namespace.c 79 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/init.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include <linux/proc_ns.h>
  23. #include <linux/magic.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/task_work.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. static unsigned int m_hash_mask __read_mostly;
  29. static unsigned int m_hash_shift __read_mostly;
  30. static unsigned int mp_hash_mask __read_mostly;
  31. static unsigned int mp_hash_shift __read_mostly;
  32. static __initdata unsigned long mhash_entries;
  33. static int __init set_mhash_entries(char *str)
  34. {
  35. if (!str)
  36. return 0;
  37. mhash_entries = simple_strtoul(str, &str, 0);
  38. return 1;
  39. }
  40. __setup("mhash_entries=", set_mhash_entries);
  41. static __initdata unsigned long mphash_entries;
  42. static int __init set_mphash_entries(char *str)
  43. {
  44. if (!str)
  45. return 0;
  46. mphash_entries = simple_strtoul(str, &str, 0);
  47. return 1;
  48. }
  49. __setup("mphash_entries=", set_mphash_entries);
  50. static u64 event;
  51. static DEFINE_IDA(mnt_id_ida);
  52. static DEFINE_IDA(mnt_group_ida);
  53. static DEFINE_SPINLOCK(mnt_id_lock);
  54. static int mnt_id_start = 0;
  55. static int mnt_group_start = 1;
  56. static struct hlist_head *mount_hashtable __read_mostly;
  57. static struct hlist_head *mountpoint_hashtable __read_mostly;
  58. static struct kmem_cache *mnt_cache __read_mostly;
  59. static DECLARE_RWSEM(namespace_sem);
  60. /* /sys/fs */
  61. struct kobject *fs_kobj;
  62. EXPORT_SYMBOL_GPL(fs_kobj);
  63. /*
  64. * vfsmount lock may be taken for read to prevent changes to the
  65. * vfsmount hash, ie. during mountpoint lookups or walking back
  66. * up the tree.
  67. *
  68. * It should be taken for write in all cases where the vfsmount
  69. * tree or hash is modified or when a vfsmount structure is modified.
  70. */
  71. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  72. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  73. {
  74. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  75. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  76. tmp = tmp + (tmp >> m_hash_shift);
  77. return &mount_hashtable[tmp & m_hash_mask];
  78. }
  79. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  80. {
  81. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  82. tmp = tmp + (tmp >> mp_hash_shift);
  83. return &mountpoint_hashtable[tmp & mp_hash_mask];
  84. }
  85. /*
  86. * allocation is serialized by namespace_sem, but we need the spinlock to
  87. * serialize with freeing.
  88. */
  89. static int mnt_alloc_id(struct mount *mnt)
  90. {
  91. int res;
  92. retry:
  93. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  94. spin_lock(&mnt_id_lock);
  95. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  96. if (!res)
  97. mnt_id_start = mnt->mnt_id + 1;
  98. spin_unlock(&mnt_id_lock);
  99. if (res == -EAGAIN)
  100. goto retry;
  101. return res;
  102. }
  103. static void mnt_free_id(struct mount *mnt)
  104. {
  105. int id = mnt->mnt_id;
  106. spin_lock(&mnt_id_lock);
  107. ida_remove(&mnt_id_ida, id);
  108. if (mnt_id_start > id)
  109. mnt_id_start = id;
  110. spin_unlock(&mnt_id_lock);
  111. }
  112. /*
  113. * Allocate a new peer group ID
  114. *
  115. * mnt_group_ida is protected by namespace_sem
  116. */
  117. static int mnt_alloc_group_id(struct mount *mnt)
  118. {
  119. int res;
  120. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  121. return -ENOMEM;
  122. res = ida_get_new_above(&mnt_group_ida,
  123. mnt_group_start,
  124. &mnt->mnt_group_id);
  125. if (!res)
  126. mnt_group_start = mnt->mnt_group_id + 1;
  127. return res;
  128. }
  129. /*
  130. * Release a peer group ID
  131. */
  132. void mnt_release_group_id(struct mount *mnt)
  133. {
  134. int id = mnt->mnt_group_id;
  135. ida_remove(&mnt_group_ida, id);
  136. if (mnt_group_start > id)
  137. mnt_group_start = id;
  138. mnt->mnt_group_id = 0;
  139. }
  140. /*
  141. * vfsmount lock must be held for read
  142. */
  143. static inline void mnt_add_count(struct mount *mnt, int n)
  144. {
  145. #ifdef CONFIG_SMP
  146. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  147. #else
  148. preempt_disable();
  149. mnt->mnt_count += n;
  150. preempt_enable();
  151. #endif
  152. }
  153. /*
  154. * vfsmount lock must be held for write
  155. */
  156. unsigned int mnt_get_count(struct mount *mnt)
  157. {
  158. #ifdef CONFIG_SMP
  159. unsigned int count = 0;
  160. int cpu;
  161. for_each_possible_cpu(cpu) {
  162. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  163. }
  164. return count;
  165. #else
  166. return mnt->mnt_count;
  167. #endif
  168. }
  169. static void drop_mountpoint(struct fs_pin *p)
  170. {
  171. struct mount *m = container_of(p, struct mount, mnt_umount);
  172. dput(m->mnt_ex_mountpoint);
  173. pin_remove(p);
  174. mntput(&m->mnt);
  175. }
  176. static struct mount *alloc_vfsmnt(const char *name)
  177. {
  178. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  179. if (mnt) {
  180. int err;
  181. err = mnt_alloc_id(mnt);
  182. if (err)
  183. goto out_free_cache;
  184. if (name) {
  185. mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
  186. if (!mnt->mnt_devname)
  187. goto out_free_id;
  188. }
  189. #ifdef CONFIG_SMP
  190. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  191. if (!mnt->mnt_pcp)
  192. goto out_free_devname;
  193. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  194. #else
  195. mnt->mnt_count = 1;
  196. mnt->mnt_writers = 0;
  197. #endif
  198. INIT_HLIST_NODE(&mnt->mnt_hash);
  199. INIT_LIST_HEAD(&mnt->mnt_child);
  200. INIT_LIST_HEAD(&mnt->mnt_mounts);
  201. INIT_LIST_HEAD(&mnt->mnt_list);
  202. INIT_LIST_HEAD(&mnt->mnt_expire);
  203. INIT_LIST_HEAD(&mnt->mnt_share);
  204. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  205. INIT_LIST_HEAD(&mnt->mnt_slave);
  206. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  207. #ifdef CONFIG_FSNOTIFY
  208. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  209. #endif
  210. init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
  211. }
  212. return mnt;
  213. #ifdef CONFIG_SMP
  214. out_free_devname:
  215. kfree_const(mnt->mnt_devname);
  216. #endif
  217. out_free_id:
  218. mnt_free_id(mnt);
  219. out_free_cache:
  220. kmem_cache_free(mnt_cache, mnt);
  221. return NULL;
  222. }
  223. /*
  224. * Most r/o checks on a fs are for operations that take
  225. * discrete amounts of time, like a write() or unlink().
  226. * We must keep track of when those operations start
  227. * (for permission checks) and when they end, so that
  228. * we can determine when writes are able to occur to
  229. * a filesystem.
  230. */
  231. /*
  232. * __mnt_is_readonly: check whether a mount is read-only
  233. * @mnt: the mount to check for its write status
  234. *
  235. * This shouldn't be used directly ouside of the VFS.
  236. * It does not guarantee that the filesystem will stay
  237. * r/w, just that it is right *now*. This can not and
  238. * should not be used in place of IS_RDONLY(inode).
  239. * mnt_want/drop_write() will _keep_ the filesystem
  240. * r/w.
  241. */
  242. int __mnt_is_readonly(struct vfsmount *mnt)
  243. {
  244. if (mnt->mnt_flags & MNT_READONLY)
  245. return 1;
  246. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  247. return 1;
  248. return 0;
  249. }
  250. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  251. static inline void mnt_inc_writers(struct mount *mnt)
  252. {
  253. #ifdef CONFIG_SMP
  254. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  255. #else
  256. mnt->mnt_writers++;
  257. #endif
  258. }
  259. static inline void mnt_dec_writers(struct mount *mnt)
  260. {
  261. #ifdef CONFIG_SMP
  262. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  263. #else
  264. mnt->mnt_writers--;
  265. #endif
  266. }
  267. static unsigned int mnt_get_writers(struct mount *mnt)
  268. {
  269. #ifdef CONFIG_SMP
  270. unsigned int count = 0;
  271. int cpu;
  272. for_each_possible_cpu(cpu) {
  273. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  274. }
  275. return count;
  276. #else
  277. return mnt->mnt_writers;
  278. #endif
  279. }
  280. static int mnt_is_readonly(struct vfsmount *mnt)
  281. {
  282. if (mnt->mnt_sb->s_readonly_remount)
  283. return 1;
  284. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  285. smp_rmb();
  286. return __mnt_is_readonly(mnt);
  287. }
  288. /*
  289. * Most r/o & frozen checks on a fs are for operations that take discrete
  290. * amounts of time, like a write() or unlink(). We must keep track of when
  291. * those operations start (for permission checks) and when they end, so that we
  292. * can determine when writes are able to occur to a filesystem.
  293. */
  294. /**
  295. * __mnt_want_write - get write access to a mount without freeze protection
  296. * @m: the mount on which to take a write
  297. *
  298. * This tells the low-level filesystem that a write is about to be performed to
  299. * it, and makes sure that writes are allowed (mnt it read-write) before
  300. * returning success. This operation does not protect against filesystem being
  301. * frozen. When the write operation is finished, __mnt_drop_write() must be
  302. * called. This is effectively a refcount.
  303. */
  304. int __mnt_want_write(struct vfsmount *m)
  305. {
  306. struct mount *mnt = real_mount(m);
  307. int ret = 0;
  308. preempt_disable();
  309. mnt_inc_writers(mnt);
  310. /*
  311. * The store to mnt_inc_writers must be visible before we pass
  312. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  313. * incremented count after it has set MNT_WRITE_HOLD.
  314. */
  315. smp_mb();
  316. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  317. cpu_relax();
  318. /*
  319. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  320. * be set to match its requirements. So we must not load that until
  321. * MNT_WRITE_HOLD is cleared.
  322. */
  323. smp_rmb();
  324. if (mnt_is_readonly(m)) {
  325. mnt_dec_writers(mnt);
  326. ret = -EROFS;
  327. }
  328. preempt_enable();
  329. return ret;
  330. }
  331. /**
  332. * mnt_want_write - get write access to a mount
  333. * @m: the mount on which to take a write
  334. *
  335. * This tells the low-level filesystem that a write is about to be performed to
  336. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  337. * is not frozen) before returning success. When the write operation is
  338. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  339. */
  340. int mnt_want_write(struct vfsmount *m)
  341. {
  342. int ret;
  343. sb_start_write(m->mnt_sb);
  344. ret = __mnt_want_write(m);
  345. if (ret)
  346. sb_end_write(m->mnt_sb);
  347. return ret;
  348. }
  349. EXPORT_SYMBOL_GPL(mnt_want_write);
  350. /**
  351. * mnt_clone_write - get write access to a mount
  352. * @mnt: the mount on which to take a write
  353. *
  354. * This is effectively like mnt_want_write, except
  355. * it must only be used to take an extra write reference
  356. * on a mountpoint that we already know has a write reference
  357. * on it. This allows some optimisation.
  358. *
  359. * After finished, mnt_drop_write must be called as usual to
  360. * drop the reference.
  361. */
  362. int mnt_clone_write(struct vfsmount *mnt)
  363. {
  364. /* superblock may be r/o */
  365. if (__mnt_is_readonly(mnt))
  366. return -EROFS;
  367. preempt_disable();
  368. mnt_inc_writers(real_mount(mnt));
  369. preempt_enable();
  370. return 0;
  371. }
  372. EXPORT_SYMBOL_GPL(mnt_clone_write);
  373. /**
  374. * __mnt_want_write_file - get write access to a file's mount
  375. * @file: the file who's mount on which to take a write
  376. *
  377. * This is like __mnt_want_write, but it takes a file and can
  378. * do some optimisations if the file is open for write already
  379. */
  380. int __mnt_want_write_file(struct file *file)
  381. {
  382. if (!(file->f_mode & FMODE_WRITER))
  383. return __mnt_want_write(file->f_path.mnt);
  384. else
  385. return mnt_clone_write(file->f_path.mnt);
  386. }
  387. /**
  388. * mnt_want_write_file - get write access to a file's mount
  389. * @file: the file who's mount on which to take a write
  390. *
  391. * This is like mnt_want_write, but it takes a file and can
  392. * do some optimisations if the file is open for write already
  393. */
  394. int mnt_want_write_file(struct file *file)
  395. {
  396. int ret;
  397. sb_start_write(file->f_path.mnt->mnt_sb);
  398. ret = __mnt_want_write_file(file);
  399. if (ret)
  400. sb_end_write(file->f_path.mnt->mnt_sb);
  401. return ret;
  402. }
  403. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  404. /**
  405. * __mnt_drop_write - give up write access to a mount
  406. * @mnt: the mount on which to give up write access
  407. *
  408. * Tells the low-level filesystem that we are done
  409. * performing writes to it. Must be matched with
  410. * __mnt_want_write() call above.
  411. */
  412. void __mnt_drop_write(struct vfsmount *mnt)
  413. {
  414. preempt_disable();
  415. mnt_dec_writers(real_mount(mnt));
  416. preempt_enable();
  417. }
  418. /**
  419. * mnt_drop_write - give up write access to a mount
  420. * @mnt: the mount on which to give up write access
  421. *
  422. * Tells the low-level filesystem that we are done performing writes to it and
  423. * also allows filesystem to be frozen again. Must be matched with
  424. * mnt_want_write() call above.
  425. */
  426. void mnt_drop_write(struct vfsmount *mnt)
  427. {
  428. __mnt_drop_write(mnt);
  429. sb_end_write(mnt->mnt_sb);
  430. }
  431. EXPORT_SYMBOL_GPL(mnt_drop_write);
  432. void __mnt_drop_write_file(struct file *file)
  433. {
  434. __mnt_drop_write(file->f_path.mnt);
  435. }
  436. void mnt_drop_write_file(struct file *file)
  437. {
  438. mnt_drop_write(file->f_path.mnt);
  439. }
  440. EXPORT_SYMBOL(mnt_drop_write_file);
  441. static int mnt_make_readonly(struct mount *mnt)
  442. {
  443. int ret = 0;
  444. lock_mount_hash();
  445. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  446. /*
  447. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  448. * should be visible before we do.
  449. */
  450. smp_mb();
  451. /*
  452. * With writers on hold, if this value is zero, then there are
  453. * definitely no active writers (although held writers may subsequently
  454. * increment the count, they'll have to wait, and decrement it after
  455. * seeing MNT_READONLY).
  456. *
  457. * It is OK to have counter incremented on one CPU and decremented on
  458. * another: the sum will add up correctly. The danger would be when we
  459. * sum up each counter, if we read a counter before it is incremented,
  460. * but then read another CPU's count which it has been subsequently
  461. * decremented from -- we would see more decrements than we should.
  462. * MNT_WRITE_HOLD protects against this scenario, because
  463. * mnt_want_write first increments count, then smp_mb, then spins on
  464. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  465. * we're counting up here.
  466. */
  467. if (mnt_get_writers(mnt) > 0)
  468. ret = -EBUSY;
  469. else
  470. mnt->mnt.mnt_flags |= MNT_READONLY;
  471. /*
  472. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  473. * that become unheld will see MNT_READONLY.
  474. */
  475. smp_wmb();
  476. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  477. unlock_mount_hash();
  478. return ret;
  479. }
  480. static void __mnt_unmake_readonly(struct mount *mnt)
  481. {
  482. lock_mount_hash();
  483. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  484. unlock_mount_hash();
  485. }
  486. int sb_prepare_remount_readonly(struct super_block *sb)
  487. {
  488. struct mount *mnt;
  489. int err = 0;
  490. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  491. if (atomic_long_read(&sb->s_remove_count))
  492. return -EBUSY;
  493. lock_mount_hash();
  494. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  495. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  496. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  497. smp_mb();
  498. if (mnt_get_writers(mnt) > 0) {
  499. err = -EBUSY;
  500. break;
  501. }
  502. }
  503. }
  504. if (!err && atomic_long_read(&sb->s_remove_count))
  505. err = -EBUSY;
  506. if (!err) {
  507. sb->s_readonly_remount = 1;
  508. smp_wmb();
  509. }
  510. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  511. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  512. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  513. }
  514. unlock_mount_hash();
  515. return err;
  516. }
  517. static void free_vfsmnt(struct mount *mnt)
  518. {
  519. kfree_const(mnt->mnt_devname);
  520. #ifdef CONFIG_SMP
  521. free_percpu(mnt->mnt_pcp);
  522. #endif
  523. kmem_cache_free(mnt_cache, mnt);
  524. }
  525. static void delayed_free_vfsmnt(struct rcu_head *head)
  526. {
  527. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  528. }
  529. /* call under rcu_read_lock */
  530. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  531. {
  532. struct mount *mnt;
  533. if (read_seqretry(&mount_lock, seq))
  534. return false;
  535. if (bastard == NULL)
  536. return true;
  537. mnt = real_mount(bastard);
  538. mnt_add_count(mnt, 1);
  539. if (likely(!read_seqretry(&mount_lock, seq)))
  540. return true;
  541. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  542. mnt_add_count(mnt, -1);
  543. return false;
  544. }
  545. rcu_read_unlock();
  546. mntput(bastard);
  547. rcu_read_lock();
  548. return false;
  549. }
  550. /*
  551. * find the first mount at @dentry on vfsmount @mnt.
  552. * call under rcu_read_lock()
  553. */
  554. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  555. {
  556. struct hlist_head *head = m_hash(mnt, dentry);
  557. struct mount *p;
  558. hlist_for_each_entry_rcu(p, head, mnt_hash)
  559. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  560. return p;
  561. return NULL;
  562. }
  563. /*
  564. * find the last mount at @dentry on vfsmount @mnt.
  565. * mount_lock must be held.
  566. */
  567. struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
  568. {
  569. struct mount *p, *res = NULL;
  570. p = __lookup_mnt(mnt, dentry);
  571. if (!p)
  572. goto out;
  573. if (!(p->mnt.mnt_flags & MNT_UMOUNT))
  574. res = p;
  575. hlist_for_each_entry_continue(p, mnt_hash) {
  576. if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
  577. break;
  578. if (!(p->mnt.mnt_flags & MNT_UMOUNT))
  579. res = p;
  580. }
  581. out:
  582. return res;
  583. }
  584. /*
  585. * lookup_mnt - Return the first child mount mounted at path
  586. *
  587. * "First" means first mounted chronologically. If you create the
  588. * following mounts:
  589. *
  590. * mount /dev/sda1 /mnt
  591. * mount /dev/sda2 /mnt
  592. * mount /dev/sda3 /mnt
  593. *
  594. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  595. * return successively the root dentry and vfsmount of /dev/sda1, then
  596. * /dev/sda2, then /dev/sda3, then NULL.
  597. *
  598. * lookup_mnt takes a reference to the found vfsmount.
  599. */
  600. struct vfsmount *lookup_mnt(struct path *path)
  601. {
  602. struct mount *child_mnt;
  603. struct vfsmount *m;
  604. unsigned seq;
  605. rcu_read_lock();
  606. do {
  607. seq = read_seqbegin(&mount_lock);
  608. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  609. m = child_mnt ? &child_mnt->mnt : NULL;
  610. } while (!legitimize_mnt(m, seq));
  611. rcu_read_unlock();
  612. return m;
  613. }
  614. /*
  615. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  616. * current mount namespace.
  617. *
  618. * The common case is dentries are not mountpoints at all and that
  619. * test is handled inline. For the slow case when we are actually
  620. * dealing with a mountpoint of some kind, walk through all of the
  621. * mounts in the current mount namespace and test to see if the dentry
  622. * is a mountpoint.
  623. *
  624. * The mount_hashtable is not usable in the context because we
  625. * need to identify all mounts that may be in the current mount
  626. * namespace not just a mount that happens to have some specified
  627. * parent mount.
  628. */
  629. bool __is_local_mountpoint(struct dentry *dentry)
  630. {
  631. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  632. struct mount *mnt;
  633. bool is_covered = false;
  634. if (!d_mountpoint(dentry))
  635. goto out;
  636. down_read(&namespace_sem);
  637. list_for_each_entry(mnt, &ns->list, mnt_list) {
  638. is_covered = (mnt->mnt_mountpoint == dentry);
  639. if (is_covered)
  640. break;
  641. }
  642. up_read(&namespace_sem);
  643. out:
  644. return is_covered;
  645. }
  646. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  647. {
  648. struct hlist_head *chain = mp_hash(dentry);
  649. struct mountpoint *mp;
  650. hlist_for_each_entry(mp, chain, m_hash) {
  651. if (mp->m_dentry == dentry) {
  652. /* might be worth a WARN_ON() */
  653. if (d_unlinked(dentry))
  654. return ERR_PTR(-ENOENT);
  655. mp->m_count++;
  656. return mp;
  657. }
  658. }
  659. return NULL;
  660. }
  661. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  662. {
  663. struct hlist_head *chain = mp_hash(dentry);
  664. struct mountpoint *mp;
  665. int ret;
  666. mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  667. if (!mp)
  668. return ERR_PTR(-ENOMEM);
  669. ret = d_set_mounted(dentry);
  670. if (ret) {
  671. kfree(mp);
  672. return ERR_PTR(ret);
  673. }
  674. mp->m_dentry = dentry;
  675. mp->m_count = 1;
  676. hlist_add_head(&mp->m_hash, chain);
  677. INIT_HLIST_HEAD(&mp->m_list);
  678. return mp;
  679. }
  680. static void put_mountpoint(struct mountpoint *mp)
  681. {
  682. if (!--mp->m_count) {
  683. struct dentry *dentry = mp->m_dentry;
  684. BUG_ON(!hlist_empty(&mp->m_list));
  685. spin_lock(&dentry->d_lock);
  686. dentry->d_flags &= ~DCACHE_MOUNTED;
  687. spin_unlock(&dentry->d_lock);
  688. hlist_del(&mp->m_hash);
  689. kfree(mp);
  690. }
  691. }
  692. static inline int check_mnt(struct mount *mnt)
  693. {
  694. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  695. }
  696. /*
  697. * vfsmount lock must be held for write
  698. */
  699. static void touch_mnt_namespace(struct mnt_namespace *ns)
  700. {
  701. if (ns) {
  702. ns->event = ++event;
  703. wake_up_interruptible(&ns->poll);
  704. }
  705. }
  706. /*
  707. * vfsmount lock must be held for write
  708. */
  709. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  710. {
  711. if (ns && ns->event != event) {
  712. ns->event = event;
  713. wake_up_interruptible(&ns->poll);
  714. }
  715. }
  716. /*
  717. * vfsmount lock must be held for write
  718. */
  719. static void unhash_mnt(struct mount *mnt)
  720. {
  721. mnt->mnt_parent = mnt;
  722. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  723. list_del_init(&mnt->mnt_child);
  724. hlist_del_init_rcu(&mnt->mnt_hash);
  725. hlist_del_init(&mnt->mnt_mp_list);
  726. put_mountpoint(mnt->mnt_mp);
  727. mnt->mnt_mp = NULL;
  728. }
  729. /*
  730. * vfsmount lock must be held for write
  731. */
  732. static void detach_mnt(struct mount *mnt, struct path *old_path)
  733. {
  734. old_path->dentry = mnt->mnt_mountpoint;
  735. old_path->mnt = &mnt->mnt_parent->mnt;
  736. unhash_mnt(mnt);
  737. }
  738. /*
  739. * vfsmount lock must be held for write
  740. */
  741. static void umount_mnt(struct mount *mnt)
  742. {
  743. /* old mountpoint will be dropped when we can do that */
  744. mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
  745. unhash_mnt(mnt);
  746. }
  747. /*
  748. * vfsmount lock must be held for write
  749. */
  750. void mnt_set_mountpoint(struct mount *mnt,
  751. struct mountpoint *mp,
  752. struct mount *child_mnt)
  753. {
  754. mp->m_count++;
  755. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  756. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  757. child_mnt->mnt_parent = mnt;
  758. child_mnt->mnt_mp = mp;
  759. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  760. }
  761. /*
  762. * vfsmount lock must be held for write
  763. */
  764. static void attach_mnt(struct mount *mnt,
  765. struct mount *parent,
  766. struct mountpoint *mp)
  767. {
  768. mnt_set_mountpoint(parent, mp, mnt);
  769. hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
  770. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  771. }
  772. static void attach_shadowed(struct mount *mnt,
  773. struct mount *parent,
  774. struct mount *shadows)
  775. {
  776. if (shadows) {
  777. hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
  778. list_add(&mnt->mnt_child, &shadows->mnt_child);
  779. } else {
  780. hlist_add_head_rcu(&mnt->mnt_hash,
  781. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  782. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  783. }
  784. }
  785. /*
  786. * vfsmount lock must be held for write
  787. */
  788. static void commit_tree(struct mount *mnt, struct mount *shadows)
  789. {
  790. struct mount *parent = mnt->mnt_parent;
  791. struct mount *m;
  792. LIST_HEAD(head);
  793. struct mnt_namespace *n = parent->mnt_ns;
  794. BUG_ON(parent == mnt);
  795. list_add_tail(&head, &mnt->mnt_list);
  796. list_for_each_entry(m, &head, mnt_list)
  797. m->mnt_ns = n;
  798. list_splice(&head, n->list.prev);
  799. attach_shadowed(mnt, parent, shadows);
  800. touch_mnt_namespace(n);
  801. }
  802. static struct mount *next_mnt(struct mount *p, struct mount *root)
  803. {
  804. struct list_head *next = p->mnt_mounts.next;
  805. if (next == &p->mnt_mounts) {
  806. while (1) {
  807. if (p == root)
  808. return NULL;
  809. next = p->mnt_child.next;
  810. if (next != &p->mnt_parent->mnt_mounts)
  811. break;
  812. p = p->mnt_parent;
  813. }
  814. }
  815. return list_entry(next, struct mount, mnt_child);
  816. }
  817. static struct mount *skip_mnt_tree(struct mount *p)
  818. {
  819. struct list_head *prev = p->mnt_mounts.prev;
  820. while (prev != &p->mnt_mounts) {
  821. p = list_entry(prev, struct mount, mnt_child);
  822. prev = p->mnt_mounts.prev;
  823. }
  824. return p;
  825. }
  826. struct vfsmount *
  827. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  828. {
  829. struct mount *mnt;
  830. struct dentry *root;
  831. if (!type)
  832. return ERR_PTR(-ENODEV);
  833. mnt = alloc_vfsmnt(name);
  834. if (!mnt)
  835. return ERR_PTR(-ENOMEM);
  836. if (flags & MS_KERNMOUNT)
  837. mnt->mnt.mnt_flags = MNT_INTERNAL;
  838. root = mount_fs(type, flags, name, data);
  839. if (IS_ERR(root)) {
  840. mnt_free_id(mnt);
  841. free_vfsmnt(mnt);
  842. return ERR_CAST(root);
  843. }
  844. mnt->mnt.mnt_root = root;
  845. mnt->mnt.mnt_sb = root->d_sb;
  846. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  847. mnt->mnt_parent = mnt;
  848. lock_mount_hash();
  849. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  850. unlock_mount_hash();
  851. return &mnt->mnt;
  852. }
  853. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  854. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  855. int flag)
  856. {
  857. struct super_block *sb = old->mnt.mnt_sb;
  858. struct mount *mnt;
  859. int err;
  860. mnt = alloc_vfsmnt(old->mnt_devname);
  861. if (!mnt)
  862. return ERR_PTR(-ENOMEM);
  863. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  864. mnt->mnt_group_id = 0; /* not a peer of original */
  865. else
  866. mnt->mnt_group_id = old->mnt_group_id;
  867. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  868. err = mnt_alloc_group_id(mnt);
  869. if (err)
  870. goto out_free;
  871. }
  872. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  873. /* Don't allow unprivileged users to change mount flags */
  874. if (flag & CL_UNPRIVILEGED) {
  875. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  876. if (mnt->mnt.mnt_flags & MNT_READONLY)
  877. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  878. if (mnt->mnt.mnt_flags & MNT_NODEV)
  879. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  880. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  881. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  882. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  883. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  884. }
  885. /* Don't allow unprivileged users to reveal what is under a mount */
  886. if ((flag & CL_UNPRIVILEGED) &&
  887. (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
  888. mnt->mnt.mnt_flags |= MNT_LOCKED;
  889. atomic_inc(&sb->s_active);
  890. mnt->mnt.mnt_sb = sb;
  891. mnt->mnt.mnt_root = dget(root);
  892. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  893. mnt->mnt_parent = mnt;
  894. lock_mount_hash();
  895. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  896. unlock_mount_hash();
  897. if ((flag & CL_SLAVE) ||
  898. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  899. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  900. mnt->mnt_master = old;
  901. CLEAR_MNT_SHARED(mnt);
  902. } else if (!(flag & CL_PRIVATE)) {
  903. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  904. list_add(&mnt->mnt_share, &old->mnt_share);
  905. if (IS_MNT_SLAVE(old))
  906. list_add(&mnt->mnt_slave, &old->mnt_slave);
  907. mnt->mnt_master = old->mnt_master;
  908. }
  909. if (flag & CL_MAKE_SHARED)
  910. set_mnt_shared(mnt);
  911. /* stick the duplicate mount on the same expiry list
  912. * as the original if that was on one */
  913. if (flag & CL_EXPIRE) {
  914. if (!list_empty(&old->mnt_expire))
  915. list_add(&mnt->mnt_expire, &old->mnt_expire);
  916. }
  917. return mnt;
  918. out_free:
  919. mnt_free_id(mnt);
  920. free_vfsmnt(mnt);
  921. return ERR_PTR(err);
  922. }
  923. static void cleanup_mnt(struct mount *mnt)
  924. {
  925. /*
  926. * This probably indicates that somebody messed
  927. * up a mnt_want/drop_write() pair. If this
  928. * happens, the filesystem was probably unable
  929. * to make r/w->r/o transitions.
  930. */
  931. /*
  932. * The locking used to deal with mnt_count decrement provides barriers,
  933. * so mnt_get_writers() below is safe.
  934. */
  935. WARN_ON(mnt_get_writers(mnt));
  936. if (unlikely(mnt->mnt_pins.first))
  937. mnt_pin_kill(mnt);
  938. fsnotify_vfsmount_delete(&mnt->mnt);
  939. dput(mnt->mnt.mnt_root);
  940. deactivate_super(mnt->mnt.mnt_sb);
  941. mnt_free_id(mnt);
  942. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  943. }
  944. static void __cleanup_mnt(struct rcu_head *head)
  945. {
  946. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  947. }
  948. static LLIST_HEAD(delayed_mntput_list);
  949. static void delayed_mntput(struct work_struct *unused)
  950. {
  951. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  952. struct llist_node *next;
  953. for (; node; node = next) {
  954. next = llist_next(node);
  955. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  956. }
  957. }
  958. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  959. static void mntput_no_expire(struct mount *mnt)
  960. {
  961. rcu_read_lock();
  962. mnt_add_count(mnt, -1);
  963. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  964. rcu_read_unlock();
  965. return;
  966. }
  967. lock_mount_hash();
  968. if (mnt_get_count(mnt)) {
  969. rcu_read_unlock();
  970. unlock_mount_hash();
  971. return;
  972. }
  973. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  974. rcu_read_unlock();
  975. unlock_mount_hash();
  976. return;
  977. }
  978. mnt->mnt.mnt_flags |= MNT_DOOMED;
  979. rcu_read_unlock();
  980. list_del(&mnt->mnt_instance);
  981. if (unlikely(!list_empty(&mnt->mnt_mounts))) {
  982. struct mount *p, *tmp;
  983. list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
  984. umount_mnt(p);
  985. }
  986. }
  987. unlock_mount_hash();
  988. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  989. struct task_struct *task = current;
  990. if (likely(!(task->flags & PF_KTHREAD))) {
  991. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  992. if (!task_work_add(task, &mnt->mnt_rcu, true))
  993. return;
  994. }
  995. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  996. schedule_delayed_work(&delayed_mntput_work, 1);
  997. return;
  998. }
  999. cleanup_mnt(mnt);
  1000. }
  1001. void mntput(struct vfsmount *mnt)
  1002. {
  1003. if (mnt) {
  1004. struct mount *m = real_mount(mnt);
  1005. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  1006. if (unlikely(m->mnt_expiry_mark))
  1007. m->mnt_expiry_mark = 0;
  1008. mntput_no_expire(m);
  1009. }
  1010. }
  1011. EXPORT_SYMBOL(mntput);
  1012. struct vfsmount *mntget(struct vfsmount *mnt)
  1013. {
  1014. if (mnt)
  1015. mnt_add_count(real_mount(mnt), 1);
  1016. return mnt;
  1017. }
  1018. EXPORT_SYMBOL(mntget);
  1019. struct vfsmount *mnt_clone_internal(struct path *path)
  1020. {
  1021. struct mount *p;
  1022. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  1023. if (IS_ERR(p))
  1024. return ERR_CAST(p);
  1025. p->mnt.mnt_flags |= MNT_INTERNAL;
  1026. return &p->mnt;
  1027. }
  1028. static inline void mangle(struct seq_file *m, const char *s)
  1029. {
  1030. seq_escape(m, s, " \t\n\\");
  1031. }
  1032. /*
  1033. * Simple .show_options callback for filesystems which don't want to
  1034. * implement more complex mount option showing.
  1035. *
  1036. * See also save_mount_options().
  1037. */
  1038. int generic_show_options(struct seq_file *m, struct dentry *root)
  1039. {
  1040. const char *options;
  1041. rcu_read_lock();
  1042. options = rcu_dereference(root->d_sb->s_options);
  1043. if (options != NULL && options[0]) {
  1044. seq_putc(m, ',');
  1045. mangle(m, options);
  1046. }
  1047. rcu_read_unlock();
  1048. return 0;
  1049. }
  1050. EXPORT_SYMBOL(generic_show_options);
  1051. /*
  1052. * If filesystem uses generic_show_options(), this function should be
  1053. * called from the fill_super() callback.
  1054. *
  1055. * The .remount_fs callback usually needs to be handled in a special
  1056. * way, to make sure, that previous options are not overwritten if the
  1057. * remount fails.
  1058. *
  1059. * Also note, that if the filesystem's .remount_fs function doesn't
  1060. * reset all options to their default value, but changes only newly
  1061. * given options, then the displayed options will not reflect reality
  1062. * any more.
  1063. */
  1064. void save_mount_options(struct super_block *sb, char *options)
  1065. {
  1066. BUG_ON(sb->s_options);
  1067. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  1068. }
  1069. EXPORT_SYMBOL(save_mount_options);
  1070. void replace_mount_options(struct super_block *sb, char *options)
  1071. {
  1072. char *old = sb->s_options;
  1073. rcu_assign_pointer(sb->s_options, options);
  1074. if (old) {
  1075. synchronize_rcu();
  1076. kfree(old);
  1077. }
  1078. }
  1079. EXPORT_SYMBOL(replace_mount_options);
  1080. #ifdef CONFIG_PROC_FS
  1081. /* iterator; we want it to have access to namespace_sem, thus here... */
  1082. static void *m_start(struct seq_file *m, loff_t *pos)
  1083. {
  1084. struct proc_mounts *p = proc_mounts(m);
  1085. down_read(&namespace_sem);
  1086. if (p->cached_event == p->ns->event) {
  1087. void *v = p->cached_mount;
  1088. if (*pos == p->cached_index)
  1089. return v;
  1090. if (*pos == p->cached_index + 1) {
  1091. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1092. return p->cached_mount = v;
  1093. }
  1094. }
  1095. p->cached_event = p->ns->event;
  1096. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1097. p->cached_index = *pos;
  1098. return p->cached_mount;
  1099. }
  1100. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1101. {
  1102. struct proc_mounts *p = proc_mounts(m);
  1103. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1104. p->cached_index = *pos;
  1105. return p->cached_mount;
  1106. }
  1107. static void m_stop(struct seq_file *m, void *v)
  1108. {
  1109. up_read(&namespace_sem);
  1110. }
  1111. static int m_show(struct seq_file *m, void *v)
  1112. {
  1113. struct proc_mounts *p = proc_mounts(m);
  1114. struct mount *r = list_entry(v, struct mount, mnt_list);
  1115. return p->show(m, &r->mnt);
  1116. }
  1117. const struct seq_operations mounts_op = {
  1118. .start = m_start,
  1119. .next = m_next,
  1120. .stop = m_stop,
  1121. .show = m_show,
  1122. };
  1123. #endif /* CONFIG_PROC_FS */
  1124. /**
  1125. * may_umount_tree - check if a mount tree is busy
  1126. * @mnt: root of mount tree
  1127. *
  1128. * This is called to check if a tree of mounts has any
  1129. * open files, pwds, chroots or sub mounts that are
  1130. * busy.
  1131. */
  1132. int may_umount_tree(struct vfsmount *m)
  1133. {
  1134. struct mount *mnt = real_mount(m);
  1135. int actual_refs = 0;
  1136. int minimum_refs = 0;
  1137. struct mount *p;
  1138. BUG_ON(!m);
  1139. /* write lock needed for mnt_get_count */
  1140. lock_mount_hash();
  1141. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1142. actual_refs += mnt_get_count(p);
  1143. minimum_refs += 2;
  1144. }
  1145. unlock_mount_hash();
  1146. if (actual_refs > minimum_refs)
  1147. return 0;
  1148. return 1;
  1149. }
  1150. EXPORT_SYMBOL(may_umount_tree);
  1151. /**
  1152. * may_umount - check if a mount point is busy
  1153. * @mnt: root of mount
  1154. *
  1155. * This is called to check if a mount point has any
  1156. * open files, pwds, chroots or sub mounts. If the
  1157. * mount has sub mounts this will return busy
  1158. * regardless of whether the sub mounts are busy.
  1159. *
  1160. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1161. * give false negatives. The main reason why it's here is that we need
  1162. * a non-destructive way to look for easily umountable filesystems.
  1163. */
  1164. int may_umount(struct vfsmount *mnt)
  1165. {
  1166. int ret = 1;
  1167. down_read(&namespace_sem);
  1168. lock_mount_hash();
  1169. if (propagate_mount_busy(real_mount(mnt), 2))
  1170. ret = 0;
  1171. unlock_mount_hash();
  1172. up_read(&namespace_sem);
  1173. return ret;
  1174. }
  1175. EXPORT_SYMBOL(may_umount);
  1176. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1177. static void namespace_unlock(void)
  1178. {
  1179. struct hlist_head head;
  1180. hlist_move_list(&unmounted, &head);
  1181. up_write(&namespace_sem);
  1182. if (likely(hlist_empty(&head)))
  1183. return;
  1184. synchronize_rcu();
  1185. group_pin_kill(&head);
  1186. }
  1187. static inline void namespace_lock(void)
  1188. {
  1189. down_write(&namespace_sem);
  1190. }
  1191. enum umount_tree_flags {
  1192. UMOUNT_SYNC = 1,
  1193. UMOUNT_PROPAGATE = 2,
  1194. UMOUNT_CONNECTED = 4,
  1195. };
  1196. /*
  1197. * mount_lock must be held
  1198. * namespace_sem must be held for write
  1199. */
  1200. static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
  1201. {
  1202. LIST_HEAD(tmp_list);
  1203. struct mount *p;
  1204. if (how & UMOUNT_PROPAGATE)
  1205. propagate_mount_unlock(mnt);
  1206. /* Gather the mounts to umount */
  1207. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1208. p->mnt.mnt_flags |= MNT_UMOUNT;
  1209. list_move(&p->mnt_list, &tmp_list);
  1210. }
  1211. /* Hide the mounts from mnt_mounts */
  1212. list_for_each_entry(p, &tmp_list, mnt_list) {
  1213. list_del_init(&p->mnt_child);
  1214. }
  1215. /* Add propogated mounts to the tmp_list */
  1216. if (how & UMOUNT_PROPAGATE)
  1217. propagate_umount(&tmp_list);
  1218. while (!list_empty(&tmp_list)) {
  1219. bool disconnect;
  1220. p = list_first_entry(&tmp_list, struct mount, mnt_list);
  1221. list_del_init(&p->mnt_expire);
  1222. list_del_init(&p->mnt_list);
  1223. __touch_mnt_namespace(p->mnt_ns);
  1224. p->mnt_ns = NULL;
  1225. if (how & UMOUNT_SYNC)
  1226. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1227. disconnect = !(((how & UMOUNT_CONNECTED) &&
  1228. mnt_has_parent(p) &&
  1229. (p->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) ||
  1230. IS_MNT_LOCKED_AND_LAZY(p));
  1231. pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
  1232. disconnect ? &unmounted : NULL);
  1233. if (mnt_has_parent(p)) {
  1234. mnt_add_count(p->mnt_parent, -1);
  1235. if (!disconnect) {
  1236. /* Don't forget about p */
  1237. list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
  1238. } else {
  1239. umount_mnt(p);
  1240. }
  1241. }
  1242. change_mnt_propagation(p, MS_PRIVATE);
  1243. }
  1244. }
  1245. static void shrink_submounts(struct mount *mnt);
  1246. static int do_umount(struct mount *mnt, int flags)
  1247. {
  1248. struct super_block *sb = mnt->mnt.mnt_sb;
  1249. int retval;
  1250. retval = security_sb_umount(&mnt->mnt, flags);
  1251. if (retval)
  1252. return retval;
  1253. /*
  1254. * Allow userspace to request a mountpoint be expired rather than
  1255. * unmounting unconditionally. Unmount only happens if:
  1256. * (1) the mark is already set (the mark is cleared by mntput())
  1257. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1258. */
  1259. if (flags & MNT_EXPIRE) {
  1260. if (&mnt->mnt == current->fs->root.mnt ||
  1261. flags & (MNT_FORCE | MNT_DETACH))
  1262. return -EINVAL;
  1263. /*
  1264. * probably don't strictly need the lock here if we examined
  1265. * all race cases, but it's a slowpath.
  1266. */
  1267. lock_mount_hash();
  1268. if (mnt_get_count(mnt) != 2) {
  1269. unlock_mount_hash();
  1270. return -EBUSY;
  1271. }
  1272. unlock_mount_hash();
  1273. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1274. return -EAGAIN;
  1275. }
  1276. /*
  1277. * If we may have to abort operations to get out of this
  1278. * mount, and they will themselves hold resources we must
  1279. * allow the fs to do things. In the Unix tradition of
  1280. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1281. * might fail to complete on the first run through as other tasks
  1282. * must return, and the like. Thats for the mount program to worry
  1283. * about for the moment.
  1284. */
  1285. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1286. sb->s_op->umount_begin(sb);
  1287. }
  1288. /*
  1289. * No sense to grab the lock for this test, but test itself looks
  1290. * somewhat bogus. Suggestions for better replacement?
  1291. * Ho-hum... In principle, we might treat that as umount + switch
  1292. * to rootfs. GC would eventually take care of the old vfsmount.
  1293. * Actually it makes sense, especially if rootfs would contain a
  1294. * /reboot - static binary that would close all descriptors and
  1295. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1296. */
  1297. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1298. /*
  1299. * Special case for "unmounting" root ...
  1300. * we just try to remount it readonly.
  1301. */
  1302. if (!capable(CAP_SYS_ADMIN))
  1303. return -EPERM;
  1304. down_write(&sb->s_umount);
  1305. if (!(sb->s_flags & MS_RDONLY))
  1306. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1307. up_write(&sb->s_umount);
  1308. return retval;
  1309. }
  1310. namespace_lock();
  1311. lock_mount_hash();
  1312. event++;
  1313. if (flags & MNT_DETACH) {
  1314. if (!list_empty(&mnt->mnt_list))
  1315. umount_tree(mnt, UMOUNT_PROPAGATE);
  1316. retval = 0;
  1317. } else {
  1318. shrink_submounts(mnt);
  1319. retval = -EBUSY;
  1320. if (!propagate_mount_busy(mnt, 2)) {
  1321. if (!list_empty(&mnt->mnt_list))
  1322. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  1323. retval = 0;
  1324. }
  1325. }
  1326. unlock_mount_hash();
  1327. namespace_unlock();
  1328. return retval;
  1329. }
  1330. /*
  1331. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1332. *
  1333. * During unlink, rmdir, and d_drop it is possible to loose the path
  1334. * to an existing mountpoint, and wind up leaking the mount.
  1335. * detach_mounts allows lazily unmounting those mounts instead of
  1336. * leaking them.
  1337. *
  1338. * The caller may hold dentry->d_inode->i_mutex.
  1339. */
  1340. void __detach_mounts(struct dentry *dentry)
  1341. {
  1342. struct mountpoint *mp;
  1343. struct mount *mnt;
  1344. namespace_lock();
  1345. mp = lookup_mountpoint(dentry);
  1346. if (IS_ERR_OR_NULL(mp))
  1347. goto out_unlock;
  1348. lock_mount_hash();
  1349. while (!hlist_empty(&mp->m_list)) {
  1350. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1351. if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
  1352. struct mount *p, *tmp;
  1353. list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
  1354. hlist_add_head(&p->mnt_umount.s_list, &unmounted);
  1355. umount_mnt(p);
  1356. }
  1357. }
  1358. else umount_tree(mnt, UMOUNT_CONNECTED);
  1359. }
  1360. unlock_mount_hash();
  1361. put_mountpoint(mp);
  1362. out_unlock:
  1363. namespace_unlock();
  1364. }
  1365. /*
  1366. * Is the caller allowed to modify his namespace?
  1367. */
  1368. static inline bool may_mount(void)
  1369. {
  1370. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1371. }
  1372. /*
  1373. * Now umount can handle mount points as well as block devices.
  1374. * This is important for filesystems which use unnamed block devices.
  1375. *
  1376. * We now support a flag for forced unmount like the other 'big iron'
  1377. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1378. */
  1379. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1380. {
  1381. struct path path;
  1382. struct mount *mnt;
  1383. int retval;
  1384. int lookup_flags = 0;
  1385. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1386. return -EINVAL;
  1387. if (!may_mount())
  1388. return -EPERM;
  1389. if (!(flags & UMOUNT_NOFOLLOW))
  1390. lookup_flags |= LOOKUP_FOLLOW;
  1391. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1392. if (retval)
  1393. goto out;
  1394. mnt = real_mount(path.mnt);
  1395. retval = -EINVAL;
  1396. if (path.dentry != path.mnt->mnt_root)
  1397. goto dput_and_out;
  1398. if (!check_mnt(mnt))
  1399. goto dput_and_out;
  1400. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1401. goto dput_and_out;
  1402. retval = -EPERM;
  1403. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1404. goto dput_and_out;
  1405. retval = do_umount(mnt, flags);
  1406. dput_and_out:
  1407. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1408. dput(path.dentry);
  1409. mntput_no_expire(mnt);
  1410. out:
  1411. return retval;
  1412. }
  1413. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1414. /*
  1415. * The 2.0 compatible umount. No flags.
  1416. */
  1417. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1418. {
  1419. return sys_umount(name, 0);
  1420. }
  1421. #endif
  1422. static bool is_mnt_ns_file(struct dentry *dentry)
  1423. {
  1424. /* Is this a proxy for a mount namespace? */
  1425. return dentry->d_op == &ns_dentry_operations &&
  1426. dentry->d_fsdata == &mntns_operations;
  1427. }
  1428. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1429. {
  1430. return container_of(ns, struct mnt_namespace, ns);
  1431. }
  1432. static bool mnt_ns_loop(struct dentry *dentry)
  1433. {
  1434. /* Could bind mounting the mount namespace inode cause a
  1435. * mount namespace loop?
  1436. */
  1437. struct mnt_namespace *mnt_ns;
  1438. if (!is_mnt_ns_file(dentry))
  1439. return false;
  1440. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1441. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1442. }
  1443. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1444. int flag)
  1445. {
  1446. struct mount *res, *p, *q, *r, *parent;
  1447. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1448. return ERR_PTR(-EINVAL);
  1449. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1450. return ERR_PTR(-EINVAL);
  1451. res = q = clone_mnt(mnt, dentry, flag);
  1452. if (IS_ERR(q))
  1453. return q;
  1454. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1455. p = mnt;
  1456. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1457. struct mount *s;
  1458. if (!is_subdir(r->mnt_mountpoint, dentry))
  1459. continue;
  1460. for (s = r; s; s = next_mnt(s, r)) {
  1461. struct mount *t = NULL;
  1462. if (!(flag & CL_COPY_UNBINDABLE) &&
  1463. IS_MNT_UNBINDABLE(s)) {
  1464. s = skip_mnt_tree(s);
  1465. continue;
  1466. }
  1467. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1468. is_mnt_ns_file(s->mnt.mnt_root)) {
  1469. s = skip_mnt_tree(s);
  1470. continue;
  1471. }
  1472. while (p != s->mnt_parent) {
  1473. p = p->mnt_parent;
  1474. q = q->mnt_parent;
  1475. }
  1476. p = s;
  1477. parent = q;
  1478. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1479. if (IS_ERR(q))
  1480. goto out;
  1481. lock_mount_hash();
  1482. list_add_tail(&q->mnt_list, &res->mnt_list);
  1483. mnt_set_mountpoint(parent, p->mnt_mp, q);
  1484. if (!list_empty(&parent->mnt_mounts)) {
  1485. t = list_last_entry(&parent->mnt_mounts,
  1486. struct mount, mnt_child);
  1487. if (t->mnt_mp != p->mnt_mp)
  1488. t = NULL;
  1489. }
  1490. attach_shadowed(q, parent, t);
  1491. unlock_mount_hash();
  1492. }
  1493. }
  1494. return res;
  1495. out:
  1496. if (res) {
  1497. lock_mount_hash();
  1498. umount_tree(res, UMOUNT_SYNC);
  1499. unlock_mount_hash();
  1500. }
  1501. return q;
  1502. }
  1503. /* Caller should check returned pointer for errors */
  1504. struct vfsmount *collect_mounts(struct path *path)
  1505. {
  1506. struct mount *tree;
  1507. namespace_lock();
  1508. if (!check_mnt(real_mount(path->mnt)))
  1509. tree = ERR_PTR(-EINVAL);
  1510. else
  1511. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1512. CL_COPY_ALL | CL_PRIVATE);
  1513. namespace_unlock();
  1514. if (IS_ERR(tree))
  1515. return ERR_CAST(tree);
  1516. return &tree->mnt;
  1517. }
  1518. void drop_collected_mounts(struct vfsmount *mnt)
  1519. {
  1520. namespace_lock();
  1521. lock_mount_hash();
  1522. umount_tree(real_mount(mnt), UMOUNT_SYNC);
  1523. unlock_mount_hash();
  1524. namespace_unlock();
  1525. }
  1526. /**
  1527. * clone_private_mount - create a private clone of a path
  1528. *
  1529. * This creates a new vfsmount, which will be the clone of @path. The new will
  1530. * not be attached anywhere in the namespace and will be private (i.e. changes
  1531. * to the originating mount won't be propagated into this).
  1532. *
  1533. * Release with mntput().
  1534. */
  1535. struct vfsmount *clone_private_mount(struct path *path)
  1536. {
  1537. struct mount *old_mnt = real_mount(path->mnt);
  1538. struct mount *new_mnt;
  1539. if (IS_MNT_UNBINDABLE(old_mnt))
  1540. return ERR_PTR(-EINVAL);
  1541. down_read(&namespace_sem);
  1542. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1543. up_read(&namespace_sem);
  1544. if (IS_ERR(new_mnt))
  1545. return ERR_CAST(new_mnt);
  1546. return &new_mnt->mnt;
  1547. }
  1548. EXPORT_SYMBOL_GPL(clone_private_mount);
  1549. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1550. struct vfsmount *root)
  1551. {
  1552. struct mount *mnt;
  1553. int res = f(root, arg);
  1554. if (res)
  1555. return res;
  1556. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1557. res = f(&mnt->mnt, arg);
  1558. if (res)
  1559. return res;
  1560. }
  1561. return 0;
  1562. }
  1563. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1564. {
  1565. struct mount *p;
  1566. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1567. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1568. mnt_release_group_id(p);
  1569. }
  1570. }
  1571. static int invent_group_ids(struct mount *mnt, bool recurse)
  1572. {
  1573. struct mount *p;
  1574. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1575. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1576. int err = mnt_alloc_group_id(p);
  1577. if (err) {
  1578. cleanup_group_ids(mnt, p);
  1579. return err;
  1580. }
  1581. }
  1582. }
  1583. return 0;
  1584. }
  1585. /*
  1586. * @source_mnt : mount tree to be attached
  1587. * @nd : place the mount tree @source_mnt is attached
  1588. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1589. * store the parent mount and mountpoint dentry.
  1590. * (done when source_mnt is moved)
  1591. *
  1592. * NOTE: in the table below explains the semantics when a source mount
  1593. * of a given type is attached to a destination mount of a given type.
  1594. * ---------------------------------------------------------------------------
  1595. * | BIND MOUNT OPERATION |
  1596. * |**************************************************************************
  1597. * | source-->| shared | private | slave | unbindable |
  1598. * | dest | | | | |
  1599. * | | | | | | |
  1600. * | v | | | | |
  1601. * |**************************************************************************
  1602. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1603. * | | | | | |
  1604. * |non-shared| shared (+) | private | slave (*) | invalid |
  1605. * ***************************************************************************
  1606. * A bind operation clones the source mount and mounts the clone on the
  1607. * destination mount.
  1608. *
  1609. * (++) the cloned mount is propagated to all the mounts in the propagation
  1610. * tree of the destination mount and the cloned mount is added to
  1611. * the peer group of the source mount.
  1612. * (+) the cloned mount is created under the destination mount and is marked
  1613. * as shared. The cloned mount is added to the peer group of the source
  1614. * mount.
  1615. * (+++) the mount is propagated to all the mounts in the propagation tree
  1616. * of the destination mount and the cloned mount is made slave
  1617. * of the same master as that of the source mount. The cloned mount
  1618. * is marked as 'shared and slave'.
  1619. * (*) the cloned mount is made a slave of the same master as that of the
  1620. * source mount.
  1621. *
  1622. * ---------------------------------------------------------------------------
  1623. * | MOVE MOUNT OPERATION |
  1624. * |**************************************************************************
  1625. * | source-->| shared | private | slave | unbindable |
  1626. * | dest | | | | |
  1627. * | | | | | | |
  1628. * | v | | | | |
  1629. * |**************************************************************************
  1630. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1631. * | | | | | |
  1632. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1633. * ***************************************************************************
  1634. *
  1635. * (+) the mount is moved to the destination. And is then propagated to
  1636. * all the mounts in the propagation tree of the destination mount.
  1637. * (+*) the mount is moved to the destination.
  1638. * (+++) the mount is moved to the destination and is then propagated to
  1639. * all the mounts belonging to the destination mount's propagation tree.
  1640. * the mount is marked as 'shared and slave'.
  1641. * (*) the mount continues to be a slave at the new location.
  1642. *
  1643. * if the source mount is a tree, the operations explained above is
  1644. * applied to each mount in the tree.
  1645. * Must be called without spinlocks held, since this function can sleep
  1646. * in allocations.
  1647. */
  1648. static int attach_recursive_mnt(struct mount *source_mnt,
  1649. struct mount *dest_mnt,
  1650. struct mountpoint *dest_mp,
  1651. struct path *parent_path)
  1652. {
  1653. HLIST_HEAD(tree_list);
  1654. struct mount *child, *p;
  1655. struct hlist_node *n;
  1656. int err;
  1657. if (IS_MNT_SHARED(dest_mnt)) {
  1658. err = invent_group_ids(source_mnt, true);
  1659. if (err)
  1660. goto out;
  1661. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1662. lock_mount_hash();
  1663. if (err)
  1664. goto out_cleanup_ids;
  1665. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1666. set_mnt_shared(p);
  1667. } else {
  1668. lock_mount_hash();
  1669. }
  1670. if (parent_path) {
  1671. detach_mnt(source_mnt, parent_path);
  1672. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1673. touch_mnt_namespace(source_mnt->mnt_ns);
  1674. } else {
  1675. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1676. commit_tree(source_mnt, NULL);
  1677. }
  1678. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1679. struct mount *q;
  1680. hlist_del_init(&child->mnt_hash);
  1681. q = __lookup_mnt_last(&child->mnt_parent->mnt,
  1682. child->mnt_mountpoint);
  1683. commit_tree(child, q);
  1684. }
  1685. unlock_mount_hash();
  1686. return 0;
  1687. out_cleanup_ids:
  1688. while (!hlist_empty(&tree_list)) {
  1689. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1690. umount_tree(child, UMOUNT_SYNC);
  1691. }
  1692. unlock_mount_hash();
  1693. cleanup_group_ids(source_mnt, NULL);
  1694. out:
  1695. return err;
  1696. }
  1697. static struct mountpoint *lock_mount(struct path *path)
  1698. {
  1699. struct vfsmount *mnt;
  1700. struct dentry *dentry = path->dentry;
  1701. retry:
  1702. mutex_lock(&dentry->d_inode->i_mutex);
  1703. if (unlikely(cant_mount(dentry))) {
  1704. mutex_unlock(&dentry->d_inode->i_mutex);
  1705. return ERR_PTR(-ENOENT);
  1706. }
  1707. namespace_lock();
  1708. mnt = lookup_mnt(path);
  1709. if (likely(!mnt)) {
  1710. struct mountpoint *mp = lookup_mountpoint(dentry);
  1711. if (!mp)
  1712. mp = new_mountpoint(dentry);
  1713. if (IS_ERR(mp)) {
  1714. namespace_unlock();
  1715. mutex_unlock(&dentry->d_inode->i_mutex);
  1716. return mp;
  1717. }
  1718. return mp;
  1719. }
  1720. namespace_unlock();
  1721. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1722. path_put(path);
  1723. path->mnt = mnt;
  1724. dentry = path->dentry = dget(mnt->mnt_root);
  1725. goto retry;
  1726. }
  1727. static void unlock_mount(struct mountpoint *where)
  1728. {
  1729. struct dentry *dentry = where->m_dentry;
  1730. put_mountpoint(where);
  1731. namespace_unlock();
  1732. mutex_unlock(&dentry->d_inode->i_mutex);
  1733. }
  1734. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1735. {
  1736. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1737. return -EINVAL;
  1738. if (d_is_dir(mp->m_dentry) !=
  1739. d_is_dir(mnt->mnt.mnt_root))
  1740. return -ENOTDIR;
  1741. return attach_recursive_mnt(mnt, p, mp, NULL);
  1742. }
  1743. /*
  1744. * Sanity check the flags to change_mnt_propagation.
  1745. */
  1746. static int flags_to_propagation_type(int flags)
  1747. {
  1748. int type = flags & ~(MS_REC | MS_SILENT);
  1749. /* Fail if any non-propagation flags are set */
  1750. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1751. return 0;
  1752. /* Only one propagation flag should be set */
  1753. if (!is_power_of_2(type))
  1754. return 0;
  1755. return type;
  1756. }
  1757. /*
  1758. * recursively change the type of the mountpoint.
  1759. */
  1760. static int do_change_type(struct path *path, int flag)
  1761. {
  1762. struct mount *m;
  1763. struct mount *mnt = real_mount(path->mnt);
  1764. int recurse = flag & MS_REC;
  1765. int type;
  1766. int err = 0;
  1767. if (path->dentry != path->mnt->mnt_root)
  1768. return -EINVAL;
  1769. type = flags_to_propagation_type(flag);
  1770. if (!type)
  1771. return -EINVAL;
  1772. namespace_lock();
  1773. if (type == MS_SHARED) {
  1774. err = invent_group_ids(mnt, recurse);
  1775. if (err)
  1776. goto out_unlock;
  1777. }
  1778. lock_mount_hash();
  1779. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1780. change_mnt_propagation(m, type);
  1781. unlock_mount_hash();
  1782. out_unlock:
  1783. namespace_unlock();
  1784. return err;
  1785. }
  1786. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1787. {
  1788. struct mount *child;
  1789. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1790. if (!is_subdir(child->mnt_mountpoint, dentry))
  1791. continue;
  1792. if (child->mnt.mnt_flags & MNT_LOCKED)
  1793. return true;
  1794. }
  1795. return false;
  1796. }
  1797. /*
  1798. * do loopback mount.
  1799. */
  1800. static int do_loopback(struct path *path, const char *old_name,
  1801. int recurse)
  1802. {
  1803. struct path old_path;
  1804. struct mount *mnt = NULL, *old, *parent;
  1805. struct mountpoint *mp;
  1806. int err;
  1807. if (!old_name || !*old_name)
  1808. return -EINVAL;
  1809. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1810. if (err)
  1811. return err;
  1812. err = -EINVAL;
  1813. if (mnt_ns_loop(old_path.dentry))
  1814. goto out;
  1815. mp = lock_mount(path);
  1816. err = PTR_ERR(mp);
  1817. if (IS_ERR(mp))
  1818. goto out;
  1819. old = real_mount(old_path.mnt);
  1820. parent = real_mount(path->mnt);
  1821. err = -EINVAL;
  1822. if (IS_MNT_UNBINDABLE(old))
  1823. goto out2;
  1824. if (!check_mnt(parent))
  1825. goto out2;
  1826. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1827. goto out2;
  1828. if (!recurse && has_locked_children(old, old_path.dentry))
  1829. goto out2;
  1830. if (recurse)
  1831. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1832. else
  1833. mnt = clone_mnt(old, old_path.dentry, 0);
  1834. if (IS_ERR(mnt)) {
  1835. err = PTR_ERR(mnt);
  1836. goto out2;
  1837. }
  1838. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1839. err = graft_tree(mnt, parent, mp);
  1840. if (err) {
  1841. lock_mount_hash();
  1842. umount_tree(mnt, UMOUNT_SYNC);
  1843. unlock_mount_hash();
  1844. }
  1845. out2:
  1846. unlock_mount(mp);
  1847. out:
  1848. path_put(&old_path);
  1849. return err;
  1850. }
  1851. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1852. {
  1853. int error = 0;
  1854. int readonly_request = 0;
  1855. if (ms_flags & MS_RDONLY)
  1856. readonly_request = 1;
  1857. if (readonly_request == __mnt_is_readonly(mnt))
  1858. return 0;
  1859. if (readonly_request)
  1860. error = mnt_make_readonly(real_mount(mnt));
  1861. else
  1862. __mnt_unmake_readonly(real_mount(mnt));
  1863. return error;
  1864. }
  1865. /*
  1866. * change filesystem flags. dir should be a physical root of filesystem.
  1867. * If you've mounted a non-root directory somewhere and want to do remount
  1868. * on it - tough luck.
  1869. */
  1870. static int do_remount(struct path *path, int flags, int mnt_flags,
  1871. void *data)
  1872. {
  1873. int err;
  1874. struct super_block *sb = path->mnt->mnt_sb;
  1875. struct mount *mnt = real_mount(path->mnt);
  1876. if (!check_mnt(mnt))
  1877. return -EINVAL;
  1878. if (path->dentry != path->mnt->mnt_root)
  1879. return -EINVAL;
  1880. /* Don't allow changing of locked mnt flags.
  1881. *
  1882. * No locks need to be held here while testing the various
  1883. * MNT_LOCK flags because those flags can never be cleared
  1884. * once they are set.
  1885. */
  1886. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  1887. !(mnt_flags & MNT_READONLY)) {
  1888. return -EPERM;
  1889. }
  1890. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  1891. !(mnt_flags & MNT_NODEV)) {
  1892. /* Was the nodev implicitly added in mount? */
  1893. if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
  1894. !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1895. mnt_flags |= MNT_NODEV;
  1896. } else {
  1897. return -EPERM;
  1898. }
  1899. }
  1900. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  1901. !(mnt_flags & MNT_NOSUID)) {
  1902. return -EPERM;
  1903. }
  1904. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  1905. !(mnt_flags & MNT_NOEXEC)) {
  1906. return -EPERM;
  1907. }
  1908. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  1909. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  1910. return -EPERM;
  1911. }
  1912. err = security_sb_remount(sb, data);
  1913. if (err)
  1914. return err;
  1915. down_write(&sb->s_umount);
  1916. if (flags & MS_BIND)
  1917. err = change_mount_flags(path->mnt, flags);
  1918. else if (!capable(CAP_SYS_ADMIN))
  1919. err = -EPERM;
  1920. else
  1921. err = do_remount_sb(sb, flags, data, 0);
  1922. if (!err) {
  1923. lock_mount_hash();
  1924. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  1925. mnt->mnt.mnt_flags = mnt_flags;
  1926. touch_mnt_namespace(mnt->mnt_ns);
  1927. unlock_mount_hash();
  1928. }
  1929. up_write(&sb->s_umount);
  1930. return err;
  1931. }
  1932. static inline int tree_contains_unbindable(struct mount *mnt)
  1933. {
  1934. struct mount *p;
  1935. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1936. if (IS_MNT_UNBINDABLE(p))
  1937. return 1;
  1938. }
  1939. return 0;
  1940. }
  1941. static int do_move_mount(struct path *path, const char *old_name)
  1942. {
  1943. struct path old_path, parent_path;
  1944. struct mount *p;
  1945. struct mount *old;
  1946. struct mountpoint *mp;
  1947. int err;
  1948. if (!old_name || !*old_name)
  1949. return -EINVAL;
  1950. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1951. if (err)
  1952. return err;
  1953. mp = lock_mount(path);
  1954. err = PTR_ERR(mp);
  1955. if (IS_ERR(mp))
  1956. goto out;
  1957. old = real_mount(old_path.mnt);
  1958. p = real_mount(path->mnt);
  1959. err = -EINVAL;
  1960. if (!check_mnt(p) || !check_mnt(old))
  1961. goto out1;
  1962. if (old->mnt.mnt_flags & MNT_LOCKED)
  1963. goto out1;
  1964. err = -EINVAL;
  1965. if (old_path.dentry != old_path.mnt->mnt_root)
  1966. goto out1;
  1967. if (!mnt_has_parent(old))
  1968. goto out1;
  1969. if (d_is_dir(path->dentry) !=
  1970. d_is_dir(old_path.dentry))
  1971. goto out1;
  1972. /*
  1973. * Don't move a mount residing in a shared parent.
  1974. */
  1975. if (IS_MNT_SHARED(old->mnt_parent))
  1976. goto out1;
  1977. /*
  1978. * Don't move a mount tree containing unbindable mounts to a destination
  1979. * mount which is shared.
  1980. */
  1981. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1982. goto out1;
  1983. err = -ELOOP;
  1984. for (; mnt_has_parent(p); p = p->mnt_parent)
  1985. if (p == old)
  1986. goto out1;
  1987. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  1988. if (err)
  1989. goto out1;
  1990. /* if the mount is moved, it should no longer be expire
  1991. * automatically */
  1992. list_del_init(&old->mnt_expire);
  1993. out1:
  1994. unlock_mount(mp);
  1995. out:
  1996. if (!err)
  1997. path_put(&parent_path);
  1998. path_put(&old_path);
  1999. return err;
  2000. }
  2001. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  2002. {
  2003. int err;
  2004. const char *subtype = strchr(fstype, '.');
  2005. if (subtype) {
  2006. subtype++;
  2007. err = -EINVAL;
  2008. if (!subtype[0])
  2009. goto err;
  2010. } else
  2011. subtype = "";
  2012. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  2013. err = -ENOMEM;
  2014. if (!mnt->mnt_sb->s_subtype)
  2015. goto err;
  2016. return mnt;
  2017. err:
  2018. mntput(mnt);
  2019. return ERR_PTR(err);
  2020. }
  2021. /*
  2022. * add a mount into a namespace's mount tree
  2023. */
  2024. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  2025. {
  2026. struct mountpoint *mp;
  2027. struct mount *parent;
  2028. int err;
  2029. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  2030. mp = lock_mount(path);
  2031. if (IS_ERR(mp))
  2032. return PTR_ERR(mp);
  2033. parent = real_mount(path->mnt);
  2034. err = -EINVAL;
  2035. if (unlikely(!check_mnt(parent))) {
  2036. /* that's acceptable only for automounts done in private ns */
  2037. if (!(mnt_flags & MNT_SHRINKABLE))
  2038. goto unlock;
  2039. /* ... and for those we'd better have mountpoint still alive */
  2040. if (!parent->mnt_ns)
  2041. goto unlock;
  2042. }
  2043. /* Refuse the same filesystem on the same mount point */
  2044. err = -EBUSY;
  2045. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2046. path->mnt->mnt_root == path->dentry)
  2047. goto unlock;
  2048. err = -EINVAL;
  2049. if (d_is_symlink(newmnt->mnt.mnt_root))
  2050. goto unlock;
  2051. newmnt->mnt.mnt_flags = mnt_flags;
  2052. err = graft_tree(newmnt, parent, mp);
  2053. unlock:
  2054. unlock_mount(mp);
  2055. return err;
  2056. }
  2057. /*
  2058. * create a new mount for userspace and request it to be added into the
  2059. * namespace's tree
  2060. */
  2061. static int do_new_mount(struct path *path, const char *fstype, int flags,
  2062. int mnt_flags, const char *name, void *data)
  2063. {
  2064. struct file_system_type *type;
  2065. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  2066. struct vfsmount *mnt;
  2067. int err;
  2068. if (!fstype)
  2069. return -EINVAL;
  2070. type = get_fs_type(fstype);
  2071. if (!type)
  2072. return -ENODEV;
  2073. if (user_ns != &init_user_ns) {
  2074. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  2075. put_filesystem(type);
  2076. return -EPERM;
  2077. }
  2078. /* Only in special cases allow devices from mounts
  2079. * created outside the initial user namespace.
  2080. */
  2081. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  2082. flags |= MS_NODEV;
  2083. mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
  2084. }
  2085. }
  2086. mnt = vfs_kern_mount(type, flags, name, data);
  2087. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2088. !mnt->mnt_sb->s_subtype)
  2089. mnt = fs_set_subtype(mnt, fstype);
  2090. put_filesystem(type);
  2091. if (IS_ERR(mnt))
  2092. return PTR_ERR(mnt);
  2093. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2094. if (err)
  2095. mntput(mnt);
  2096. return err;
  2097. }
  2098. int finish_automount(struct vfsmount *m, struct path *path)
  2099. {
  2100. struct mount *mnt = real_mount(m);
  2101. int err;
  2102. /* The new mount record should have at least 2 refs to prevent it being
  2103. * expired before we get a chance to add it
  2104. */
  2105. BUG_ON(mnt_get_count(mnt) < 2);
  2106. if (m->mnt_sb == path->mnt->mnt_sb &&
  2107. m->mnt_root == path->dentry) {
  2108. err = -ELOOP;
  2109. goto fail;
  2110. }
  2111. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2112. if (!err)
  2113. return 0;
  2114. fail:
  2115. /* remove m from any expiration list it may be on */
  2116. if (!list_empty(&mnt->mnt_expire)) {
  2117. namespace_lock();
  2118. list_del_init(&mnt->mnt_expire);
  2119. namespace_unlock();
  2120. }
  2121. mntput(m);
  2122. mntput(m);
  2123. return err;
  2124. }
  2125. /**
  2126. * mnt_set_expiry - Put a mount on an expiration list
  2127. * @mnt: The mount to list.
  2128. * @expiry_list: The list to add the mount to.
  2129. */
  2130. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2131. {
  2132. namespace_lock();
  2133. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2134. namespace_unlock();
  2135. }
  2136. EXPORT_SYMBOL(mnt_set_expiry);
  2137. /*
  2138. * process a list of expirable mountpoints with the intent of discarding any
  2139. * mountpoints that aren't in use and haven't been touched since last we came
  2140. * here
  2141. */
  2142. void mark_mounts_for_expiry(struct list_head *mounts)
  2143. {
  2144. struct mount *mnt, *next;
  2145. LIST_HEAD(graveyard);
  2146. if (list_empty(mounts))
  2147. return;
  2148. namespace_lock();
  2149. lock_mount_hash();
  2150. /* extract from the expiration list every vfsmount that matches the
  2151. * following criteria:
  2152. * - only referenced by its parent vfsmount
  2153. * - still marked for expiry (marked on the last call here; marks are
  2154. * cleared by mntput())
  2155. */
  2156. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2157. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2158. propagate_mount_busy(mnt, 1))
  2159. continue;
  2160. list_move(&mnt->mnt_expire, &graveyard);
  2161. }
  2162. while (!list_empty(&graveyard)) {
  2163. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2164. touch_mnt_namespace(mnt->mnt_ns);
  2165. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2166. }
  2167. unlock_mount_hash();
  2168. namespace_unlock();
  2169. }
  2170. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2171. /*
  2172. * Ripoff of 'select_parent()'
  2173. *
  2174. * search the list of submounts for a given mountpoint, and move any
  2175. * shrinkable submounts to the 'graveyard' list.
  2176. */
  2177. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2178. {
  2179. struct mount *this_parent = parent;
  2180. struct list_head *next;
  2181. int found = 0;
  2182. repeat:
  2183. next = this_parent->mnt_mounts.next;
  2184. resume:
  2185. while (next != &this_parent->mnt_mounts) {
  2186. struct list_head *tmp = next;
  2187. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2188. next = tmp->next;
  2189. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2190. continue;
  2191. /*
  2192. * Descend a level if the d_mounts list is non-empty.
  2193. */
  2194. if (!list_empty(&mnt->mnt_mounts)) {
  2195. this_parent = mnt;
  2196. goto repeat;
  2197. }
  2198. if (!propagate_mount_busy(mnt, 1)) {
  2199. list_move_tail(&mnt->mnt_expire, graveyard);
  2200. found++;
  2201. }
  2202. }
  2203. /*
  2204. * All done at this level ... ascend and resume the search
  2205. */
  2206. if (this_parent != parent) {
  2207. next = this_parent->mnt_child.next;
  2208. this_parent = this_parent->mnt_parent;
  2209. goto resume;
  2210. }
  2211. return found;
  2212. }
  2213. /*
  2214. * process a list of expirable mountpoints with the intent of discarding any
  2215. * submounts of a specific parent mountpoint
  2216. *
  2217. * mount_lock must be held for write
  2218. */
  2219. static void shrink_submounts(struct mount *mnt)
  2220. {
  2221. LIST_HEAD(graveyard);
  2222. struct mount *m;
  2223. /* extract submounts of 'mountpoint' from the expiration list */
  2224. while (select_submounts(mnt, &graveyard)) {
  2225. while (!list_empty(&graveyard)) {
  2226. m = list_first_entry(&graveyard, struct mount,
  2227. mnt_expire);
  2228. touch_mnt_namespace(m->mnt_ns);
  2229. umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2230. }
  2231. }
  2232. }
  2233. /*
  2234. * Some copy_from_user() implementations do not return the exact number of
  2235. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2236. * Note that this function differs from copy_from_user() in that it will oops
  2237. * on bad values of `to', rather than returning a short copy.
  2238. */
  2239. static long exact_copy_from_user(void *to, const void __user * from,
  2240. unsigned long n)
  2241. {
  2242. char *t = to;
  2243. const char __user *f = from;
  2244. char c;
  2245. if (!access_ok(VERIFY_READ, from, n))
  2246. return n;
  2247. while (n) {
  2248. if (__get_user(c, f)) {
  2249. memset(t, 0, n);
  2250. break;
  2251. }
  2252. *t++ = c;
  2253. f++;
  2254. n--;
  2255. }
  2256. return n;
  2257. }
  2258. int copy_mount_options(const void __user * data, unsigned long *where)
  2259. {
  2260. int i;
  2261. unsigned long page;
  2262. unsigned long size;
  2263. *where = 0;
  2264. if (!data)
  2265. return 0;
  2266. if (!(page = __get_free_page(GFP_KERNEL)))
  2267. return -ENOMEM;
  2268. /* We only care that *some* data at the address the user
  2269. * gave us is valid. Just in case, we'll zero
  2270. * the remainder of the page.
  2271. */
  2272. /* copy_from_user cannot cross TASK_SIZE ! */
  2273. size = TASK_SIZE - (unsigned long)data;
  2274. if (size > PAGE_SIZE)
  2275. size = PAGE_SIZE;
  2276. i = size - exact_copy_from_user((void *)page, data, size);
  2277. if (!i) {
  2278. free_page(page);
  2279. return -EFAULT;
  2280. }
  2281. if (i != PAGE_SIZE)
  2282. memset((char *)page + i, 0, PAGE_SIZE - i);
  2283. *where = page;
  2284. return 0;
  2285. }
  2286. char *copy_mount_string(const void __user *data)
  2287. {
  2288. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2289. }
  2290. /*
  2291. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2292. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2293. *
  2294. * data is a (void *) that can point to any structure up to
  2295. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2296. * information (or be NULL).
  2297. *
  2298. * Pre-0.97 versions of mount() didn't have a flags word.
  2299. * When the flags word was introduced its top half was required
  2300. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2301. * Therefore, if this magic number is present, it carries no information
  2302. * and must be discarded.
  2303. */
  2304. long do_mount(const char *dev_name, const char __user *dir_name,
  2305. const char *type_page, unsigned long flags, void *data_page)
  2306. {
  2307. struct path path;
  2308. int retval = 0;
  2309. int mnt_flags = 0;
  2310. /* Discard magic */
  2311. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2312. flags &= ~MS_MGC_MSK;
  2313. /* Basic sanity checks */
  2314. if (data_page)
  2315. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2316. /* ... and get the mountpoint */
  2317. retval = user_path(dir_name, &path);
  2318. if (retval)
  2319. return retval;
  2320. retval = security_sb_mount(dev_name, &path,
  2321. type_page, flags, data_page);
  2322. if (!retval && !may_mount())
  2323. retval = -EPERM;
  2324. if (retval)
  2325. goto dput_out;
  2326. /* Default to relatime unless overriden */
  2327. if (!(flags & MS_NOATIME))
  2328. mnt_flags |= MNT_RELATIME;
  2329. /* Separate the per-mountpoint flags */
  2330. if (flags & MS_NOSUID)
  2331. mnt_flags |= MNT_NOSUID;
  2332. if (flags & MS_NODEV)
  2333. mnt_flags |= MNT_NODEV;
  2334. if (flags & MS_NOEXEC)
  2335. mnt_flags |= MNT_NOEXEC;
  2336. if (flags & MS_NOATIME)
  2337. mnt_flags |= MNT_NOATIME;
  2338. if (flags & MS_NODIRATIME)
  2339. mnt_flags |= MNT_NODIRATIME;
  2340. if (flags & MS_STRICTATIME)
  2341. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2342. if (flags & MS_RDONLY)
  2343. mnt_flags |= MNT_READONLY;
  2344. /* The default atime for remount is preservation */
  2345. if ((flags & MS_REMOUNT) &&
  2346. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2347. MS_STRICTATIME)) == 0)) {
  2348. mnt_flags &= ~MNT_ATIME_MASK;
  2349. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2350. }
  2351. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2352. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2353. MS_STRICTATIME);
  2354. if (flags & MS_REMOUNT)
  2355. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2356. data_page);
  2357. else if (flags & MS_BIND)
  2358. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2359. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2360. retval = do_change_type(&path, flags);
  2361. else if (flags & MS_MOVE)
  2362. retval = do_move_mount(&path, dev_name);
  2363. else
  2364. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2365. dev_name, data_page);
  2366. dput_out:
  2367. path_put(&path);
  2368. return retval;
  2369. }
  2370. static void free_mnt_ns(struct mnt_namespace *ns)
  2371. {
  2372. ns_free_inum(&ns->ns);
  2373. put_user_ns(ns->user_ns);
  2374. kfree(ns);
  2375. }
  2376. /*
  2377. * Assign a sequence number so we can detect when we attempt to bind
  2378. * mount a reference to an older mount namespace into the current
  2379. * mount namespace, preventing reference counting loops. A 64bit
  2380. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2381. * is effectively never, so we can ignore the possibility.
  2382. */
  2383. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2384. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2385. {
  2386. struct mnt_namespace *new_ns;
  2387. int ret;
  2388. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2389. if (!new_ns)
  2390. return ERR_PTR(-ENOMEM);
  2391. ret = ns_alloc_inum(&new_ns->ns);
  2392. if (ret) {
  2393. kfree(new_ns);
  2394. return ERR_PTR(ret);
  2395. }
  2396. new_ns->ns.ops = &mntns_operations;
  2397. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2398. atomic_set(&new_ns->count, 1);
  2399. new_ns->root = NULL;
  2400. INIT_LIST_HEAD(&new_ns->list);
  2401. init_waitqueue_head(&new_ns->poll);
  2402. new_ns->event = 0;
  2403. new_ns->user_ns = get_user_ns(user_ns);
  2404. return new_ns;
  2405. }
  2406. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2407. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2408. {
  2409. struct mnt_namespace *new_ns;
  2410. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2411. struct mount *p, *q;
  2412. struct mount *old;
  2413. struct mount *new;
  2414. int copy_flags;
  2415. BUG_ON(!ns);
  2416. if (likely(!(flags & CLONE_NEWNS))) {
  2417. get_mnt_ns(ns);
  2418. return ns;
  2419. }
  2420. old = ns->root;
  2421. new_ns = alloc_mnt_ns(user_ns);
  2422. if (IS_ERR(new_ns))
  2423. return new_ns;
  2424. namespace_lock();
  2425. /* First pass: copy the tree topology */
  2426. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2427. if (user_ns != ns->user_ns)
  2428. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2429. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2430. if (IS_ERR(new)) {
  2431. namespace_unlock();
  2432. free_mnt_ns(new_ns);
  2433. return ERR_CAST(new);
  2434. }
  2435. new_ns->root = new;
  2436. list_add_tail(&new_ns->list, &new->mnt_list);
  2437. /*
  2438. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2439. * as belonging to new namespace. We have already acquired a private
  2440. * fs_struct, so tsk->fs->lock is not needed.
  2441. */
  2442. p = old;
  2443. q = new;
  2444. while (p) {
  2445. q->mnt_ns = new_ns;
  2446. if (new_fs) {
  2447. if (&p->mnt == new_fs->root.mnt) {
  2448. new_fs->root.mnt = mntget(&q->mnt);
  2449. rootmnt = &p->mnt;
  2450. }
  2451. if (&p->mnt == new_fs->pwd.mnt) {
  2452. new_fs->pwd.mnt = mntget(&q->mnt);
  2453. pwdmnt = &p->mnt;
  2454. }
  2455. }
  2456. p = next_mnt(p, old);
  2457. q = next_mnt(q, new);
  2458. if (!q)
  2459. break;
  2460. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2461. p = next_mnt(p, old);
  2462. }
  2463. namespace_unlock();
  2464. if (rootmnt)
  2465. mntput(rootmnt);
  2466. if (pwdmnt)
  2467. mntput(pwdmnt);
  2468. return new_ns;
  2469. }
  2470. /**
  2471. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2472. * @mnt: pointer to the new root filesystem mountpoint
  2473. */
  2474. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2475. {
  2476. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2477. if (!IS_ERR(new_ns)) {
  2478. struct mount *mnt = real_mount(m);
  2479. mnt->mnt_ns = new_ns;
  2480. new_ns->root = mnt;
  2481. list_add(&mnt->mnt_list, &new_ns->list);
  2482. } else {
  2483. mntput(m);
  2484. }
  2485. return new_ns;
  2486. }
  2487. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2488. {
  2489. struct mnt_namespace *ns;
  2490. struct super_block *s;
  2491. struct path path;
  2492. int err;
  2493. ns = create_mnt_ns(mnt);
  2494. if (IS_ERR(ns))
  2495. return ERR_CAST(ns);
  2496. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2497. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2498. put_mnt_ns(ns);
  2499. if (err)
  2500. return ERR_PTR(err);
  2501. /* trade a vfsmount reference for active sb one */
  2502. s = path.mnt->mnt_sb;
  2503. atomic_inc(&s->s_active);
  2504. mntput(path.mnt);
  2505. /* lock the sucker */
  2506. down_write(&s->s_umount);
  2507. /* ... and return the root of (sub)tree on it */
  2508. return path.dentry;
  2509. }
  2510. EXPORT_SYMBOL(mount_subtree);
  2511. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2512. char __user *, type, unsigned long, flags, void __user *, data)
  2513. {
  2514. int ret;
  2515. char *kernel_type;
  2516. char *kernel_dev;
  2517. unsigned long data_page;
  2518. kernel_type = copy_mount_string(type);
  2519. ret = PTR_ERR(kernel_type);
  2520. if (IS_ERR(kernel_type))
  2521. goto out_type;
  2522. kernel_dev = copy_mount_string(dev_name);
  2523. ret = PTR_ERR(kernel_dev);
  2524. if (IS_ERR(kernel_dev))
  2525. goto out_dev;
  2526. ret = copy_mount_options(data, &data_page);
  2527. if (ret < 0)
  2528. goto out_data;
  2529. ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
  2530. (void *) data_page);
  2531. free_page(data_page);
  2532. out_data:
  2533. kfree(kernel_dev);
  2534. out_dev:
  2535. kfree(kernel_type);
  2536. out_type:
  2537. return ret;
  2538. }
  2539. /*
  2540. * Return true if path is reachable from root
  2541. *
  2542. * namespace_sem or mount_lock is held
  2543. */
  2544. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2545. const struct path *root)
  2546. {
  2547. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2548. dentry = mnt->mnt_mountpoint;
  2549. mnt = mnt->mnt_parent;
  2550. }
  2551. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2552. }
  2553. int path_is_under(struct path *path1, struct path *path2)
  2554. {
  2555. int res;
  2556. read_seqlock_excl(&mount_lock);
  2557. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2558. read_sequnlock_excl(&mount_lock);
  2559. return res;
  2560. }
  2561. EXPORT_SYMBOL(path_is_under);
  2562. /*
  2563. * pivot_root Semantics:
  2564. * Moves the root file system of the current process to the directory put_old,
  2565. * makes new_root as the new root file system of the current process, and sets
  2566. * root/cwd of all processes which had them on the current root to new_root.
  2567. *
  2568. * Restrictions:
  2569. * The new_root and put_old must be directories, and must not be on the
  2570. * same file system as the current process root. The put_old must be
  2571. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2572. * pointed to by put_old must yield the same directory as new_root. No other
  2573. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2574. *
  2575. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2576. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2577. * in this situation.
  2578. *
  2579. * Notes:
  2580. * - we don't move root/cwd if they are not at the root (reason: if something
  2581. * cared enough to change them, it's probably wrong to force them elsewhere)
  2582. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2583. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2584. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2585. * first.
  2586. */
  2587. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2588. const char __user *, put_old)
  2589. {
  2590. struct path new, old, parent_path, root_parent, root;
  2591. struct mount *new_mnt, *root_mnt, *old_mnt;
  2592. struct mountpoint *old_mp, *root_mp;
  2593. int error;
  2594. if (!may_mount())
  2595. return -EPERM;
  2596. error = user_path_dir(new_root, &new);
  2597. if (error)
  2598. goto out0;
  2599. error = user_path_dir(put_old, &old);
  2600. if (error)
  2601. goto out1;
  2602. error = security_sb_pivotroot(&old, &new);
  2603. if (error)
  2604. goto out2;
  2605. get_fs_root(current->fs, &root);
  2606. old_mp = lock_mount(&old);
  2607. error = PTR_ERR(old_mp);
  2608. if (IS_ERR(old_mp))
  2609. goto out3;
  2610. error = -EINVAL;
  2611. new_mnt = real_mount(new.mnt);
  2612. root_mnt = real_mount(root.mnt);
  2613. old_mnt = real_mount(old.mnt);
  2614. if (IS_MNT_SHARED(old_mnt) ||
  2615. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2616. IS_MNT_SHARED(root_mnt->mnt_parent))
  2617. goto out4;
  2618. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2619. goto out4;
  2620. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2621. goto out4;
  2622. error = -ENOENT;
  2623. if (d_unlinked(new.dentry))
  2624. goto out4;
  2625. error = -EBUSY;
  2626. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2627. goto out4; /* loop, on the same file system */
  2628. error = -EINVAL;
  2629. if (root.mnt->mnt_root != root.dentry)
  2630. goto out4; /* not a mountpoint */
  2631. if (!mnt_has_parent(root_mnt))
  2632. goto out4; /* not attached */
  2633. root_mp = root_mnt->mnt_mp;
  2634. if (new.mnt->mnt_root != new.dentry)
  2635. goto out4; /* not a mountpoint */
  2636. if (!mnt_has_parent(new_mnt))
  2637. goto out4; /* not attached */
  2638. /* make sure we can reach put_old from new_root */
  2639. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2640. goto out4;
  2641. /* make certain new is below the root */
  2642. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2643. goto out4;
  2644. root_mp->m_count++; /* pin it so it won't go away */
  2645. lock_mount_hash();
  2646. detach_mnt(new_mnt, &parent_path);
  2647. detach_mnt(root_mnt, &root_parent);
  2648. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2649. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2650. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2651. }
  2652. /* mount old root on put_old */
  2653. attach_mnt(root_mnt, old_mnt, old_mp);
  2654. /* mount new_root on / */
  2655. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2656. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2657. /* A moved mount should not expire automatically */
  2658. list_del_init(&new_mnt->mnt_expire);
  2659. unlock_mount_hash();
  2660. chroot_fs_refs(&root, &new);
  2661. put_mountpoint(root_mp);
  2662. error = 0;
  2663. out4:
  2664. unlock_mount(old_mp);
  2665. if (!error) {
  2666. path_put(&root_parent);
  2667. path_put(&parent_path);
  2668. }
  2669. out3:
  2670. path_put(&root);
  2671. out2:
  2672. path_put(&old);
  2673. out1:
  2674. path_put(&new);
  2675. out0:
  2676. return error;
  2677. }
  2678. static void __init init_mount_tree(void)
  2679. {
  2680. struct vfsmount *mnt;
  2681. struct mnt_namespace *ns;
  2682. struct path root;
  2683. struct file_system_type *type;
  2684. type = get_fs_type("rootfs");
  2685. if (!type)
  2686. panic("Can't find rootfs type");
  2687. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2688. put_filesystem(type);
  2689. if (IS_ERR(mnt))
  2690. panic("Can't create rootfs");
  2691. ns = create_mnt_ns(mnt);
  2692. if (IS_ERR(ns))
  2693. panic("Can't allocate initial namespace");
  2694. init_task.nsproxy->mnt_ns = ns;
  2695. get_mnt_ns(ns);
  2696. root.mnt = mnt;
  2697. root.dentry = mnt->mnt_root;
  2698. mnt->mnt_flags |= MNT_LOCKED;
  2699. set_fs_pwd(current->fs, &root);
  2700. set_fs_root(current->fs, &root);
  2701. }
  2702. void __init mnt_init(void)
  2703. {
  2704. unsigned u;
  2705. int err;
  2706. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2707. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2708. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2709. sizeof(struct hlist_head),
  2710. mhash_entries, 19,
  2711. 0,
  2712. &m_hash_shift, &m_hash_mask, 0, 0);
  2713. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2714. sizeof(struct hlist_head),
  2715. mphash_entries, 19,
  2716. 0,
  2717. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2718. if (!mount_hashtable || !mountpoint_hashtable)
  2719. panic("Failed to allocate mount hash table\n");
  2720. for (u = 0; u <= m_hash_mask; u++)
  2721. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2722. for (u = 0; u <= mp_hash_mask; u++)
  2723. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2724. kernfs_init();
  2725. err = sysfs_init();
  2726. if (err)
  2727. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2728. __func__, err);
  2729. fs_kobj = kobject_create_and_add("fs", NULL);
  2730. if (!fs_kobj)
  2731. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2732. init_rootfs();
  2733. init_mount_tree();
  2734. }
  2735. void put_mnt_ns(struct mnt_namespace *ns)
  2736. {
  2737. if (!atomic_dec_and_test(&ns->count))
  2738. return;
  2739. drop_collected_mounts(&ns->root->mnt);
  2740. free_mnt_ns(ns);
  2741. }
  2742. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2743. {
  2744. struct vfsmount *mnt;
  2745. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2746. if (!IS_ERR(mnt)) {
  2747. /*
  2748. * it is a longterm mount, don't release mnt until
  2749. * we unmount before file sys is unregistered
  2750. */
  2751. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2752. }
  2753. return mnt;
  2754. }
  2755. EXPORT_SYMBOL_GPL(kern_mount_data);
  2756. void kern_unmount(struct vfsmount *mnt)
  2757. {
  2758. /* release long term mount so mount point can be released */
  2759. if (!IS_ERR_OR_NULL(mnt)) {
  2760. real_mount(mnt)->mnt_ns = NULL;
  2761. synchronize_rcu(); /* yecchhh... */
  2762. mntput(mnt);
  2763. }
  2764. }
  2765. EXPORT_SYMBOL(kern_unmount);
  2766. bool our_mnt(struct vfsmount *mnt)
  2767. {
  2768. return check_mnt(real_mount(mnt));
  2769. }
  2770. bool current_chrooted(void)
  2771. {
  2772. /* Does the current process have a non-standard root */
  2773. struct path ns_root;
  2774. struct path fs_root;
  2775. bool chrooted;
  2776. /* Find the namespace root */
  2777. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2778. ns_root.dentry = ns_root.mnt->mnt_root;
  2779. path_get(&ns_root);
  2780. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2781. ;
  2782. get_fs_root(current->fs, &fs_root);
  2783. chrooted = !path_equal(&fs_root, &ns_root);
  2784. path_put(&fs_root);
  2785. path_put(&ns_root);
  2786. return chrooted;
  2787. }
  2788. bool fs_fully_visible(struct file_system_type *type)
  2789. {
  2790. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2791. struct mount *mnt;
  2792. bool visible = false;
  2793. if (unlikely(!ns))
  2794. return false;
  2795. down_read(&namespace_sem);
  2796. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2797. struct mount *child;
  2798. if (mnt->mnt.mnt_sb->s_type != type)
  2799. continue;
  2800. /* This mount is not fully visible if it's root directory
  2801. * is not the root directory of the filesystem.
  2802. */
  2803. if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
  2804. continue;
  2805. /* This mount is not fully visible if there are any child mounts
  2806. * that cover anything except for empty directories.
  2807. */
  2808. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2809. struct inode *inode = child->mnt_mountpoint->d_inode;
  2810. if (!S_ISDIR(inode->i_mode))
  2811. goto next;
  2812. if (inode->i_nlink > 2)
  2813. goto next;
  2814. }
  2815. visible = true;
  2816. goto found;
  2817. next: ;
  2818. }
  2819. found:
  2820. up_read(&namespace_sem);
  2821. return visible;
  2822. }
  2823. static struct ns_common *mntns_get(struct task_struct *task)
  2824. {
  2825. struct ns_common *ns = NULL;
  2826. struct nsproxy *nsproxy;
  2827. task_lock(task);
  2828. nsproxy = task->nsproxy;
  2829. if (nsproxy) {
  2830. ns = &nsproxy->mnt_ns->ns;
  2831. get_mnt_ns(to_mnt_ns(ns));
  2832. }
  2833. task_unlock(task);
  2834. return ns;
  2835. }
  2836. static void mntns_put(struct ns_common *ns)
  2837. {
  2838. put_mnt_ns(to_mnt_ns(ns));
  2839. }
  2840. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  2841. {
  2842. struct fs_struct *fs = current->fs;
  2843. struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
  2844. struct path root;
  2845. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2846. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  2847. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  2848. return -EPERM;
  2849. if (fs->users != 1)
  2850. return -EINVAL;
  2851. get_mnt_ns(mnt_ns);
  2852. put_mnt_ns(nsproxy->mnt_ns);
  2853. nsproxy->mnt_ns = mnt_ns;
  2854. /* Find the root */
  2855. root.mnt = &mnt_ns->root->mnt;
  2856. root.dentry = mnt_ns->root->mnt.mnt_root;
  2857. path_get(&root);
  2858. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2859. ;
  2860. /* Update the pwd and root */
  2861. set_fs_pwd(fs, &root);
  2862. set_fs_root(fs, &root);
  2863. path_put(&root);
  2864. return 0;
  2865. }
  2866. const struct proc_ns_operations mntns_operations = {
  2867. .name = "mnt",
  2868. .type = CLONE_NEWNS,
  2869. .get = mntns_get,
  2870. .put = mntns_put,
  2871. .install = mntns_install,
  2872. };