually now running somewhere else!
  1024. */
  1025. while (task_running(rq, p)) {
  1026. if (match_state && unlikely(p->state != match_state))
  1027. return 0;
  1028. cpu_relax();
  1029. }
  1030. /*
  1031. * Ok, time to look more closely! We need the rq
  1032. * lock now, to be *sure*. If we're wrong, we'll
  1033. * just go back and repeat.
  1034. */
  1035. rq = task_rq_lock(p, &flags);
  1036. trace_sched_wait_task(p);
  1037. running = task_running(rq, p);
  1038. queued = task_on_rq_queued(p);
  1039. ncsw = 0;
  1040. if (!match_state || p->state == match_state)
  1041. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1042. task_rq_unlock(rq, p, &flags);
  1043. /*
  1044. * If it changed from the expected state, bail out now.
  1045. */
  1046. if (unlikely(!ncsw))
  1047. break;
  1048. /*
  1049. * Was it really running after all now that we
  1050. * checked with the proper locks actually held?
  1051. *
  1052. * Oops. Go back and try again..
  1053. */
  1054. if (unlikely(running)) {
  1055. cpu_relax();
  1056. continue;
  1057. }
  1058. /*
  1059. * It's not enough that it's not actively running,
  1060. * it must be off the runqueue _entirely_, and not
  1061. * preempted!
  1062. *
  1063. * So if it was still runnable (but just not actively
  1064. * running right now), it's preempted, and we should
  1065. * yield - it could be a while.
  1066. */
  1067. if (unlikely(queued)) {
  1068. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1069. set_current_state(TASK_UNINTERRUPTIBLE);
  1070. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1071. continue;
  1072. }
  1073. /*
  1074. * Ahh, all good. It wasn't running, and it wasn't
  1075. * runnable, which means that it will never become
  1076. * running in the future either. We're all done!
  1077. */
  1078. break;
  1079. }
  1080. return ncsw;
  1081. }
  1082. /***
  1083. * kick_process - kick a running thread to enter/exit the kernel
  1084. * @p: the to-be-kicked thread
  1085. *
  1086. * Cause a process which is running on another CPU to enter
  1087. * kernel-mode, without any delay. (to get signals handled.)
  1088. *
  1089. * NOTE: this function doesn't have to take the runqueue lock,
  1090. * because all it wants to ensure is that the remote task enters
  1091. * the kernel. If the IPI races and the task has been migrated
  1092. * to another CPU then no harm is done and the purpose has been
  1093. * achieved as well.
  1094. */
  1095. void kick_process(struct task_struct *p)
  1096. {
  1097. int cpu;
  1098. preempt_disable();
  1099. cpu = task_cpu(p);
  1100. if ((cpu != smp_processor_id()) && task_curr(p))
  1101. smp_send_reschedule(cpu);
  1102. preempt_enable();
  1103. }
  1104. EXPORT_SYMBOL_GPL(kick_process);
  1105. #endif /* CONFIG_SMP */
  1106. #ifdef CONFIG_SMP
  1107. /*
  1108. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1109. */
  1110. static int select_fallback_rq(int cpu, struct task_struct *p)
  1111. {
  1112. int nid = cpu_to_node(cpu);
  1113. const struct cpumask *nodemask = NULL;
  1114. enum { cpuset, possible, fail } state = cpuset;
  1115. int dest_cpu;
  1116. /*
  1117. * If the node that the cpu is on has been offlined, cpu_to_node()
  1118. * will return -1. There is no cpu on the node, and we should
  1119. * select the cpu on the other node.
  1120. */
  1121. if (nid != -1) {
  1122. nodemask = cpumask_of_node(nid);
  1123. /* Look for allowed, online CPU in same node. */
  1124. for_each_cpu(dest_cpu, nodemask) {
  1125. if (!cpu_online(dest_cpu))
  1126. continue;
  1127. if (!cpu_active(dest_cpu))
  1128. continue;
  1129. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1130. return dest_cpu;
  1131. }
  1132. }
  1133. for (;;) {
  1134. /* Any allowed, online CPU? */
  1135. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1136. if (!cpu_online(dest_cpu))
  1137. continue;
  1138. if (!cpu_active(dest_cpu))
  1139. continue;
  1140. goto out;
  1141. }
  1142. switch (state) {
  1143. case cpuset:
  1144. /* No more Mr. Nice Guy. */
  1145. cpuset_cpus_allowed_fallback(p);
  1146. state = possible;
  1147. break;
  1148. case possible:
  1149. do_set_cpus_allowed(p, cpu_possible_mask);
  1150. state = fail;
  1151. break;
  1152. case fail:
  1153. BUG();
  1154. break;
  1155. }
  1156. }
  1157. out:
  1158. if (state != cpuset) {
  1159. /*
  1160. * Don't tell them about moving exiting tasks or
  1161. * kernel threads (both mm NULL), since they never
  1162. * leave kernel.
  1163. */
  1164. if (p->mm && printk_ratelimit()) {
  1165. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1166. task_pid_nr(p), p->comm, cpu);
  1167. }
  1168. }
  1169. return dest_cpu;
  1170. }
  1171. /*
  1172. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1173. */
  1174. static inline
  1175. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1176. {
  1177. if (p->nr_cpus_allowed > 1)
  1178. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1179. /*
  1180. * In order not to call set_task_cpu() on a blocking task we need
  1181. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1182. * cpu.
  1183. *
  1184. * Since this is common to all placement strategies, this lives here.
  1185. *
  1186. * [ this allows ->select_task() to simply return task_cpu(p) and
  1187. * not worry about this generic constraint ]
  1188. */
  1189. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1190. !cpu_online(cpu)))
  1191. cpu = select_fallback_rq(task_cpu(p), p);
  1192. return cpu;
  1193. }
  1194. static void update_avg(u64 *avg, u64 sample)
  1195. {
  1196. s64 diff = sample - *avg;
  1197. *avg += diff >> 3;
  1198. }
  1199. #endif
  1200. static void
  1201. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1202. {
  1203. #ifdef CONFIG_SCHEDSTATS
  1204. struct rq *rq = this_rq();
  1205. #ifdef CONFIG_SMP
  1206. int this_cpu = smp_processor_id();
  1207. if (cpu == this_cpu) {
  1208. schedstat_inc(rq, ttwu_local);
  1209. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1210. } else {
  1211. struct sched_domain *sd;
  1212. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1213. rcu_read_lock();
  1214. for_each_domain(this_cpu, sd) {
  1215. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1216. schedstat_inc(sd, ttwu_wake_remote);
  1217. break;
  1218. }
  1219. }
  1220. rcu_read_unlock();
  1221. }
  1222. if (wake_flags & WF_MIGRATED)
  1223. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1224. #endif /* CONFIG_SMP */
  1225. schedstat_inc(rq, ttwu_count);
  1226. schedstat_inc(p, se.statistics.nr_wakeups);
  1227. if (wake_flags & WF_SYNC)
  1228. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1229. #endif /* CONFIG_SCHEDSTATS */
  1230. }
  1231. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1232. {
  1233. activate_task(rq, p, en_flags);
  1234. p->on_rq = TASK_ON_RQ_QUEUED;
  1235. /* if a worker is waking up, notify workqueue */
  1236. if (p->flags & PF_WQ_WORKER)
  1237. wq_worker_waking_up(p, cpu_of(rq));
  1238. }
  1239. /*
  1240. * Mark the task runnable and perform wakeup-preemption.
  1241. */
  1242. static void
  1243. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1244. {
  1245. check_preempt_curr(rq, p, wake_flags);
  1246. trace_sched_wakeup(p, true);
  1247. p->state = TASK_RUNNING;
  1248. #ifdef CONFIG_SMP
  1249. if (p->sched_class->task_woken)
  1250. p->sched_class->task_woken(rq, p);
  1251. if (rq->idle_stamp) {
  1252. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1253. u64 max = 2*rq->max_idle_balance_cost;
  1254. update_avg(&rq->avg_idle, delta);
  1255. if (rq->avg_idle > max)
  1256. rq->avg_idle = max;
  1257. rq->idle_stamp = 0;
  1258. }
  1259. #endif
  1260. }
  1261. static void
  1262. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1263. {
  1264. #ifdef CONFIG_SMP
  1265. if (p->sched_contributes_to_load)
  1266. rq->nr_uninterruptible--;
  1267. #endif
  1268. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1269. ttwu_do_wakeup(rq, p, wake_flags);
  1270. }
  1271. /*
  1272. * Called in case the task @p isn't fully descheduled from its runqueue,
  1273. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1274. * since all we need to do is flip p->state to TASK_RUNNING, since
  1275. * the task is still ->on_rq.
  1276. */
  1277. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1278. {
  1279. struct rq *rq;
  1280. int ret = 0;
  1281. rq = __task_rq_lock(p);
  1282. if (task_on_rq_queued(p)) {
  1283. /* check_preempt_curr() may use rq clock */
  1284. update_rq_clock(rq);
  1285. ttwu_do_wakeup(rq, p, wake_flags);
  1286. ret = 1;
  1287. }
  1288. __task_rq_unlock(rq);
  1289. return ret;
  1290. }
  1291. #ifdef CONFIG_SMP
  1292. void sched_ttwu_pending(void)
  1293. {
  1294. struct rq *rq = this_rq();
  1295. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1296. struct task_struct *p;
  1297. unsigned long flags;
  1298. if (!llist)
  1299. return;
  1300. raw_spin_lock_irqsave(&rq->lock, flags);
  1301. while (llist) {
  1302. p = llist_entry(llist, struct task_struct, wake_entry);
  1303. llist = llist_next(llist);
  1304. ttwu_do_activate(rq, p, 0);
  1305. }
  1306. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1307. }
  1308. void scheduler_ipi(void)
  1309. {
  1310. /*
  1311. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1312. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1313. * this IPI.
  1314. */
  1315. preempt_fold_need_resched();
  1316. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1317. return;
  1318. /*
  1319. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1320. * traditionally all their work was done from the interrupt return
  1321. * path. Now that we actually do some work, we need to make sure
  1322. * we do call them.
  1323. *
  1324. * Some archs already do call them, luckily irq_enter/exit nest
  1325. * properly.
  1326. *
  1327. * Arguably we should visit all archs and update all handlers,
  1328. * however a fair share of IPIs are still resched only so this would
  1329. * somewhat pessimize the simple resched case.
  1330. */
  1331. irq_enter();
  1332. sched_ttwu_pending();
  1333. /*
  1334. * Check if someone kicked us for doing the nohz idle load balance.
  1335. */
  1336. if (unlikely(got_nohz_idle_kick())) {
  1337. this_rq()->idle_balance = 1;
  1338. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1339. }
  1340. irq_exit();
  1341. }
  1342. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1343. {
  1344. struct rq *rq = cpu_rq(cpu);
  1345. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1346. if (!set_nr_if_polling(rq->idle))
  1347. smp_send_reschedule(cpu);
  1348. else
  1349. trace_sched_wake_idle_without_ipi(cpu);
  1350. }
  1351. }
  1352. void wake_up_if_idle(int cpu)
  1353. {
  1354. struct rq *rq = cpu_rq(cpu);
  1355. unsigned long flags;
  1356. rcu_read_lock();
  1357. if (!is_idle_task(rcu_dereference(rq->curr)))
  1358. goto out;
  1359. if (set_nr_if_polling(rq->idle)) {
  1360. trace_sched_wake_idle_without_ipi(cpu);
  1361. } else {
  1362. raw_spin_lock_irqsave(&rq->lock, flags);
  1363. if (is_idle_task(rq->curr))
  1364. smp_send_reschedule(cpu);
  1365. /* Else cpu is not in idle, do nothing here */
  1366. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1367. }
  1368. out:
  1369. rcu_read_unlock();
  1370. }
  1371. bool cpus_share_cache(int this_cpu, int that_cpu)
  1372. {
  1373. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1374. }
  1375. #endif /* CONFIG_SMP */
  1376. static void ttwu_queue(struct task_struct *p, int cpu)
  1377. {
  1378. struct rq *rq = cpu_rq(cpu);
  1379. #if defined(CONFIG_SMP)
  1380. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1381. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1382. ttwu_queue_remote(p, cpu);
  1383. return;
  1384. }
  1385. #endif
  1386. raw_spin_lock(&rq->lock);
  1387. ttwu_do_activate(rq, p, 0);
  1388. raw_spin_unlock(&rq->lock);
  1389. }
  1390. /**
  1391. * try_to_wake_up - wake up a thread
  1392. * @p: the thread to be awakened
  1393. * @state: the mask of task states that can be woken
  1394. * @wake_flags: wake modifier flags (WF_*)
  1395. *
  1396. * Put it on the run-queue if it's not already there. The "current"
  1397. * thread is always on the run-queue (except when the actual
  1398. * re-schedule is in progress), and as such you're allowed to do
  1399. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1400. * runnable without the overhead of this.
  1401. *
  1402. * Return: %true if @p was woken up, %false if it was already running.
  1403. * or @state didn't match @p's state.
  1404. */
  1405. static int
  1406. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1407. {
  1408. unsigned long flags;
  1409. int cpu, success = 0;
  1410. /*
  1411. * If we are going to wake up a thread waiting for CONDITION we
  1412. * need to ensure that CONDITION=1 done by the caller can not be
  1413. * reordered with p->state check below. This pairs with mb() in
  1414. * set_current_state() the waiting thread does.
  1415. */
  1416. smp_mb__before_spinlock();
  1417. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1418. if (!(p->state & state))
  1419. goto out;
  1420. success = 1; /* we're going to change ->state */
  1421. cpu = task_cpu(p);
  1422. if (p->on_rq && ttwu_remote(p, wake_flags))
  1423. goto stat;
  1424. #ifdef CONFIG_SMP
  1425. /*
  1426. * If the owning (remote) cpu is still in the middle of schedule() with
  1427. * this task as prev, wait until its done referencing the task.
  1428. */
  1429. while (p->on_cpu)
  1430. cpu_relax();
  1431. /*
  1432. * Pairs with the smp_wmb() in finish_lock_switch().
  1433. */
  1434. smp_rmb();
  1435. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1436. p->state = TASK_WAKING;
  1437. if (p->sched_class->task_waking)
  1438. p->sched_class->task_waking(p);
  1439. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1440. if (task_cpu(p) != cpu) {
  1441. wake_flags |= WF_MIGRATED;
  1442. set_task_cpu(p, cpu);
  1443. }
  1444. #endif /* CONFIG_SMP */
  1445. ttwu_queue(p, cpu);
  1446. stat:
  1447. ttwu_stat(p, cpu, wake_flags);
  1448. out:
  1449. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1450. return success;
  1451. }
  1452. /**
  1453. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1454. * @p: the thread to be awakened
  1455. *
  1456. * Put @p on the run-queue if it's not already there. The caller must
  1457. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1458. * the current task.
  1459. */
  1460. static void try_to_wake_up_local(struct task_struct *p)
  1461. {
  1462. struct rq *rq = task_rq(p);
  1463. if (WARN_ON_ONCE(rq != this_rq()) ||
  1464. WARN_ON_ONCE(p == current))
  1465. return;
  1466. lockdep_assert_held(&rq->lock);
  1467. if (!raw_spin_trylock(&p->pi_lock)) {
  1468. raw_spin_unlock(&rq->lock);
  1469. raw_spin_lock(&p->pi_lock);
  1470. raw_spin_lock(&rq->lock);
  1471. }
  1472. if (!(p->state & TASK_NORMAL))
  1473. goto out;
  1474. if (!task_on_rq_queued(p))
  1475. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1476. ttwu_do_wakeup(rq, p, 0);
  1477. ttwu_stat(p, smp_processor_id(), 0);
  1478. out:
  1479. raw_spin_unlock(&p->pi_lock);
  1480. }
  1481. /**
  1482. * wake_up_process - Wake up a specific process
  1483. * @p: The process to be woken up.
  1484. *
  1485. * Attempt to wake up the nominated process and move it to the set of runnable
  1486. * processes.
  1487. *
  1488. * Return: 1 if the process was woken up, 0 if it was already running.
  1489. *
  1490. * It may be assumed that this function implies a write memory barrier before
  1491. * changing the task state if and only if any tasks are woken up.
  1492. */
  1493. int wake_up_process(struct task_struct *p)
  1494. {
  1495. WARN_ON(task_is_stopped_or_traced(p));
  1496. return try_to_wake_up(p, TASK_NORMAL, 0);
  1497. }
  1498. EXPORT_SYMBOL(wake_up_process);
  1499. int wake_up_state(struct task_struct *p, unsigned int state)
  1500. {
  1501. return try_to_wake_up(p, state, 0);
  1502. }
  1503. /*
  1504. * This function clears the sched_dl_entity static params.
  1505. */
  1506. void __dl_clear_params(struct task_struct *p)
  1507. {
  1508. struct sched_dl_entity *dl_se = &p->dl;
  1509. dl_se->dl_runtime = 0;
  1510. dl_se->dl_deadline = 0;
  1511. dl_se->dl_period = 0;
  1512. dl_se->flags = 0;
  1513. dl_se->dl_bw = 0;
  1514. dl_se->dl_throttled = 0;
  1515. dl_se->dl_new = 1;
  1516. dl_se->dl_yielded = 0;
  1517. }
  1518. /*
  1519. * Perform scheduler related setup for a newly forked process p.
  1520. * p is forked by current.
  1521. *
  1522. * __sched_fork() is basic setup used by init_idle() too:
  1523. */
  1524. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1525. {
  1526. p->on_rq = 0;
  1527. p->se.on_rq = 0;
  1528. p->se.exec_start = 0;
  1529. p->se.sum_exec_runtime = 0;
  1530. p->se.prev_sum_exec_runtime = 0;
  1531. p->se.nr_migrations = 0;
  1532. p->se.vruntime = 0;
  1533. #ifdef CONFIG_SMP
  1534. p->se.avg.decay_count = 0;
  1535. #endif
  1536. INIT_LIST_HEAD(&p->se.group_node);
  1537. #ifdef CONFIG_SCHEDSTATS
  1538. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1539. #endif
  1540. RB_CLEAR_NODE(&p->dl.rb_node);
  1541. init_dl_task_timer(&p->dl);
  1542. __dl_clear_params(p);
  1543. INIT_LIST_HEAD(&p->rt.run_list);
  1544. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1545. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1546. #endif
  1547. #ifdef CONFIG_NUMA_BALANCING
  1548. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1549. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1550. p->mm->numa_scan_seq = 0;
  1551. }
  1552. if (clone_flags & CLONE_VM)
  1553. p->numa_preferred_nid = current->numa_preferred_nid;
  1554. else
  1555. p->numa_preferred_nid = -1;
  1556. p->node_stamp = 0ULL;
  1557. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1558. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1559. p->numa_work.next = &p->numa_work;
  1560. p->numa_faults = NULL;
  1561. p->last_task_numa_placement = 0;
  1562. p->last_sum_exec_runtime = 0;
  1563. p->numa_group = NULL;
  1564. #endif /* CONFIG_NUMA_BALANCING */
  1565. }
  1566. #ifdef CONFIG_NUMA_BALANCING
  1567. #ifdef CONFIG_SCHED_DEBUG
  1568. void set_numabalancing_state(bool enabled)
  1569. {
  1570. if (enabled)
  1571. sched_feat_set("NUMA");
  1572. else
  1573. sched_feat_set("NO_NUMA");
  1574. }
  1575. #else
  1576. __read_mostly bool numabalancing_enabled;
  1577. void set_numabalancing_state(bool enabled)
  1578. {
  1579. numabalancing_enabled = enabled;
  1580. }
  1581. #endif /* CONFIG_SCHED_DEBUG */
  1582. #ifdef CONFIG_PROC_SYSCTL
  1583. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1584. void __user *buffer, size_t *lenp, loff_t *ppos)
  1585. {
  1586. struct ctl_table t;
  1587. int err;
  1588. int state = numabalancing_enabled;
  1589. if (write && !capable(CAP_SYS_ADMIN))
  1590. return -EPERM;
  1591. t = *table;
  1592. t.data = &state;
  1593. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1594. if (err < 0)
  1595. return err;
  1596. if (write)
  1597. set_numabalancing_state(state);
  1598. return err;
  1599. }
  1600. #endif
  1601. #endif
  1602. /*
  1603. * fork()/clone()-time setup:
  1604. */
  1605. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1606. {
  1607. unsigned long flags;
  1608. int cpu = get_cpu();
  1609. __sched_fork(clone_flags, p);
  1610. /*
  1611. * We mark the process as running here. This guarantees that
  1612. * nobody will actually run it, and a signal or other external
  1613. * event cannot wake it up and insert it on the runqueue either.
  1614. */
  1615. p->state = TASK_RUNNING;
  1616. /*
  1617. * Make sure we do not leak PI boosting priority to the child.
  1618. */
  1619. p->prio = current->normal_prio;
  1620. /*
  1621. * Revert to default priority/policy on fork if requested.
  1622. */
  1623. if (unlikely(p->sched_reset_on_fork)) {
  1624. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1625. p->policy = SCHED_NORMAL;
  1626. p->static_prio = NICE_TO_PRIO(0);
  1627. p->rt_priority = 0;
  1628. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1629. p->static_prio = NICE_TO_PRIO(0);
  1630. p->prio = p->normal_prio = __normal_prio(p);
  1631. set_load_weight(p);
  1632. /*
  1633. * We don't need the reset flag anymore after the fork. It has
  1634. * fulfilled its duty:
  1635. */
  1636. p->sched_reset_on_fork = 0;
  1637. }
  1638. if (dl_prio(p->prio)) {
  1639. put_cpu();
  1640. return -EAGAIN;
  1641. } else if (rt_prio(p->prio)) {
  1642. p->sched_class = &rt_sched_class;
  1643. } else {
  1644. p->sched_class = &fair_sched_class;
  1645. }
  1646. if (p->sched_class->task_fork)
  1647. p->sched_class->task_fork(p);
  1648. /*
  1649. * The child is not yet in the pid-hash so no cgroup attach races,
  1650. * and the cgroup is pinned to this child due to cgroup_fork()
  1651. * is ran before sched_fork().
  1652. *
  1653. * Silence PROVE_RCU.
  1654. */
  1655. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1656. set_task_cpu(p, cpu);
  1657. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1658. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1659. if (likely(sched_info_on()))
  1660. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1661. #endif
  1662. #if defined(CONFIG_SMP)
  1663. p->on_cpu = 0;
  1664. #endif
  1665. init_task_preempt_count(p);
  1666. #ifdef CONFIG_SMP
  1667. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1668. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1669. #endif
  1670. put_cpu();
  1671. return 0;
  1672. }
  1673. unsigned long to_ratio(u64 period, u64 runtime)
  1674. {
  1675. if (runtime == RUNTIME_INF)
  1676. return 1ULL << 20;
  1677. /*
  1678. * Doing this here saves a lot of checks in all
  1679. * the calling paths, and returning zero seems
  1680. * safe for them anyway.
  1681. */
  1682. if (period == 0)
  1683. return 0;
  1684. return div64_u64(runtime << 20, period);
  1685. }
  1686. #ifdef CONFIG_SMP
  1687. inline struct dl_bw *dl_bw_of(int i)
  1688. {
  1689. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1690. "sched RCU must be held");
  1691. return &cpu_rq(i)->rd->dl_bw;
  1692. }
  1693. static inline int dl_bw_cpus(int i)
  1694. {
  1695. struct root_domain *rd = cpu_rq(i)->rd;
  1696. int cpus = 0;
  1697. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1698. "sched RCU must be held");
  1699. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1700. cpus++;
  1701. return cpus;
  1702. }
  1703. #else
  1704. inline struct dl_bw *dl_bw_of(int i)
  1705. {
  1706. return &cpu_rq(i)->dl.dl_bw;
  1707. }
  1708. static inline int dl_bw_cpus(int i)
  1709. {
  1710. return 1;
  1711. }
  1712. #endif
  1713. /*
  1714. * We must be sure that accepting a new task (or allowing changing the
  1715. * parameters of an existing one) is consistent with the bandwidth
  1716. * constraints. If yes, this function also accordingly updates the currently
  1717. * allocated bandwidth to reflect the new situation.
  1718. *
  1719. * This function is called while holding p's rq->lock.
  1720. *
  1721. * XXX we should delay bw change until the task's 0-lag point, see
  1722. * __setparam_dl().
  1723. */
  1724. static int dl_overflow(struct task_struct *p, int policy,
  1725. const struct sched_attr *attr)
  1726. {
  1727. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1728. u64 period = attr->sched_period ?: attr->sched_deadline;
  1729. u64 runtime = attr->sched_runtime;
  1730. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1731. int cpus, err = -1;
  1732. if (new_bw == p->dl.dl_bw)
  1733. return 0;
  1734. /*
  1735. * Either if a task, enters, leave, or stays -deadline but changes
  1736. * its parameters, we may need to update accordingly the total
  1737. * allocated bandwidth of the container.
  1738. */
  1739. raw_spin_lock(&dl_b->lock);
  1740. cpus = dl_bw_cpus(task_cpu(p));
  1741. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1742. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1743. __dl_add(dl_b, new_bw);
  1744. err = 0;
  1745. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1746. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1747. __dl_clear(dl_b, p->dl.dl_bw);
  1748. __dl_add(dl_b, new_bw);
  1749. err = 0;
  1750. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1751. __dl_clear(dl_b, p->dl.dl_bw);
  1752. err = 0;
  1753. }
  1754. raw_spin_unlock(&dl_b->lock);
  1755. return err;
  1756. }
  1757. extern void init_dl_bw(struct dl_bw *dl_b);
  1758. /*
  1759. * wake_up_new_task - wake up a newly created task for the first time.
  1760. *
  1761. * This function will do some initial scheduler statistics housekeeping
  1762. * that must be done for every newly created context, then puts the task
  1763. * on the runqueue and wakes it.
  1764. */
  1765. void wake_up_new_task(struct task_struct *p)
  1766. {
  1767. unsigned long flags;
  1768. struct rq *rq;
  1769. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1770. #ifdef CONFIG_SMP
  1771. /*
  1772. * Fork balancing, do it here and not earlier because:
  1773. * - cpus_allowed can change in the fork path
  1774. * - any previously selected cpu might disappear through hotplug
  1775. */
  1776. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1777. #endif
  1778. /* Initialize new task's runnable average */
  1779. init_task_runnable_average(p);
  1780. rq = __task_rq_lock(p);
  1781. activate_task(rq, p, 0);
  1782. p->on_rq = TASK_ON_RQ_QUEUED;
  1783. trace_sched_wakeup_new(p, true);
  1784. check_preempt_curr(rq, p, WF_FORK);
  1785. #ifdef CONFIG_SMP
  1786. if (p->sched_class->task_woken)
  1787. p->sched_class->task_woken(rq, p);
  1788. #endif
  1789. task_rq_unlock(rq, p, &flags);
  1790. }
  1791. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1792. /**
  1793. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1794. * @notifier: notifier struct to register
  1795. */
  1796. void preempt_notifier_register(struct preempt_notifier *notifier)
  1797. {
  1798. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1799. }
  1800. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1801. /**
  1802. * preempt_notifier_unregister - no longer interested in preemption notifications
  1803. * @notifier: notifier struct to unregister
  1804. *
  1805. * This is safe to call from within a preemption notifier.
  1806. */
  1807. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1808. {
  1809. hlist_del(&notifier->link);
  1810. }
  1811. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1812. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1813. {
  1814. struct preempt_notifier *notifier;
  1815. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1816. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1817. }
  1818. static void
  1819. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1820. struct task_struct *next)
  1821. {
  1822. struct preempt_notifier *notifier;
  1823. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1824. notifier->ops->sched_out(notifier, next);
  1825. }
  1826. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1827. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1828. {
  1829. }
  1830. static void
  1831. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1832. struct task_struct *next)
  1833. {
  1834. }
  1835. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1836. /**
  1837. * prepare_task_switch - prepare to switch tasks
  1838. * @rq: the runqueue preparing to switch
  1839. * @prev: the current task that is being switched out
  1840. * @next: the task we are going to switch to.
  1841. *
  1842. * This is called with the rq lock held and interrupts off. It must
  1843. * be paired with a subsequent finish_task_switch after the context
  1844. * switch.
  1845. *
  1846. * prepare_task_switch sets up locking and calls architecture specific
  1847. * hooks.
  1848. */
  1849. static inline void
  1850. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1851. struct task_struct *next)
  1852. {
  1853. trace_sched_switch(prev, next);
  1854. sched_info_switch(rq, prev, next);
  1855. perf_event_task_sched_out(prev, next);
  1856. fire_sched_out_preempt_notifiers(prev, next);
  1857. prepare_lock_switch(rq, next);
  1858. prepare_arch_switch(next);
  1859. }
  1860. /**
  1861. * finish_task_switch - clean up after a task-switch
  1862. * @prev: the thread we just switched away from.
  1863. *
  1864. * finish_task_switch must be called after the context switch, paired
  1865. * with a prepare_task_switch call before the context switch.
  1866. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1867. * and do any other architecture-specific cleanup actions.
  1868. *
  1869. * Note that we may have delayed dropping an mm in context_switch(). If
  1870. * so, we finish that here outside of the runqueue lock. (Doing it
  1871. * with the lock held can cause deadlocks; see schedule() for
  1872. * details.)
  1873. *
  1874. * The context switch have flipped the stack from under us and restored the
  1875. * local variables which were saved when this task called schedule() in the
  1876. * past. prev == current is still correct but we need to recalculate this_rq
  1877. * because prev may have moved to another CPU.
  1878. */
  1879. static struct rq *finish_task_switch(struct task_struct *prev)
  1880. __releases(rq->lock)
  1881. {
  1882. struct rq *rq = this_rq();
  1883. struct mm_struct *mm = rq->prev_mm;
  1884. long prev_state;
  1885. rq->prev_mm = NULL;
  1886. /*
  1887. * A task struct has one reference for the use as "current".
  1888. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1889. * schedule one last time. The schedule call will never return, and
  1890. * the scheduled task must drop that reference.
  1891. * The test for TASK_DEAD must occur while the runqueue locks are
  1892. * still held, otherwise prev could be scheduled on another cpu, die
  1893. * there before we look at prev->state, and then the reference would
  1894. * be dropped twice.
  1895. * Manfred Spraul <manfred@colorfullife.com>
  1896. */
  1897. prev_state = prev->state;
  1898. vtime_task_switch(prev);
  1899. finish_arch_switch(prev);
  1900. perf_event_task_sched_in(prev, current);
  1901. finish_lock_switch(rq, prev);
  1902. finish_arch_post_lock_switch();
  1903. fire_sched_in_preempt_notifiers(current);
  1904. if (mm)
  1905. mmdrop(mm);
  1906. if (unlikely(prev_state == TASK_DEAD)) {
  1907. if (prev->sched_class->task_dead)
  1908. prev->sched_class->task_dead(prev);
  1909. /*
  1910. * Remove function-return probe instances associated with this
  1911. * task and put them back on the free list.
  1912. */
  1913. kprobe_flush_task(prev);
  1914. put_task_struct(prev);
  1915. }
  1916. tick_nohz_task_switch(current);
  1917. return rq;
  1918. }
  1919. #ifdef CONFIG_SMP
  1920. /* rq->lock is NOT held, but preemption is disabled */
  1921. static inline void post_schedule(struct rq *rq)
  1922. {
  1923. if (rq->post_schedule) {
  1924. unsigned long flags;
  1925. raw_spin_lock_irqsave(&rq->lock, flags);
  1926. if (rq->curr->sched_class->post_schedule)
  1927. rq->curr->sched_class->post_schedule(rq);
  1928. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1929. rq->post_schedule = 0;
  1930. }
  1931. }
  1932. #else
  1933. static inline void post_schedule(struct rq *rq)
  1934. {
  1935. }
  1936. #endif
  1937. /**
  1938. * schedule_tail - first thing a freshly forked thread must call.
  1939. * @prev: the thread we just switched away from.
  1940. */
  1941. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  1942. __releases(rq->lock)
  1943. {
  1944. struct rq *rq;
  1945. /* finish_task_switch() drops rq->lock and enables preemtion */
  1946. preempt_disable();
  1947. rq = finish_task_switch(prev);
  1948. post_schedule(rq);
  1949. preempt_enable();
  1950. if (current->set_child_tid)
  1951. put_user(task_pid_vnr(current), current->set_child_tid);
  1952. }
  1953. /*
  1954. * context_switch - switch to the new MM and the new thread's register state.
  1955. */
  1956. static inline struct rq *
  1957. context_switch(struct rq *rq, struct task_struct *prev,
  1958. struct task_struct *next)
  1959. {
  1960. struct mm_struct *mm, *oldmm;
  1961. prepare_task_switch(rq, prev, next);
  1962. mm = next->mm;
  1963. oldmm = prev->active_mm;
  1964. /*
  1965. * For paravirt, this is coupled with an exit in switch_to to
  1966. * combine the page table reload and the switch backend into
  1967. * one hypercall.
  1968. */
  1969. arch_start_context_switch(prev);
  1970. if (!mm) {
  1971. next->active_mm = oldmm;
  1972. atomic_inc(&oldmm->mm_count);
  1973. enter_lazy_tlb(oldmm, next);
  1974. } else
  1975. switch_mm(oldmm, mm, next);
  1976. if (!prev->mm) {
  1977. prev->active_mm = NULL;
  1978. rq->prev_mm = oldmm;
  1979. }
  1980. /*
  1981. * Since the runqueue lock will be released by the next
  1982. * task (which is an invalid locking op but in the case
  1983. * of the scheduler it's an obvious special-case), so we
  1984. * do an early lockdep release here:
  1985. */
  1986. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1987. context_tracking_task_switch(prev, next);
  1988. /* Here we just switch the register state and the stack. */
  1989. switch_to(prev, next, prev);
  1990. barrier();
  1991. return finish_task_switch(prev);
  1992. }
  1993. /*
  1994. * nr_running and nr_context_switches:
  1995. *
  1996. * externally visible scheduler statistics: current number of runnable
  1997. * threads, total number of context switches performed since bootup.
  1998. */
  1999. unsigned long nr_running(void)
  2000. {
  2001. unsigned long i, sum = 0;
  2002. for_each_online_cpu(i)
  2003. sum += cpu_rq(i)->nr_running;
  2004. return sum;
  2005. }
  2006. /*
  2007. * Check if only the current task is running on the cpu.
  2008. */
  2009. bool single_task_running(void)
  2010. {
  2011. if (cpu_rq(smp_processor_id())->nr_running == 1)
  2012. return true;
  2013. else
  2014. return false;
  2015. }
  2016. EXPORT_SYMBOL(single_task_running);
  2017. unsigned long long nr_context_switches(void)
  2018. {
  2019. int i;
  2020. unsigned long long sum = 0;
  2021. for_each_possible_cpu(i)
  2022. sum += cpu_rq(i)->nr_switches;
  2023. return sum;
  2024. }
  2025. unsigned long nr_iowait(void)
  2026. {
  2027. unsigned long i, sum = 0;
  2028. for_each_possible_cpu(i)
  2029. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2030. return sum;
  2031. }
  2032. unsigned long nr_iowait_cpu(int cpu)
  2033. {
  2034. struct rq *this = cpu_rq(cpu);
  2035. return atomic_read(&this->nr_iowait);
  2036. }
  2037. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2038. {
  2039. struct rq *this = this_rq();
  2040. *nr_waiters = atomic_read(&this->nr_iowait);
  2041. *load = this->cpu_load[0];
  2042. }
  2043. #ifdef CONFIG_SMP
  2044. /*
  2045. * sched_exec - execve() is a valuable balancing opportunity, because at
  2046. * this point the task has the smallest effective memory and cache footprint.
  2047. */
  2048. void sched_exec(void)
  2049. {
  2050. struct task_struct *p = current;
  2051. unsigned long flags;
  2052. int dest_cpu;
  2053. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2054. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2055. if (dest_cpu == smp_processor_id())
  2056. goto unlock;
  2057. if (likely(cpu_active(dest_cpu))) {
  2058. struct migration_arg arg = { p, dest_cpu };
  2059. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2060. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2061. return;
  2062. }
  2063. unlock:
  2064. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2065. }
  2066. #endif
  2067. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2068. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2069. EXPORT_PER_CPU_SYMBOL(kstat);
  2070. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2071. /*
  2072. * Return accounted runtime for the task.
  2073. * In case the task is currently running, return the runtime plus current's
  2074. * pending runtime that have not been accounted yet.
  2075. */
  2076. unsigned long long task_sched_runtime(struct task_struct *p)
  2077. {
  2078. unsigned long flags;
  2079. struct rq *rq;
  2080. u64 ns;
  2081. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2082. /*
  2083. * 64-bit doesn't need locks to atomically read a 64bit value.
  2084. * So we have a optimization chance when the task's delta_exec is 0.
  2085. * Reading ->on_cpu is racy, but this is ok.
  2086. *
  2087. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2088. * If we race with it entering cpu, unaccounted time is 0. This is
  2089. * indistinguishable from the read occurring a few cycles earlier.
  2090. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2091. * been accounted, so we're correct here as well.
  2092. */
  2093. if (!p->on_cpu || !task_on_rq_queued(p))
  2094. return p->se.sum_exec_runtime;
  2095. #endif
  2096. rq = task_rq_lock(p, &flags);
  2097. /*
  2098. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2099. * project cycles that may never be accounted to this
  2100. * thread, breaking clock_gettime().
  2101. */
  2102. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2103. update_rq_clock(rq);
  2104. p->sched_class->update_curr(rq);
  2105. }
  2106. ns = p->se.sum_exec_runtime;
  2107. task_rq_unlock(rq, p, &flags);
  2108. return ns;
  2109. }
  2110. /*
  2111. * This function gets called by the timer code, with HZ frequency.
  2112. * We call it with interrupts disabled.
  2113. */
  2114. void scheduler_tick(void)
  2115. {
  2116. int cpu = smp_processor_id();
  2117. struct rq *rq = cpu_rq(cpu);
  2118. struct task_struct *curr = rq->curr;
  2119. sched_clock_tick();
  2120. raw_spin_lock(&rq->lock);
  2121. update_rq_clock(rq);
  2122. curr->sched_class->task_tick(rq, curr, 0);
  2123. update_cpu_load_active(rq);
  2124. raw_spin_unlock(&rq->lock);
  2125. perf_event_task_tick();
  2126. #ifdef CONFIG_SMP
  2127. rq->idle_balance = idle_cpu(cpu);
  2128. trigger_load_balance(rq);
  2129. #endif
  2130. rq_last_tick_reset(rq);
  2131. }
  2132. #ifdef CONFIG_NO_HZ_FULL
  2133. /**
  2134. * scheduler_tick_max_deferment
  2135. *
  2136. * Keep at least one tick per second when a single
  2137. * active task is running because the scheduler doesn't
  2138. * yet completely support full dynticks environment.
  2139. *
  2140. * This makes sure that uptime, CFS vruntime, load
  2141. * balancing, etc... continue to move forward, even
  2142. * with a very low granularity.
  2143. *
  2144. * Return: Maximum deferment in nanoseconds.
  2145. */
  2146. u64 scheduler_tick_max_deferment(void)
  2147. {
  2148. struct rq *rq = this_rq();
  2149. unsigned long next, now = ACCESS_ONCE(jiffies);
  2150. next = rq->last_sched_tick + HZ;
  2151. if (time_before_eq(next, now))
  2152. return 0;
  2153. return jiffies_to_nsecs(next - now);
  2154. }
  2155. #endif
  2156. notrace unsigned long get_parent_ip(unsigned long addr)
  2157. {
  2158. if (in_lock_functions(addr)) {
  2159. addr = CALLER_ADDR2;
  2160. if (in_lock_functions(addr))
  2161. addr = CALLER_ADDR3;
  2162. }
  2163. return addr;
  2164. }
  2165. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2166. defined(CONFIG_PREEMPT_TRACER))
  2167. void preempt_count_add(int val)
  2168. {
  2169. #ifdef CONFIG_DEBUG_PREEMPT
  2170. /*
  2171. * Underflow?
  2172. */
  2173. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2174. return;
  2175. #endif
  2176. __preempt_count_add(val);
  2177. #ifdef CONFIG_DEBUG_PREEMPT
  2178. /*
  2179. * Spinlock count overflowing soon?
  2180. */
  2181. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2182. PREEMPT_MASK - 10);
  2183. #endif
  2184. if (preempt_count() == val) {
  2185. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2186. #ifdef CONFIG_DEBUG_PREEMPT
  2187. current->preempt_disable_ip = ip;
  2188. #endif
  2189. trace_preempt_off(CALLER_ADDR0, ip);
  2190. }
  2191. }
  2192. EXPORT_SYMBOL(preempt_count_add);
  2193. NOKPROBE_SYMBOL(preempt_count_add);
  2194. void preempt_count_sub(int val)
  2195. {
  2196. #ifdef CONFIG_DEBUG_PREEMPT
  2197. /*
  2198. * Underflow?
  2199. */
  2200. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2201. return;
  2202. /*
  2203. * Is the spinlock portion underflowing?
  2204. */
  2205. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2206. !(preempt_count() & PREEMPT_MASK)))
  2207. return;
  2208. #endif
  2209. if (preempt_count() == val)
  2210. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2211. __preempt_count_sub(val);
  2212. }
  2213. EXPORT_SYMBOL(preempt_count_sub);
  2214. NOKPROBE_SYMBOL(preempt_count_sub);
  2215. #endif
  2216. /*
  2217. * Print scheduling while atomic bug:
  2218. */
  2219. static noinline void __schedule_bug(struct task_struct *prev)
  2220. {
  2221. if (oops_in_progress)
  2222. return;
  2223. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2224. prev->comm, prev->pid, preempt_count());
  2225. debug_show_held_locks(prev);
  2226. print_modules();
  2227. if (irqs_disabled())
  2228. print_irqtrace_events(prev);
  2229. #ifdef CONFIG_DEBUG_PREEMPT
  2230. if (in_atomic_preempt_off()) {
  2231. pr_err("Preemption disabled at:");
  2232. print_ip_sym(current->preempt_disable_ip);
  2233. pr_cont("\n");
  2234. }
  2235. #endif
  2236. dump_stack();
  2237. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2238. }
  2239. /*
  2240. * Various schedule()-time debugging checks and statistics:
  2241. */
  2242. static inline void schedule_debug(struct task_struct *prev)
  2243. {
  2244. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2245. BUG_ON(unlikely(task_stack_end_corrupted(prev)));
  2246. #endif
  2247. /*
  2248. * Test if we are atomic. Since do_exit() needs to call into
  2249. * schedule() atomically, we ignore that path. Otherwise whine
  2250. * if we are scheduling when we should not.
  2251. */
  2252. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2253. __schedule_bug(prev);
  2254. rcu_sleep_check();
  2255. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2256. schedstat_inc(this_rq(), sched_count);
  2257. }
  2258. /*
  2259. * Pick up the highest-prio task:
  2260. */
  2261. static inline struct task_struct *
  2262. pick_next_task(struct rq *rq, struct task_struct *prev)
  2263. {
  2264. const struct sched_class *class = &fair_sched_class;
  2265. struct task_struct *p;
  2266. /*
  2267. * Optimization: we know that if all tasks are in
  2268. * the fair class we can call that function directly:
  2269. */
  2270. if (likely(prev->sched_class == class &&
  2271. rq->nr_running == rq->cfs.h_nr_running)) {
  2272. p = fair_sched_class.pick_next_task(rq, prev);
  2273. if (unlikely(p == RETRY_TASK))
  2274. goto again;
  2275. /* assumes fair_sched_class->next == idle_sched_class */
  2276. if (unlikely(!p))
  2277. p = idle_sched_class.pick_next_task(rq, prev);
  2278. return p;
  2279. }
  2280. again:
  2281. for_each_class(class) {
  2282. p = class->pick_next_task(rq, prev);
  2283. if (p) {
  2284. if (unlikely(p == RETRY_TASK))
  2285. goto again;
  2286. return p;
  2287. }
  2288. }
  2289. BUG(); /* the idle class will always have a runnable task */
  2290. }
  2291. /*
  2292. * __schedule() is the main scheduler function.
  2293. *
  2294. * The main means of driving the scheduler and thus entering this function are:
  2295. *
  2296. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2297. *
  2298. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2299. * paths. For example, see arch/x86/entry_64.S.
  2300. *
  2301. * To drive preemption between tasks, the scheduler sets the flag in timer
  2302. * interrupt handler scheduler_tick().
  2303. *
  2304. * 3. Wakeups don't really cause entry into schedule(). They add a
  2305. * task to the run-queue and that's it.
  2306. *
  2307. * Now, if the new task added to the run-queue preempts the current
  2308. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2309. * called on the nearest possible occasion:
  2310. *
  2311. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2312. *
  2313. * - in syscall or exception context, at the next outmost
  2314. * preempt_enable(). (this might be as soon as the wake_up()'s
  2315. * spin_unlock()!)
  2316. *
  2317. * - in IRQ context, return from interrupt-handler to
  2318. * preemptible context
  2319. *
  2320. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2321. * then at the next:
  2322. *
  2323. * - cond_resched() call
  2324. * - explicit schedule() call
  2325. * - return from syscall or exception to user-space
  2326. * - return from interrupt-handler to user-space
  2327. *
  2328. * WARNING: all callers must re-check need_resched() afterward and reschedule
  2329. * accordingly in case an event triggered the need for rescheduling (such as
  2330. * an interrupt waking up a task) while preemption was disabled in __schedule().
  2331. */
  2332. static void __sched __schedule(void)
  2333. {
  2334. struct task_struct *prev, *next;
  2335. unsigned long *switch_count;
  2336. struct rq *rq;
  2337. int cpu;
  2338. preempt_disable();
  2339. cpu = smp_processor_id();
  2340. rq = cpu_rq(cpu);
  2341. rcu_note_context_switch();
  2342. prev = rq->curr;
  2343. schedule_debug(prev);
  2344. if (sched_feat(HRTICK))
  2345. hrtick_clear(rq);
  2346. /*
  2347. * Make sure that signal_pending_state()->signal_pending() below
  2348. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2349. * done by the caller to avoid the race with signal_wake_up().
  2350. */
  2351. smp_mb__before_spinlock();
  2352. raw_spin_lock_irq(&rq->lock);
  2353. rq->clock_skip_update <<= 1; /* promote REQ to ACT */
  2354. switch_count = &prev->nivcsw;
  2355. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2356. if (unlikely(signal_pending_state(prev->state, prev))) {
  2357. prev->state = TASK_RUNNING;
  2358. } else {
  2359. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2360. prev->on_rq = 0;
  2361. /*
  2362. * If a worker went to sleep, notify and ask workqueue
  2363. * whether it wants to wake up a task to maintain
  2364. * concurrency.
  2365. */
  2366. if (prev->flags & PF_WQ_WORKER) {
  2367. struct task_struct *to_wakeup;
  2368. to_wakeup = wq_worker_sleeping(prev, cpu);
  2369. if (to_wakeup)
  2370. try_to_wake_up_local(to_wakeup);
  2371. }
  2372. }
  2373. switch_count = &prev->nvcsw;
  2374. }
  2375. if (task_on_rq_queued(prev))
  2376. update_rq_clock(rq);
  2377. next = pick_next_task(rq, prev);
  2378. clear_tsk_need_resched(prev);
  2379. clear_preempt_need_resched();
  2380. rq->clock_skip_update = 0;
  2381. if (likely(prev != next)) {
  2382. rq->nr_switches++;
  2383. rq->curr = next;
  2384. ++*switch_count;
  2385. rq = context_switch(rq, prev, next); /* unlocks the rq */
  2386. cpu = cpu_of(rq);
  2387. } else
  2388. raw_spin_unlock_irq(&rq->lock);
  2389. post_schedule(rq);
  2390. sched_preempt_enable_no_resched();
  2391. }
  2392. static inline void sched_submit_work(struct task_struct *tsk)
  2393. {
  2394. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2395. return;
  2396. /*
  2397. * If we are going to sleep and we have plugged IO queued,
  2398. * make sure to submit it to avoid deadlocks.
  2399. */
  2400. if (blk_needs_flush_plug(tsk))
  2401. blk_schedule_flush_plug(tsk);
  2402. }
  2403. asmlinkage __visible void __sched schedule(void)
  2404. {
  2405. struct task_struct *tsk = current;
  2406. sched_submit_work(tsk);
  2407. do {
  2408. __schedule();
  2409. } while (need_resched());
  2410. }
  2411. EXPORT_SYMBOL(schedule);
  2412. #ifdef CONFIG_CONTEXT_TRACKING
  2413. asmlinkage __visible void __sched schedule_user(void)
  2414. {
  2415. /*
  2416. * If we come here after a random call to set_need_resched(),
  2417. * or we have been woken up remotely but the IPI has not yet arrived,
  2418. * we haven't yet exited the RCU idle mode. Do it here manually until
  2419. * we find a better solution.
  2420. *
  2421. * NB: There are buggy callers of this function. Ideally we
  2422. * should warn if prev_state != CONTEXT_USER, but that will trigger
  2423. * too frequently to make sense yet.
  2424. */
  2425. enum ctx_state prev_state = exception_enter();
  2426. schedule();
  2427. exception_exit(prev_state);
  2428. }
  2429. #endif
  2430. /**
  2431. * schedule_preempt_disabled - called with preemption disabled
  2432. *
  2433. * Returns with preemption disabled. Note: preempt_count must be 1
  2434. */
  2435. void __sched schedule_preempt_disabled(void)
  2436. {
  2437. sched_preempt_enable_no_resched();
  2438. schedule();
  2439. preempt_disable();
  2440. }
  2441. static void __sched notrace preempt_schedule_common(void)
  2442. {
  2443. do {
  2444. __preempt_count_add(PREEMPT_ACTIVE);
  2445. __schedule();
  2446. __preempt_count_sub(PREEMPT_ACTIVE);
  2447. /*
  2448. * Check again in case we missed a preemption opportunity
  2449. * between schedule and now.
  2450. */
  2451. barrier();
  2452. } while (need_resched());
  2453. }
  2454. #ifdef CONFIG_PREEMPT
  2455. /*
  2456. * this is the entry point to schedule() from in-kernel preemption
  2457. * off of preempt_enable. Kernel preemptions off return from interrupt
  2458. * occur there and call schedule directly.
  2459. */
  2460. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2461. {
  2462. /*
  2463. * If there is a non-zero preempt_count or interrupts are disabled,
  2464. * we do not want to preempt the current task. Just return..
  2465. */
  2466. if (likely(!preemptible()))
  2467. return;
  2468. preempt_schedule_common();
  2469. }
  2470. NOKPROBE_SYMBOL(preempt_schedule);
  2471. EXPORT_SYMBOL(preempt_schedule);
  2472. #ifdef CONFIG_CONTEXT_TRACKING
  2473. /**
  2474. * preempt_schedule_context - preempt_schedule called by tracing
  2475. *
  2476. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2477. * recursion and tracing preempt enabling caused by the tracing
  2478. * infrastructure itself. But as tracing can happen in areas coming
  2479. * from userspace or just about to enter userspace, a preempt enable
  2480. * can occur before user_exit() is called. This will cause the scheduler
  2481. * to be called when the system is still in usermode.
  2482. *
  2483. * To prevent this, the preempt_enable_notrace will use this function
  2484. * instead of preempt_schedule() to exit user context if needed before
  2485. * calling the scheduler.
  2486. */
  2487. asmlinkage __visible void __sched notrace preempt_schedule_context(void)
  2488. {
  2489. enum ctx_state prev_ctx;
  2490. if (likely(!preemptible()))
  2491. return;
  2492. do {
  2493. __preempt_count_add(PREEMPT_ACTIVE);
  2494. /*
  2495. * Needs preempt disabled in case user_exit() is traced
  2496. * and the tracer calls preempt_enable_notrace() causing
  2497. * an infinite recursion.
  2498. */
  2499. prev_ctx = exception_enter();
  2500. __schedule();
  2501. exception_exit(prev_ctx);
  2502. __preempt_count_sub(PREEMPT_ACTIVE);
  2503. barrier();
  2504. } while (need_resched());
  2505. }
  2506. EXPORT_SYMBOL_GPL(preempt_schedule_context);
  2507. #endif /* CONFIG_CONTEXT_TRACKING */
  2508. #endif /* CONFIG_PREEMPT */
  2509. /*
  2510. * this is the entry point to schedule() from kernel preemption
  2511. * off of irq context.
  2512. * Note, that this is called and return with irqs disabled. This will
  2513. * protect us against recursive calling from irq.
  2514. */
  2515. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2516. {
  2517. enum ctx_state prev_state;
  2518. /* Catch callers which need to be fixed */
  2519. BUG_ON(preempt_count() || !irqs_disabled());
  2520. prev_state = exception_enter();
  2521. do {
  2522. __preempt_count_add(PREEMPT_ACTIVE);
  2523. local_irq_enable();
  2524. __schedule();
  2525. local_irq_disable();
  2526. __preempt_count_sub(PREEMPT_ACTIVE);
  2527. /*
  2528. * Check again in case we missed a preemption opportunity
  2529. * between schedule and now.
  2530. */
  2531. barrier();
  2532. } while (need_resched());
  2533. exception_exit(prev_state);
  2534. }
  2535. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2536. void *key)
  2537. {
  2538. return try_to_wake_up(curr->private, mode, wake_flags);
  2539. }
  2540. EXPORT_SYMBOL(default_wake_function);
  2541. #ifdef CONFIG_RT_MUTEXES
  2542. /*
  2543. * rt_mutex_setprio - set the current priority of a task
  2544. * @p: task
  2545. * @prio: prio value (kernel-internal form)
  2546. *
  2547. * This function changes the 'effective' priority of a task. It does
  2548. * not touch ->normal_prio like __setscheduler().
  2549. *
  2550. * Used by the rt_mutex code to implement priority inheritance
  2551. * logic. Call site only calls if the priority of the task changed.
  2552. */
  2553. void rt_mutex_setprio(struct task_struct *p, int prio)
  2554. {
  2555. int oldprio, queued, running, enqueue_flag = 0;
  2556. struct rq *rq;
  2557. const struct sched_class *prev_class;
  2558. BUG_ON(prio > MAX_PRIO);
  2559. rq = __task_rq_lock(p);
  2560. /*
  2561. * Idle task boosting is a nono in general. There is one
  2562. * exception, when PREEMPT_RT and NOHZ is active:
  2563. *
  2564. * The idle task calls get_next_timer_interrupt() and holds
  2565. * the timer wheel base->lock on the CPU and another CPU wants
  2566. * to access the timer (probably to cancel it). We can safely
  2567. * ignore the boosting request, as the idle CPU runs this code
  2568. * with interrupts disabled and will complete the lock
  2569. * protected section without being interrupted. So there is no
  2570. * real need to boost.
  2571. */
  2572. if (unlikely(p == rq->idle)) {
  2573. WARN_ON(p != rq->curr);
  2574. WARN_ON(p->pi_blocked_on);
  2575. goto out_unlock;
  2576. }
  2577. trace_sched_pi_setprio(p, prio);
  2578. oldprio = p->prio;
  2579. prev_class = p->sched_class;
  2580. queued = task_on_rq_queued(p);
  2581. running = task_current(rq, p);
  2582. if (queued)
  2583. dequeue_task(rq, p, 0);
  2584. if (running)
  2585. put_prev_task(rq, p);
  2586. /*
  2587. * Boosting condition are:
  2588. * 1. -rt task is running and holds mutex A
  2589. * --> -dl task blocks on mutex A
  2590. *
  2591. * 2. -dl task is running and holds mutex A
  2592. * --> -dl task blocks on mutex A and could preempt the
  2593. * running task
  2594. */
  2595. if (dl_prio(prio)) {
  2596. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2597. if (!dl_prio(p->normal_prio) ||
  2598. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2599. p->dl.dl_boosted = 1;
  2600. p->dl.dl_throttled = 0;
  2601. enqueue_flag = ENQUEUE_REPLENISH;
  2602. } else
  2603. p->dl.dl_boosted = 0;
  2604. p->sched_class = &dl_sched_class;
  2605. } else if (rt_prio(prio)) {
  2606. if (dl_prio(oldprio))
  2607. p->dl.dl_boosted = 0;
  2608. if (oldprio < prio)
  2609. enqueue_flag = ENQUEUE_HEAD;
  2610. p->sched_class = &rt_sched_class;
  2611. } else {
  2612. if (dl_prio(oldprio))
  2613. p->dl.dl_boosted = 0;
  2614. if (rt_prio(oldprio))
  2615. p->rt.timeout = 0;
  2616. p->sched_class = &fair_sched_class;
  2617. }
  2618. p->prio = prio;
  2619. if (running)
  2620. p->sched_class->set_curr_task(rq);
  2621. if (queued)
  2622. enqueue_task(rq, p, enqueue_flag);
  2623. check_class_changed(rq, p, prev_class, oldprio);
  2624. out_unlock:
  2625. __task_rq_unlock(rq);
  2626. }
  2627. #endif
  2628. void set_user_nice(struct task_struct *p, long nice)
  2629. {
  2630. int old_prio, delta, queued;
  2631. unsigned long flags;
  2632. struct rq *rq;
  2633. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2634. return;
  2635. /*
  2636. * We have to be careful, if called from sys_setpriority(),
  2637. * the task might be in the middle of scheduling on another CPU.
  2638. */
  2639. rq = task_rq_lock(p, &flags);
  2640. /*
  2641. * The RT priorities are set via sched_setscheduler(), but we still
  2642. * allow the 'normal' nice value to be set - but as expected
  2643. * it wont have any effect on scheduling until the task is
  2644. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2645. */
  2646. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2647. p->static_prio = NICE_TO_PRIO(nice);
  2648. goto out_unlock;
  2649. }
  2650. queued = task_on_rq_queued(p);
  2651. if (queued)
  2652. dequeue_task(rq, p, 0);
  2653. p->static_prio = NICE_TO_PRIO(nice);
  2654. set_load_weight(p);
  2655. old_prio = p->prio;
  2656. p->prio = effective_prio(p);
  2657. delta = p->prio - old_prio;
  2658. if (queued) {
  2659. enqueue_task(rq, p, 0);
  2660. /*
  2661. * If the task increased its priority or is running and
  2662. * lowered its priority, then reschedule its CPU:
  2663. */
  2664. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2665. resched_curr(rq);
  2666. }
  2667. out_unlock:
  2668. task_rq_unlock(rq, p, &flags);
  2669. }
  2670. EXPORT_SYMBOL(set_user_nice);
  2671. /*
  2672. * can_nice - check if a task can reduce its nice value
  2673. * @p: task
  2674. * @nice: nice value
  2675. */
  2676. int can_nice(const struct task_struct *p, const int nice)
  2677. {
  2678. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2679. int nice_rlim = nice_to_rlimit(nice);
  2680. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2681. capable(CAP_SYS_NICE));
  2682. }
  2683. #ifdef __ARCH_WANT_SYS_NICE
  2684. /*
  2685. * sys_nice - change the priority of the current process.
  2686. * @increment: priority increment
  2687. *
  2688. * sys_setpriority is a more generic, but much slower function that
  2689. * does similar things.
  2690. */
  2691. SYSCALL_DEFINE1(nice, int, increment)
  2692. {
  2693. long nice, retval;
  2694. /*
  2695. * Setpriority might change our priority at the same moment.
  2696. * We don't have to worry. Conceptually one call occurs first
  2697. * and we have a single winner.
  2698. */
  2699. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2700. nice = task_nice(current) + increment;
  2701. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2702. if (increment < 0 && !can_nice(current, nice))
  2703. return -EPERM;
  2704. retval = security_task_setnice(current, nice);
  2705. if (retval)
  2706. return retval;
  2707. set_user_nice(current, nice);
  2708. return 0;
  2709. }
  2710. #endif
  2711. /**
  2712. * task_prio - return the priority value of a given task.
  2713. * @p: the task in question.
  2714. *
  2715. * Return: The priority value as seen by users in /proc.
  2716. * RT tasks are offset by -200. Normal tasks are centered
  2717. * around 0, value goes from -16 to +15.
  2718. */
  2719. int task_prio(const struct task_struct *p)
  2720. {
  2721. return p->prio - MAX_RT_PRIO;
  2722. }
  2723. /**
  2724. * idle_cpu - is a given cpu idle currently?
  2725. * @cpu: the processor in question.
  2726. *
  2727. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2728. */
  2729. int idle_cpu(int cpu)
  2730. {
  2731. struct rq *rq = cpu_rq(cpu);
  2732. if (rq->curr != rq->idle)
  2733. return 0;
  2734. if (rq->nr_running)
  2735. return 0;
  2736. #ifdef CONFIG_SMP
  2737. if (!llist_empty(&rq->wake_list))
  2738. return 0;
  2739. #endif
  2740. return 1;
  2741. }
  2742. /**
  2743. * idle_task - return the idle task for a given cpu.
  2744. * @cpu: the processor in question.
  2745. *
  2746. * Return: The idle task for the cpu @cpu.
  2747. */
  2748. struct task_struct *idle_task(int cpu)
  2749. {
  2750. return cpu_rq(cpu)->idle;
  2751. }
  2752. /**
  2753. * find_process_by_pid - find a process with a matching PID value.
  2754. * @pid: the pid in question.
  2755. *
  2756. * The task of @pid, if found. %NULL otherwise.
  2757. */
  2758. static struct task_struct *find_process_by_pid(pid_t pid)
  2759. {
  2760. return pid ? find_task_by_vpid(pid) : current;
  2761. }
  2762. /*
  2763. * This function initializes the sched_dl_entity of a newly becoming
  2764. * SCHED_DEADLINE task.
  2765. *
  2766. * Only the static values are considered here, the actual runtime and the
  2767. * absolute deadline will be properly calculated when the task is enqueued
  2768. * for the first time with its new policy.
  2769. */
  2770. static void
  2771. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2772. {
  2773. struct sched_dl_entity *dl_se = &p->dl;
  2774. dl_se->dl_runtime = attr->sched_runtime;
  2775. dl_se->dl_deadline = attr->sched_deadline;
  2776. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2777. dl_se->flags = attr->sched_flags;
  2778. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2779. /*
  2780. * Changing the parameters of a task is 'tricky' and we're not doing
  2781. * the correct thing -- also see task_dead_dl() and switched_from_dl().
  2782. *
  2783. * What we SHOULD do is delay the bandwidth release until the 0-lag
  2784. * point. This would include retaining the task_struct until that time
  2785. * and change dl_overflow() to not immediately decrement the current
  2786. * amount.
  2787. *
  2788. * Instead we retain the current runtime/deadline and let the new
  2789. * parameters take effect after the current reservation period lapses.
  2790. * This is safe (albeit pessimistic) because the 0-lag point is always
  2791. * before the current scheduling deadline.
  2792. *
  2793. * We can still have temporary overloads because we do not delay the
  2794. * change in bandwidth until that time; so admission control is
  2795. * not on the safe side. It does however guarantee tasks will never
  2796. * consume more than promised.
  2797. */
  2798. }
  2799. /*
  2800. * sched_setparam() passes in -1 for its policy, to let the functions
  2801. * it calls know not to change it.
  2802. */
  2803. #define SETPARAM_POLICY -1
  2804. static void __setscheduler_params(struct task_struct *p,
  2805. const struct sched_attr *attr)
  2806. {
  2807. int policy = attr->sched_policy;
  2808. if (policy == SETPARAM_POLICY)
  2809. policy = p->policy;
  2810. p->policy = policy;
  2811. if (dl_policy(policy))
  2812. __setparam_dl(p, attr);
  2813. else if (fair_policy(policy))
  2814. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2815. /*
  2816. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2817. * !rt_policy. Always setting this ensures that things like
  2818. * getparam()/getattr() don't report silly values for !rt tasks.
  2819. */
  2820. p->rt_priority = attr->sched_priority;
  2821. p->normal_prio = normal_prio(p);
  2822. set_load_weight(p);
  2823. }
  2824. /* Actually do priority change: must hold pi & rq lock. */
  2825. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2826. const struct sched_attr *attr, bool keep_boost)
  2827. {
  2828. __setscheduler_params(p, attr);
  2829. /*
  2830. * Keep a potential priority boosting if called from
  2831. * sched_setscheduler().
  2832. */
  2833. if (keep_boost)
  2834. p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
  2835. else
  2836. p->prio = normal_prio(p);
  2837. if (dl_prio(p->prio))
  2838. p->sched_class = &dl_sched_class;
  2839. else if (rt_prio(p->prio))
  2840. p->sched_class = &rt_sched_class;
  2841. else
  2842. p->sched_class = &fair_sched_class;
  2843. }
  2844. static void
  2845. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2846. {
  2847. struct sched_dl_entity *dl_se = &p->dl;
  2848. attr->sched_priority = p->rt_priority;
  2849. attr->sched_runtime = dl_se->dl_runtime;
  2850. attr->sched_deadline = dl_se->dl_deadline;
  2851. attr->sched_period = dl_se->dl_period;
  2852. attr->sched_flags = dl_se->flags;
  2853. }
  2854. /*
  2855. * This function validates the new parameters of a -deadline task.
  2856. * We ask for the deadline not being zero, and greater or equal
  2857. * than the runtime, as well as the period of being zero or
  2858. * greater than deadline. Furthermore, we have to be sure that
  2859. * user parameters are above the internal resolution of 1us (we
  2860. * check sched_runtime only since it is always the smaller one) and
  2861. * below 2^63 ns (we have to check both sched_deadline and
  2862. * sched_period, as the latter can be zero).
  2863. */
  2864. static bool
  2865. __checkparam_dl(const struct sched_attr *attr)
  2866. {
  2867. /* deadline != 0 */
  2868. if (attr->sched_deadline == 0)
  2869. return false;
  2870. /*
  2871. * Since we truncate DL_SCALE bits, make sure we're at least
  2872. * that big.
  2873. */
  2874. if (attr->sched_runtime < (1ULL << DL_SCALE))
  2875. return false;
  2876. /*
  2877. * Since we use the MSB for wrap-around and sign issues, make
  2878. * sure it's not set (mind that period can be equal to zero).
  2879. */
  2880. if (attr->sched_deadline & (1ULL << 63) ||
  2881. attr->sched_period & (1ULL << 63))
  2882. return false;
  2883. /* runtime <= deadline <= period (if period != 0) */
  2884. if ((attr->sched_period != 0 &&
  2885. attr->sched_period < attr->sched_deadline) ||
  2886. attr->sched_deadline < attr->sched_runtime)
  2887. return false;
  2888. return true;
  2889. }
  2890. /*
  2891. * check the target process has a UID that matches the current process's
  2892. */
  2893. static bool check_same_owner(struct task_struct *p)
  2894. {
  2895. const struct cred *cred = current_cred(), *pcred;
  2896. bool match;
  2897. rcu_read_lock();
  2898. pcred = __task_cred(p);
  2899. match = (uid_eq(cred->euid, pcred->euid) ||
  2900. uid_eq(cred->euid, pcred->uid));
  2901. rcu_read_unlock();
  2902. return match;
  2903. }
  2904. static bool dl_param_changed(struct task_struct *p,
  2905. const struct sched_attr *attr)
  2906. {
  2907. struct sched_dl_entity *dl_se = &p->dl;
  2908. if (dl_se->dl_runtime != attr->sched_runtime ||
  2909. dl_se->dl_deadline != attr->sched_deadline ||
  2910. dl_se->dl_period != attr->sched_period ||
  2911. dl_se->flags != attr->sched_flags)
  2912. return true;
  2913. return false;
  2914. }
  2915. static int __sched_setscheduler(struct task_struct *p,
  2916. const struct sched_attr *attr,
  2917. bool user)
  2918. {
  2919. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  2920. MAX_RT_PRIO - 1 - attr->sched_priority;
  2921. int retval, oldprio, oldpolicy = -1, queued, running;
  2922. int new_effective_prio, policy = attr->sched_policy;
  2923. unsigned long flags;
  2924. const struct sched_class *prev_class;
  2925. struct rq *rq;
  2926. int reset_on_fork;
  2927. /* may grab non-irq protected spin_locks */
  2928. BUG_ON(in_interrupt());
  2929. recheck:
  2930. /* double check policy once rq lock held */
  2931. if (policy < 0) {
  2932. reset_on_fork = p->sched_reset_on_fork;
  2933. policy = oldpolicy = p->policy;
  2934. } else {
  2935. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2936. if (policy != SCHED_DEADLINE &&
  2937. policy != SCHED_FIFO && policy != SCHED_RR &&
  2938. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2939. policy != SCHED_IDLE)
  2940. return -EINVAL;
  2941. }
  2942. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2943. return -EINVAL;
  2944. /*
  2945. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2946. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2947. * SCHED_BATCH and SCHED_IDLE is 0.
  2948. */
  2949. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2950. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2951. return -EINVAL;
  2952. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2953. (rt_policy(policy) != (attr->sched_priority != 0)))
  2954. return -EINVAL;
  2955. /*
  2956. * Allow unprivileged RT tasks to decrease priority:
  2957. */
  2958. if (user && !capable(CAP_SYS_NICE)) {
  2959. if (fair_policy(policy)) {
  2960. if (attr->sched_nice < task_nice(p) &&
  2961. !can_nice(p, attr->sched_nice))
  2962. return -EPERM;
  2963. }
  2964. if (rt_policy(policy)) {
  2965. unsigned long rlim_rtprio =
  2966. task_rlimit(p, RLIMIT_RTPRIO);
  2967. /* can't set/change the rt policy */
  2968. if (policy != p->policy && !rlim_rtprio)
  2969. return -EPERM;
  2970. /* can't increase priority */
  2971. if (attr->sched_priority > p->rt_priority &&
  2972. attr->sched_priority > rlim_rtprio)
  2973. return -EPERM;
  2974. }
  2975. /*
  2976. * Can't set/change SCHED_DEADLINE policy at all for now
  2977. * (safest behavior); in the future we would like to allow
  2978. * unprivileged DL tasks to increase their relative deadline
  2979. * or reduce their runtime (both ways reducing utilization)
  2980. */
  2981. if (dl_policy(policy))
  2982. return -EPERM;
  2983. /*
  2984. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2985. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2986. */
  2987. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2988. if (!can_nice(p, task_nice(p)))
  2989. return -EPERM;
  2990. }
  2991. /* can't change other user's priorities */
  2992. if (!check_same_owner(p))
  2993. return -EPERM;
  2994. /* Normal users shall not reset the sched_reset_on_fork flag */
  2995. if (p->sched_reset_on_fork && !reset_on_fork)
  2996. return -EPERM;
  2997. }
  2998. if (user) {
  2999. retval = security_task_setscheduler(p);
  3000. if (retval)
  3001. return retval;
  3002. }
  3003. /*
  3004. * make sure no PI-waiters arrive (or leave) while we are
  3005. * changing the priority of the task:
  3006. *
  3007. * To be able to change p->policy safely, the appropriate
  3008. * runqueue lock must be held.
  3009. */
  3010. rq = task_rq_lock(p, &flags);
  3011. /*
  3012. * Changing the policy of the stop threads its a very bad idea
  3013. */
  3014. if (p == rq->stop) {
  3015. task_rq_unlock(rq, p, &flags);
  3016. return -EINVAL;
  3017. }
  3018. /*
  3019. * If not changing anything there's no need to proceed further,
  3020. * but store a possible modification of reset_on_fork.
  3021. */
  3022. if (unlikely(policy == p->policy)) {
  3023. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3024. goto change;
  3025. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3026. goto change;
  3027. if (dl_policy(policy) && dl_param_changed(p, attr))
  3028. goto change;
  3029. p->sched_reset_on_fork = reset_on_fork;
  3030. task_rq_unlock(rq, p, &flags);
  3031. return 0;
  3032. }
  3033. change:
  3034. if (user) {
  3035. #ifdef CONFIG_RT_GROUP_SCHED
  3036. /*
  3037. * Do not allow realtime tasks into groups that have no runtime
  3038. * assigned.
  3039. */
  3040. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3041. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3042. !task_group_is_autogroup(task_group(p))) {
  3043. task_rq_unlock(rq, p, &flags);
  3044. return -EPERM;
  3045. }
  3046. #endif
  3047. #ifdef CONFIG_SMP
  3048. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3049. cpumask_t *span = rq->rd->span;
  3050. /*
  3051. * Don't allow tasks with an affinity mask smaller than
  3052. * the entire root_domain to become SCHED_DEADLINE. We
  3053. * will also fail if there's no bandwidth available.
  3054. */
  3055. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3056. rq->rd->dl_bw.bw == 0) {
  3057. task_rq_unlock(rq, p, &flags);
  3058. return -EPERM;
  3059. }
  3060. }
  3061. #endif
  3062. }
  3063. /* recheck policy now with rq lock held */
  3064. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3065. policy = oldpolicy = -1;
  3066. task_rq_unlock(rq, p, &flags);
  3067. goto recheck;
  3068. }
  3069. /*
  3070. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3071. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3072. * is available.
  3073. */
  3074. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3075. task_rq_unlock(rq, p, &flags);
  3076. return -EBUSY;
  3077. }
  3078. p->sched_reset_on_fork = reset_on_fork;
  3079. oldprio = p->prio;
  3080. /*
  3081. * Take priority boosted tasks into account. If the new
  3082. * effective priority is unchanged, we just store the new
  3083. * normal parameters and do not touch the scheduler class and
  3084. * the runqueue. This will be done when the task deboost
  3085. * itself.
  3086. */
  3087. new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
  3088. if (new_effective_prio == oldprio) {
  3089. __setscheduler_params(p, attr);
  3090. task_rq_unlock(rq, p, &flags);
  3091. return 0;
  3092. }
  3093. queued = task_on_rq_queued(p);
  3094. running = task_current(rq, p);
  3095. if (queued)
  3096. dequeue_task(rq, p, 0);
  3097. if (running)
  3098. put_prev_task(rq, p);
  3099. prev_class = p->sched_class;
  3100. __setscheduler(rq, p, attr, true);
  3101. if (running)
  3102. p->sched_class->set_curr_task(rq);
  3103. if (queued) {
  3104. /*
  3105. * We enqueue to tail when the priority of a task is
  3106. * increased (user space view).
  3107. */
  3108. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3109. }
  3110. check_class_changed(rq, p, prev_class, oldprio);
  3111. task_rq_unlock(rq, p, &flags);
  3112. rt_mutex_adjust_pi(p);
  3113. return 0;
  3114. }
  3115. static int _sched_setscheduler(struct task_struct *p, int policy,
  3116. const struct sched_param *param, bool check)
  3117. {
  3118. struct sched_attr attr = {
  3119. .sched_policy = policy,
  3120. .sched_priority = param->sched_priority,
  3121. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3122. };
  3123. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3124. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3125. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3126. policy &= ~SCHED_RESET_ON_FORK;
  3127. attr.sched_policy = policy;
  3128. }
  3129. return __sched_setscheduler(p, &attr, check);
  3130. }
  3131. /**
  3132. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3133. * @p: the task in question.
  3134. * @policy: new policy.
  3135. * @param: structure containing the new RT priority.
  3136. *
  3137. * Return: 0 on success. An error code otherwise.
  3138. *
  3139. * NOTE that the task may be already dead.
  3140. */
  3141. int sched_setscheduler(struct task_struct *p, int policy,
  3142. const struct sched_param *param)
  3143. {
  3144. return _sched_setscheduler(p, policy, param, true);
  3145. }
  3146. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3147. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3148. {
  3149. return __sched_setscheduler(p, attr, true);
  3150. }
  3151. EXPORT_SYMBOL_GPL(sched_setattr);
  3152. /**
  3153. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3154. * @p: the task in question.
  3155. * @policy: new policy.
  3156. * @param: structure containing the new RT priority.
  3157. *
  3158. * Just like sched_setscheduler, only don't bother checking if the
  3159. * current context has permission. For example, this is needed in
  3160. * stop_machine(): we create temporary high priority worker threads,
  3161. * but our caller might not have that capability.
  3162. *
  3163. * Return: 0 on success. An error code otherwise.
  3164. */
  3165. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3166. const struct sched_param *param)
  3167. {
  3168. return _sched_setscheduler(p, policy, param, false);
  3169. }
  3170. static int
  3171. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3172. {
  3173. struct sched_param lparam;
  3174. struct task_struct *p;
  3175. int retval;
  3176. if (!param || pid < 0)
  3177. return -EINVAL;
  3178. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3179. return -EFAULT;
  3180. rcu_read_lock();
  3181. retval = -ESRCH;
  3182. p = find_process_by_pid(pid);
  3183. if (p != NULL)
  3184. retval = sched_setscheduler(p, policy, &lparam);
  3185. rcu_read_unlock();
  3186. return retval;
  3187. }
  3188. /*
  3189. * Mimics kernel/events/core.c perf_copy_attr().
  3190. */
  3191. static int sched_copy_attr(struct sched_attr __user *uattr,
  3192. struct sched_attr *attr)
  3193. {
  3194. u32 size;
  3195. int ret;
  3196. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3197. return -EFAULT;
  3198. /*
  3199. * zero the full structure, so that a short copy will be nice.
  3200. */
  3201. memset(attr, 0, sizeof(*attr));
  3202. ret = get_user(size, &uattr->size);
  3203. if (ret)
  3204. return ret;
  3205. if (size > PAGE_SIZE) /* silly large */
  3206. goto err_size;
  3207. if (!size) /* abi compat */
  3208. size = SCHED_ATTR_SIZE_VER0;
  3209. if (size < SCHED_ATTR_SIZE_VER0)
  3210. goto err_size;
  3211. /*
  3212. * If we're handed a bigger struct than we know of,
  3213. * ensure all the unknown bits are 0 - i.e. new
  3214. * user-space does not rely on any kernel feature
  3215. * extensions we dont know about yet.
  3216. */
  3217. if (size > sizeof(*attr)) {
  3218. unsigned char __user *addr;
  3219. unsigned char __user *end;
  3220. unsigned char val;
  3221. addr = (void __user *)uattr + sizeof(*attr);
  3222. end = (void __user *)uattr + size;
  3223. for (; addr < end; addr++) {
  3224. ret = get_user(val, addr);
  3225. if (ret)
  3226. return ret;
  3227. if (val)
  3228. goto err_size;
  3229. }
  3230. size = sizeof(*attr);
  3231. }
  3232. ret = copy_from_user(attr, uattr, size);
  3233. if (ret)
  3234. return -EFAULT;
  3235. /*
  3236. * XXX: do we want to be lenient like existing syscalls; or do we want
  3237. * to be strict and return an error on out-of-bounds values?
  3238. */
  3239. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3240. return 0;
  3241. err_size:
  3242. put_user(sizeof(*attr), &uattr->size);
  3243. return -E2BIG;
  3244. }
  3245. /**
  3246. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3247. * @pid: the pid in question.
  3248. * @policy: new policy.
  3249. * @param: structure containing the new RT priority.
  3250. *
  3251. * Return: 0 on success. An error code otherwise.
  3252. */
  3253. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3254. struct sched_param __user *, param)
  3255. {
  3256. /* negative values for policy are not valid */
  3257. if (policy < 0)
  3258. return -EINVAL;
  3259. return do_sched_setscheduler(pid, policy, param);
  3260. }
  3261. /**
  3262. * sys_sched_setparam - set/change the RT priority of a thread
  3263. * @pid: the pid in question.
  3264. * @param: structure containing the new RT priority.
  3265. *
  3266. * Return: 0 on success. An error code otherwise.
  3267. */
  3268. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3269. {
  3270. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3271. }
  3272. /**
  3273. * sys_sched_setattr - same as above, but with extended sched_attr
  3274. * @pid: the pid in question.
  3275. * @uattr: structure containing the extended parameters.
  3276. * @flags: for future extension.
  3277. */
  3278. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3279. unsigned int, flags)
  3280. {
  3281. struct sched_attr attr;
  3282. struct task_struct *p;
  3283. int retval;
  3284. if (!uattr || pid < 0 || flags)
  3285. return -EINVAL;
  3286. retval = sched_copy_attr(uattr, &attr);
  3287. if (retval)
  3288. return retval;
  3289. if ((int)attr.sched_policy < 0)
  3290. return -EINVAL;
  3291. rcu_read_lock();
  3292. retval = -ESRCH;
  3293. p = find_process_by_pid(pid);
  3294. if (p != NULL)
  3295. retval = sched_setattr(p, &attr);
  3296. rcu_read_unlock();
  3297. return retval;
  3298. }
  3299. /**
  3300. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3301. * @pid: the pid in question.
  3302. *
  3303. * Return: On success, the policy of the thread. Otherwise, a negative error
  3304. * code.
  3305. */
  3306. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3307. {
  3308. struct task_struct *p;
  3309. int retval;
  3310. if (pid < 0)
  3311. return -EINVAL;
  3312. retval = -ESRCH;
  3313. rcu_read_lock();
  3314. p = find_process_by_pid(pid);
  3315. if (p) {
  3316. retval = security_task_getscheduler(p);
  3317. if (!retval)
  3318. retval = p->policy
  3319. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3320. }
  3321. rcu_read_unlock();
  3322. return retval;
  3323. }
  3324. /**
  3325. * sys_sched_getparam - get the RT priority of a thread
  3326. * @pid: the pid in question.
  3327. * @param: structure containing the RT priority.
  3328. *
  3329. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3330. * code.
  3331. */
  3332. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3333. {
  3334. struct sched_param lp = { .sched_priority = 0 };
  3335. struct task_struct *p;
  3336. int retval;
  3337. if (!param || pid < 0)
  3338. return -EINVAL;
  3339. rcu_read_lock();
  3340. p = find_process_by_pid(pid);
  3341. retval = -ESRCH;
  3342. if (!p)
  3343. goto out_unlock;
  3344. retval = security_task_getscheduler(p);
  3345. if (retval)
  3346. goto out_unlock;
  3347. if (task_has_rt_policy(p))
  3348. lp.sched_priority = p->rt_priority;
  3349. rcu_read_unlock();
  3350. /*
  3351. * This one might sleep, we cannot do it with a spinlock held ...
  3352. */
  3353. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3354. return retval;
  3355. out_unlock:
  3356. rcu_read_unlock();
  3357. return retval;
  3358. }
  3359. static int sched_read_attr(struct sched_attr __user *uattr,
  3360. struct sched_attr *attr,
  3361. unsigned int usize)
  3362. {
  3363. int ret;
  3364. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3365. return -EFAULT;
  3366. /*
  3367. * If we're handed a smaller struct than we know of,
  3368. * ensure all the unknown bits are 0 - i.e. old
  3369. * user-space does not get uncomplete information.
  3370. */
  3371. if (usize < sizeof(*attr)) {
  3372. unsigned char *addr;
  3373. unsigned char *end;
  3374. addr = (void *)attr + usize;
  3375. end = (void *)attr + sizeof(*attr);
  3376. for (; addr < end; addr++) {
  3377. if (*addr)
  3378. return -EFBIG;
  3379. }
  3380. attr->size = usize;
  3381. }
  3382. ret = copy_to_user(uattr, attr, attr->size);
  3383. if (ret)
  3384. return -EFAULT;
  3385. return 0;
  3386. }
  3387. /**
  3388. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3389. * @pid: the pid in question.
  3390. * @uattr: structure containing the extended parameters.
  3391. * @size: sizeof(attr) for fwd/bwd comp.
  3392. * @flags: for future extension.
  3393. */
  3394. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3395. unsigned int, size, unsigned int, flags)
  3396. {
  3397. struct sched_attr attr = {
  3398. .size = sizeof(struct sched_attr),
  3399. };
  3400. struct task_struct *p;
  3401. int retval;
  3402. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3403. size < SCHED_ATTR_SIZE_VER0 || flags)
  3404. return -EINVAL;
  3405. rcu_read_lock();
  3406. p = find_process_by_pid(pid);
  3407. retval = -ESRCH;
  3408. if (!p)
  3409. goto out_unlock;
  3410. retval = security_task_getscheduler(p);
  3411. if (retval)
  3412. goto out_unlock;
  3413. attr.sched_policy = p->policy;
  3414. if (p->sched_reset_on_fork)
  3415. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3416. if (task_has_dl_policy(p))
  3417. __getparam_dl(p, &attr);
  3418. else if (task_has_rt_policy(p))
  3419. attr.sched_priority = p->rt_priority;
  3420. else
  3421. attr.sched_nice = task_nice(p);
  3422. rcu_read_unlock();
  3423. retval = sched_read_attr(uattr, &attr, size);
  3424. return retval;
  3425. out_unlock:
  3426. rcu_read_unlock();
  3427. return retval;
  3428. }
  3429. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3430. {
  3431. cpumask_var_t cpus_allowed, new_mask;
  3432. struct task_struct *p;
  3433. int retval;
  3434. rcu_read_lock();
  3435. p = find_process_by_pid(pid);
  3436. if (!p) {
  3437. rcu_read_unlock();
  3438. return -ESRCH;
  3439. }
  3440. /* Prevent p going away */
  3441. get_task_struct(p);
  3442. rcu_read_unlock();
  3443. if (p->flags & PF_NO_SETAFFINITY) {
  3444. retval = -EINVAL;
  3445. goto out_put_task;
  3446. }
  3447. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3448. retval = -ENOMEM;
  3449. goto out_put_task;
  3450. }
  3451. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3452. retval = -ENOMEM;
  3453. goto out_free_cpus_allowed;
  3454. }
  3455. retval = -EPERM;
  3456. if (!check_same_owner(p)) {
  3457. rcu_read_lock();
  3458. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3459. rcu_read_unlock();
  3460. goto out_free_new_mask;
  3461. }
  3462. rcu_read_unlock();
  3463. }
  3464. retval = security_task_setscheduler(p);
  3465. if (retval)
  3466. goto out_free_new_mask;
  3467. cpuset_cpus_allowed(p, cpus_allowed);
  3468. cpumask_and(new_mask, in_mask, cpus_allowed);
  3469. /*
  3470. * Since bandwidth control happens on root_domain basis,
  3471. * if admission test is enabled, we only admit -deadline
  3472. * tasks allowed to run on all the CPUs in the task's
  3473. * root_domain.
  3474. */
  3475. #ifdef CONFIG_SMP
  3476. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3477. rcu_read_lock();
  3478. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3479. retval = -EBUSY;
  3480. rcu_read_unlock();
  3481. goto out_free_new_mask;
  3482. }
  3483. rcu_read_unlock();
  3484. }
  3485. #endif
  3486. again:
  3487. retval = set_cpus_allowed_ptr(p, new_mask);
  3488. if (!retval) {
  3489. cpuset_cpus_allowed(p, cpus_allowed);
  3490. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3491. /*
  3492. * We must have raced with a concurrent cpuset
  3493. * update. Just reset the cpus_allowed to the
  3494. * cpuset's cpus_allowed
  3495. */
  3496. cpumask_copy(new_mask, cpus_allowed);
  3497. goto again;
  3498. }
  3499. }
  3500. out_free_new_mask:
  3501. free_cpumask_var(new_mask);
  3502. out_free_cpus_allowed:
  3503. free_cpumask_var(cpus_allowed);
  3504. out_put_task:
  3505. put_task_struct(p);
  3506. return retval;
  3507. }
  3508. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3509. struct cpumask *new_mask)
  3510. {
  3511. if (len < cpumask_size())
  3512. cpumask_clear(new_mask);
  3513. else if (len > cpumask_size())
  3514. len = cpumask_size();
  3515. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3516. }
  3517. /**
  3518. * sys_sched_setaffinity - set the cpu affinity of a process
  3519. * @pid: pid of the process
  3520. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3521. * @user_mask_ptr: user-space pointer to the new cpu mask
  3522. *
  3523. * Return: 0 on success. An error code otherwise.
  3524. */
  3525. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3526. unsigned long __user *, user_mask_ptr)
  3527. {
  3528. cpumask_var_t new_mask;
  3529. int retval;
  3530. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3531. return -ENOMEM;
  3532. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3533. if (retval == 0)
  3534. retval = sched_setaffinity(pid, new_mask);
  3535. free_cpumask_var(new_mask);
  3536. return retval;
  3537. }
  3538. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3539. {
  3540. struct task_struct *p;
  3541. unsigned long flags;
  3542. int retval;
  3543. rcu_read_lock();
  3544. retval = -ESRCH;
  3545. p = find_process_by_pid(pid);
  3546. if (!p)
  3547. goto out_unlock;
  3548. retval = security_task_getscheduler(p);
  3549. if (retval)
  3550. goto out_unlock;
  3551. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3552. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3553. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3554. out_unlock:
  3555. rcu_read_unlock();
  3556. return retval;
  3557. }
  3558. /**
  3559. * sys_sched_getaffinity - get the cpu affinity of a process
  3560. * @pid: pid of the process
  3561. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3562. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3563. *
  3564. * Return: 0 on success. An error code otherwise.
  3565. */
  3566. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3567. unsigned long __user *, user_mask_ptr)
  3568. {
  3569. int ret;
  3570. cpumask_var_t mask;
  3571. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3572. return -EINVAL;
  3573. if (len & (sizeof(unsigned long)-1))
  3574. return -EINVAL;
  3575. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3576. return -ENOMEM;
  3577. ret = sched_getaffinity(pid, mask);
  3578. if (ret == 0) {
  3579. size_t retlen = min_t(size_t, len, cpumask_size());
  3580. if (copy_to_user(user_mask_ptr, mask, retlen))
  3581. ret = -EFAULT;
  3582. else
  3583. ret = retlen;
  3584. }
  3585. free_cpumask_var(mask);
  3586. return ret;
  3587. }
  3588. /**
  3589. * sys_sched_yield - yield the current processor to other threads.
  3590. *
  3591. * This function yields the current CPU to other tasks. If there are no
  3592. * other threads running on this CPU then this function will return.
  3593. *
  3594. * Return: 0.
  3595. */
  3596. SYSCALL_DEFINE0(sched_yield)
  3597. {
  3598. struct rq *rq = this_rq_lock();
  3599. schedstat_inc(rq, yld_count);
  3600. current->sched_class->yield_task(rq);
  3601. /*
  3602. * Since we are going to call schedule() anyway, there's
  3603. * no need to preempt or enable interrupts:
  3604. */
  3605. __release(rq->lock);
  3606. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3607. do_raw_spin_unlock(&rq->lock);
  3608. sched_preempt_enable_no_resched();
  3609. schedule();
  3610. return 0;
  3611. }
  3612. int __sched _cond_resched(void)
  3613. {
  3614. if (should_resched()) {
  3615. preempt_schedule_common();
  3616. return 1;
  3617. }
  3618. return 0;
  3619. }
  3620. EXPORT_SYMBOL(_cond_resched);
  3621. /*
  3622. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3623. * call schedule, and on return reacquire the lock.
  3624. *
  3625. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3626. * operations here to prevent schedule() from being called twice (once via
  3627. * spin_unlock(), once by hand).
  3628. */
  3629. int __cond_resched_lock(spinlock_t *lock)
  3630. {
  3631. int resched = should_resched();
  3632. int ret = 0;
  3633. lockdep_assert_held(lock);
  3634. if (spin_needbreak(lock) || resched) {
  3635. spin_unlock(lock);
  3636. if (resched)
  3637. preempt_schedule_common();
  3638. else
  3639. cpu_relax();
  3640. ret = 1;
  3641. spin_lock(lock);
  3642. }
  3643. return ret;
  3644. }
  3645. EXPORT_SYMBOL(__cond_resched_lock);
  3646. int __sched __cond_resched_softirq(void)
  3647. {
  3648. BUG_ON(!in_softirq());
  3649. if (should_resched()) {
  3650. local_bh_enable();
  3651. preempt_schedule_common();
  3652. local_bh_disable();
  3653. return 1;
  3654. }
  3655. return 0;
  3656. }
  3657. EXPORT_SYMBOL(__cond_resched_softirq);
  3658. /**
  3659. * yield - yield the current processor to other threads.
  3660. *
  3661. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3662. *
  3663. * The scheduler is at all times free to pick the calling task as the most
  3664. * eligible task to run, if removing the yield() call from your code breaks
  3665. * it, its already broken.
  3666. *
  3667. * Typical broken usage is:
  3668. *
  3669. * while (!event)
  3670. * yield();
  3671. *
  3672. * where one assumes that yield() will let 'the other' process run that will
  3673. * make event true. If the current task is a SCHED_FIFO task that will never
  3674. * happen. Never use yield() as a progress guarantee!!
  3675. *
  3676. * If you want to use yield() to wait for something, use wait_event().
  3677. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3678. * If you still want to use yield(), do not!
  3679. */
  3680. void __sched yield(void)
  3681. {
  3682. set_current_state(TASK_RUNNING);
  3683. sys_sched_yield();
  3684. }
  3685. EXPORT_SYMBOL(yield);
  3686. /**
  3687. * yield_to - yield the current processor to another thread in
  3688. * your thread group, or accelerate that thread toward the
  3689. * processor it's on.
  3690. * @p: target task
  3691. * @preempt: whether task preemption is allowed or not
  3692. *
  3693. * It's the caller's job to ensure that the target task struct
  3694. * can't go away on us before we can do any checks.
  3695. *
  3696. * Return:
  3697. * true (>0) if we indeed boosted the target task.
  3698. * false (0) if we failed to boost the target.
  3699. * -ESRCH if there's no task to yield to.
  3700. */
  3701. int __sched yield_to(struct task_struct *p, bool preempt)
  3702. {
  3703. struct task_struct *curr = current;
  3704. struct rq *rq, *p_rq;
  3705. unsigned long flags;
  3706. int yielded = 0;
  3707. local_irq_save(flags);
  3708. rq = this_rq();
  3709. again:
  3710. p_rq = task_rq(p);
  3711. /*
  3712. * If we're the only runnable task on the rq and target rq also
  3713. * has only one task, there's absolutely no point in yielding.
  3714. */
  3715. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3716. yielded = -ESRCH;
  3717. goto out_irq;
  3718. }
  3719. double_rq_lock(rq, p_rq);
  3720. if (task_rq(p) != p_rq) {
  3721. double_rq_unlock(rq, p_rq);
  3722. goto again;
  3723. }
  3724. if (!curr->sched_class->yield_to_task)
  3725. goto out_unlock;
  3726. if (curr->sched_class != p->sched_class)
  3727. goto out_unlock;
  3728. if (task_running(p_rq, p) || p->state)
  3729. goto out_unlock;
  3730. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3731. if (yielded) {
  3732. schedstat_inc(rq, yld_count);
  3733. /*
  3734. * Make p's CPU reschedule; pick_next_entity takes care of
  3735. * fairness.
  3736. */
  3737. if (preempt && rq != p_rq)
  3738. resched_curr(p_rq);
  3739. }
  3740. out_unlock:
  3741. double_rq_unlock(rq, p_rq);
  3742. out_irq:
  3743. local_irq_restore(flags);
  3744. if (yielded > 0)
  3745. schedule();
  3746. return yielded;
  3747. }
  3748. EXPORT_SYMBOL_GPL(yield_to);
  3749. /*
  3750. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3751. * that process accounting knows that this is a task in IO wait state.
  3752. */
  3753. long __sched io_schedule_timeout(long timeout)
  3754. {
  3755. int old_iowait = current->in_iowait;
  3756. struct rq *rq;
  3757. long ret;
  3758. current->in_iowait = 1;
  3759. blk_schedule_flush_plug(current);
  3760. delayacct_blkio_start();
  3761. rq = raw_rq();
  3762. atomic_inc(&rq->nr_iowait);
  3763. ret = schedule_timeout(timeout);
  3764. current->in_iowait = old_iowait;
  3765. atomic_dec(&rq->nr_iowait);
  3766. delayacct_blkio_end();
  3767. return ret;
  3768. }
  3769. EXPORT_SYMBOL(io_schedule_timeout);
  3770. /**
  3771. * sys_sched_get_priority_max - return maximum RT priority.
  3772. * @policy: scheduling class.
  3773. *
  3774. * Return: On success, this syscall returns the maximum
  3775. * rt_priority that can be used by a given scheduling class.
  3776. * On failure, a negative error code is returned.
  3777. */
  3778. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3779. {
  3780. int ret = -EINVAL;
  3781. switch (policy) {
  3782. case SCHED_FIFO:
  3783. case SCHED_RR:
  3784. ret = MAX_USER_RT_PRIO-1;
  3785. break;
  3786. case SCHED_DEADLINE:
  3787. case SCHED_NORMAL:
  3788. case SCHED_BATCH:
  3789. case SCHED_IDLE:
  3790. ret = 0;
  3791. break;
  3792. }
  3793. return ret;
  3794. }
  3795. /**
  3796. * sys_sched_get_priority_min - return minimum RT priority.
  3797. * @policy: scheduling class.
  3798. *
  3799. * Return: On success, this syscall returns the minimum
  3800. * rt_priority that can be used by a given scheduling class.
  3801. * On failure, a negative error code is returned.
  3802. */
  3803. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3804. {
  3805. int ret = -EINVAL;
  3806. switch (policy) {
  3807. case SCHED_FIFO:
  3808. case SCHED_RR:
  3809. ret = 1;
  3810. break;
  3811. case SCHED_DEADLINE:
  3812. case SCHED_NORMAL:
  3813. case SCHED_BATCH:
  3814. case SCHED_IDLE:
  3815. ret = 0;
  3816. }
  3817. return ret;
  3818. }
  3819. /**
  3820. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3821. * @pid: pid of the process.
  3822. * @interval: userspace pointer to the timeslice value.
  3823. *
  3824. * this syscall writes the default timeslice value of a given process
  3825. * into the user-space timespec buffer. A value of '0' means infinity.
  3826. *
  3827. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3828. * an error code.
  3829. */
  3830. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3831. struct timespec __user *, interval)
  3832. {
  3833. struct task_struct *p;
  3834. unsigned int time_slice;
  3835. unsigned long flags;
  3836. struct rq *rq;
  3837. int retval;
  3838. struct timespec t;
  3839. if (pid < 0)
  3840. return -EINVAL;
  3841. retval = -ESRCH;
  3842. rcu_read_lock();
  3843. p = find_process_by_pid(pid);
  3844. if (!p)
  3845. goto out_unlock;
  3846. retval = security_task_getscheduler(p);
  3847. if (retval)
  3848. goto out_unlock;
  3849. rq = task_rq_lock(p, &flags);
  3850. time_slice = 0;
  3851. if (p->sched_class->get_rr_interval)
  3852. time_slice = p->sched_class->get_rr_interval(rq, p);
  3853. task_rq_unlock(rq, p, &flags);
  3854. rcu_read_unlock();
  3855. jiffies_to_timespec(time_slice, &t);
  3856. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3857. return retval;
  3858. out_unlock:
  3859. rcu_read_unlock();
  3860. return retval;
  3861. }
  3862. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3863. void sched_show_task(struct task_struct *p)
  3864. {
  3865. unsigned long free = 0;
  3866. int ppid;
  3867. unsigned long state = p->state;
  3868. if (state)
  3869. state = __ffs(state) + 1;
  3870. printk(KERN_INFO "%-15.15s %c", p->comm,
  3871. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3872. #if BITS_PER_LONG == 32
  3873. if (state == TASK_RUNNING)
  3874. printk(KERN_CONT " running ");
  3875. else
  3876. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3877. #else
  3878. if (state == TASK_RUNNING)
  3879. printk(KERN_CONT " running task ");
  3880. else
  3881. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3882. #endif
  3883. #ifdef CONFIG_DEBUG_STACK_USAGE
  3884. free = stack_not_used(p);
  3885. #endif
  3886. ppid = 0;
  3887. rcu_read_lock();
  3888. if (pid_alive(p))
  3889. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3890. rcu_read_unlock();
  3891. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3892. task_pid_nr(p), ppid,
  3893. (unsigned long)task_thread_info(p)->flags);
  3894. print_worker_info(KERN_INFO, p);
  3895. show_stack(p, NULL);
  3896. }
  3897. void show_state_filter(unsigned long state_filter)
  3898. {
  3899. struct task_struct *g, *p;
  3900. #if BITS_PER_LONG == 32
  3901. printk(KERN_INFO
  3902. " task PC stack pid father\n");
  3903. #else
  3904. printk(KERN_INFO
  3905. " task PC stack pid father\n");
  3906. #endif
  3907. rcu_read_lock();
  3908. for_each_process_thread(g, p) {
  3909. /*
  3910. * reset the NMI-timeout, listing all files on a slow
  3911. * console might take a lot of time:
  3912. */
  3913. touch_nmi_watchdog();
  3914. if (!state_filter || (p->state & state_filter))
  3915. sched_show_task(p);
  3916. }
  3917. touch_all_softlockup_watchdogs();
  3918. #ifdef CONFIG_SCHED_DEBUG
  3919. sysrq_sched_debug_show();
  3920. #endif
  3921. rcu_read_unlock();
  3922. /*
  3923. * Only show locks if all tasks are dumped:
  3924. */
  3925. if (!state_filter)
  3926. debug_show_all_locks();
  3927. }
  3928. void init_idle_bootup_task(struct task_struct *idle)
  3929. {
  3930. idle->sched_class = &idle_sched_class;
  3931. }
  3932. /**
  3933. * init_idle - set up an idle thread for a given CPU
  3934. * @idle: task in question
  3935. * @cpu: cpu the idle task belongs to
  3936. *
  3937. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3938. * flag, to make booting more robust.
  3939. */
  3940. void init_idle(struct task_struct *idle, int cpu)
  3941. {
  3942. struct rq *rq = cpu_rq(cpu);
  3943. unsigned long flags;
  3944. raw_spin_lock_irqsave(&rq->lock, flags);
  3945. __sched_fork(0, idle);
  3946. idle->state = TASK_RUNNING;
  3947. idle->se.exec_start = sched_clock();
  3948. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3949. /*
  3950. * We're having a chicken and egg problem, even though we are
  3951. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3952. * lockdep check in task_group() will fail.
  3953. *
  3954. * Similar case to sched_fork(). / Alternatively we could
  3955. * use task_rq_lock() here and obtain the other rq->lock.
  3956. *
  3957. * Silence PROVE_RCU
  3958. */
  3959. rcu_read_lock();
  3960. __set_task_cpu(idle, cpu);
  3961. rcu_read_unlock();
  3962. rq->curr = rq->idle = idle;
  3963. idle->on_rq = TASK_ON_RQ_QUEUED;
  3964. #if defined(CONFIG_SMP)
  3965. idle->on_cpu = 1;
  3966. #endif
  3967. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3968. /* Set the preempt count _outside_ the spinlocks! */
  3969. init_idle_preempt_count(idle, cpu);
  3970. /*
  3971. * The idle tasks have their own, simple scheduling class:
  3972. */
  3973. idle->sched_class = &idle_sched_class;
  3974. ftrace_graph_init_idle_task(idle, cpu);
  3975. vtime_init_idle(idle, cpu);
  3976. #if defined(CONFIG_SMP)
  3977. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3978. #endif
  3979. }
  3980. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  3981. const struct cpumask *trial)
  3982. {
  3983. int ret = 1, trial_cpus;
  3984. struct dl_bw *cur_dl_b;
  3985. unsigned long flags;
  3986. if (!cpumask_weight(cur))
  3987. return ret;
  3988. rcu_read_lock_sched();
  3989. cur_dl_b = dl_bw_of(cpumask_any(cur));
  3990. trial_cpus = cpumask_weight(trial);
  3991. raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
  3992. if (cur_dl_b->bw != -1 &&
  3993. cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
  3994. ret = 0;
  3995. raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
  3996. rcu_read_unlock_sched();
  3997. return ret;
  3998. }
  3999. int task_can_attach(struct task_struct *p,
  4000. const struct cpumask *cs_cpus_allowed)
  4001. {
  4002. int ret = 0;
  4003. /*
  4004. * Kthreads which disallow setaffinity shouldn't be moved
  4005. * to a new cpuset; we don't want to change their cpu
  4006. * affinity and isolating such threads by their set of
  4007. * allowed nodes is unnecessary. Thus, cpusets are not
  4008. * applicable for such threads. This prevents checking for
  4009. * success of set_cpus_allowed_ptr() on all attached tasks
  4010. * before cpus_allowed may be changed.
  4011. */
  4012. if (p->flags & PF_NO_SETAFFINITY) {
  4013. ret = -EINVAL;
  4014. goto out;
  4015. }
  4016. #ifdef CONFIG_SMP
  4017. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4018. cs_cpus_allowed)) {
  4019. unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
  4020. cs_cpus_allowed);
  4021. struct dl_bw *dl_b;
  4022. bool overflow;
  4023. int cpus;
  4024. unsigned long flags;
  4025. rcu_read_lock_sched();
  4026. dl_b = dl_bw_of(dest_cpu);
  4027. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4028. cpus = dl_bw_cpus(dest_cpu);
  4029. overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
  4030. if (overflow)
  4031. ret = -EBUSY;
  4032. else {
  4033. /*
  4034. * We reserve space for this task in the destination
  4035. * root_domain, as we can't fail after this point.
  4036. * We will free resources in the source root_domain
  4037. * later on (see set_cpus_allowed_dl()).
  4038. */
  4039. __dl_add(dl_b, p->dl.dl_bw);
  4040. }
  4041. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4042. rcu_read_unlock_sched();
  4043. }
  4044. #endif
  4045. out:
  4046. return ret;
  4047. }
  4048. #ifdef CONFIG_SMP
  4049. /*
  4050. * move_queued_task - move a queued task to new rq.
  4051. *
  4052. * Returns (locked) new rq. Old rq's lock is released.
  4053. */
  4054. static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
  4055. {
  4056. struct rq *rq = task_rq(p);
  4057. lockdep_assert_held(&rq->lock);
  4058. dequeue_task(rq, p, 0);
  4059. p->on_rq = TASK_ON_RQ_MIGRATING;
  4060. set_task_cpu(p, new_cpu);
  4061. raw_spin_unlock(&rq->lock);
  4062. rq = cpu_rq(new_cpu);
  4063. raw_spin_lock(&rq->lock);
  4064. BUG_ON(task_cpu(p) != new_cpu);
  4065. p->on_rq = TASK_ON_RQ_QUEUED;
  4066. enqueue_task(rq, p, 0);
  4067. check_preempt_curr(rq, p, 0);
  4068. return rq;
  4069. }
  4070. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4071. {
  4072. if (p->sched_class->set_cpus_allowed)
  4073. p->sched_class->set_cpus_allowed(p, new_mask);
  4074. cpumask_copy(&p->cpus_allowed, new_mask);
  4075. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4076. }
  4077. /*
  4078. * This is how migration works:
  4079. *
  4080. * 1) we invoke migration_cpu_stop() on the target CPU using
  4081. * stop_one_cpu().
  4082. * 2) stopper starts to run (implicitly forcing the migrated thread
  4083. * off the CPU)
  4084. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4085. * 4) if it's in the wrong runqueue then the migration thread removes
  4086. * it and puts it into the right queue.
  4087. * 5) stopper completes and stop_one_cpu() returns and the migration
  4088. * is done.
  4089. */
  4090. /*
  4091. * Change a given task's CPU affinity. Migrate the thread to a
  4092. * proper CPU and schedule it away if the CPU it's executing on
  4093. * is removed from the allowed bitmask.
  4094. *
  4095. * NOTE: the caller must have a valid reference to the task, the
  4096. * task must not exit() & deallocate itself prematurely. The
  4097. * call is not atomic; no spinlocks may be held.
  4098. */
  4099. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4100. {
  4101. unsigned long flags;
  4102. struct rq *rq;
  4103. unsigned int dest_cpu;
  4104. int ret = 0;
  4105. rq = task_rq_lock(p, &flags);
  4106. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4107. goto out;
  4108. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4109. ret = -EINVAL;
  4110. goto out;
  4111. }
  4112. do_set_cpus_allowed(p, new_mask);
  4113. /* Can the task run on the task's current CPU? If so, we're done */
  4114. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4115. goto out;
  4116. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4117. if (task_running(rq, p) || p->state == TASK_WAKING) {
  4118. struct migration_arg arg = { p, dest_cpu };
  4119. /* Need help from migration thread: drop lock and wait. */
  4120. task_rq_unlock(rq, p, &flags);
  4121. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4122. tlb_migrate_finish(p->mm);
  4123. return 0;
  4124. } else if (task_on_rq_queued(p))
  4125. rq = move_queued_task(p, dest_cpu);
  4126. out:
  4127. task_rq_unlock(rq, p, &flags);
  4128. return ret;
  4129. }
  4130. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4131. /*
  4132. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4133. * this because either it can't run here any more (set_cpus_allowed()
  4134. * away from this CPU, or CPU going down), or because we're
  4135. * attempting to rebalance this task on exec (sched_exec).
  4136. *
  4137. * So we race with normal scheduler movements, but that's OK, as long
  4138. * as the task is no longer on this CPU.
  4139. *
  4140. * Returns non-zero if task was successfully migrated.
  4141. */
  4142. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4143. {
  4144. struct rq *rq;
  4145. int ret = 0;
  4146. if (unlikely(!cpu_active(dest_cpu)))
  4147. return ret;
  4148. rq = cpu_rq(src_cpu);
  4149. raw_spin_lock(&p->pi_lock);
  4150. raw_spin_lock(&rq->lock);
  4151. /* Already moved. */
  4152. if (task_cpu(p) != src_cpu)
  4153. goto done;
  4154. /* Affinity changed (again). */
  4155. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4156. goto fail;
  4157. /*
  4158. * If we're not on a rq, the next wake-up will ensure we're
  4159. * placed properly.
  4160. */
  4161. if (task_on_rq_queued(p))
  4162. rq = move_queued_task(p, dest_cpu);
  4163. done:
  4164. ret = 1;
  4165. fail:
  4166. raw_spin_unlock(&rq->lock);
  4167. raw_spin_unlock(&p->pi_lock);
  4168. return ret;
  4169. }
  4170. #ifdef CONFIG_NUMA_BALANCING
  4171. /* Migrate current task p to target_cpu */
  4172. int migrate_task_to(struct task_struct *p, int target_cpu)
  4173. {
  4174. struct migration_arg arg = { p, target_cpu };
  4175. int curr_cpu = task_cpu(p);
  4176. if (curr_cpu == target_cpu)
  4177. return 0;
  4178. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4179. return -EINVAL;
  4180. /* TODO: This is not properly updating schedstats */
  4181. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4182. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4183. }
  4184. /*
  4185. * Requeue a task on a given node and accurately track the number of NUMA
  4186. * tasks on the runqueues
  4187. */
  4188. void sched_setnuma(struct task_struct *p, int nid)
  4189. {
  4190. struct rq *rq;
  4191. unsigned long flags;
  4192. bool queued, running;
  4193. rq = task_rq_lock(p, &flags);
  4194. queued = task_on_rq_queued(p);
  4195. running = task_current(rq, p);
  4196. if (queued)
  4197. dequeue_task(rq, p, 0);
  4198. if (running)
  4199. put_prev_task(rq, p);
  4200. p->numa_preferred_nid = nid;
  4201. if (running)
  4202. p->sched_class->set_curr_task(rq);
  4203. if (queued)
  4204. enqueue_task(rq, p, 0);
  4205. task_rq_unlock(rq, p, &flags);
  4206. }
  4207. #endif
  4208. /*
  4209. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4210. * and performs thread migration by bumping thread off CPU then
  4211. * 'pushing' onto another runqueue.
  4212. */
  4213. static int migration_cpu_stop(void *data)
  4214. {
  4215. struct migration_arg *arg = data;
  4216. /*
  4217. * The original target cpu might have gone down and we might
  4218. * be on another cpu but it doesn't matter.
  4219. */
  4220. local_irq_disable();
  4221. /*
  4222. * We need to explicitly wake pending tasks before running
  4223. * __migrate_task() such that we will not miss enforcing cpus_allowed
  4224. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  4225. */
  4226. sched_ttwu_pending();
  4227. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4228. local_irq_enable();
  4229. return 0;
  4230. }
  4231. #ifdef CONFIG_HOTPLUG_CPU
  4232. /*
  4233. * Ensures that the idle task is using init_mm right before its cpu goes
  4234. * offline.
  4235. */
  4236. void idle_task_exit(void)
  4237. {
  4238. struct mm_struct *mm = current->active_mm;
  4239. BUG_ON(cpu_online(smp_processor_id()));
  4240. if (mm != &init_mm) {
  4241. switch_mm(mm, &init_mm, current);
  4242. finish_arch_post_lock_switch();
  4243. }
  4244. mmdrop(mm);
  4245. }
  4246. /*
  4247. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4248. * we might have. Assumes we're called after migrate_tasks() so that the
  4249. * nr_active count is stable.
  4250. *
  4251. * Also see the comment "Global load-average calculations".
  4252. */
  4253. static void calc_load_migrate(struct rq *rq)
  4254. {
  4255. long delta = calc_load_fold_active(rq);
  4256. if (delta)
  4257. atomic_long_add(delta, &calc_load_tasks);
  4258. }
  4259. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4260. {
  4261. }
  4262. static const struct sched_class fake_sched_class = {
  4263. .put_prev_task = put_prev_task_fake,
  4264. };
  4265. static struct task_struct fake_task = {
  4266. /*
  4267. * Avoid pull_{rt,dl}_task()
  4268. */
  4269. .prio = MAX_PRIO + 1,
  4270. .sched_class = &fake_sched_class,
  4271. };
  4272. /*
  4273. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4274. * try_to_wake_up()->select_task_rq().
  4275. *
  4276. * Called with rq->lock held even though we'er in stop_machine() and
  4277. * there's no concurrency possible, we hold the required locks anyway
  4278. * because of lock validation efforts.
  4279. */
  4280. static void migrate_tasks(unsigned int dead_cpu)
  4281. {
  4282. struct rq *rq = cpu_rq(dead_cpu);
  4283. struct task_struct *next, *stop = rq->stop;
  4284. int dest_cpu;
  4285. /*
  4286. * Fudge the rq selection such that the below task selection loop
  4287. * doesn't get stuck on the currently eligible stop task.
  4288. *
  4289. * We're currently inside stop_machine() and the rq is either stuck
  4290. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4291. * either way we should never end up calling schedule() until we're
  4292. * done here.
  4293. */
  4294. rq->stop = NULL;
  4295. /*
  4296. * put_prev_task() and pick_next_task() sched
  4297. * class method both need to have an up-to-date
  4298. * value of rq->clock[_task]
  4299. */
  4300. update_rq_clock(rq);
  4301. for ( ; ; ) {
  4302. /*
  4303. * There's this thread running, bail when that's the only
  4304. * remaining thread.
  4305. */
  4306. if (rq->nr_running == 1)
  4307. break;
  4308. next = pick_next_task(rq, &fake_task);
  4309. BUG_ON(!next);
  4310. next->sched_class->put_prev_task(rq, next);
  4311. /* Find suitable destination for @next, with force if needed. */
  4312. dest_cpu = select_fallback_rq(dead_cpu, next);
  4313. raw_spin_unlock(&rq->lock);
  4314. __migrate_task(next, dead_cpu, dest_cpu);
  4315. raw_spin_lock(&rq->lock);
  4316. }
  4317. rq->stop = stop;
  4318. }
  4319. #endif /* CONFIG_HOTPLUG_CPU */
  4320. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4321. static struct ctl_table sd_ctl_dir[] = {
  4322. {
  4323. .procname = "sched_domain",
  4324. .mode = 0555,
  4325. },
  4326. {}
  4327. };
  4328. static struct ctl_table sd_ctl_root[] = {
  4329. {
  4330. .procname = "kernel",
  4331. .mode = 0555,
  4332. .child = sd_ctl_dir,
  4333. },
  4334. {}
  4335. };
  4336. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4337. {
  4338. struct ctl_table *entry =
  4339. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4340. return entry;
  4341. }
  4342. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4343. {
  4344. struct ctl_table *entry;
  4345. /*
  4346. * In the intermediate directories, both the child directory and
  4347. * procname are dynamically allocated and could fail but the mode
  4348. * will always be set. In the lowest directory the names are
  4349. * static strings and all have proc handlers.
  4350. */
  4351. for (entry = *tablep; entry->mode; entry++) {
  4352. if (entry->child)
  4353. sd_free_ctl_entry(&entry->child);
  4354. if (entry->proc_handler == NULL)
  4355. kfree(entry->procname);
  4356. }
  4357. kfree(*tablep);
  4358. *tablep = NULL;
  4359. }
  4360. static int min_load_idx = 0;
  4361. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4362. static void
  4363. set_table_entry(struct ctl_table *entry,
  4364. const char *procname, void *data, int maxlen,
  4365. umode_t mode, proc_handler *proc_handler,
  4366. bool load_idx)
  4367. {
  4368. entry->procname = procname;
  4369. entry->data = data;
  4370. entry->maxlen = maxlen;
  4371. entry->mode = mode;
  4372. entry->proc_handler = proc_handler;
  4373. if (load_idx) {
  4374. entry->extra1 = &min_load_idx;
  4375. entry->extra2 = &max_load_idx;
  4376. }
  4377. }
  4378. static struct ctl_table *
  4379. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4380. {
  4381. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4382. if (table == NULL)
  4383. return NULL;
  4384. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4385. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4386. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4387. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4388. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4389. sizeof(int), 0644, proc_dointvec_minmax, true);
  4390. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4391. sizeof(int), 0644, proc_dointvec_minmax, true);
  4392. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4393. sizeof(int), 0644, proc_dointvec_minmax, true);
  4394. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4395. sizeof(int), 0644, proc_dointvec_minmax, true);
  4396. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4397. sizeof(int), 0644, proc_dointvec_minmax, true);
  4398. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4399. sizeof(int), 0644, proc_dointvec_minmax, false);
  4400. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4401. sizeof(int), 0644, proc_dointvec_minmax, false);
  4402. set_table_entry(&table[9], "cache_nice_tries",
  4403. &sd->cache_nice_tries,
  4404. sizeof(int), 0644, proc_dointvec_minmax, false);
  4405. set_table_entry(&table[10], "flags", &sd->flags,
  4406. sizeof(int), 0644, proc_dointvec_minmax, false);
  4407. set_table_entry(&table[11], "max_newidle_lb_cost",
  4408. &sd->max_newidle_lb_cost,
  4409. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4410. set_table_entry(&table[12], "name", sd->name,
  4411. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4412. /* &table[13] is terminator */
  4413. return table;
  4414. }
  4415. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4416. {
  4417. struct ctl_table *entry, *table;
  4418. struct sched_domain *sd;
  4419. int domain_num = 0, i;
  4420. char buf[32];
  4421. for_each_domain(cpu, sd)
  4422. domain_num++;
  4423. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4424. if (table == NULL)
  4425. return NULL;
  4426. i = 0;
  4427. for_each_domain(cpu, sd) {
  4428. snprintf(buf, 32, "domain%d", i);
  4429. entry->procname = kstrdup(buf, GFP_KERNEL);
  4430. entry->mode = 0555;
  4431. entry->child = sd_alloc_ctl_domain_table(sd);
  4432. entry++;
  4433. i++;
  4434. }
  4435. return table;
  4436. }
  4437. static struct ctl_table_header *sd_sysctl_header;
  4438. static void register_sched_domain_sysctl(void)
  4439. {
  4440. int i, cpu_num = num_possible_cpus();
  4441. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4442. char buf[32];
  4443. WARN_ON(sd_ctl_dir[0].child);
  4444. sd_ctl_dir[0].child = entry;
  4445. if (entry == NULL)
  4446. return;
  4447. for_each_possible_cpu(i) {
  4448. snprintf(buf, 32, "cpu%d", i);
  4449. entry->procname = kstrdup(buf, GFP_KERNEL);
  4450. entry->mode = 0555;
  4451. entry->child = sd_alloc_ctl_cpu_table(i);
  4452. entry++;
  4453. }
  4454. WARN_ON(sd_sysctl_header);
  4455. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4456. }
  4457. /* may be called multiple times per register */
  4458. static void unregister_sched_domain_sysctl(void)
  4459. {
  4460. if (sd_sysctl_header)
  4461. unregister_sysctl_table(sd_sysctl_header);
  4462. sd_sysctl_header = NULL;
  4463. if (sd_ctl_dir[0].child)
  4464. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4465. }
  4466. #else
  4467. static void register_sched_domain_sysctl(void)
  4468. {
  4469. }
  4470. static void unregister_sched_domain_sysctl(void)
  4471. {
  4472. }
  4473. #endif
  4474. static void set_rq_online(struct rq *rq)
  4475. {
  4476. if (!rq->online) {
  4477. const struct sched_class *class;
  4478. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4479. rq->online = 1;
  4480. for_each_class(class) {
  4481. if (class->rq_online)
  4482. class->rq_online(rq);
  4483. }
  4484. }
  4485. }
  4486. static void set_rq_offline(struct rq *rq)
  4487. {
  4488. if (rq->online) {
  4489. const struct sched_class *class;
  4490. for_each_class(class) {
  4491. if (class->rq_offline)
  4492. class->rq_offline(rq);
  4493. }
  4494. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4495. rq->online = 0;
  4496. }
  4497. }
  4498. /*
  4499. * migration_call - callback that gets triggered when a CPU is added.
  4500. * Here we can start up the necessary migration thread for the new CPU.
  4501. */
  4502. static int
  4503. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4504. {
  4505. int cpu = (long)hcpu;
  4506. unsigned long flags;
  4507. struct rq *rq = cpu_rq(cpu);
  4508. switch (action & ~CPU_TASKS_FROZEN) {
  4509. case CPU_UP_PREPARE:
  4510. rq->calc_load_update = calc_load_update;
  4511. break;
  4512. case CPU_ONLINE:
  4513. /* Update our root-domain */
  4514. raw_spin_lock_irqsave(&rq->lock, flags);
  4515. if (rq->rd) {
  4516. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4517. set_rq_online(rq);
  4518. }
  4519. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4520. break;
  4521. #ifdef CONFIG_HOTPLUG_CPU
  4522. case CPU_DYING:
  4523. sched_ttwu_pending();
  4524. /* Update our root-domain */
  4525. raw_spin_lock_irqsave(&rq->lock, flags);
  4526. if (rq->rd) {
  4527. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4528. set_rq_offline(rq);
  4529. }
  4530. migrate_tasks(cpu);
  4531. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4532. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4533. break;
  4534. case CPU_DEAD:
  4535. calc_load_migrate(rq);
  4536. break;
  4537. #endif
  4538. }
  4539. update_max_interval();
  4540. return NOTIFY_OK;
  4541. }
  4542. /*
  4543. * Register at high priority so that task migration (migrate_all_tasks)
  4544. * happens before everything else. This has to be lower priority than
  4545. * the notifier in the perf_event subsystem, though.
  4546. */
  4547. static struct notifier_block migration_notifier = {
  4548. .notifier_call = migration_call,
  4549. .priority = CPU_PRI_MIGRATION,
  4550. };
  4551. static void __cpuinit set_cpu_rq_start_time(void)
  4552. {
  4553. int cpu = smp_processor_id();
  4554. struct rq *rq = cpu_rq(cpu);
  4555. rq->age_stamp = sched_clock_cpu(cpu);
  4556. }
  4557. static int sched_cpu_active(struct notifier_block *nfb,
  4558. unsigned long action, void *hcpu)
  4559. {
  4560. switch (action & ~CPU_TASKS_FROZEN) {
  4561. case CPU_STARTING:
  4562. set_cpu_rq_start_time();
  4563. return NOTIFY_OK;
  4564. case CPU_DOWN_FAILED:
  4565. set_cpu_active((long)hcpu, true);
  4566. return NOTIFY_OK;
  4567. default:
  4568. return NOTIFY_DONE;
  4569. }
  4570. }
  4571. static int sched_cpu_inactive(struct notifier_block *nfb,
  4572. unsigned long action, void *hcpu)
  4573. {
  4574. switch (action & ~CPU_TASKS_FROZEN) {
  4575. case CPU_DOWN_PREPARE:
  4576. set_cpu_active((long)hcpu, false);
  4577. return NOTIFY_OK;
  4578. default:
  4579. return NOTIFY_DONE;
  4580. }
  4581. }
  4582. static int __init migration_init(void)
  4583. {
  4584. void *cpu = (void *)(long)smp_processor_id();
  4585. int err;
  4586. /* Initialize migration for the boot CPU */
  4587. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4588. BUG_ON(err == NOTIFY_BAD);
  4589. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4590. register_cpu_notifier(&migration_notifier);
  4591. /* Register cpu active notifiers */
  4592. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4593. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4594. return 0;
  4595. }
  4596. early_initcall(migration_init);
  4597. #endif
  4598. #ifdef CONFIG_SMP
  4599. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4600. #ifdef CONFIG_SCHED_DEBUG
  4601. static __read_mostly int sched_debug_enabled;
  4602. static int __init sched_debug_setup(char *str)
  4603. {
  4604. sched_debug_enabled = 1;
  4605. return 0;
  4606. }
  4607. early_param("sched_debug", sched_debug_setup);
  4608. static inline bool sched_debug(void)
  4609. {
  4610. return sched_debug_enabled;
  4611. }
  4612. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4613. struct cpumask *groupmask)
  4614. {
  4615. struct sched_group *group = sd->groups;
  4616. cpumask_clear(groupmask);
  4617. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4618. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4619. printk("does not load-balance\n");
  4620. if (sd->parent)
  4621. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4622. " has parent");
  4623. return -1;
  4624. }
  4625. printk(KERN_CONT "span %*pbl level %s\n",
  4626. cpumask_pr_args(sched_domain_span(sd)), sd->name);
  4627. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4628. printk(KERN_ERR "ERROR: domain->span does not contain "
  4629. "CPU%d\n", cpu);
  4630. }
  4631. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4632. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4633. " CPU%d\n", cpu);
  4634. }
  4635. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4636. do {
  4637. if (!group) {
  4638. printk("\n");
  4639. printk(KERN_ERR "ERROR: group is NULL\n");
  4640. break;
  4641. }
  4642. if (!cpumask_weight(sched_group_cpus(group))) {
  4643. printk(KERN_CONT "\n");
  4644. printk(KERN_ERR "ERROR: empty group\n");
  4645. break;
  4646. }
  4647. if (!(sd->flags & SD_OVERLAP) &&
  4648. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4649. printk(KERN_CONT "\n");
  4650. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4651. break;
  4652. }
  4653. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4654. printk(KERN_CONT " %*pbl",
  4655. cpumask_pr_args(sched_group_cpus(group)));
  4656. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4657. printk(KERN_CONT " (cpu_capacity = %d)",
  4658. group->sgc->capacity);
  4659. }
  4660. group = group->next;
  4661. } while (group != sd->groups);
  4662. printk(KERN_CONT "\n");
  4663. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4664. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4665. if (sd->parent &&
  4666. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4667. printk(KERN_ERR "ERROR: parent span is not a superset "
  4668. "of domain->span\n");
  4669. return 0;
  4670. }
  4671. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4672. {
  4673. int level = 0;
  4674. if (!sched_debug_enabled)
  4675. return;
  4676. if (!sd) {
  4677. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4678. return;
  4679. }
  4680. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4681. for (;;) {
  4682. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4683. break;
  4684. level++;
  4685. sd = sd->parent;
  4686. if (!sd)
  4687. break;
  4688. }
  4689. }
  4690. #else /* !CONFIG_SCHED_DEBUG */
  4691. # define sched_domain_debug(sd, cpu) do { } while (0)
  4692. static inline bool sched_debug(void)
  4693. {
  4694. return false;
  4695. }
  4696. #endif /* CONFIG_SCHED_DEBUG */
  4697. static int sd_degenerate(struct sched_domain *sd)
  4698. {
  4699. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4700. return 1;
  4701. /* Following flags need at least 2 groups */
  4702. if (sd->flags & (SD_LOAD_BALANCE |
  4703. SD_BALANCE_NEWIDLE |
  4704. SD_BALANCE_FORK |
  4705. SD_BALANCE_EXEC |
  4706. SD_SHARE_CPUCAPACITY |
  4707. SD_SHARE_PKG_RESOURCES |
  4708. SD_SHARE_POWERDOMAIN)) {
  4709. if (sd->groups != sd->groups->next)
  4710. return 0;
  4711. }
  4712. /* Following flags don't use groups */
  4713. if (sd->flags & (SD_WAKE_AFFINE))
  4714. return 0;
  4715. return 1;
  4716. }
  4717. static int
  4718. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4719. {
  4720. unsigned long cflags = sd->flags, pflags = parent->flags;
  4721. if (sd_degenerate(parent))
  4722. return 1;
  4723. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4724. return 0;
  4725. /* Flags needing groups don't count if only 1 group in parent */
  4726. if (parent->groups == parent->groups->next) {
  4727. pflags &= ~(SD_LOAD_BALANCE |
  4728. SD_BALANCE_NEWIDLE |
  4729. SD_BALANCE_FORK |
  4730. SD_BALANCE_EXEC |
  4731. SD_SHARE_CPUCAPACITY |
  4732. SD_SHARE_PKG_RESOURCES |
  4733. SD_PREFER_SIBLING |
  4734. SD_SHARE_POWERDOMAIN);
  4735. if (nr_node_ids == 1)
  4736. pflags &= ~SD_SERIALIZE;
  4737. }
  4738. if (~cflags & pflags)
  4739. return 0;
  4740. return 1;
  4741. }
  4742. static void free_rootdomain(struct rcu_head *rcu)
  4743. {
  4744. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4745. cpupri_cleanup(&rd->cpupri);
  4746. cpudl_cleanup(&rd->cpudl);
  4747. free_cpumask_var(rd->dlo_mask);
  4748. free_cpumask_var(rd->rto_mask);
  4749. free_cpumask_var(rd->online);
  4750. free_cpumask_var(rd->span);
  4751. kfree(rd);
  4752. }
  4753. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4754. {
  4755. struct root_domain *old_rd = NULL;
  4756. unsigned long flags;
  4757. raw_spin_lock_irqsave(&rq->lock, flags);
  4758. if (rq->rd) {
  4759. old_rd = rq->rd;
  4760. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4761. set_rq_offline(rq);
  4762. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4763. /*
  4764. * If we dont want to free the old_rd yet then
  4765. * set old_rd to NULL to skip the freeing later
  4766. * in this function:
  4767. */
  4768. if (!atomic_dec_and_test(&old_rd->refcount))
  4769. old_rd = NULL;
  4770. }
  4771. atomic_inc(&rd->refcount);
  4772. rq->rd = rd;
  4773. cpumask_set_cpu(rq->cpu, rd->span);
  4774. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4775. set_rq_online(rq);
  4776. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4777. if (old_rd)
  4778. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4779. }
  4780. static int init_rootdomain(struct root_domain *rd)
  4781. {
  4782. memset(rd, 0, sizeof(*rd));
  4783. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4784. goto out;
  4785. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4786. goto free_span;
  4787. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4788. goto free_online;
  4789. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4790. goto free_dlo_mask;
  4791. init_dl_bw(&rd->dl_bw);
  4792. if (cpudl_init(&rd->cpudl) != 0)
  4793. goto free_dlo_mask;
  4794. if (cpupri_init(&rd->cpupri) != 0)
  4795. goto free_rto_mask;
  4796. return 0;
  4797. free_rto_mask:
  4798. free_cpumask_var(rd->rto_mask);
  4799. free_dlo_mask:
  4800. free_cpumask_var(rd->dlo_mask);
  4801. free_online:
  4802. free_cpumask_var(rd->online);
  4803. free_span:
  4804. free_cpumask_var(rd->span);
  4805. out:
  4806. return -ENOMEM;
  4807. }
  4808. /*
  4809. * By default the system creates a single root-domain with all cpus as
  4810. * members (mimicking the global state we have today).
  4811. */
  4812. struct root_domain def_root_domain;
  4813. static void init_defrootdomain(void)
  4814. {
  4815. init_rootdomain(&def_root_domain);
  4816. atomic_set(&def_root_domain.refcount, 1);
  4817. }
  4818. static struct root_domain *alloc_rootdomain(void)
  4819. {
  4820. struct root_domain *rd;
  4821. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4822. if (!rd)
  4823. return NULL;
  4824. if (init_rootdomain(rd) != 0) {
  4825. kfree(rd);
  4826. return NULL;
  4827. }
  4828. return rd;
  4829. }
  4830. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  4831. {
  4832. struct sched_group *tmp, *first;
  4833. if (!sg)
  4834. return;
  4835. first = sg;
  4836. do {
  4837. tmp = sg->next;
  4838. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  4839. kfree(sg->sgc);
  4840. kfree(sg);
  4841. sg = tmp;
  4842. } while (sg != first);
  4843. }
  4844. static void free_sched_domain(struct rcu_head *rcu)
  4845. {
  4846. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4847. /*
  4848. * If its an overlapping domain it has private groups, iterate and
  4849. * nuke them all.
  4850. */
  4851. if (sd->flags & SD_OVERLAP) {
  4852. free_sched_groups(sd->groups, 1);
  4853. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4854. kfree(sd->groups->sgc);
  4855. kfree(sd->groups);
  4856. }
  4857. kfree(sd);
  4858. }
  4859. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4860. {
  4861. call_rcu(&sd->rcu, free_sched_domain);
  4862. }
  4863. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4864. {
  4865. for (; sd; sd = sd->parent)
  4866. destroy_sched_domain(sd, cpu);
  4867. }
  4868. /*
  4869. * Keep a special pointer to the highest sched_domain that has
  4870. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4871. * allows us to avoid some pointer chasing select_idle_sibling().
  4872. *
  4873. * Also keep a unique ID per domain (we use the first cpu number in
  4874. * the cpumask of the domain), this allows us to quickly tell if
  4875. * two cpus are in the same cache domain, see cpus_share_cache().
  4876. */
  4877. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4878. DEFINE_PER_CPU(int, sd_llc_size);
  4879. DEFINE_PER_CPU(int, sd_llc_id);
  4880. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4881. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4882. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4883. static void update_top_cache_domain(int cpu)
  4884. {
  4885. struct sched_domain *sd;
  4886. struct sched_domain *busy_sd = NULL;
  4887. int id = cpu;
  4888. int size = 1;
  4889. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4890. if (sd) {
  4891. id = cpumask_first(sched_domain_span(sd));
  4892. size = cpumask_weight(sched_domain_span(sd));
  4893. busy_sd = sd->parent; /* sd_busy */
  4894. }
  4895. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4896. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4897. per_cpu(sd_llc_size, cpu) = size;
  4898. per_cpu(sd_llc_id, cpu) = id;
  4899. sd = lowest_flag_domain(cpu, SD_NUMA);
  4900. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4901. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4902. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4903. }
  4904. /*
  4905. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4906. * hold the hotplug lock.
  4907. */
  4908. static void
  4909. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4910. {
  4911. struct rq *rq = cpu_rq(cpu);
  4912. struct sched_domain *tmp;
  4913. /* Remove the sched domains which do not contribute to scheduling. */
  4914. for (tmp = sd; tmp; ) {
  4915. struct sched_domain *parent = tmp->parent;
  4916. if (!parent)
  4917. break;
  4918. if (sd_parent_degenerate(tmp, parent)) {
  4919. tmp->parent = parent->parent;
  4920. if (parent->parent)
  4921. parent->parent->child = tmp;
  4922. /*
  4923. * Transfer SD_PREFER_SIBLING down in case of a
  4924. * degenerate parent; the spans match for this
  4925. * so the property transfers.
  4926. */
  4927. if (parent->flags & SD_PREFER_SIBLING)
  4928. tmp->flags |= SD_PREFER_SIBLING;
  4929. destroy_sched_domain(parent, cpu);
  4930. } else
  4931. tmp = tmp->parent;
  4932. }
  4933. if (sd && sd_degenerate(sd)) {
  4934. tmp = sd;
  4935. sd = sd->parent;
  4936. destroy_sched_domain(tmp, cpu);
  4937. if (sd)
  4938. sd->child = NULL;
  4939. }
  4940. sched_domain_debug(sd, cpu);
  4941. rq_attach_root(rq, rd);
  4942. tmp = rq->sd;
  4943. rcu_assign_pointer(rq->sd, sd);
  4944. destroy_sched_domains(tmp, cpu);
  4945. update_top_cache_domain(cpu);
  4946. }
  4947. /* Setup the mask of cpus configured for isolated domains */
  4948. static int __init isolated_cpu_setup(char *str)
  4949. {
  4950. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4951. cpulist_parse(str, cpu_isolated_map);
  4952. return 1;
  4953. }
  4954. __setup("isolcpus=", isolated_cpu_setup);
  4955. struct s_data {
  4956. struct sched_domain ** __percpu sd;
  4957. struct root_domain *rd;
  4958. };
  4959. enum s_alloc {
  4960. sa_rootdomain,
  4961. sa_sd,
  4962. sa_sd_storage,
  4963. sa_none,
  4964. };
  4965. /*
  4966. * Build an iteration mask that can exclude certain CPUs from the upwards
  4967. * domain traversal.
  4968. *
  4969. * Asymmetric node setups can result in situations where the domain tree is of
  4970. * unequal depth, make sure to skip domains that already cover the entire
  4971. * range.
  4972. *
  4973. * In that case build_sched_domains() will have terminated the iteration early
  4974. * and our sibling sd spans will be empty. Domains should always include the
  4975. * cpu they're built on, so check that.
  4976. *
  4977. */
  4978. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4979. {
  4980. const struct cpumask *span = sched_domain_span(sd);
  4981. struct sd_data *sdd = sd->private;
  4982. struct sched_domain *sibling;
  4983. int i;
  4984. for_each_cpu(i, span) {
  4985. sibling = *per_cpu_ptr(sdd->sd, i);
  4986. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4987. continue;
  4988. cpumask_set_cpu(i, sched_group_mask(sg));
  4989. }
  4990. }
  4991. /*
  4992. * Return the canonical balance cpu for this group, this is the first cpu
  4993. * of this group that's also in the iteration mask.
  4994. */
  4995. int group_balance_cpu(struct sched_group *sg)
  4996. {
  4997. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4998. }
  4999. static int
  5000. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5001. {
  5002. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5003. const struct cpumask *span = sched_domain_span(sd);
  5004. struct cpumask *covered = sched_domains_tmpmask;
  5005. struct sd_data *sdd = sd->private;
  5006. struct sched_domain *sibling;
  5007. int i;
  5008. cpumask_clear(covered);
  5009. for_each_cpu(i, span) {
  5010. struct cpumask *sg_span;
  5011. if (cpumask_test_cpu(i, covered))
  5012. continue;
  5013. sibling = *per_cpu_ptr(sdd->sd, i);
  5014. /* See the comment near build_group_mask(). */
  5015. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5016. continue;
  5017. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5018. GFP_KERNEL, cpu_to_node(cpu));
  5019. if (!sg)
  5020. goto fail;
  5021. sg_span = sched_group_cpus(sg);
  5022. if (sibling->child)
  5023. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5024. else
  5025. cpumask_set_cpu(i, sg_span);
  5026. cpumask_or(covered, covered, sg_span);
  5027. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5028. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5029. build_group_mask(sd, sg);
  5030. /*
  5031. * Initialize sgc->capacity such that even if we mess up the
  5032. * domains and no possible iteration will get us here, we won't
  5033. * die on a /0 trap.
  5034. */
  5035. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5036. /*
  5037. * Make sure the first group of this domain contains the
  5038. * canonical balance cpu. Otherwise the sched_domain iteration
  5039. * breaks. See update_sg_lb_stats().
  5040. */
  5041. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5042. group_balance_cpu(sg) == cpu)
  5043. groups = sg;
  5044. if (!first)
  5045. first = sg;
  5046. if (last)
  5047. last->next = sg;
  5048. last = sg;
  5049. last->next = first;
  5050. }
  5051. sd->groups = groups;
  5052. return 0;
  5053. fail:
  5054. free_sched_groups(first, 0);
  5055. return -ENOMEM;
  5056. }
  5057. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5058. {
  5059. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5060. struct sched_domain *child = sd->child;
  5061. if (child)
  5062. cpu = cpumask_first(sched_domain_span(child));
  5063. if (sg) {
  5064. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5065. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5066. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5067. }
  5068. return cpu;
  5069. }
  5070. /*
  5071. * build_sched_groups will build a circular linked list of the groups
  5072. * covered by the given span, and will set each group's ->cpumask correctly,
  5073. * and ->cpu_capacity to 0.
  5074. *
  5075. * Assumes the sched_domain tree is fully constructed
  5076. */
  5077. static int
  5078. build_sched_groups(struct sched_domain *sd, int cpu)
  5079. {
  5080. struct sched_group *first = NULL, *last = NULL;
  5081. struct sd_data *sdd = sd->private;
  5082. const struct cpumask *span = sched_domain_span(sd);
  5083. struct cpumask *covered;
  5084. int i;
  5085. get_group(cpu, sdd, &sd->groups);
  5086. atomic_inc(&sd->groups->ref);
  5087. if (cpu != cpumask_first(span))
  5088. return 0;
  5089. lockdep_assert_held(&sched_domains_mutex);
  5090. covered = sched_domains_tmpmask;
  5091. cpumask_clear(covered);
  5092. for_each_cpu(i, span) {
  5093. struct sched_group *sg;
  5094. int group, j;
  5095. if (cpumask_test_cpu(i, covered))
  5096. continue;
  5097. group = get_group(i, sdd, &sg);
  5098. cpumask_setall(sched_group_mask(sg));
  5099. for_each_cpu(j, span) {
  5100. if (get_group(j, sdd, NULL) != group)
  5101. continue;
  5102. cpumask_set_cpu(j, covered);
  5103. cpumask_set_cpu(j, sched_group_cpus(sg));
  5104. }
  5105. if (!first)
  5106. first = sg;
  5107. if (last)
  5108. last->next = sg;
  5109. last = sg;
  5110. }
  5111. last->next = first;
  5112. return 0;
  5113. }
  5114. /*
  5115. * Initialize sched groups cpu_capacity.
  5116. *
  5117. * cpu_capacity indicates the capacity of sched group, which is used while
  5118. * distributing the load between different sched groups in a sched domain.
  5119. * Typically cpu_capacity for all the groups in a sched domain will be same
  5120. * unless there are asymmetries in the topology. If there are asymmetries,
  5121. * group having more cpu_capacity will pickup more load compared to the
  5122. * group having less cpu_capacity.
  5123. */
  5124. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5125. {
  5126. struct sched_group *sg = sd->groups;
  5127. WARN_ON(!sg);
  5128. do {
  5129. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5130. sg = sg->next;
  5131. } while (sg != sd->groups);
  5132. if (cpu != group_balance_cpu(sg))
  5133. return;
  5134. update_group_capacity(sd, cpu);
  5135. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5136. }
  5137. /*
  5138. * Initializers for schedule domains
  5139. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5140. */
  5141. static int default_relax_domain_level = -1;
  5142. int sched_domain_level_max;
  5143. static int __init setup_relax_domain_level(char *str)
  5144. {
  5145. if (kstrtoint(str, 0, &default_relax_domain_level))
  5146. pr_warn("Unable to set relax_domain_level\n");
  5147. return 1;
  5148. }
  5149. __setup("relax_domain_level=", setup_relax_domain_level);
  5150. static void set_domain_attribute(struct sched_domain *sd,
  5151. struct sched_domain_attr *attr)
  5152. {
  5153. int request;
  5154. if (!attr || attr->relax_domain_level < 0) {
  5155. if (default_relax_domain_level < 0)
  5156. return;
  5157. else
  5158. request = default_relax_domain_level;
  5159. } else
  5160. request = attr->relax_domain_level;
  5161. if (request < sd->level) {
  5162. /* turn off idle balance on this domain */
  5163. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5164. } else {
  5165. /* turn on idle balance on this domain */
  5166. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5167. }
  5168. }
  5169. static void __sdt_free(const struct cpumask *cpu_map);
  5170. static int __sdt_alloc(const struct cpumask *cpu_map);
  5171. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5172. const struct cpumask *cpu_map)
  5173. {
  5174. switch (what) {
  5175. case sa_rootdomain:
  5176. if (!atomic_read(&d->rd->refcount))
  5177. free_rootdomain(&d->rd->rcu); /* fall through */
  5178. case sa_sd:
  5179. free_percpu(d->sd); /* fall through */
  5180. case sa_sd_storage:
  5181. __sdt_free(cpu_map); /* fall through */
  5182. case sa_none:
  5183. break;
  5184. }
  5185. }
  5186. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5187. const struct cpumask *cpu_map)
  5188. {
  5189. memset(d, 0, sizeof(*d));
  5190. if (__sdt_alloc(cpu_map))
  5191. return sa_sd_storage;
  5192. d->sd = alloc_percpu(struct sched_domain *);
  5193. if (!d->sd)
  5194. return sa_sd_storage;
  5195. d->rd = alloc_rootdomain();
  5196. if (!d->rd)
  5197. return sa_sd;
  5198. return sa_rootdomain;
  5199. }
  5200. /*
  5201. * NULL the sd_data elements we've used to build the sched_domain and
  5202. * sched_group structure so that the subsequent __free_domain_allocs()
  5203. * will not free the data we're using.
  5204. */
  5205. static void claim_allocations(int cpu, struct sched_domain *sd)
  5206. {
  5207. struct sd_data *sdd = sd->private;
  5208. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5209. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5210. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5211. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5212. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5213. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5214. }
  5215. #ifdef CONFIG_NUMA
  5216. static int sched_domains_numa_levels;
  5217. enum numa_topology_type sched_numa_topology_type;
  5218. static int *sched_domains_numa_distance;
  5219. int sched_max_numa_distance;
  5220. static struct cpumask ***sched_domains_numa_masks;
  5221. static int sched_domains_curr_level;
  5222. #endif
  5223. /*
  5224. * SD_flags allowed in topology descriptions.
  5225. *
  5226. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5227. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5228. * SD_NUMA - describes NUMA topologies
  5229. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5230. *
  5231. * Odd one out:
  5232. * SD_ASYM_PACKING - describes SMT quirks
  5233. */
  5234. #define TOPOLOGY_SD_FLAGS \
  5235. (SD_SHARE_CPUCAPACITY | \
  5236. SD_SHARE_PKG_RESOURCES | \
  5237. SD_NUMA | \
  5238. SD_ASYM_PACKING | \
  5239. SD_SHARE_POWERDOMAIN)
  5240. static struct sched_domain *
  5241. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5242. {
  5243. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5244. int sd_weight, sd_flags = 0;
  5245. #ifdef CONFIG_NUMA
  5246. /*
  5247. * Ugly hack to pass state to sd_numa_mask()...
  5248. */
  5249. sched_domains_curr_level = tl->numa_level;
  5250. #endif
  5251. sd_weight = cpumask_weight(tl->mask(cpu));
  5252. if (tl->sd_flags)
  5253. sd_flags = (*tl->sd_flags)();
  5254. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5255. "wrong sd_flags in topology description\n"))
  5256. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5257. *sd = (struct sched_domain){
  5258. .min_interval = sd_weight,
  5259. .max_interval = 2*sd_weight,
  5260. .busy_factor = 32,
  5261. .imbalance_pct = 125,
  5262. .cache_nice_tries = 0,
  5263. .busy_idx = 0,
  5264. .idle_idx = 0,
  5265. .newidle_idx = 0,
  5266. .wake_idx = 0,
  5267. .forkexec_idx = 0,
  5268. .flags = 1*SD_LOAD_BALANCE
  5269. | 1*SD_BALANCE_NEWIDLE
  5270. | 1*SD_BALANCE_EXEC
  5271. | 1*SD_BALANCE_FORK
  5272. | 0*SD_BALANCE_WAKE
  5273. | 1*SD_WAKE_AFFINE
  5274. | 0*SD_SHARE_CPUCAPACITY
  5275. | 0*SD_SHARE_PKG_RESOURCES
  5276. | 0*SD_SERIALIZE
  5277. | 0*SD_PREFER_SIBLING
  5278. | 0*SD_NUMA
  5279. | sd_flags
  5280. ,
  5281. .last_balance = jiffies,
  5282. .balance_interval = sd_weight,
  5283. .smt_gain = 0,
  5284. .max_newidle_lb_cost = 0,
  5285. .next_decay_max_lb_cost = jiffies,
  5286. #ifdef CONFIG_SCHED_DEBUG
  5287. .name = tl->name,
  5288. #endif
  5289. };
  5290. /*
  5291. * Convert topological properties into behaviour.
  5292. */
  5293. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5294. sd->flags |= SD_PREFER_SIBLING;
  5295. sd->imbalance_pct = 110;
  5296. sd->smt_gain = 1178; /* ~15% */
  5297. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5298. sd->imbalance_pct = 117;
  5299. sd->cache_nice_tries = 1;
  5300. sd->busy_idx = 2;
  5301. #ifdef CONFIG_NUMA
  5302. } else if (sd->flags & SD_NUMA) {
  5303. sd->cache_nice_tries = 2;
  5304. sd->busy_idx = 3;
  5305. sd->idle_idx = 2;
  5306. sd->flags |= SD_SERIALIZE;
  5307. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5308. sd->flags &= ~(SD_BALANCE_EXEC |
  5309. SD_BALANCE_FORK |
  5310. SD_WAKE_AFFINE);
  5311. }
  5312. #endif
  5313. } else {
  5314. sd->flags |= SD_PREFER_SIBLING;
  5315. sd->cache_nice_tries = 1;
  5316. sd->busy_idx = 2;
  5317. sd->idle_idx = 1;
  5318. }
  5319. sd->private = &tl->data;
  5320. return sd;
  5321. }
  5322. /*
  5323. * Topology list, bottom-up.
  5324. */
  5325. static struct sched_domain_topology_level default_topology[] = {
  5326. #ifdef CONFIG_SCHED_SMT
  5327. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5328. #endif
  5329. #ifdef CONFIG_SCHED_MC
  5330. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5331. #endif
  5332. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5333. { NULL, },
  5334. };
  5335. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5336. #define for_each_sd_topology(tl) \
  5337. for (tl = sched_domain_topology; tl->mask; tl++)
  5338. void set_sched_topology(struct sched_domain_topology_level *tl)
  5339. {
  5340. sched_domain_topology = tl;
  5341. }
  5342. #ifdef CONFIG_NUMA
  5343. static const struct cpumask *sd_numa_mask(int cpu)
  5344. {
  5345. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5346. }
  5347. static void sched_numa_warn(const char *str)
  5348. {
  5349. static int done = false;
  5350. int i,j;
  5351. if (done)
  5352. return;
  5353. done = true;
  5354. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5355. for (i = 0; i < nr_node_ids; i++) {
  5356. printk(KERN_WARNING " ");
  5357. for (j = 0; j < nr_node_ids; j++)
  5358. printk(KERN_CONT "%02d ", node_distance(i,j));
  5359. printk(KERN_CONT "\n");
  5360. }
  5361. printk(KERN_WARNING "\n");
  5362. }
  5363. bool find_numa_distance(int distance)
  5364. {
  5365. int i;
  5366. if (distance == node_distance(0, 0))
  5367. return true;
  5368. for (i = 0; i < sched_domains_numa_levels; i++) {
  5369. if (sched_domains_numa_distance[i] == distance)
  5370. return true;
  5371. }
  5372. return false;
  5373. }
  5374. /*
  5375. * A system can have three types of NUMA topology:
  5376. * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
  5377. * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
  5378. * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
  5379. *
  5380. * The difference between a glueless mesh topology and a backplane
  5381. * topology lies in whether communication between not directly
  5382. * connected nodes goes through intermediary nodes (where programs
  5383. * could run), or through backplane controllers. This affects
  5384. * placement of programs.
  5385. *
  5386. * The type of topology can be discerned with the following tests:
  5387. * - If the maximum distance between any nodes is 1 hop, the system
  5388. * is directly connected.
  5389. * - If for two nodes A and B, located N > 1 hops away from each other,
  5390. * there is an intermediary node C, which is < N hops away from both
  5391. * nodes A and B, the system is a glueless mesh.
  5392. */
  5393. static void init_numa_topology_type(void)
  5394. {
  5395. int a, b, c, n;
  5396. n = sched_max_numa_distance;
  5397. if (n <= 1)
  5398. sched_numa_topology_type = NUMA_DIRECT;
  5399. for_each_online_node(a) {
  5400. for_each_online_node(b) {
  5401. /* Find two nodes furthest removed from each other. */
  5402. if (node_distance(a, b) < n)
  5403. continue;
  5404. /* Is there an intermediary node between a and b? */
  5405. for_each_online_node(c) {
  5406. if (node_distance(a, c) < n &&
  5407. node_distance(b, c) < n) {
  5408. sched_numa_topology_type =
  5409. NUMA_GLUELESS_MESH;
  5410. return;
  5411. }
  5412. }
  5413. sched_numa_topology_type = NUMA_BACKPLANE;
  5414. return;
  5415. }
  5416. }
  5417. }
  5418. static void sched_init_numa(void)
  5419. {
  5420. int next_distance, curr_distance = node_distance(0, 0);
  5421. struct sched_domain_topology_level *tl;
  5422. int level = 0;
  5423. int i, j, k;
  5424. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5425. if (!sched_domains_numa_distance)
  5426. return;
  5427. /*
  5428. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5429. * unique distances in the node_distance() table.
  5430. *
  5431. * Assumes node_distance(0,j) includes all distances in
  5432. * node_distance(i,j) in order to avoid cubic time.
  5433. */
  5434. next_distance = curr_distance;
  5435. for (i = 0; i < nr_node_ids; i++) {
  5436. for (j = 0; j < nr_node_ids; j++) {
  5437. for (k = 0; k < nr_node_ids; k++) {
  5438. int distance = node_distance(i, k);
  5439. if (distance > curr_distance &&
  5440. (distance < next_distance ||
  5441. next_distance == curr_distance))
  5442. next_distance = distance;
  5443. /*
  5444. * While not a strong assumption it would be nice to know
  5445. * about cases where if node A is connected to B, B is not
  5446. * equally connected to A.
  5447. */
  5448. if (sched_debug() && node_distance(k, i) != distance)
  5449. sched_numa_warn("Node-distance not symmetric");
  5450. if (sched_debug() && i && !find_numa_distance(distance))
  5451. sched_numa_warn("Node-0 not representative");
  5452. }
  5453. if (next_distance != curr_distance) {
  5454. sched_domains_numa_distance[level++] = next_distance;
  5455. sched_domains_numa_levels = level;
  5456. curr_distance = next_distance;
  5457. } else break;
  5458. }
  5459. /*
  5460. * In case of sched_debug() we verify the above assumption.
  5461. */
  5462. if (!sched_debug())
  5463. break;
  5464. }
  5465. if (!level)
  5466. return;
  5467. /*
  5468. * 'level' contains the number of unique distances, excluding the
  5469. * identity distance node_distance(i,i).
  5470. *
  5471. * The sched_domains_numa_distance[] array includes the actual distance
  5472. * numbers.
  5473. */
  5474. /*
  5475. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5476. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5477. * the array will contain less then 'level' members. This could be
  5478. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5479. * in other functions.
  5480. *
  5481. * We reset it to 'level' at the end of this function.
  5482. */
  5483. sched_domains_numa_levels = 0;
  5484. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5485. if (!sched_domains_numa_masks)
  5486. return;
  5487. /*
  5488. * Now for each level, construct a mask per node which contains all
  5489. * cpus of nodes that are that many hops away from us.
  5490. */
  5491. for (i = 0; i < level; i++) {
  5492. sched_domains_numa_masks[i] =
  5493. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5494. if (!sched_domains_numa_masks[i])
  5495. return;
  5496. for (j = 0; j < nr_node_ids; j++) {
  5497. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5498. if (!mask)
  5499. return;
  5500. sched_domains_numa_masks[i][j] = mask;
  5501. for (k = 0; k < nr_node_ids; k++) {
  5502. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5503. continue;
  5504. cpumask_or(mask, mask, cpumask_of_node(k));
  5505. }
  5506. }
  5507. }
  5508. /* Compute default topology size */
  5509. for (i = 0; sched_domain_topology[i].mask; i++);
  5510. tl = kzalloc((i + level + 1) *
  5511. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5512. if (!tl)
  5513. return;
  5514. /*
  5515. * Copy the default topology bits..
  5516. */
  5517. for (i = 0; sched_domain_topology[i].mask; i++)
  5518. tl[i] = sched_domain_topology[i];
  5519. /*
  5520. * .. and append 'j' levels of NUMA goodness.
  5521. */
  5522. for (j = 0; j < level; i++, j++) {
  5523. tl[i] = (struct sched_domain_topology_level){
  5524. .mask = sd_numa_mask,
  5525. .sd_flags = cpu_numa_flags,
  5526. .flags = SDTL_OVERLAP,
  5527. .numa_level = j,
  5528. SD_INIT_NAME(NUMA)
  5529. };
  5530. }
  5531. sched_domain_topology = tl;
  5532. sched_domains_numa_levels = level;
  5533. sched_max_numa_distance = sched_domains_numa_distance[level - 1];
  5534. init_numa_topology_type();
  5535. }
  5536. static void sched_domains_numa_masks_set(int cpu)
  5537. {
  5538. int i, j;
  5539. int node = cpu_to_node(cpu);
  5540. for (i = 0; i < sched_domains_numa_levels; i++) {
  5541. for (j = 0; j < nr_node_ids; j++) {
  5542. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5543. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5544. }
  5545. }
  5546. }
  5547. static void sched_domains_numa_masks_clear(int cpu)
  5548. {
  5549. int i, j;
  5550. for (i = 0; i < sched_domains_numa_levels; i++) {
  5551. for (j = 0; j < nr_node_ids; j++)
  5552. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5553. }
  5554. }
  5555. /*
  5556. * Update sched_domains_numa_masks[level][node] array when new cpus
  5557. * are onlined.
  5558. */
  5559. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5560. unsigned long action,
  5561. void *hcpu)
  5562. {
  5563. int cpu = (long)hcpu;
  5564. switch (action & ~CPU_TASKS_FROZEN) {
  5565. case CPU_ONLINE:
  5566. sched_domains_numa_masks_set(cpu);
  5567. break;
  5568. case CPU_DEAD:
  5569. sched_domains_numa_masks_clear(cpu);
  5570. break;
  5571. default:
  5572. return NOTIFY_DONE;
  5573. }
  5574. return NOTIFY_OK;
  5575. }
  5576. #else
  5577. static inline void sched_init_numa(void)
  5578. {
  5579. }
  5580. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5581. unsigned long action,
  5582. void *hcpu)
  5583. {
  5584. return 0;
  5585. }
  5586. #endif /* CONFIG_NUMA */
  5587. static int __sdt_alloc(const struct cpumask *cpu_map)
  5588. {
  5589. struct sched_domain_topology_level *tl;
  5590. int j;
  5591. for_each_sd_topology(tl) {
  5592. struct sd_data *sdd = &tl->data;
  5593. sdd->sd = alloc_percpu(struct sched_domain *);
  5594. if (!sdd->sd)
  5595. return -ENOMEM;
  5596. sdd->sg = alloc_percpu(struct sched_group *);
  5597. if (!sdd->sg)
  5598. return -ENOMEM;
  5599. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5600. if (!sdd->sgc)
  5601. return -ENOMEM;
  5602. for_each_cpu(j, cpu_map) {
  5603. struct sched_domain *sd;
  5604. struct sched_group *sg;
  5605. struct sched_group_capacity *sgc;
  5606. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5607. GFP_KERNEL, cpu_to_node(j));
  5608. if (!sd)
  5609. return -ENOMEM;
  5610. *per_cpu_ptr(sdd->sd, j) = sd;
  5611. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5612. GFP_KERNEL, cpu_to_node(j));
  5613. if (!sg)
  5614. return -ENOMEM;
  5615. sg->next = sg;
  5616. *per_cpu_ptr(sdd->sg, j) = sg;
  5617. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5618. GFP_KERNEL, cpu_to_node(j));
  5619. if (!sgc)
  5620. return -ENOMEM;
  5621. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5622. }
  5623. }
  5624. return 0;
  5625. }
  5626. static void __sdt_free(const struct cpumask *cpu_map)
  5627. {
  5628. struct sched_domain_topology_level *tl;
  5629. int j;
  5630. for_each_sd_topology(tl) {
  5631. struct sd_data *sdd = &tl->data;
  5632. for_each_cpu(j, cpu_map) {
  5633. struct sched_domain *sd;
  5634. if (sdd->sd) {
  5635. sd = *per_cpu_ptr(sdd->sd, j);
  5636. if (sd && (sd->flags & SD_OVERLAP))
  5637. free_sched_groups(sd->groups, 0);
  5638. kfree(*per_cpu_ptr(sdd->sd, j));
  5639. }
  5640. if (sdd->sg)
  5641. kfree(*per_cpu_ptr(sdd->sg, j));
  5642. if (sdd->sgc)
  5643. kfree(*per_cpu_ptr(sdd->sgc, j));
  5644. }
  5645. free_percpu(sdd->sd);
  5646. sdd->sd = NULL;
  5647. free_percpu(sdd->sg);
  5648. sdd->sg = NULL;
  5649. free_percpu(sdd->sgc);
  5650. sdd->sgc = NULL;
  5651. }
  5652. }
  5653. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5654. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5655. struct sched_domain *child, int cpu)
  5656. {
  5657. struct sched_domain *sd = sd_init(tl, cpu);
  5658. if (!sd)
  5659. return child;
  5660. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5661. if (child) {
  5662. sd->level = child->level + 1;
  5663. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5664. child->parent = sd;
  5665. sd->child = child;
  5666. if (!cpumask_subset(sched_domain_span(child),
  5667. sched_domain_span(sd))) {
  5668. pr_err("BUG: arch topology borken\n");
  5669. #ifdef CONFIG_SCHED_DEBUG
  5670. pr_err(" the %s domain not a subset of the %s domain\n",
  5671. child->name, sd->name);
  5672. #endif
  5673. /* Fixup, ensure @sd has at least @child cpus. */
  5674. cpumask_or(sched_domain_span(sd),
  5675. sched_domain_span(sd),
  5676. sched_domain_span(child));
  5677. }
  5678. }
  5679. set_domain_attribute(sd, attr);
  5680. return sd;
  5681. }
  5682. /*
  5683. * Build sched domains for a given set of cpus and attach the sched domains
  5684. * to the individual cpus
  5685. */
  5686. static int build_sched_domains(const struct cpumask *cpu_map,
  5687. struct sched_domain_attr *attr)
  5688. {
  5689. enum s_alloc alloc_state;
  5690. struct sched_domain *sd;
  5691. struct s_data d;
  5692. int i, ret = -ENOMEM;
  5693. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5694. if (alloc_state != sa_rootdomain)
  5695. goto error;
  5696. /* Set up domains for cpus specified by the cpu_map. */
  5697. for_each_cpu(i, cpu_map) {
  5698. struct sched_domain_topology_level *tl;
  5699. sd = NULL;
  5700. for_each_sd_topology(tl) {
  5701. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5702. if (tl == sched_domain_topology)
  5703. *per_cpu_ptr(d.sd, i) = sd;
  5704. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5705. sd->flags |= SD_OVERLAP;
  5706. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5707. break;
  5708. }
  5709. }
  5710. /* Build the groups for the domains */
  5711. for_each_cpu(i, cpu_map) {
  5712. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5713. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5714. if (sd->flags & SD_OVERLAP) {
  5715. if (build_overlap_sched_groups(sd, i))
  5716. goto error;
  5717. } else {
  5718. if (build_sched_groups(sd, i))
  5719. goto error;
  5720. }
  5721. }
  5722. }
  5723. /* Calculate CPU capacity for physical packages and nodes */
  5724. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5725. if (!cpumask_test_cpu(i, cpu_map))
  5726. continue;
  5727. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5728. claim_allocations(i, sd);
  5729. init_sched_groups_capacity(i, sd);
  5730. }
  5731. }
  5732. /* Attach the domains */
  5733. rcu_read_lock();
  5734. for_each_cpu(i, cpu_map) {
  5735. sd = *per_cpu_ptr(d.sd, i);
  5736. cpu_attach_domain(sd, d.rd, i);
  5737. }
  5738. rcu_read_unlock();
  5739. ret = 0;
  5740. error:
  5741. __free_domain_allocs(&d, alloc_state, cpu_map);
  5742. return ret;
  5743. }
  5744. static cpumask_var_t *doms_cur; /* current sched domains */
  5745. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5746. static struct sched_domain_attr *dattr_cur;
  5747. /* attribues of custom domains in 'doms_cur' */
  5748. /*
  5749. * Special case: If a kmalloc of a doms_cur partition (array of
  5750. * cpumask) fails, then fallback to a single sched domain,
  5751. * as determined by the single cpumask fallback_doms.
  5752. */
  5753. static cpumask_var_t fallback_doms;
  5754. /*
  5755. * arch_update_cpu_topology lets virtualized architectures update the
  5756. * cpu core maps. It is supposed to return 1 if the topology changed
  5757. * or 0 if it stayed the same.
  5758. */
  5759. int __weak arch_update_cpu_topology(void)
  5760. {
  5761. return 0;
  5762. }
  5763. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5764. {
  5765. int i;
  5766. cpumask_var_t *doms;
  5767. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5768. if (!doms)
  5769. return NULL;
  5770. for (i = 0; i < ndoms; i++) {
  5771. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5772. free_sched_domains(doms, i);
  5773. return NULL;
  5774. }
  5775. }
  5776. return doms;
  5777. }
  5778. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5779. {
  5780. unsigned int i;
  5781. for (i = 0; i < ndoms; i++)
  5782. free_cpumask_var(doms[i]);
  5783. kfree(doms);
  5784. }
  5785. /*
  5786. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5787. * For now this just excludes isolated cpus, but could be used to
  5788. * exclude other special cases in the future.
  5789. */
  5790. static int init_sched_domains(const struct cpumask *cpu_map)
  5791. {
  5792. int err;
  5793. arch_update_cpu_topology();
  5794. ndoms_cur = 1;
  5795. doms_cur = alloc_sched_domains(ndoms_cur);
  5796. if (!doms_cur)
  5797. doms_cur = &fallback_doms;
  5798. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5799. err = build_sched_domains(doms_cur[0], NULL);
  5800. register_sched_domain_sysctl();
  5801. return err;
  5802. }
  5803. /*
  5804. * Detach sched domains from a group of cpus specified in cpu_map
  5805. * These cpus will now be attached to the NULL domain
  5806. */
  5807. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5808. {
  5809. int i;
  5810. rcu_read_lock();
  5811. for_each_cpu(i, cpu_map)
  5812. cpu_attach_domain(NULL, &def_root_domain, i);
  5813. rcu_read_unlock();
  5814. }
  5815. /* handle null as "default" */
  5816. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5817. struct sched_domain_attr *new, int idx_new)
  5818. {
  5819. struct sched_domain_attr tmp;
  5820. /* fast path */
  5821. if (!new && !cur)
  5822. return 1;
  5823. tmp = SD_ATTR_INIT;
  5824. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5825. new ? (new + idx_new) : &tmp,
  5826. sizeof(struct sched_domain_attr));
  5827. }
  5828. /*
  5829. * Partition sched domains as specified by the 'ndoms_new'
  5830. * cpumasks in the array doms_new[] of cpumasks. This compares
  5831. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5832. * It destroys each deleted domain and builds each new domain.
  5833. *
  5834. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5835. * The masks don't intersect (don't overlap.) We should setup one
  5836. * sched domain for each mask. CPUs not in any of the cpumasks will
  5837. * not be load balanced. If the same cpumask appears both in the
  5838. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5839. * it as it is.
  5840. *
  5841. * The passed in 'doms_new' should be allocated using
  5842. * alloc_sched_domains. This routine takes ownership of it and will
  5843. * free_sched_domains it when done with it. If the caller failed the
  5844. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5845. * and partition_sched_domains() will fallback to the single partition
  5846. * 'fallback_doms', it also forces the domains to be rebuilt.
  5847. *
  5848. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5849. * ndoms_new == 0 is a special case for destroying existing domains,
  5850. * and it will not create the default domain.
  5851. *
  5852. * Call with hotplug lock held
  5853. */
  5854. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5855. struct sched_domain_attr *dattr_new)
  5856. {
  5857. int i, j, n;
  5858. int new_topology;
  5859. mutex_lock(&sched_domains_mutex);
  5860. /* always unregister in case we don't destroy any domains */
  5861. unregister_sched_domain_sysctl();
  5862. /* Let architecture update cpu core mappings. */
  5863. new_topology = arch_update_cpu_topology();
  5864. n = doms_new ? ndoms_new : 0;
  5865. /* Destroy deleted domains */
  5866. for (i = 0; i < ndoms_cur; i++) {
  5867. for (j = 0; j < n && !new_topology; j++) {
  5868. if (cpumask_equal(doms_cur[i], doms_new[j])
  5869. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5870. goto match1;
  5871. }
  5872. /* no match - a current sched domain not in new doms_new[] */
  5873. detach_destroy_domains(doms_cur[i]);
  5874. match1:
  5875. ;
  5876. }
  5877. n = ndoms_cur;
  5878. if (doms_new == NULL) {
  5879. n = 0;
  5880. doms_new = &fallback_doms;
  5881. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5882. WARN_ON_ONCE(dattr_new);
  5883. }
  5884. /* Build new domains */
  5885. for (i = 0; i < ndoms_new; i++) {
  5886. for (j = 0; j < n && !new_topology; j++) {
  5887. if (cpumask_equal(doms_new[i], doms_cur[j])
  5888. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5889. goto match2;
  5890. }
  5891. /* no match - add a new doms_new */
  5892. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5893. match2:
  5894. ;
  5895. }
  5896. /* Remember the new sched domains */
  5897. if (doms_cur != &fallback_doms)
  5898. free_sched_domains(doms_cur, ndoms_cur);
  5899. kfree(dattr_cur); /* kfree(NULL) is safe */
  5900. doms_cur = doms_new;
  5901. dattr_cur = dattr_new;
  5902. ndoms_cur = ndoms_new;
  5903. register_sched_domain_sysctl();
  5904. mutex_unlock(&sched_domains_mutex);
  5905. }
  5906. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5907. /*
  5908. * Update cpusets according to cpu_active mask. If cpusets are
  5909. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5910. * around partition_sched_domains().
  5911. *
  5912. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5913. * want to restore it back to its original state upon resume anyway.
  5914. */
  5915. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5916. void *hcpu)
  5917. {
  5918. switch (action) {
  5919. case CPU_ONLINE_FROZEN:
  5920. case CPU_DOWN_FAILED_FROZEN:
  5921. /*
  5922. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5923. * resume sequence. As long as this is not the last online
  5924. * operation in the resume sequence, just build a single sched
  5925. * domain, ignoring cpusets.
  5926. */
  5927. num_cpus_frozen--;
  5928. if (likely(num_cpus_frozen)) {
  5929. partition_sched_domains(1, NULL, NULL);
  5930. break;
  5931. }
  5932. /*
  5933. * This is the last CPU online operation. So fall through and
  5934. * restore the original sched domains by considering the
  5935. * cpuset configurations.
  5936. */
  5937. case CPU_ONLINE:
  5938. cpuset_update_active_cpus(true);
  5939. break;
  5940. default:
  5941. return NOTIFY_DONE;
  5942. }
  5943. return NOTIFY_OK;
  5944. }
  5945. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5946. void *hcpu)
  5947. {
  5948. unsigned long flags;
  5949. long cpu = (long)hcpu;
  5950. struct dl_bw *dl_b;
  5951. bool overflow;
  5952. int cpus;
  5953. switch (action) {
  5954. case CPU_DOWN_PREPARE:
  5955. rcu_read_lock_sched();
  5956. dl_b = dl_bw_of(cpu);
  5957. raw_spin_lock_irqsave(&dl_b->lock, flags);
  5958. cpus = dl_bw_cpus(cpu);
  5959. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  5960. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  5961. rcu_read_unlock_sched();
  5962. if (overflow)
  5963. return notifier_from_errno(-EBUSY);
  5964. cpuset_update_active_cpus(false);
  5965. break;
  5966. case CPU_DOWN_PREPARE_FROZEN:
  5967. num_cpus_frozen++;
  5968. partition_sched_domains(1, NULL, NULL);
  5969. break;
  5970. default:
  5971. return NOTIFY_DONE;
  5972. }
  5973. return NOTIFY_OK;
  5974. }
  5975. void __init sched_init_smp(void)
  5976. {
  5977. cpumask_var_t non_isolated_cpus;
  5978. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5979. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5980. sched_init_numa();
  5981. /*
  5982. * There's no userspace yet to cause hotplug operations; hence all the
  5983. * cpu masks are stable and all blatant races in the below code cannot
  5984. * happen.
  5985. */
  5986. mutex_lock(&sched_domains_mutex);
  5987. init_sched_domains(cpu_active_mask);
  5988. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5989. if (cpumask_empty(non_isolated_cpus))
  5990. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5991. mutex_unlock(&sched_domains_mutex);
  5992. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5993. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5994. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5995. init_hrtick();
  5996. /* Move init over to a non-isolated CPU */
  5997. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5998. BUG();
  5999. sched_init_granularity();
  6000. free_cpumask_var(non_isolated_cpus);
  6001. init_sched_rt_class();
  6002. init_sched_dl_class();
  6003. }
  6004. #else
  6005. void __init sched_init_smp(void)
  6006. {
  6007. sched_init_granularity();
  6008. }
  6009. #endif /* CONFIG_SMP */
  6010. const_debug unsigned int sysctl_timer_migration = 1;
  6011. int in_sched_functions(unsigned long addr)
  6012. {
  6013. return in_lock_functions(addr) ||
  6014. (addr >= (unsigned long)__sched_text_start
  6015. && addr < (unsigned long)__sched_text_end);
  6016. }
  6017. #ifdef CONFIG_CGROUP_SCHED
  6018. /*
  6019. * Default task group.
  6020. * Every task in system belongs to this group at bootup.
  6021. */
  6022. struct task_group root_task_group;
  6023. LIST_HEAD(task_groups);
  6024. #endif
  6025. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  6026. void __init sched_init(void)
  6027. {
  6028. int i, j;
  6029. unsigned long alloc_size = 0, ptr;
  6030. #ifdef CONFIG_FAIR_GROUP_SCHED
  6031. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6032. #endif
  6033. #ifdef CONFIG_RT_GROUP_SCHED
  6034. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6035. #endif
  6036. if (alloc_size) {
  6037. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6038. #ifdef CONFIG_FAIR_GROUP_SCHED
  6039. root_task_group.se = (struct sched_entity **)ptr;
  6040. ptr += nr_cpu_ids * sizeof(void **);
  6041. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6042. ptr += nr_cpu_ids * sizeof(void **);
  6043. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6044. #ifdef CONFIG_RT_GROUP_SCHED
  6045. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6046. ptr += nr_cpu_ids * sizeof(void **);
  6047. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6048. ptr += nr_cpu_ids * sizeof(void **);
  6049. #endif /* CONFIG_RT_GROUP_SCHED */
  6050. }
  6051. #ifdef CONFIG_CPUMASK_OFFSTACK
  6052. for_each_possible_cpu(i) {
  6053. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  6054. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  6055. }
  6056. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6057. init_rt_bandwidth(&def_rt_bandwidth,
  6058. global_rt_period(), global_rt_runtime());
  6059. init_dl_bandwidth(&def_dl_bandwidth,
  6060. global_rt_period(), global_rt_runtime());
  6061. #ifdef CONFIG_SMP
  6062. init_defrootdomain();
  6063. #endif
  6064. #ifdef CONFIG_RT_GROUP_SCHED
  6065. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6066. global_rt_period(), global_rt_runtime());
  6067. #endif /* CONFIG_RT_GROUP_SCHED */
  6068. #ifdef CONFIG_CGROUP_SCHED
  6069. list_add(&root_task_group.list, &task_groups);
  6070. INIT_LIST_HEAD(&root_task_group.children);
  6071. INIT_LIST_HEAD(&root_task_group.siblings);
  6072. autogroup_init(&init_task);
  6073. #endif /* CONFIG_CGROUP_SCHED */
  6074. for_each_possible_cpu(i) {
  6075. struct rq *rq;
  6076. rq = cpu_rq(i);
  6077. raw_spin_lock_init(&rq->lock);
  6078. rq->nr_running = 0;
  6079. rq->calc_load_active = 0;
  6080. rq->calc_load_update = jiffies + LOAD_FREQ;
  6081. init_cfs_rq(&rq->cfs);
  6082. init_rt_rq(&rq->rt);
  6083. init_dl_rq(&rq->dl);
  6084. #ifdef CONFIG_FAIR_GROUP_SCHED
  6085. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6086. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6087. /*
  6088. * How much cpu bandwidth does root_task_group get?
  6089. *
  6090. * In case of task-groups formed thr' the cgroup filesystem, it
  6091. * gets 100% of the cpu resources in the system. This overall
  6092. * system cpu resource is divided among the tasks of
  6093. * root_task_group and its child task-groups in a fair manner,
  6094. * based on each entity's (task or task-group's) weight
  6095. * (se->load.weight).
  6096. *
  6097. * In other words, if root_task_group has 10 tasks of weight
  6098. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6099. * then A0's share of the cpu resource is:
  6100. *
  6101. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6102. *
  6103. * We achieve this by letting root_task_group's tasks sit
  6104. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6105. */
  6106. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6107. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6108. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6109. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6110. #ifdef CONFIG_RT_GROUP_SCHED
  6111. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6112. #endif
  6113. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6114. rq->cpu_load[j] = 0;
  6115. rq->last_load_update_tick = jiffies;
  6116. #ifdef CONFIG_SMP
  6117. rq->sd = NULL;
  6118. rq->rd = NULL;
  6119. rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
  6120. rq->post_schedule = 0;
  6121. rq->active_balance = 0;
  6122. rq->next_balance = jiffies;
  6123. rq->push_cpu = 0;
  6124. rq->cpu = i;
  6125. rq->online = 0;
  6126. rq->idle_stamp = 0;
  6127. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6128. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6129. INIT_LIST_HEAD(&rq->cfs_tasks);
  6130. rq_attach_root(rq, &def_root_domain);
  6131. #ifdef CONFIG_NO_HZ_COMMON
  6132. rq->nohz_flags = 0;
  6133. #endif
  6134. #ifdef CONFIG_NO_HZ_FULL
  6135. rq->last_sched_tick = 0;
  6136. #endif
  6137. #endif
  6138. init_rq_hrtick(rq);
  6139. atomic_set(&rq->nr_iowait, 0);
  6140. }
  6141. set_load_weight(&init_task);
  6142. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6143. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6144. #endif
  6145. /*
  6146. * The boot idle thread does lazy MMU switching as well:
  6147. */
  6148. atomic_inc(&init_mm.mm_count);
  6149. enter_lazy_tlb(&init_mm, current);
  6150. /*
  6151. * During early bootup we pretend to be a normal task:
  6152. */
  6153. current->sched_class = &fair_sched_class;
  6154. /*
  6155. * Make us the idle thread. Technically, schedule() should not be
  6156. * called from this thread, however somewhere below it might be,
  6157. * but because we are the idle thread, we just pick up running again
  6158. * when this runqueue becomes "idle".
  6159. */
  6160. init_idle(current, smp_processor_id());
  6161. calc_load_update = jiffies + LOAD_FREQ;
  6162. #ifdef CONFIG_SMP
  6163. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6164. /* May be allocated at isolcpus cmdline parse time */
  6165. if (cpu_isolated_map == NULL)
  6166. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6167. idle_thread_set_boot_cpu();
  6168. set_cpu_rq_start_time();
  6169. #endif
  6170. init_sched_fair_class();
  6171. scheduler_running = 1;
  6172. }
  6173. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6174. static inline int preempt_count_equals(int preempt_offset)
  6175. {
  6176. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6177. return (nested == preempt_offset);
  6178. }
  6179. void __might_sleep(const char *file, int line, int preempt_offset)
  6180. {
  6181. /*
  6182. * Blocking primitives will set (and therefore destroy) current->state,
  6183. * since we will exit with TASK_RUNNING make sure we enter with it,
  6184. * otherwise we will destroy state.
  6185. */
  6186. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  6187. "do not call blocking ops when !TASK_RUNNING; "
  6188. "state=%lx set at [<%p>] %pS\n",
  6189. current->state,
  6190. (void *)current->task_state_change,
  6191. (void *)current->task_state_change);
  6192. ___might_sleep(file, line, preempt_offset);
  6193. }
  6194. EXPORT_SYMBOL(__might_sleep);
  6195. void ___might_sleep(const char *file, int line, int preempt_offset)
  6196. {
  6197. static unsigned long prev_jiffy; /* ratelimiting */
  6198. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6199. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6200. !is_idle_task(current)) ||
  6201. system_state != SYSTEM_RUNNING || oops_in_progress)
  6202. return;
  6203. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6204. return;
  6205. prev_jiffy = jiffies;
  6206. printk(KERN_ERR
  6207. "BUG: sleeping function called from invalid context at %s:%d\n",
  6208. file, line);
  6209. printk(KERN_ERR
  6210. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6211. in_atomic(), irqs_disabled(),
  6212. current->pid, current->comm);
  6213. if (task_stack_end_corrupted(current))
  6214. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  6215. debug_show_held_locks(current);
  6216. if (irqs_disabled())
  6217. print_irqtrace_events(current);
  6218. #ifdef CONFIG_DEBUG_PREEMPT
  6219. if (!preempt_count_equals(preempt_offset)) {
  6220. pr_err("Preemption disabled at:");
  6221. print_ip_sym(current->preempt_disable_ip);
  6222. pr_cont("\n");
  6223. }
  6224. #endif
  6225. dump_stack();
  6226. }
  6227. EXPORT_SYMBOL(___might_sleep);
  6228. #endif
  6229. #ifdef CONFIG_MAGIC_SYSRQ
  6230. static void normalize_task(struct rq *rq, struct task_struct *p)
  6231. {
  6232. const struct sched_class *prev_class = p->sched_class;
  6233. struct sched_attr attr = {
  6234. .sched_policy = SCHED_NORMAL,
  6235. };
  6236. int old_prio = p->prio;
  6237. int queued;
  6238. queued = task_on_rq_queued(p);
  6239. if (queued)
  6240. dequeue_task(rq, p, 0);
  6241. __setscheduler(rq, p, &attr, false);
  6242. if (queued) {
  6243. enqueue_task(rq, p, 0);
  6244. resched_curr(rq);
  6245. }
  6246. check_class_changed(rq, p, prev_class, old_prio);
  6247. }
  6248. void normalize_rt_tasks(void)
  6249. {
  6250. struct task_struct *g, *p;
  6251. unsigned long flags;
  6252. struct rq *rq;
  6253. read_lock(&tasklist_lock);
  6254. for_each_process_thread(g, p) {
  6255. /*
  6256. * Only normalize user tasks:
  6257. */
  6258. if (p->flags & PF_KTHREAD)
  6259. continue;
  6260. p->se.exec_start = 0;
  6261. #ifdef CONFIG_SCHEDSTATS
  6262. p->se.statistics.wait_start = 0;
  6263. p->se.statistics.sleep_start = 0;
  6264. p->se.statistics.block_start = 0;
  6265. #endif
  6266. if (!dl_task(p) && !rt_task(p)) {
  6267. /*
  6268. * Renice negative nice level userspace
  6269. * tasks back to 0:
  6270. */
  6271. if (task_nice(p) < 0)
  6272. set_user_nice(p, 0);
  6273. continue;
  6274. }
  6275. rq = task_rq_lock(p, &flags);
  6276. normalize_task(rq, p);
  6277. task_rq_unlock(rq, p, &flags);
  6278. }
  6279. read_unlock(&tasklist_lock);
  6280. }
  6281. #endif /* CONFIG_MAGIC_SYSRQ */
  6282. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6283. /*
  6284. * These functions are only useful for the IA64 MCA handling, or kdb.
  6285. *
  6286. * They can only be called when the whole system has been
  6287. * stopped - every CPU needs to be quiescent, and no scheduling
  6288. * activity can take place. Using them for anything else would
  6289. * be a serious bug, and as a result, they aren't even visible
  6290. * under any other configuration.
  6291. */
  6292. /**
  6293. * curr_task - return the current task for a given cpu.
  6294. * @cpu: the processor in question.
  6295. *
  6296. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6297. *
  6298. * Return: The current task for @cpu.
  6299. */
  6300. struct task_struct *curr_task(int cpu)
  6301. {
  6302. return cpu_curr(cpu);
  6303. }
  6304. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6305. #ifdef CONFIG_IA64
  6306. /**
  6307. * set_curr_task - set the current task for a given cpu.
  6308. * @cpu: the processor in question.
  6309. * @p: the task pointer to set.
  6310. *
  6311. * Description: This function must only be used when non-maskable interrupts
  6312. * are serviced on a separate stack. It allows the architecture to switch the
  6313. * notion of the current task on a cpu in a non-blocking manner. This function
  6314. * must be called with all CPU's synchronized, and interrupts disabled, the
  6315. * and caller must save the original value of the current task (see
  6316. * curr_task() above) and restore that value before reenabling interrupts and
  6317. * re-starting the system.
  6318. *
  6319. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6320. */
  6321. void set_curr_task(int cpu, struct task_struct *p)
  6322. {
  6323. cpu_curr(cpu) = p;
  6324. }
  6325. #endif
  6326. #ifdef CONFIG_CGROUP_SCHED
  6327. /* task_group_lock serializes the addition/removal of task groups */
  6328. static DEFINE_SPINLOCK(task_group_lock);
  6329. static void free_sched_group(struct task_group *tg)
  6330. {
  6331. free_fair_sched_group(tg);
  6332. free_rt_sched_group(tg);
  6333. autogroup_free(tg);
  6334. kfree(tg);
  6335. }
  6336. /* allocate runqueue etc for a new task group */
  6337. struct task_group *sched_create_group(struct task_group *parent)
  6338. {
  6339. struct task_group *tg;
  6340. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6341. if (!tg)
  6342. return ERR_PTR(-ENOMEM);
  6343. if (!alloc_fair_sched_group(tg, parent))
  6344. goto err;
  6345. if (!alloc_rt_sched_group(tg, parent))
  6346. goto err;
  6347. return tg;
  6348. err:
  6349. free_sched_group(tg);
  6350. return ERR_PTR(-ENOMEM);
  6351. }
  6352. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6353. {
  6354. unsigned long flags;
  6355. spin_lock_irqsave(&task_group_lock, flags);
  6356. list_add_rcu(&tg->list, &task_groups);
  6357. WARN_ON(!parent); /* root should already exist */
  6358. tg->parent = parent;
  6359. INIT_LIST_HEAD(&tg->children);
  6360. list_add_rcu(&tg->siblings, &parent->children);
  6361. spin_unlock_irqrestore(&task_group_lock, flags);
  6362. }
  6363. /* rcu callback to free various structures associated with a task group */
  6364. static void free_sched_group_rcu(struct rcu_head *rhp)
  6365. {
  6366. /* now it should be safe to free those cfs_rqs */
  6367. free_sched_group(container_of(rhp, struct task_group, rcu));
  6368. }
  6369. /* Destroy runqueue etc associated with a task group */
  6370. void sched_destroy_group(struct task_group *tg)
  6371. {
  6372. /* wait for possible concurrent references to cfs_rqs complete */
  6373. call_rcu(&tg->rcu, free_sched_group_rcu);
  6374. }
  6375. void sched_offline_group(struct task_group *tg)
  6376. {
  6377. unsigned long flags;
  6378. int i;
  6379. /* end participation in shares distribution */
  6380. for_each_possible_cpu(i)
  6381. unregister_fair_sched_group(tg, i);
  6382. spin_lock_irqsave(&task_group_lock, flags);
  6383. list_del_rcu(&tg->list);
  6384. list_del_rcu(&tg->siblings);
  6385. spin_unlock_irqrestore(&task_group_lock, flags);
  6386. }
  6387. /* change task's runqueue when it moves between groups.
  6388. * The caller of this function should have put the task in its new group
  6389. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6390. * reflect its new group.
  6391. */
  6392. void sched_move_task(struct task_struct *tsk)
  6393. {
  6394. struct task_group *tg;
  6395. int queued, running;
  6396. unsigned long flags;
  6397. struct rq *rq;
  6398. rq = task_rq_lock(tsk, &flags);
  6399. running = task_current(rq, tsk);
  6400. queued = task_on_rq_queued(tsk);
  6401. if (queued)
  6402. dequeue_task(rq, tsk, 0);
  6403. if (unlikely(running))
  6404. put_prev_task(rq, tsk);
  6405. /*
  6406. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6407. * which is pointless here. Thus, we pass "true" to task_css_check()
  6408. * to prevent lockdep warnings.
  6409. */
  6410. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6411. struct task_group, css);
  6412. tg = autogroup_task_group(tsk, tg);
  6413. tsk->sched_task_group = tg;
  6414. #ifdef CONFIG_FAIR_GROUP_SCHED
  6415. if (tsk->sched_class->task_move_group)
  6416. tsk->sched_class->task_move_group(tsk, queued);
  6417. else
  6418. #endif
  6419. set_task_rq(tsk, task_cpu(tsk));
  6420. if (unlikely(running))
  6421. tsk->sched_class->set_curr_task(rq);
  6422. if (queued)
  6423. enqueue_task(rq, tsk, 0);
  6424. task_rq_unlock(rq, tsk, &flags);
  6425. }
  6426. #endif /* CONFIG_CGROUP_SCHED */
  6427. #ifdef CONFIG_RT_GROUP_SCHED
  6428. /*
  6429. * Ensure that the real time constraints are schedulable.
  6430. */
  6431. static DEFINE_MUTEX(rt_constraints_mutex);
  6432. /* Must be called with tasklist_lock held */
  6433. static inline int tg_has_rt_tasks(struct task_group *tg)
  6434. {
  6435. struct task_struct *g, *p;
  6436. /*
  6437. * Autogroups do not have RT tasks; see autogroup_create().
  6438. */
  6439. if (task_group_is_autogroup(tg))
  6440. return 0;
  6441. for_each_process_thread(g, p) {
  6442. if (rt_task(p) && task_group(p) == tg)
  6443. return 1;
  6444. }
  6445. return 0;
  6446. }
  6447. struct rt_schedulable_data {
  6448. struct task_group *tg;
  6449. u64 rt_period;
  6450. u64 rt_runtime;
  6451. };
  6452. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6453. {
  6454. struct rt_schedulable_data *d = data;
  6455. struct task_group *child;
  6456. unsigned long total, sum = 0;
  6457. u64 period, runtime;
  6458. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6459. runtime = tg->rt_bandwidth.rt_runtime;
  6460. if (tg == d->tg) {
  6461. period = d->rt_period;
  6462. runtime = d->rt_runtime;
  6463. }
  6464. /*
  6465. * Cannot have more runtime than the period.
  6466. */
  6467. if (runtime > period && runtime != RUNTIME_INF)
  6468. return -EINVAL;
  6469. /*
  6470. * Ensure we don't starve existing RT tasks.
  6471. */
  6472. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6473. return -EBUSY;
  6474. total = to_ratio(period, runtime);
  6475. /*
  6476. * Nobody can have more than the global setting allows.
  6477. */
  6478. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6479. return -EINVAL;
  6480. /*
  6481. * The sum of our children's runtime should not exceed our own.
  6482. */
  6483. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6484. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6485. runtime = child->rt_bandwidth.rt_runtime;
  6486. if (child == d->tg) {
  6487. period = d->rt_period;
  6488. runtime = d->rt_runtime;
  6489. }
  6490. sum += to_ratio(period, runtime);
  6491. }
  6492. if (sum > total)
  6493. return -EINVAL;
  6494. return 0;
  6495. }
  6496. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6497. {
  6498. int ret;
  6499. struct rt_schedulable_data data = {
  6500. .tg = tg,
  6501. .rt_period = period,
  6502. .rt_runtime = runtime,
  6503. };
  6504. rcu_read_lock();
  6505. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6506. rcu_read_unlock();
  6507. return ret;
  6508. }
  6509. static int tg_set_rt_bandwidth(struct task_group *tg,
  6510. u64 rt_period, u64 rt_runtime)
  6511. {
  6512. int i, err = 0;
  6513. /*
  6514. * Disallowing the root group RT runtime is BAD, it would disallow the
  6515. * kernel creating (and or operating) RT threads.
  6516. */
  6517. if (tg == &root_task_group && rt_runtime == 0)
  6518. return -EINVAL;
  6519. /* No period doesn't make any sense. */
  6520. if (rt_period == 0)
  6521. return -EINVAL;
  6522. mutex_lock(&rt_constraints_mutex);
  6523. read_lock(&tasklist_lock);
  6524. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6525. if (err)
  6526. goto unlock;
  6527. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6528. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6529. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6530. for_each_possible_cpu(i) {
  6531. struct rt_rq *rt_rq = tg->rt_rq[i];
  6532. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6533. rt_rq->rt_runtime = rt_runtime;
  6534. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6535. }
  6536. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6537. unlock:
  6538. read_unlock(&tasklist_lock);
  6539. mutex_unlock(&rt_constraints_mutex);
  6540. return err;
  6541. }
  6542. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6543. {
  6544. u64 rt_runtime, rt_period;
  6545. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6546. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6547. if (rt_runtime_us < 0)
  6548. rt_runtime = RUNTIME_INF;
  6549. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6550. }
  6551. static long sched_group_rt_runtime(struct task_group *tg)
  6552. {
  6553. u64 rt_runtime_us;
  6554. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6555. return -1;
  6556. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6557. do_div(rt_runtime_us, NSEC_PER_USEC);
  6558. return rt_runtime_us;
  6559. }
  6560. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6561. {
  6562. u64 rt_runtime, rt_period;
  6563. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6564. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6565. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6566. }
  6567. static long sched_group_rt_period(struct task_group *tg)
  6568. {
  6569. u64 rt_period_us;
  6570. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6571. do_div(rt_period_us, NSEC_PER_USEC);
  6572. return rt_period_us;
  6573. }
  6574. #endif /* CONFIG_RT_GROUP_SCHED */
  6575. #ifdef CONFIG_RT_GROUP_SCHED
  6576. static int sched_rt_global_constraints(void)
  6577. {
  6578. int ret = 0;
  6579. mutex_lock(&rt_constraints_mutex);
  6580. read_lock(&tasklist_lock);
  6581. ret = __rt_schedulable(NULL, 0, 0);
  6582. read_unlock(&tasklist_lock);
  6583. mutex_unlock(&rt_constraints_mutex);
  6584. return ret;
  6585. }
  6586. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6587. {
  6588. /* Don't accept realtime tasks when there is no way for them to run */
  6589. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6590. return 0;
  6591. return 1;
  6592. }
  6593. #else /* !CONFIG_RT_GROUP_SCHED */
  6594. static int sched_rt_global_constraints(void)
  6595. {
  6596. unsigned long flags;
  6597. int i, ret = 0;
  6598. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6599. for_each_possible_cpu(i) {
  6600. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6601. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6602. rt_rq->rt_runtime = global_rt_runtime();
  6603. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6604. }
  6605. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6606. return ret;
  6607. }
  6608. #endif /* CONFIG_RT_GROUP_SCHED */
  6609. static int sched_dl_global_validate(void)
  6610. {
  6611. u64 runtime = global_rt_runtime();
  6612. u64 period = global_rt_period();
  6613. u64 new_bw = to_ratio(period, runtime);
  6614. struct dl_bw *dl_b;
  6615. int cpu, ret = 0;
  6616. unsigned long flags;
  6617. /*
  6618. * Here we want to check the bandwidth not being set to some
  6619. * value smaller than the currently allocated bandwidth in
  6620. * any of the root_domains.
  6621. *
  6622. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6623. * cycling on root_domains... Discussion on different/better
  6624. * solutions is welcome!
  6625. */
  6626. for_each_possible_cpu(cpu) {
  6627. rcu_read_lock_sched();
  6628. dl_b = dl_bw_of(cpu);
  6629. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6630. if (new_bw < dl_b->total_bw)
  6631. ret = -EBUSY;
  6632. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6633. rcu_read_unlock_sched();
  6634. if (ret)
  6635. break;
  6636. }
  6637. return ret;
  6638. }
  6639. static void sched_dl_do_global(void)
  6640. {
  6641. u64 new_bw = -1;
  6642. struct dl_bw *dl_b;
  6643. int cpu;
  6644. unsigned long flags;
  6645. def_dl_bandwidth.dl_period = global_rt_period();
  6646. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6647. if (global_rt_runtime() != RUNTIME_INF)
  6648. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6649. /*
  6650. * FIXME: As above...
  6651. */
  6652. for_each_possible_cpu(cpu) {
  6653. rcu_read_lock_sched();
  6654. dl_b = dl_bw_of(cpu);
  6655. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6656. dl_b->bw = new_bw;
  6657. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6658. rcu_read_unlock_sched();
  6659. }
  6660. }
  6661. static int sched_rt_global_validate(void)
  6662. {
  6663. if (sysctl_sched_rt_period <= 0)
  6664. return -EINVAL;
  6665. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6666. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6667. return -EINVAL;
  6668. return 0;
  6669. }
  6670. static void sched_rt_do_global(void)
  6671. {
  6672. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6673. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6674. }
  6675. int sched_rt_handler(struct ctl_table *table, int write,
  6676. void __user *buffer, size_t *lenp,
  6677. loff_t *ppos)
  6678. {
  6679. int old_period, old_runtime;
  6680. static DEFINE_MUTEX(mutex);
  6681. int ret;
  6682. mutex_lock(&mutex);
  6683. old_period = sysctl_sched_rt_period;
  6684. old_runtime = sysctl_sched_rt_runtime;
  6685. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6686. if (!ret && write) {
  6687. ret = sched_rt_global_validate();
  6688. if (ret)
  6689. goto undo;
  6690. ret = sched_dl_global_validate();
  6691. if (ret)
  6692. goto undo;
  6693. ret = sched_rt_global_constraints();
  6694. if (ret)
  6695. goto undo;
  6696. sched_rt_do_global();
  6697. sched_dl_do_global();
  6698. }
  6699. if (0) {
  6700. undo:
  6701. sysctl_sched_rt_period = old_period;
  6702. sysctl_sched_rt_runtime = old_runtime;
  6703. }
  6704. mutex_unlock(&mutex);
  6705. return ret;
  6706. }
  6707. int sched_rr_handler(struct ctl_table *table, int write,
  6708. void __user *buffer, size_t *lenp,
  6709. loff_t *ppos)
  6710. {
  6711. int ret;
  6712. static DEFINE_MUTEX(mutex);
  6713. mutex_lock(&mutex);
  6714. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6715. /* make sure that internally we keep jiffies */
  6716. /* also, writing zero resets timeslice to default */
  6717. if (!ret && write) {
  6718. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6719. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6720. }
  6721. mutex_unlock(&mutex);
  6722. return ret;
  6723. }
  6724. #ifdef CONFIG_CGROUP_SCHED
  6725. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6726. {
  6727. return css ? container_of(css, struct task_group, css) : NULL;
  6728. }
  6729. static struct cgroup_subsys_state *
  6730. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6731. {
  6732. struct task_group *parent = css_tg(parent_css);
  6733. struct task_group *tg;
  6734. if (!parent) {
  6735. /* This is early initialization for the top cgroup */
  6736. return &root_task_group.css;
  6737. }
  6738. tg = sched_create_group(parent);
  6739. if (IS_ERR(tg))
  6740. return ERR_PTR(-ENOMEM);
  6741. return &tg->css;
  6742. }
  6743. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6744. {
  6745. struct task_group *tg = css_tg(css);
  6746. struct task_group *parent = css_tg(css->parent);
  6747. if (parent)
  6748. sched_online_group(tg, parent);
  6749. return 0;
  6750. }
  6751. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6752. {
  6753. struct task_group *tg = css_tg(css);
  6754. sched_destroy_group(tg);
  6755. }
  6756. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6757. {
  6758. struct task_group *tg = css_tg(css);
  6759. sched_offline_group(tg);
  6760. }
  6761. static void cpu_cgroup_fork(struct task_struct *task)
  6762. {
  6763. sched_move_task(task);
  6764. }
  6765. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6766. struct cgroup_taskset *tset)
  6767. {
  6768. struct task_struct *task;
  6769. cgroup_taskset_for_each(task, tset) {
  6770. #ifdef CONFIG_RT_GROUP_SCHED
  6771. if (!sched_rt_can_attach(css_tg(css), task))
  6772. return -EINVAL;
  6773. #else
  6774. /* We don't support RT-tasks being in separate groups */
  6775. if (task->sched_class != &fair_sched_class)
  6776. return -EINVAL;
  6777. #endif
  6778. }
  6779. return 0;
  6780. }
  6781. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6782. struct cgroup_taskset *tset)
  6783. {
  6784. struct task_struct *task;
  6785. cgroup_taskset_for_each(task, tset)
  6786. sched_move_task(task);
  6787. }
  6788. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6789. struct cgroup_subsys_state *old_css,
  6790. struct task_struct *task)
  6791. {
  6792. /*
  6793. * cgroup_exit() is called in the copy_process() failure path.
  6794. * Ignore this case since the task hasn't ran yet, this avoids
  6795. * trying to poke a half freed task state from generic code.
  6796. */
  6797. if (!(task->flags & PF_EXITING))
  6798. return;
  6799. sched_move_task(task);
  6800. }
  6801. #ifdef CONFIG_FAIR_GROUP_SCHED
  6802. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6803. struct cftype *cftype, u64 shareval)
  6804. {
  6805. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6806. }
  6807. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6808. struct cftype *cft)
  6809. {
  6810. struct task_group *tg = css_tg(css);
  6811. return (u64) scale_load_down(tg->shares);
  6812. }
  6813. #ifdef CONFIG_CFS_BANDWIDTH
  6814. static DEFINE_MUTEX(cfs_constraints_mutex);
  6815. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6816. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6817. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6818. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6819. {
  6820. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6821. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6822. if (tg == &root_task_group)
  6823. return -EINVAL;
  6824. /*
  6825. * Ensure we have at some amount of bandwidth every period. This is
  6826. * to prevent reaching a state of large arrears when throttled via
  6827. * entity_tick() resulting in prolonged exit starvation.
  6828. */
  6829. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6830. return -EINVAL;
  6831. /*
  6832. * Likewise, bound things on the otherside by preventing insane quota
  6833. * periods. This also allows us to normalize in computing quota
  6834. * feasibility.
  6835. */
  6836. if (period > max_cfs_quota_period)
  6837. return -EINVAL;
  6838. /*
  6839. * Prevent race between setting of cfs_rq->runtime_enabled and
  6840. * unthrottle_offline_cfs_rqs().
  6841. */
  6842. get_online_cpus();
  6843. mutex_lock(&cfs_constraints_mutex);
  6844. ret = __cfs_schedulable(tg, period, quota);
  6845. if (ret)
  6846. goto out_unlock;
  6847. runtime_enabled = quota != RUNTIME_INF;
  6848. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6849. /*
  6850. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6851. * before making related changes, and on->off must occur afterwards
  6852. */
  6853. if (runtime_enabled && !runtime_was_enabled)
  6854. cfs_bandwidth_usage_inc();
  6855. raw_spin_lock_irq(&cfs_b->lock);
  6856. cfs_b->period = ns_to_ktime(period);
  6857. cfs_b->quota = quota;
  6858. __refill_cfs_bandwidth_runtime(cfs_b);
  6859. /* restart the period timer (if active) to handle new period expiry */
  6860. if (runtime_enabled && cfs_b->timer_active) {
  6861. /* force a reprogram */
  6862. __start_cfs_bandwidth(cfs_b, true);
  6863. }
  6864. raw_spin_unlock_irq(&cfs_b->lock);
  6865. for_each_online_cpu(i) {
  6866. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6867. struct rq *rq = cfs_rq->rq;
  6868. raw_spin_lock_irq(&rq->lock);
  6869. cfs_rq->runtime_enabled = runtime_enabled;
  6870. cfs_rq->runtime_remaining = 0;
  6871. if (cfs_rq->throttled)
  6872. unthrottle_cfs_rq(cfs_rq);
  6873. raw_spin_unlock_irq(&rq->lock);
  6874. }
  6875. if (runtime_was_enabled && !runtime_enabled)
  6876. cfs_bandwidth_usage_dec();
  6877. out_unlock:
  6878. mutex_unlock(&cfs_constraints_mutex);
  6879. put_online_cpus();
  6880. return ret;
  6881. }
  6882. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6883. {
  6884. u64 quota, period;
  6885. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6886. if (cfs_quota_us < 0)
  6887. quota = RUNTIME_INF;
  6888. else
  6889. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6890. return tg_set_cfs_bandwidth(tg, period, quota);
  6891. }
  6892. long tg_get_cfs_quota(struct task_group *tg)
  6893. {
  6894. u64 quota_us;
  6895. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6896. return -1;
  6897. quota_us = tg->cfs_bandwidth.quota;
  6898. do_div(quota_us, NSEC_PER_USEC);
  6899. return quota_us;
  6900. }
  6901. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6902. {
  6903. u64 quota, period;
  6904. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6905. quota = tg->cfs_bandwidth.quota;
  6906. return tg_set_cfs_bandwidth(tg, period, quota);
  6907. }
  6908. long tg_get_cfs_period(struct task_group *tg)
  6909. {
  6910. u64 cfs_period_us;
  6911. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6912. do_div(cfs_period_us, NSEC_PER_USEC);
  6913. return cfs_period_us;
  6914. }
  6915. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6916. struct cftype *cft)
  6917. {
  6918. return tg_get_cfs_quota(css_tg(css));
  6919. }
  6920. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6921. struct cftype *cftype, s64 cfs_quota_us)
  6922. {
  6923. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6924. }
  6925. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6926. struct cftype *cft)
  6927. {
  6928. return tg_get_cfs_period(css_tg(css));
  6929. }
  6930. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6931. struct cftype *cftype, u64 cfs_period_us)
  6932. {
  6933. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6934. }
  6935. struct cfs_schedulable_data {
  6936. struct task_group *tg;
  6937. u64 period, quota;
  6938. };
  6939. /*
  6940. * normalize group quota/period to be quota/max_period
  6941. * note: units are usecs
  6942. */
  6943. static u64 normalize_cfs_quota(struct task_group *tg,
  6944. struct cfs_schedulable_data *d)
  6945. {
  6946. u64 quota, period;
  6947. if (tg == d->tg) {
  6948. period = d->period;
  6949. quota = d->quota;
  6950. } else {
  6951. period = tg_get_cfs_period(tg);
  6952. quota = tg_get_cfs_quota(tg);
  6953. }
  6954. /* note: these should typically be equivalent */
  6955. if (quota == RUNTIME_INF || quota == -1)
  6956. return RUNTIME_INF;
  6957. return to_ratio(period, quota);
  6958. }
  6959. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6960. {
  6961. struct cfs_schedulable_data *d = data;
  6962. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6963. s64 quota = 0, parent_quota = -1;
  6964. if (!tg->parent) {
  6965. quota = RUNTIME_INF;
  6966. } else {
  6967. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6968. quota = normalize_cfs_quota(tg, d);
  6969. parent_quota = parent_b->hierarchical_quota;
  6970. /*
  6971. * ensure max(child_quota) <= parent_quota, inherit when no
  6972. * limit is set
  6973. */
  6974. if (quota == RUNTIME_INF)
  6975. quota = parent_quota;
  6976. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6977. return -EINVAL;
  6978. }
  6979. cfs_b->hierarchical_quota = quota;
  6980. return 0;
  6981. }
  6982. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6983. {
  6984. int ret;
  6985. struct cfs_schedulable_data data = {
  6986. .tg = tg,
  6987. .period = period,
  6988. .quota = quota,
  6989. };
  6990. if (quota != RUNTIME_INF) {
  6991. do_div(data.period, NSEC_PER_USEC);
  6992. do_div(data.quota, NSEC_PER_USEC);
  6993. }
  6994. rcu_read_lock();
  6995. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6996. rcu_read_unlock();
  6997. return ret;
  6998. }
  6999. static int cpu_stats_show(struct seq_file *sf, void *v)
  7000. {
  7001. struct task_group *tg = css_tg(seq_css(sf));
  7002. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7003. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  7004. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  7005. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  7006. return 0;
  7007. }
  7008. #endif /* CONFIG_CFS_BANDWIDTH */
  7009. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7010. #ifdef CONFIG_RT_GROUP_SCHED
  7011. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  7012. struct cftype *cft, s64 val)
  7013. {
  7014. return sched_group_set_rt_runtime(css_tg(css), val);
  7015. }
  7016. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  7017. struct cftype *cft)
  7018. {
  7019. return sched_group_rt_runtime(css_tg(css));
  7020. }
  7021. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  7022. struct cftype *cftype, u64 rt_period_us)
  7023. {
  7024. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  7025. }
  7026. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  7027. struct cftype *cft)
  7028. {
  7029. return sched_group_rt_period(css_tg(css));
  7030. }
  7031. #endif /* CONFIG_RT_GROUP_SCHED */
  7032. static struct cftype cpu_files[] = {
  7033. #ifdef CONFIG_FAIR_GROUP_SCHED
  7034. {
  7035. .name = "shares",
  7036. .read_u64 = cpu_shares_read_u64,
  7037. .write_u64 = cpu_shares_write_u64,
  7038. },
  7039. #endif
  7040. #ifdef CONFIG_CFS_BANDWIDTH
  7041. {
  7042. .name = "cfs_quota_us",
  7043. .read_s64 = cpu_cfs_quota_read_s64,
  7044. .write_s64 = cpu_cfs_quota_write_s64,
  7045. },
  7046. {
  7047. .name = "cfs_period_us",
  7048. .read_u64 = cpu_cfs_period_read_u64,
  7049. .write_u64 = cpu_cfs_period_write_u64,
  7050. },
  7051. {
  7052. .name = "stat",
  7053. .seq_show = cpu_stats_show,
  7054. },
  7055. #endif
  7056. #ifdef CONFIG_RT_GROUP_SCHED
  7057. {
  7058. .name = "rt_runtime_us",
  7059. .read_s64 = cpu_rt_runtime_read,
  7060. .write_s64 = cpu_rt_runtime_write,
  7061. },
  7062. {
  7063. .name = "rt_period_us",
  7064. .read_u64 = cpu_rt_period_read_uint,
  7065. .write_u64 = cpu_rt_period_write_uint,
  7066. },
  7067. #endif
  7068. { } /* terminate */
  7069. };
  7070. struct cgroup_subsys cpu_cgrp_subsys = {
  7071. .css_alloc = cpu_cgroup_css_alloc,
  7072. .css_free = cpu_cgroup_css_free,
  7073. .css_online = cpu_cgroup_css_online,
  7074. .css_offline = cpu_cgroup_css_offline,
  7075. .fork = cpu_cgroup_fork,
  7076. .can_attach = cpu_cgroup_can_attach,
  7077. .attach = cpu_cgroup_attach,
  7078. .exit = cpu_cgroup_exit,
  7079. .legacy_cftypes = cpu_files,
  7080. .early_init = 1,
  7081. };
  7082. #endif /* CONFIG_CGROUP_SCHED */
  7083. void dump_cpu_task(int cpu)
  7084. {
  7085. pr_info("Task dump for CPU %d:\n", cpu);
  7086. sched_show_task(cpu_curr(cpu));
  7087. }